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Abstract. Many logical methods are usually considered suitable to ex-
press the static properties of security protocols while unsuitable to model
dynamic processes or properties. However, a security protocol itself is in
fact a dynamic process over time, and sometimes it is important to be
able to express time-dependent security properties of protocols. In this
paper, we present a new timed logic based on predicate modal logic, in
which time is explicitly expressed in parameters of predicates or modal
operators. This makes it possible to model an agent’s actions, knowl-
edge and beliefs at different and exact time points, which enables us
to model both protocols and their properties, especially time-dependent
properties. We formalize semantics of the presented logic, and prove its
soundness.
We also present a modeling scheme for formalizing protocols and secu-
rity properties of authentication and secrecy under the logic. The scheme
provides a flexible and succinct framework to reason about security pro-
tocols, and essentially enhances the power of logical methods for protocol
analysis. As a case study, we then analyze a timed-release protocol using
this framework, and discover a new vulnerability that did not appear
previously in the literature. We provide a further example to show addi-
tional advantages of the modeling scheme in the new logic.

1 Introduction

To formally analyze security protocols, a variety of methods, such as methods of
logic [1–4], process calculus [5, 6], and strand spaces [7–10], have been proposed.
Logical methods[1–4] are usually considered suitable to express properties rather
than operational steps of a protocol. Process algebras is suitable to specify the
operational behavior of protocols while unsuitable to express knowledge-related
properties[11–13]. In this paper, we present a new logic for modeling and rea-
soning about security protocols. The proposed logic is suitable to model both a
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security protocol itself and its properties, especially time-dependent properties.
The key idea is to refine the logical method by explicitly using of time.

To see why time is necessary when modeling protocols, let us consider two
simple scenarios. First, assume a logic without time involved is used to analyze
a protocol. In this protocol, agent i receives message m. Then, the formula '
which means that i holds m is usually considered false before occurrence of the
receiving action and true after that. It seems that both ¬' and ' are true in
that logic, which makes the logic inconsistent. Where is the problem? Is there
something being ignored? Obviously, it is time. One may argue that, without
time involved, everything could be handled in a fixed time point by default.
Let us see another scenario which takes the end of the protocol as the default
time, when everything is discussed. Assume that agent i sends a message (in
encrypted form) to j and hopes j to hold this message only after a specific
time. Since everything is discussed in a fixed time, we even cannot express this
property, let alone to analyze it.

Actually, in security protocols, time is an important factor related to their
security. For one thing, each protocol is composed of a sequence of actions over
time. Further, some protocols explicitly aim at a time-dependent requirement.
For secrecy purposes, agents involved in protocols may require some messages
be kept secret before a specific time [14],[15]. For authentication, agent’s beliefs
may change over time [16]. For fair non-repudiation, the lack of timeliness will
lead to violation of fairness [17]. Therefore, it is necessary to take time into
consideration when analyzing security protocols.

The logic provided in this paper is based on predicate modal logic. The time
factor is expressed by parameters of predicates or modal operators. This makes
it possible to model an agent’s actions, knowledge and beliefs at different and
exact time points, which enables us to describe the dynamic process of proto-
cols and their properties, especially time-dependent properties. For example, in
the scenarios mentioned above, we can use some formulas like ¬'(�) and '(� ′)
instead of ¬' and ', respectively, to avoid inconsistency and express similar
assertions at different time � and � ′. Moreover, since a security protocol is com-
posed of a sequence of actions over time, to model a protocol, we can firstly
model each action at a specific time, and then use a formula to reflect the time
ordering. So, the proposed logic have advantages to model both protocols and
their properties. Such advantages essentially enhance the expressiveness of the
logical method in modeling and reasoning about security protocols.

One may wonder why a temporal logic (such as LTL or CTL) is not good
enough for our purpose. In fact, a temporal logic is also more suitable to model
properties, like safety or liveness. The time notion in it is expressed by temporal
connectives such as F (some future state), G(all future state), U(until), etc. How-
ever, to model a security protocol, we often need to express a concrete process
over a series of time, which is hard to be captured by today’s temporal logics.

Related Work. Several authors [11–13] have recognized different natures between
a protocol and its properties, and give some combined approaches to solving
them. [11] aims at bridging the gap between operational and epistemic ap-
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proaches to protocol analysis. This work proposes a combined framework which
allows for modeling the behavior of a protocol in a process language and supports
reasoning about properties expressed in a logic. [12] uses the set of traces gen-
erated by a process as models, and then defines a logic which has constructs for
reasoning about the intruder’s epistemic knowledge. [13] uses a hybrid method
to verify security protocols, which firstly expresses the protocols in process cal-
culus and then translates them into Horn clause in Horn logic. This method can
take both advantages of process calculus and Horn logic. However, The trans-
lation from a process-style expression to a logic-style formula introduces some
abstraction which makes some security protocols cannot be verified in it. For
example, it fails to prove protocols that first need to keep some value secret and
later reveal it[13]. Our work differs from the works mentioned above mainly in
that the protocols and their security goals are all modeled in an unified logi-
cal framework instead of using two different frameworks to model protocols and
properties respectively. Moreover, due to explicitly using of time, the proposed
logic can capture time-dependent properties of a security protocol.

Many logical methods, such as BAN-logic[1] and BAN-like logics[2],[3],[4],
are usually considered suitable to express the static properties of security pro-
tocols while unsuitable to model dynamic processes or properties. For example,
protocol step permutation is undetectable by the BAN logic [18]. Moreover, since
time is not used explicitly in these logics, we cannot directly use them to ana-
lyze a time-dependent security protocol. Some logics have been proposed with
time involved to express time-dependent properties. A logic proposed by Cof-
fey and Saidha [19] which we refer to as the CS logic uses time explicitly. It
originally aims at analysis of the public-key protocols, and mainly focuses on
the authentication property of protocols. Moreover, it lacks of formal semantics
and does not give a systematic approach to model protocols. Michiharu Kudo
and Anish Mathuria[20] extend the CS logic to analyze a timed-release protocol.
Their extended logic mainly aims at a specific protocol and also lacks in seman-
tics. Another method to model time in security protocols is to use modal logic
and temporal logic as well [21–23]. As be mentioned above, the time notion in
temporal logic is abstract, and is unsuitable to model a protocol. Haack and Jef-
frey [24] use timed Spi calculus to analyze protocols. Their intention is to model
the time in cracking an encrypted message which is different from our goal. In
the protocol composition logic (PCL) [25], a temporal ordering relation is used
to strengthen the authentication properties by imposing ordering between ac-
tions of different participants. However, in PCL, time is not explicitly used, so
it is not suitable to express a time-dependent properties. The increasing works
about timed property ([26],[27],[28],[29],[30]) in recent years show importance of
time in analyzing protocols.

In our own work [31], we have developed a time-dependent security protocol
logic, which mainly focuses on expressing the time-dependent properties. This
paper is an improved work of [31] in several aspects. The improvement includes
putting off some symbols and adding new ones in syntax of the logic, renewing
almost all groups of axioms. Also, a new method to model protocols, security
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goals, is provided. All these improvement and newly developed method make
the logic more expressive and powerful in modeling the protocols and properties
in reasoning about security protocols.

Other than a formal view[32] in analyzing security protocols, there is also a
computational view[33, 34]. Each has its advantages and drawbacks. Some recent
works focus on reconciling these two views [35–37] to provide a computational
sound formal methods ([38][39][40]). Our work in this paper is within formal
model. By elaborative definition, we expect it can provide computational sound-
ness which is left to a further study.

Organization. The rest of the paper is organized as follows. Section 2 presents the
syntax of the language and the axioms of the logic. In Section 3, the semantics
of the logic is defined and the soundness of the logic is proved. Then, in Section
4, a concrete modeling scheme is provided to specify protocols and their security
properties. Two examples are given in Section 5 to illustrate reasoning about
protocols in the proposed modeling scheme. Further discussions about the timed
logic and the modeling scheme are give in 6. We conclude this paper in section
7 and discuss possible future directions following this.

2 The Proposed Logic

2.1 Syntax

To simplify the description, we use many-sorted variables in the proposed logic
ℒ. There are four types of variables: A,T,K and M, which, in intuitively, denote
the agents, time, keys and messages respectively.

Definition 1 (Symbols in ℒ). The language consists of the following symbols:

1. Constants
⊥ contradiction;
e constant of type A , a special agent which abstracts all the factors of en-

vironment including attackers;
�0 constant of type T, the starting time to run the protocol;
�c constant of type T, the time when the protocol completes.

2. Variables
i, j, . . . , i′, j′, . . .: variables of type A;
k, k′, k′′, . . .: variables of type K;
m,m′,m′′, . . .: variables of type M;
�, � ′, � ′′, . . .: variables of type T.

3. Functions
k−(⋅) : A→ K, returns private key of an agent;

k+(⋅) : A→ K, returns public key of an agent;

k(⋅,⋅) : A× A→ K, returns shared key of two agents;
[⋅, ⋅] : M×M→M, returns concatenation of two messages;
[⋅](⋅) : M×K→M, returns encrypted form of a message with a key;

(̃⋅) : K→ K, returns the reverse of a key;
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+(⋅, ⋅) : T × T → T, returns sum of two time. +(�, � ′) is often written as
� + � ′.

4. Predicates
The following are predicates and their informal meaning:
– < : T×T, priority relation between two time points. For example, � < � ′

means that the time � is prior to time � ′;
– C : M×M, containing relation between two messages. C(m,m′) means

that message m contains message m′;
– G : A× T×M×M, message getting. G(i, �,m,m′) means that agent i

can get message m′ from m at time � ;
– � : A× T×M, message newly generating. �(i, �,m) means that agent i

newly generates a fresh message m at time � .
– R : A×T×M, message receiving. R(i, �,m) means that agents i receives

message m at time � ;
– S : A × T ×M, message sending. S(i, �,m) means that agent i sends

message m at time � ;
– H : A × T ×M, message holding. H(i, �,m) means that agent i holds

message m at time � .
5. Equalities

=� ,=a,=k and =m denote the equalities of times, agents, keys and messages
respectively. Sometimes we use = to include all the four cases.

6. Quantifiers
∀� ,∀a,∀k and ∀m are the universal quantifiers of time, agent, key and mes-
sage respectively. Sometimes we use ∀ to include all the four cases.

7. Connectives
¬ and → are negation and implication in first order logic.

8. Modal operator
Bi,� : agent i believes something at time � .

The terms in the logic are introduced as follows.

Definition 2 (Terms). Terms in ℒ include ta, t� , tk and tm, which denote the
terms of type A, type T, type K and type M respectively, and they can be defined
in Backus Naur form as follows:

ta ::= e ∣ i t� ::= � ∣ �0 ∣ �c ∣ t� + t�

tk ::= k ∣ k+ta ∣ k
−
ta ∣ k tata ∣ t̃k tm ::= m ∣ t� ∣ ta ∣ tk ∣ [tm, tm] ∣ [tm]tk

Now we look at formulas in ℒ.

Definition 3 (Formulas). Formulas of ℒ include atomic formula 'A and for-
mula '. They are shown in Backus Naur form as follows:

'A ::= ⊥ ∣ (t� < t� ) ∣ C(tm, tm) ∣ G(ta, t� , tm, tm) ∣ �(ta, t� , tm) ∣ S(ta, t� , tm) ∣
R(ta, t� , tm) ∣ H(ta, t� , tm) ∣ (ta =a ta) ∣ (t� =� t� ) ∣ (tk =k tk) ∣ (tm =m tm)

' ::= 'A ∣ ¬' ∣ '→ ' ∣ ∀� � ' ∣ ∀a i ' ∣ ∀k k ' ∣ ∀mm' ∣ Bi,� '
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To facilitate presentation, some notations are used as abbreviation in ℒ.

Definition 4 (Abbreviations).

1. Messages Abbreviation:
– [m1,m2, . . . ,mℓ] is an abbreviation of [m1, [m2, [⋅ ⋅ ⋅ , [mℓ−1,mℓ]] ⋅ ⋅ ⋅ ].
– JmK is an abbreviation of a message which contains m. More precisely,

we have C(JmK,m).
– JmKk is an abbreviation of a encrypted message in which one can get
m only through k̃. More precisely, we have C(JmKk,m) ∧

(
H(i, �, k̃) ↔

G(i, �, JmKk,m)
)
.

These notations allow us to focus on what we are interested in without listing
all the other components.

2. Abbreviation of the connective

' ∨  
a

= ¬'→  ' ∧  
a

= ¬('→ ¬ )

'↔  
a

= ('→  ) ∧ ( → ')

3. Abbreviation of predicate

� ≤ �
a

= (� < � ′) ∨ (� =� �
′)

�1 ∗1 �2 ∗2 ⋅ ⋅ ⋅ �ℓ−1 ∗ℓ−1 �ℓ
a

= (�1 ∗1 �2) ∧ ⋅ ⋅ ⋅ (�ℓ−1 ∗ℓ−1 �ℓ).

where ∗i ∈ {=� , <,≤} for i = 1, 2, . . . , ℓ−1. For example, �1 =� �2 < �3 ≤ �4
is an abbreviation of (�1 =� �2) ∧ (�2 < �3) ∧ (�3 ≤ �4).

4. Abbreviation of quantifiers

∃x'
a

= ¬∀x¬'

Also, we follow the conventional priority of all the connectives in a formula to
evaluate.

2.2 Axioms and inference rules

The axioms of the logic consist of axiom schemas and inference rules. All the
axioms include the instantiation and universal closure of the axiom schemas.

A 1 All the axioms of predicate logic with many-sorted variables and equality.

A 2 Barcan formula

∀xBi,�'↔ Bi,�∀x' (no free occurrence of i, � in ')

where x can be a variable of any type, and ∀ are the quantifiers corresponding to
the type of x.

The side condition assures the scopes of i and � keep unchanged.
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A 3 Axioms of Monotonicity

1. H(i, �,m) ∧ (� < � ′)→ H(i, � ′,m)
2. G(i, �,m,m′) ∧ (� < � ′)→ G(i, � ′,m,m′)
3. Bi,� ' ∧ (� < � ′)→ Bi,� ′ ' (no free occurrence of �, � ′ in ')

A3 states that knowledge, abilities, and beliefs of an agent will not be lost over
time. One may argue A3,3) with the following example. If agent i believes that
he does not hold some message, then he will believe his ‘not holding’ even when
this message is sent to him. Of course this is not the case. Actually, considering
that there is no free occurrence of � in ', if agent i believes that he does not
hold message m at time � , and he gets m later, say � ′, then he still believes that
he does not hold m at � , but holds m at � ′.

A 4 Axiom of time

(� < � ′) ∧ (� ′ < � ′′)→ (� < � ′′)

A4 indicates that the relation < is transitive.

A 5 Axioms of key

1. H(i, �, k−i ) 2. H(j, �, k−i )→ (j =a i)

3. H(i, �, kij) ∧H(j, �, kij) 4. H(i′, �, kij)→ (i′ =a i) ∨ (i′ =a j)

5. k̃+i =k k
−
i ∧ k̃

−
i =k k

+
i ∧ k̃ij =a kij

This group of axioms is about long-term keys, including symmetric key and
asymmetric keys, which formulate the perfect encryption about symmetric and
asymmetric encryption.

A 6 Axioms of getting messages

1. G(i, �,m,m)
2. G(i, �, [m′]k,m)↔ H(i, �, k̃) ∧G(i, �,m′,m)
3. G(i, �, [m,m′],m′′)↔ G(i, �,m,m′′) ∨G(i, �,m′,m′′)
4. G(i, �,m,m′) ∧G(i, �,m′,m′′)→ G(i, �,m,m′′)

A 7 Axioms of message containment

1. G(i, �,m,m′)→ C(m,m′) 2. C(m,m′) ∧ C(m′,m′′)→ C(m,m′′)

The former one focuses on the relationship between message getting and message
containing, and the later one indicates that C is transitive.

A 8 Axioms of actions

1. �(i, �,m) ∧ �(i′, � ′,m′)→ m ∕=m m′

2. R(i, �, JmKk−j )→ ∃�� ′
(
� ′ < � ∧H(j, � ′,m) ∧ S(j, � ′, JmK)

)
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3. �(i, �,m) ∧ S(i, �, Jm′Kk+j ) ∧ C(m′,m) ∧R(i, � ′,m′′) ∧G(i, � ′,m′′,m)→
∃��1∃��2

(
� < �1 ≤ �2 < � ′ ∧R(j, �1, Jm′Kk+j ) ∧ S(j, �2, JmK)

)
4. R(i′, �, JmKkij )→ ∃�� ′

(
� ′ < � ∧ S(i, � ′, JmK) ∧H(i, � ′,m)

)
∨ ∃�� ′′

(
� ′′ < � ∧ S(j, � ′′, JmK) ∧H(j, � ′′,m)

)
5. (i ∕=a j) ∧ �(i, �,m) ∧H(j, � ′, JmK)→

� < � ′ ∧ ∃��1∃��2
(
� ≤ �1 < �2 ≤ � ′ ∧ S(i, �1, JmK) ∧R(j, �2, JmK)

)
This group of axioms describes the properties about actions, Often used

for authentication or non-repudiation purposes. A8,1) indicates that a message
comes from a new action is unique. A8,2) indicates that a message in private-key-
encrypted form reveals its original sender. A8,3) implies that a message in public-
key-encrypted form can designate its uniquely possible receiver. Furthermore,
when a newly generated message is sent in such an encrypted form and sent
back in a can-be-decrypted form later, one can assure that the message must have
passed through that designated receiver(note that a newly generated message is
unique). A8,4) states that a message in shared-key-encrypted form reveals its
possible sources. A8,5) shows that a newly generated message will never be held
by someone before the time, and if it is held by another agent later, then it must
come from its generator.

A 9 Axioms of holding messages

1. �(i, �,m) ∨ S(i, �,m) ∨R(i, �,m)→ H(i, �,m)
2. H(i, �,m) ∧G(i, �,m,m′)→ H(i, �,m′)
3. H(i, �,m) ∧H(i, �,m′)↔ H(i, �, [m,m′])
4. H(i, �,m) ∧H(i, �, k)→ H(i, �, [m]k)

A9 summarizes in what cases one holds a message.

A 10 Axioms of belief

1. Bi,� ('→  ) ∧Bi,� '→ Bi,�  2. G(i, �,m,m′)→ Bi,�G(i, �,m,m′)
3. �(i, �,m)→ Bi,��(i, �,m) 4. S(i, �,m)→ Bi,�S(i, �,m)
5. R(i, �,m)→ Bi,�R(i, �,m) 6. H(i, �,m)→ Bi,�H(i, �,m)
7. H(i, �,m) ∧H(i, �, k)→ Bi,�C([m]k, m)

A10,1) is a variant of K axiom in modal logic. A10,2) means that an agent
believes his ability to get messages. The followed four axioms mean that an
agent believes what is done and what is held by himself. The last one implies that
when an agent can construct an encrypted message with another message and
key, then he believes the encrypted message contains the message (not including
the encrypted key) used to construct it.

IR Inference Rule

1.
'→  , '

 
2.

⊢ '
⊢ Bi,�'

where ⊢ ' is an abbreviation for ⊢ℒ ' which means that ' is a theorem in logic
ℒ. When ' is deducible from a set of formulas � , we say that ' is a deduction
consequence of � , written as � ⊢ '
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3 SEMANTICS

To give the semantics of ℒ, we firstly define model in the logic. The model is based
on a Kripke structures and is defined step by step with a series of definitions.
The semantics of the formulas are given afterwards.

3.1 Model

Definition 5 (Domain). We define the domain of the model as a set D =
A ∪ T ∪ K ∪ℳ, where

1. A is the set of agents, i.e., the (possible) participants of the protocol;
2. T is a set of times. In our method, we use concrete time, or alternatively

the integer to model time. < is an order relation on T ;
3. K is a set of keys. Keys can be divided into public keys, private keys, shared

keys and session keys, etc. They can be used to encrypt, decrypt, sign and
verify some messages. In this model, we assume that a private key can only
be known by its owner, and a shared key can only be known by those who
share it. If a message encrypted by one key can be decrypted by another key,
we say these two keys are reverse of each other. So, as usual, the public
key and private key of the same agent are reverse, and a shared key is also
considered as a reverse key of itself;

4. ℳ is a set of messages including atomic messages, encrypted messages and
combined messages. An atomic message is a message which has not be com-
bined or encrypted, including agent, time, key, nonce, and single plaintext.
Let m, m′ be any two messages and k be any key, then encrypted messages
are defined as the messages encrypted by k, written as [m]k, and the com-
bined messages are defined as the concatenation of m and m′, written as
[m,m′].

Definition 6 (Message Extraction). Given K ⊆ K and M ⊆ ℳ, we define
extractK(M) as the set of messages which can be extracted from M with the help
of K, and is recursively defined as follows:

1. If m ∈M , then m ∈ extractK(M);
2. If [m,m′] ∈ extractK(M), then m ∈ extractK(M) and m′ ∈ extractK(M);
3. If [m]k ∈ extractK(M), k̃ ∈ K or k̃ ∈ extractK(M), then m ∈ extractK(M).

extractK({m}) is denoted as extractK(m). Message extraction can be used to
interpret the predicate G.

Definition 7 (Message Construction). Given K ⊆ K and M ⊆ ℳ , we
define constructK(M) as the set of messages which can be constructed with the
help of M and K. Formally, we recursively define constructK(M) as follows:

1. If m ∈M , then m ∈ constructK(M);
2. If m,m′ ∈ constructK(M), then [m,m′] ∈ constructK(M);
3. If m ∈ constructK(M), and k ∈ K, then [m]k ∈ constructK(M).
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constructK({m}) is denoted as constructK(m). Message construction can be
used to define message reconstruction and message containing.

Definition 8 (Message Reconstruction). Given K ⊆ K and M ⊆ ℳ ,
we define reconstructK(M) as the set of messages which can be reconstructed
with the help of M and K. Formally, we recursively define reconstructK(M) as
follows:

1. If m ∈M, then m ∈ reconstructK(M);
2. If m ∈ constructK∪key(extractK(M))(extractK(M)), then m ∈ reconstructK(M).

reconstructK({m}) is denoted as reconstructK(m). Message reconstruction can
be used to interpret the predicate H.

Definition 9 (Message Containment). Given a message m, we call contain(m)
as the set of messages which are contained in message m. That is, either some-
one can extract them from m, or someone can construct m with them. Formally,
we define contain(m) as follows:

1. If there exists a key set K such that m′ ∈ extractK(m), then m′ ∈ contain(m);
2. If there exists a key set K and a message m′, such that m ∈ constructK(m′),

then m′ ∈ contain(m).

Definition 10 (State machine of protocol). A state machine of protocol is
defined as a 4-tuple (Q,E, �, q0), in which

1. Q is the set of agents’ states. The state of agent i at time � , written as
q�i , is presented by the original messages and keys held by agent i till time
� , written as M�

i and K�
i respectively. Here, we use the original message to

mean the message which keeps its form when it is received without any further
reconstruction. So, we have q�i = (M�

i ,K
�
i ), especially, q�0i = (M�0

i ,K
�0
i ) is

the initial state of agent i. q0 is a vector of each agent’s initial state, which
is used to record the messages and keys initially held by each agent.

2. E is the set of actions. In a protocol, an agent can execute three types of
actions: send(m), receive(m) and new(m), which mean sending message ,
receiving message and newly generating a fresh value respectively. A fresh
value is unique. That is, two newly generated messages will never be equal.
To simplify our analysis, we assume that an agent can execute several ac-
tions with different types simultaneously; for example, an agent can execute
a receive action and a send action at the same time, but is not allowed to
execute several receive actions simultaneously. Generally e, e1, e2, . . . range
over the single action, and ��i denotes the set of actions agent i executes at
time � .
Furthermore, we can define the concept of action history. The action history
of an agent is a finite sequence of action sets in which the agent has executed
up to some moment in time. The set of action histories is denoted by �.
Often, we use ��i =< ��0i �

�1
i ⋅ ⋅ ⋅��i > to denote the action history of agent

i at time � . An action e is said to appear in action history ��i , written as
e ∈ ��i , if there is a set of actions � in ��i and e ∈ �.
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With action history, we can define two cases of sending message, i.e., firstly
send and forward. An agent i is said to firstly send message m means that,
there is a message m′ ∈ ℳ such that m ∈ contain(m′), send(m′) ∈ ��i , and

for all i′ ∈ A, � ′ ∈ T ,m′′ ∈ ℳ, if m ∈ contain(m′′) and send(m′′) ∈ �� ′i′ ,
then � ≤ � ′. Otherwise, we say that agent i only forwards message m;

3. � : Q × 2E → Q, the function of state transition. More specifically, let
q�i = (M�

i ,K
�
i ), and � ′ be the next time after � when some actions occur,

we have

q�
′

i = (M� ′

i ,K
� ′

i ) = �(q�i , �
� ′

i ) =

⎧⎨⎩
(M�

i ,K
�
i ) if ��

′

i = {send(m)}(
M�
i ∪ {m}, V

)
if ��

′

i = {receive(m)}(
M�
i ∪ {m},K�

i ∪ key({m})
)

if ��
′

i = {new(m)}

where V
a

= K�
i ∪key(extractK�

i
(M�

i ∪{m})) and key(⋅) is a function to select
keys from a set of messages. Given a set of messages M , we say k ∈ key(M)
if and only if k ∈ M and k ∈ K. When agent i does more than one action
at time � , namely, ��i = {e1, e2, . . . , en}(2 ≤ n ≤ 3), then, we define

�(q�i , �
� ′

i ) = ∪e∈��′i �(q
�
i , {e})

in which the union of the states is defined below. Let q′ = (M ′,K ′) and
q′′ = (M ′′,K ′′), then

q′ ∪ q′′ = (M ′ ∪M ′′,K ′ ∪K ′′)

Naturally, we can extend the state transition function to a similar function
which can be applied to action history instead of action set, i.e., � : Q×� →
Q, then, we have,

q�i = �(q�0i , �
�
i ) = �(⋅ ⋅ ⋅ �(�(q�0i , �

�1
i ), ��2i ), ⋅ ⋅ ⋅ , ��i )

From Definition 10, the state of an agent at a time tells only what is held by the
agent at that time. But it cannot capture how this state is formed. Moreover,
the execution of an action does not necessarily lead to the change of the state.
To reflect the protocol precisely, besides the agent’s local state, its action history
is involved. This idea can help us define the concept of world.

Definition 11 (World). We divide world into two local worlds and two global
worlds.

The local world of agent i at time � is defined as !�i = (q�0i , �
�
i ), where q�0i is

the initial state of the agent i, and ��i is the action history of agent i at time � .
The local world of agent i is composed of the local worlds of agent i at all the

time points in protocol, written as !i = (!�0i , !
�1
i , ⋅ ⋅ ⋅ , !

�c
i )T .

The global world at a specific time � is composed of local worlds of all the
agents at time � , written as
!� = (!�i , !

�
j , ⋅ ⋅ ⋅ , !�e ).
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The global world of a protocol (abbr. as world) is composed of the local worlds,
written as !, denoted as follows:⎛⎜⎜⎜⎝

!�0i !�0j ⋅ ⋅ ⋅ !�0e
!�1i !�1j ⋅ ⋅ ⋅ !�1e

...
...

...
...

!�ci !�cj ⋅ ⋅ ⋅ !�ce

⎞⎟⎟⎟⎠ = (!i !j ⋅ ⋅ ⋅ !e) =

⎛⎜⎜⎜⎝
!�0

!�1

...
!�c

⎞⎟⎟⎟⎠
In the following, we use !�i to denote the local world of agent i at time � , and
q�i (!) the local state of agent i at time � in world !. Similar understanding can
be applied to ��i (!), ��i (!),M�

i (!) and K�
i (!).

Definition 12 (Possible World). We define W as the set of all the possible
worlds. A world ! is called a possible world, i.e. ! ∈ W , if and only if it meets
the following conditions:

1. If new(m) ∈ ��i (!), then
(a) m is atomic; and
(b) for any i′ ∕= i, � ′ ∕= � , we have new(m) ∕∈ �� ′i′ (!); and

(c) for any i′ ∈ A, � ′ < � , we have m ∕∈ reconstructK�′
i′ (!)

(M� ′

i′ (!)).

2. If send(m) ∈ ��i (!), then m ∈ reconstructK�
i
(M�

i (!)). Especially, an atomic
message m is firstly sent (see Definition 10 2)) by agent i at time � , then
new(m) ∈ ��i (!).

3. If receive(m) ∈ ��i (!), then, there must exist i′ ∕= i, � ′ ≤ � , such that

send(m) ∈ ��
′

i′ . Especially, if m′ ∈ contain(m) and receive(m) ∈ ��i (!),
then, there must exist i′ ∈ A, � ′ < � and agent i′ firstly send m in !.

Informally, 1a) means that a newly generated message must be an atomic mes-
sage; 1b) means that a message can only be generated once; and 1c) means that
no agent can hold a newly generated message before it is generated.

The item 2) means no holding, no sending. Also, if an agent has firstly sent
an atomic message m at � , he must generate this message at � . It seems that
m is not necessarily being generated at � . Maybe, it can be generated before � ,
but never be sent till � . This is possible, but makes no difference in essence.

Intuitively, the item 3) means no sending, no receiving. It also implies that
a received message may be forwarded many (but finite) times, but there must
exist someone firstly sends it.

Definition 13 (Accessible Relationship). Accessible relationship between pos-
sible worlds is written as R�i ⊆W ×W . Let !, !′ ∈W , then

!R�i !
′ iff !�i = !′ �i

We are finally ready to define the model.

Definition 14 (Model). The model of ℒ is defined as M = (W, {R�i }i∈A,�∈T , D, I)
which is composed of the following components:
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1. W , the set of possible worlds which is defined in Definition 12. The possible
worlds are often written as !′, !′′, !1, !2, ⋅ ⋅ ⋅ .

2. D, the domain of the proposed logic which is defined in Definition 5. Here
we assume that D = A ∪ T ∪ K ∪ℳ be the fixed domain of all the possible
worlds.

3. R�i , the accessible relationship which is defined in Definition 13. Different
from the normal modal logic, R�i is not a single relation, but a set of rela-
tions. That is, for any i ∈ A, � ∈ T , there exists a definition of accessible
relationship.

4. I, a function of interpretation which maps the symbols of constant, function,
predicate and modal operator into its counterpoints in model M.
– For each constant c, I(c) is an element of the corresponding domain,

also denoted as c;
– For each function f , I(f) is a function on the corresponding domain,

also denoted as f ;
– For each predicate P , I(P ) is a predicate on the corresponding domain

(equality and modal operator can be considered as special predicate).

For convenience, in the following, some syntax symbols will be self explained and
conduct no confusions within the contexts to judge them to be in syntax form
or semantic form.

3.2 Semantics

We are now in a position to compute a truth value for all formulas in ℒ.

Definition 15 (Assignment and Designation). Assignment is defined as
a mapping s : {v1, v2, . . .} → D, where vi is a variable, and is used to map
variables of type A,T,K,M to the sub-domain A, T ,K,ℳ, respectively.

For such an s, we denote by s[x 7→ d] the mapping which maps x to d, and
any other variable y to s(y).

Designation of terms can be obtained by extending the assignment s. We
define s as the mapping from the set of terms to its domain, then, to any term
t, we have

s(t) =

⎧⎨⎩
s(v) when t is variable v

c when t is constant c

f
(n)

(s(t1), . . . , s(tn)) when t = f (n)(t1, . . . , tn)

We now define the semantics to the formulas. It is defined in conventional ap-
proach by computing a truth value.

Definition 16 (Semantics of the Formulas). Let ∣=s
M,! ' indicate that for-

mula ' is true in the possible world ! of model M under an assignment s. It
will be abbreviated as ∣=s

! ' when M defaulted. The semantics of the formulas
are defined as follows:
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1. ∕∣=s
! ⊥.

2. ∣=s
! (t� < t′� ) iff s(t� ) < s(t′� ).

3. ∣=s
! C(tm, t

′
m) iff s(t′m) ∈ contain(s(tm)).

4. ∣=s
! G(ta, t� , tm, t

′
m) iff s(t′m) ∈ extract

K
s(t� )

s(ta)
(!)

(
s(tm)

)
.

5. ∣=s
! H(ta, t� , tm) iff s(tm) ∈ reconstruct

K
s(t� )

s(ta)
(!)

(
M

s(t� )
s(ta)

(!)
)
.

6. ∣=s
! �(ta, t� , tm) iff new(s(tm)) ∈ �s(t� )s(ta)

(!).

7. ∣=s
! S(ta, t� , tm) iff send(s(tm)) ∈ �s(t� )s(ta)

(!).

8. ∣=s
! R(ta, t� , tm) iff receive(s(tm)) ∈ �s(t� )s(ta)

(!).

9. ∣=s
! (ta =a t

′
a) iff s(ta) =a s(t

′
a);

∣=s
! (t� =� t

′
� ) iff s(t� ) =� s(t

′
� );

∣=s
! (tk =k t

′
k) iff s(tk) =k s(t

′
k);

∣=s
! (tm =m t′m) iff s(tm) =m s(t′m).

10. ∣=s
! ¬' iff ∕∣=s

! '.
11. ∣=s

! ('→  ) iff ∕∣=s
! ' or ∣=s

!  .

12. ∣=s
! ∀ai'(i) iff for all j ∈ A, ∣=s[i 7→j]

! '[j];

∣=s
! ∀��'(�) iff for all � ∈ T , ∣=s[� 7→�]

! '[�];

∣=s
! ∀kk'(k) iff for all � ∈ K, ∣=s[k 7→�]

! '[�];

∣=s
! ∀mm'(m) iff for all � ∈ℳ, ∣=s[m7→�]

! '[�].

13. ∣=s
! Bi,�' iff for all !′ ∈W , if !R

s(�)
s(i) !

′ then ∣=s
!′ '.

3.3 Soundness

When a formula ' keeps true under all assignments and all possible worlds in
model M, we say that ' is valid in M, written as ∣=M ', and ∣= ' for short.
� ∣= ' means that when � evaluates to be true, ' evaluates to be true as well.

Theorem 1 (Soundness). For any formula ', and formula set � , we have

1. if ⊢ ', then ∣= ';
2. if � ⊢ ', then � ∣= '.

Before giving the proof, we need some lemmas.

Lemma 1. For any ! ∈W , �1, �2 ∈ T , if �1 < �2, then

M�1
i (!) ⊆M�2

i (!) (1)

K�1
i (!) ⊆ K�2

i (!). (2)

Proof. From the state transition function in Definition 10 3), we can get this
lemma directly.

Lemma 2. For any set of messages M and set of keys K,

extractK(M) ⊆ reconstructK(M).
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Proof. For anym ∈ extractK(M), we havem ∈ constructK∪key(extractK(M))(extractK(M))
from Definition 7 1); then from Definition 8 2), we have m ∈ reconstructK(M).
Therefore, extractK(M) ⊆ reconstructK(M).

Lemma 3. For any atomic message m, a set of messages M and a set of keys
K, if m ∈ reconstructK(M), then m ∈ extract(M).

Proof. Since m is atomic, and m ∈ reconstructK(M), from Definition 8 and
Definition 6, the only case is m ∈ extract(M).

Lemma 4. For any message set M,M ′ and key set K,K ′, if M ′ ⊆ M and
K ′ ⊆ K, then

extractK′(M
′) ⊆ extractK(M) (3)

reconstructK′(M
′) ⊆ reconstructK(M) (4)

Proof. A strict proof can be given by mathematical induction. We just give its
main idea. Suppose m ∈ extractK′(M

′). By Definition 6, we know that m can be
gained by (several times of) transformations (separation, or decryption). Let the
number of times of transformations be n. We can use mathematical induction
on n according to Definition 6 to get the first conclusion. The second one can be
obtained with a similar approach using Definition 6, Definition 7 and Definition
8.

From Lemma 1 and Lemma 4, we can get the following corollary:

Corollary 1. For any ! ∈W, �1, �2 ∈ T , if �1 < �2, then

extractK�1
i (!)(M

�1
i (!)) ⊆ extractK�2

i (!)(M
�2
i (!)) (5)

reconstructK�1
i (!)(M

�1
i (!)) ⊆ reconstructK�2

i (!)(M
�2
i (!)) (6)

Lemma 5. For any ! ∈ W , i ∈ A, �, � ′ ∈ T with � < � ′, then {!′ ∣ !R� ′i !′} ⊆
{!′′ ∣ !R�i !′′} .

Proof. Suppose !1 satisfies !R�
′

i !1 and by Definition 13. We have !�
′

i = !1
� ′

i ,

i.e. (q�0i (!), ��
′

i (!)) = (q�0i (!1), ��
′

i (!1)), and thus ��
′

i (!) = ��
′

i (!1). Considering
that � < � ′, by Definition 10 2) we have

⟨��0i (!) ⋅ ⋅ ⋅��i (!) ⋅ ⋅ ⋅��
′

i (!)⟩ = ⟨��0i (!1) ⋅ ⋅ ⋅��i (!1) ⋅ ⋅ ⋅��
′

i (!1)⟩

which implies

⟨��0i (!) ⋅ ⋅ ⋅��i (!)⟩ = ⟨��0i (!1) ⋅ ⋅ ⋅��i (!1)⟩.

Specifically, ��i (!) = ��i (!1), and thus

(q�0i (!), ��i (!)) = (q�0i (!1), ��i (!1))

namely, !�i = !1
�
i . From Definition 13, we have !R�i !1. As desired.
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Lemma 6. Given ! ∈ W, � ∈ T , i ∈ A, if agent i firstly sent message JmKk at
time � , then m ∈ reconstructK�

i
(!)M�

i (!) and k ∈ K�
i (!).

Proof. Suppose the contradictory that m ∕∈ reconstructK�
i (!)

M�
i (!) or k ∕∈

K�
i (!). Since i has sent JmKk, Definition 12, 2) tells us JmKk ∈ reconstructK�

i (!)
M�
i (!).

From Definition 8 and Definition 10, also considering that JmKk is not atomic,
we know that agent i must have received the message JmKk previously. This is
in contradiction with the fact that agent i firstly sent the message JmKk at time
� .

Lemma 7. For any ! ∈ W , if receive(JmKk−j ) ∈ ��i (!), then, there exists � ′ <

� , so that agent j firstly sent message JmKk−j at time � ′.

Proof. Assume that JmKk−j is not firstly sent by agent j, then, there must exist

another agent who firstly sent it. Assume that i′ firstly sent JmKk−j at time � ′,

and i′ ∕=a j. From Lemma 6, we have k−j ∈ K� ′

i′ (!). That is, i knows k−j . By
Definition 5, 3), we have i′ =a j. This is in contradiction with our assumption, so
JmKk−j is firstly sent by agent j. Accordingly, by the definition of firstly sending

in Definition 10 2), we have � ′ < � .

Lemma 8. For any ! ∈ W , if receive(JmKki,j ) ∈ ��i′(!), then there must exist
time � ′ < � so that agent i or j firstly sent the message JmKkij at time � ′.

Proof. It can be proved using an approach similar to that of Lemma 7.

Lemma 9. For any ! ∈ W, i ∈ A, � ∈ T , we have the following conclusions
about reconstructK�

i (!)
M�
i (!):

1. If m is an atomic message, then m ∈ reconstructK�
i (!)

M�
i (!) if and only if

one of the following conditions holds:
(a) m ∈ reconstructK�0

i (!)M
�0
i (!);

(b) new(m) ∈ ��i (!);
(c) There exists m′ so that receive(m′) ∈ ��i (!) and m ∈ extractK�

i (!)
M�
i (!).

2. [m]k ∈ reconstructK�
i (!)

M�
i (!) if and only if one of the following conditions

holds:
(a) There exist message m′ so that receive(m′) ∈ ��i (!) and [m]k ∈ extractK�

i (!)
(m′);

(b) m, k ∈ reconstructK�
i (!)

M�
i (!).

3. [m,m′] ∈ reconstructK�
i (!)

M�
i (!) if and only if m,m′ ∈ reconstructK�

i (!)
M�
i (!).

Proof. The above conclusion can be drawn from Definition 6, 7,8, 10 3) and
Definition 12. We omit the details here.

Lemma 10. All the axioms in ℒ are valid.

Proof. Let us prove the validity of all the axioms in ℒ one by one.
Given model M, for any possible world ! ∈ W , any assignment s, to prove

∣= ', we only need to show ∣=s
M,! '(∣=s

! ' for short).
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A1 Validness of axiom A1 can be got by the soundness of predicate logic.
A2 Because the domain of our model is fixed, we can get the validity of A1 from

the theory of predicate modal logic.
A3 1) Suppose ∣=s

! H(i, �,m) ∧ (� < � ′). From Definition 16, we know that

s ∈ reconstruct
K
s(�)

s(i)

(M
s(�)
s(i) (!)), and s(�) < s(� ′). By Corollary 1 2), we

have s(m) ∈ reconstruct
K
s(�′)
s(i)

(!)
(M

s(� ′)
s(i) (!)). So, from Definition 16 5), ∣=s

!

H(i, � ′,m) holds.
2) Suppose ∣=s

! G(i, �,m,m′)∧(� < � ′). From Definition 16, we have s(m′) ∈
extract

K
s(�)

s(i)

(s(m)) and s(�) < s(� ′). By Corollary 1, 1), we can get it.

3) Suppose ∣=s
! Bi,�' ∧ (� < � ′) From Definition 16, for any !′ ∈ W ,

if !R
s(�)
s(i) !

′, then ∣=s
!′ '. That is, for any possible world !′ in set {!′ ∣

!R
s(�)
s(i) !

′}, we have ∣=s
!′ '. Since we have s(�) < s(� ′), with Lemma 5, we

know that {!′′ ∣ !Rs(�
′)

s(i) !
′′} ⊆ {!′ ∣ !Rs(�)s(i) !

′}. So, for all !′′ satisfying

!R
s(� ′)
s(i) !

′′}, we also have ∣=s
!′′ '. This means that ∣=s

! Bi,� ′' by Definition

16 13).
A4 From Definition 5 2), we know that < is an ordering relation on T , so, it is

transitive.
A5 The validity of axioms A5 is obtained by Definition 5 3).
A6 A6 is obtained by Definition 6, Definition 8, Definition 16,4),5) and Lemma

3.
A7 1) ∣=s

! G(i, �,m,m′). From Definition 16,4), we have s(m′) ∈ extract
K
s(�)

s(i)
(!)

(s(m)).

Then from Definition 9,1), s(m′) ∈ contain(s(m)). By Definition 16,3), we
have ∣=s

! C(m,m′).
2) can be proved by Definition 6 7, 8, 9 and Definition 16 3).

A8 1) The validity of this axiom is from Definition 10 2).
2)Suppose ∣=s

! R(i, �, JmKk−j ). From Definition 16 8) and Lemma 7, we know

that agent s(j) firstly sent message s(JmKk−j ) before time s(�). Then, by the

definition of firstly sending in Definition 10 2), we have

∣=s
! ∃�� ′∃mm′′((� ′ < �) ∧ S(j, � ′, JmKk−j )).

Also, by Lemma 6, we have s(m) ∈ reconstruct
K
s(�)

s(i)

(M
s(�)
s(i) (!)). i.e. ∣=s

!

H(i, �,m).
2) We just provide a sketch of the proof. When s(i) sends s(Jm′Kk+j )) with

s(m′) containing a newly generated message s(m), if there is an agent receiv-
ing this message, the only receiver must be s(j), because only s(j) has the
decrypted key. This can be assured by the fact that s(i) receives s(m′′) at
s(�), from which s(i) can get s(m). Then, s(j) must have received and then
sent a message containing s(m). Since s(i) newly generates s(m) at s(�) and
receives message containing s(m) at s(� ′), so the only possible time for s(j)
to receive and send such a message is between s(�) and s(� ′).
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3) and 4) can be proved in a similar way with the help of Lemma 8 and
Lemma 9.

A9 can be proved by definitions as follows:
1) by Definition 16,5),6),7),8), and Definition 10 3);
2) by Definition 16,4),5), and Lemma 2;
3) and 4) by Definition 16,5) and Definition 7.

A10 1) is the K axiom in modal logic and its validity can be obtained by the
Definition 16,13) and the corresponding conclusion in modal logic.
Other proofs of axioms A10 can proceed in a similar way. So, we just give
the proof of 4)and 7).

4) Suppose ∣=s
! S(i, �,m). We have send(m) ∈ �s(�)s(i) . Let !′ be any possible

world so that !R
s(�)
s(i) !

′, then, we can get !
s(�)
s(i) = !

′s(�)
s(i) , i.e.

(q
s(�0)
s(i) (!), �

s(�)
s(i) (!)) = (q

s(�0)
s(i) (!′), �

s(�)
s(i) (!′)).

Accordingly, �
s(�)
s(i) (!) = �

s(�)
s(i) (!′), thus �

s(�)
s(i) (!) = �

s(�)
s(i) (!′). Since send(m) ∈

�
s(�)
s(i) (!), hence send(m) ∈ �

s(�)
s(i) (!′), i.e. ∣=s

!′ S(i, �,m). From Definition

16,13), we get the conclusion ∣=s
! Bi,�S(i, �,m).

7) Suppose ∣=s
! H(i, �,m) ∧H(i, �, k). From Definition 16,5), we get

s(m), s(k) ∈ reconstruct
K
s(�)

s(i)
(!)

(M
s(�)
s(i) (!)) .

Together with Definition 8, we know that there exists a key set {s(k)}, and
a message s(m) such that [s(m)]s(k) ∈ reconstructs(k)(s(m)). According to
Definition 9,2), we have s(m) ∈ contain([s(m)]s(k)), i.e. ∣=s

! C([m]k,m). For

any !′ ∈W , if !R
s(�)
s(i) !

′, then, by Definition 13, we have !
s(�)
s(i) = !

′s(�)
s(i) . Thus,

M
s(�)
s(i) (!) = M

s(�)
s(i) (!′), and K

s(�)
s(i) (!) =

s(�)
s(i) (!′). Therefore, s(m), s(k) ∈

reconstruct
K
s(�)

s(i)
(!′)

(M
s(�)
s(i) (!′)). As the above, we obtain ∣=s

!′ C([m]k,m).

Thus, from Definition 16,13), ∣=s
!′ Bi,�C([m]k,m).

Lemma 11. If the premise of the inference rule is valid, then the conclusion
will keep valid.

Proof. We will prove two inference rules IR 1), 2), respectively.

1) Suppose ∣=s
! (' →  ). From Definition 16,11), we have ∕∣=s

! ' or ∣=s
!  . By

∣=s
! ', hence ∣=s

!  .
2) Since ⊢ ' shows that ' is a theorem, there must exist a proof sequence about

it. We will use mathematical induction over size n of such a sequence.
Base case: If n = 1, ' must be an axiom. From Lemma 10, we have ∣= ',
namely, in model M, for any possible world ! ∈ W and assignment s, we
have ∣=s

! '. Thus, for any i ∈ A, � ∈ T , and any possible world !′ which
satisfies !R�i !

′, we have ∣=s
! '. From Definition 16,13), ∣=s

! Bi,�' holds.
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Induction step: Assume ∣=s
! Bi,�' when n ≤ k, we will prove that when

n = k+1, we also have ∣=s
! Bi,�'. If ' is an axiom, then, from the proof of the

basic case, we have ∣=s
! Bi,�'. If ' is deduced from  , → ' via IR 1), then,

from the assumption of induction, we have ∣=s
! Bi,� and ∣=s

! Bi,� ( → ').
Thus, with the validity of A10, 1), we get ∣=s

! Bi,�'.

Theorem 1 (Soundness): For any formula '

– If ⊢ ', then ∣= '.
– If � ⊢ ', then � ∣= '.

Proof. Since 1) is a special case of 2), we only give the proof of 2).
If � ⊢ ', there must exist a sequence of formulas '1'2 ⋅ ⋅ ⋅'n such that

'n = ' in which either 'i is an axiom, or 'i ∈ � , or ' is deduced from previous
'j ’s via inference rules. Also, we use mathematical induction over the size n of
this sequence.

Base case: If n = 1, ' is an axiom or in � . From Lemma 10, we see that ' is
valid in the former case. Then in the later case, if all the formulas in � is valid,
it’s natural that ' is valid. So, in both cases we can get � ∣= '.

Induction step: Assume that the proposition holds when n ≤ k. We show
that it holds when n = k + 1. If ' is an axiom or in � , from the proof of the
base case, we have � ∣= '. If � is deduced from 'i, 'j(i, j ≤ k) via inference
rules, by the assumption of induction, we have � ∣= 'i, � ∣= 'j . By Lemma 11,
we conclude that ' is valid, i.e. � ∣= '.

4 Modeling

Before analyzing protocols, we must model the protocol and its security goals.
In this section, we will give such a modeling scheme.

4.1 Protocol

Usually, a protocol is a sequence of protocol statements. A protocol statement
is often in the form of ‘i ↣ j : m̂’, meaning that agent i sends message m̂ to
agent j. In our modeling scheme, the original protocol (written as P̂ ) is modeled
as a set of formal formulas, which is called a formalized protocol, written as P .

Since some information in P̂ is often expressed implicitly, to model P̂ accu-
rately, we need to make these information explicit.

Implicit information Usually, given a protocol P̂ , there are three types of
information being implicitly expressed.

The first type of information is the identity of agent i in message [m]k−i
is

usually implicitly expressed. Recall that a message in private-key-encrypted form
reveal its original sender. To make the identity information in a message explicit,
in our scheme, such message m in form of [m′]k−i

will be replaced by [i,m′]k−i
.

The second type is the running order of the protocol. In general, the running
order of a protocol is implicitly expressed by the order in which all the protocol
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statements in it are arranged. Fortunately, logic ℒ has an advantage to express
these orders explicitly. Firstly, we need to attach two time labels on each protocol
statement, and then, use some formulas to express time order according to the
running order implied by P̂ .

The last type is that message newly generated is expressed implicitly in P̂ .
Certainly, we can assume some messages are generated before running protocol
and thus are initially held by some agents. But this assumption does not apply
to a fresh value such as a nonce, a random number or a timestamp. So, when a
fresh value first appears in ‘i↣ j : m̂’ of P̂ , we can make it explicit that agent
i newly generates this value at the time he sends m̂.

Protocol Formalization In our modeling scheme, we will model a protocol P̂
by a set of formulas, writhen as P .

Usually, a protocol P̂ defines the actions of every agent participating in the
protocol. This gives us a global view of P̂ . However, in each agent’s view, what
he can confirm is what actions(receiving, sending, and generating messages) he
does himself. Therefore, we first model protocol by each agent’s local view which
is expressed by a subset of P . Formally, a local view of agent i about protocol
P̂ is written as Pi.

Let P̂ be the original protocol including n protocol statements, P̂r be the
r-th (1 ≤ r ≤ n) statement in P̂ with the form of ‘i′ ↣ j′ : m̂r’, i be any agent
of P̂ . The following procedure is used to formalize the protocol by constructing
the local view of i about P̂ , say Pi, which is initialized by an empty set:

1. Message transformation. For each m̂r of P̂r, if there exists a message m′

and a key k−i such that [m′]k−i
is contained in m̂r, then transform m̂r into

mr by

mr =

{
m̂r

(
[m′, i]k−i

/[m′]k−i

)
if ¬C(m′, i)

m̂r if C(m′, i)

in which m(y/x) means replacing all x contained in m with y.
2. Time association. Associate two time labels on each P̂r, and get a timed

protocol statement in the form of

�r(i
′ ↣ j′ : mr)�

′
r

3. Message generation. For each timed protocol statement ‘�r(i
′ ↣ j′ : mr)�

′
r’,

if i =a i
′, and there is a newly generated message m contained in mr, then3,

Pi := Pi ∪ {�(i, �r,m)}.
4. Statement transformation. For each timed protocol statement ‘�r(i

′ ↣ j′ :
mr)�

′
r’

4,

if i =a i
′, then, Pi := Pi ∪ {S(i, �r,mr)};

3 Here, we use ‘:=’ to denote evaluating, and thus, ‘Pi := Pi ∪ '’ means that, Pi is
evaluated by adding an additional formula '.

4 When the timed protocol statement is in form of ‘�r(if ', i ↣ j : mr)�
′
r’, we also

need to add ' to Pi.
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if i =a j
′, then, Pi := Pi ∪ {R(i, � ′r,mr)}.

5. Time ordering. Let the number of i’s actions in the protocol be ℓ, and the
x’th(1 ≤ x ≤ ℓ) action of agent i is associated with time �ix , then, add the
formula about time ordering into Pi:

Pi := Pi ∪ {�0 < �i1 < �i2 < ⋅ ⋅ ⋅ < �iℓ < �c}.

Let us give further explanation about this procedure.

– Step 1 is used to explicitly express the identity message in a private-key-
encrypted message. An immediate question is that, whether [m]k+j

can be

replaced by [m, j]k+j
. The answer is yes, but doing so is meaningless, because

a private key can keep the integrity of a message while a public key cannot.
– Step 2 is used to explicitly express the time factor. In ‘�r(i

′ ↣ j′ : mr)�
′
r’,

�r indicates the time of i′’s sending action and � ′r indicates the time of j′’s
receiving action. Moreover, recall that �0 and �c are the beginning time and
end time of a protocol. Thus, if �r(i

′ ↣ j′ : mr)�
′
r is the first protocol

statement, we have �r =� �0, and if �r(i
′ ↣ j′ : mr)�

′
r is the last protocol

statement, we have � ′r =� �c.
– In step 3, we use predicate � to capture freshness of a message, like a nonce,

a random number, a timestamp etc. Obviously, freshness is time-dependent,
so, the predicate � can naturally be used to model it. Note that some other
messages which are not fresh are often considered as the initial knowledge
of an agent.

– In step 4, the sending or receiving action is modeled and the time when such
action takes place is specified.

– Step 5 explicitly expresses the time ordering in locally running the protocol
by an agent i.

Given the local view Pi of agent i about protocol P̂ , we can get the global
view P :=

∪
i{Pi}

Unlike the idealization process of BAN logic, the protocol formalization in
our method is unambiguous. Although we provide 5 steps in the procedure, it
is in fact very succinct and, given P̂ , one can even write down each Pi and P
directly.

Initial Assumptions. Before modeling goals of the protocol, we need to talk
about initial assumptions. Initial assumptions can provide a more idealized en-
vironment, but often can also make things unpractical. So, we only give as few
assumptions as possible. The following form of assumptions is often used in our
reasoning:

1. H(i, �, k+j ) ∧Bi′,� ′H(i, �, k+j )
2. (x ∕= y) ∧Bi,� (x ∕= y)
3. ¬C(m,m′)



22 X. Lei, R. Xue, T. Yu

The first assumption is about the public key. That is, public keys are well-
known. The second one makes sense when some terms are obviously unequal.
For example, an atomic message is assumed never equal to an encrypted one;
a protocol with identical initiator and responder is also considered meaningless.
The third one is often used in proof of a secrecy goal. If a message m′ is obviously
not contained in message m, no one can get m′ from m. To avoid such vain
attempt, we can explicitly announce it. Other initial assumptions may depend
on a specific protocol. The initial assumption is expressed by a set of formulas,
written as S.

4.2 Security goals

Security goals is central to the analysis of security protocols. In this subsection,
we will show how to model authentication, secrecy as well as a time-dependent
property.

Authentication Intuitively, authentication in a protocol between two agents
means that an agent believes another agent is just who he claimed to be. There
are three implications about this intuition:

– Each agent has claimed his identity to the other agent;
– Each agent needs to provide the proof of his own identity;
– Each agent believes the other agent’s identity.

Such things can also be modeled in ℒ. Given a formal protocol P which is
intended to complete the authentication between agent i and j, authenticating
j by i at time � can be modeled as one of the following expressions:

Pi ∪ S ⊢ Bi,�∃�� ′
(
�0 ≤ � ′ ∧R(j, � ′, JiK) ∧H(j, � ′, i)

)
Pi ∪ S ⊢ Bi,�∃�� ′

(
�0 ≤ � ′ ∧ S(j, � ′, JiK) ∧H(j, � ′, i)

)
.

Note that the appearance of i at a message field just indicates an identity of
agent i. In the former expression, “�0 ≤ � ′∧R(j, � ′, JiK)” assures that the message
containing i’s identity received by j is a new message; “H(j, � ′, i)” assures that j
holds i’s identity in current run. The most important thing is that, all these must
be believed by i in i’s local view. Someone may say that only “Bi,�∃�� ′

(
�0 ≤

� ′∧R(j, � ′, JiK)” can model the authentication of j by i. Consider that a received
message may be in an encrypted form and thus the receiver may not get the
identity information from it. Still, one may say that only “Bi,�∃�� ′

(
�0 ≤ � ′ ∧

H(j, � ′, i)
)
” can model the authentication of j by i. Consider that j received

i’s identity before �0, j will also hold i’s identity at � ′, but nothing can be
authenticated from such ‘holding’.

In this modeling, when i believes someone has recently received the message
containing his identity and held this identity, the identity of i must have been
claimed to j, and the proof to show j’s identity must have been provided to
i. Therefore, all the three aspects of the intuition of authentication above are
captured.
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We provide two expressions of authentication. In general, the former is suit-
able for a protocol using the public key, and the latter is suitable for a protocol
using the private key. Both can be used in a protocol with the shared key.

Secrecy Intuitively, secrecy of a protocol means to keep a specific message in
this protocol secret. That is, after running a protocol, the secret message can
never be got from the messages transmitted in the protocol by the agents other
than its intended holders. This intuition can be easily modeled in ℒ. Given a
formal protocol P and its initial assumptions S, let m be that needs to be kept
secret, agents i and j be the intended holders of m, � be the specific time before
which m needs to be kept secret, M�c be all the messages transmitted in P̂ .
Then, the secrecy property can be modeled as follows:

P ∪ S ⊢ i′ ∕=a i ∧ i′ ∕=a j → ¬G(i′, �c,M�c ,m)

P ∪ S ⊢ H(i, �c,m) ∧H(j, �c,m)

Additionally, for compatibility of message types, we define M�r as a combined
message instead of a message set. More formally, using the notation in protocol
formalization, we have

M�r

a

= [m1,m2, . . . ,mr].

Note that, in modeling secrecy, we use a global view P instead of a local
view Pi. The reason is that, after showing the authentication of a protocol,
an agent can confirm the identity of the agents who communicate with him.
In another words, the authentication extend the local view to a global view.
Without authentication, such secrecy is in a passive setting.

Time-dependent properties Sometimes we also need a time-dependent prop-
erty. A time-dependent authentication may need an agent to believe something
at a specific time other than the time after running a protocol. A time-dependent
secrecy may need some message to be kept secret before a specific time other
than during the whole protocol. To express such properties, we only need to
replace the �c in corresponding goals mentioned above by a specific time � .

Time-dependent properties also have other advantages. Sometimes, we need
to know what will happen when the protocol is stopped in the middle of its
run. For example, in a fair exchange protocol, an agent may take advantage of
a partially executed protocol. This situation can be easily modeled by using a
time-dependent property. Specifically, if we need to know whether an agent i
holds a message m when a running protocol stops at time � , we just need to
check whether H(i, �,m) holds.

5 Reasoning

In general, reasoning about a protocol P̂ requires the following steps:

1. formalize Protocol (P );
2. give the initial assumptions(S);
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3. list the protocol goals(G);
4. prove the protocol goals G in the proposed logic.

In the following, we will give two examples to illustrate how to reason about
security protocols under our modeling scheme using the proposed logic.

5.1 Timed-release protocol

This protocol is proposed by Michiharu Kudo and Anish Mathuria [20]. The
protocol aims to provide some time-dependent security properties using the no-
tion of timed-release crypto described in Rivest, Shamir and Wagner [14]. In this
protocol, A wants to send a confidential message Xa(in encrypted form) to B,
but hopes B to hold Xa only after a specific time �s. To complete this goal, a
trusted agent T is used. Firstly, A send �s to T , requiring T to generate a time-
key pair for the future time �s. After generating a time-key pair k�s+ and k�s−,
T will reply a signed message containing the encryption key k�s+ to A, and holds
the decryption key k�s− until time �s. Then, after initializing a communication
with B, A encrypts Xa with the encryption key k�s+, and sends it to B. Upon
receiving the encrypted message, B acknowledges the receipt of it, and then re-
quests the decryption key k�s− from T . If the current time is greater or equal to
�s, T will return the decryption key to B; otherwise he does not respond. The
detailed protocol is described in fig.1, in which Ra and Nb are used to denote
the random number and the nonce generated by A and B respectively.
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Fig. 1. Timed-Release Protocol

In [20], the authors give three goals of the protocol. Informally, the first
goal says that any agent except A and T cannot hold Xa before time �s. The
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second goal says that B holds Xa after �s. The third goal says that B can
authenticate A. In fact, we find that another goal must be specified. That is,
A can also authenticate B. Because if A cannot authenticate B, she may send
the message containing Xa to an agent other than B and thus B cannot hold
Xa. We then show the reasoning process about timed-release protocol. Protocol

formalization According to the fist two steps in formalizing the protocol, we
get the protocol as follows:

�0 (A↣ T : [′′enc′′, �s]) �1

�1 (T ↣ A : [′′enc′′, T, �s, k�s+]k−T
) �2

�2 (A↣ B : A) �3

�3 (B ↣ A : Nb) �4

�4 (A↣ B : [[[Xa, Ra, A]k�s+ , A,B, �s, Nb, k�s+]k−A
, [′′enc′′, T, �s, k�s+]k−T

]) �5

�5 (B ↣ A : [B, [[Xa, Ra, A]k�s+ , A,B, �s, Nb, k�s+]k−A
]k−B

) �6

�7 (B ↣ T : [′′dec′′, �s]) �8

�9 (if (�s ≤ current time), T ↣ B : [′′dec′′, T, �s, k�s−]k−T
) �c

Here, for simplification, we ignored message processing time when an agent sends
a message directly after when the same agent receives a message. the same agent’s
receiving a message. So, we distinguish �6 and �7 simply because they specify
the time to the actions of different agents. Note that the duration between �8
and �9 cannot be ignored, because T sends the message at 8-th step only when
current time is greater than or equal to �s.

According to the protocol formalizing scheme, we can get PA, PB and PT
which denote the local views of agent A,B and T respectively as following:

PA : PB : PT :
{�(A, �4, Ra) {�(B, �3, Nb), {�(T, �1, k�s+),
S(A, �0,m1), R(B, �3,m3), �(T, �1, k�s−),
R(A, �2,m2), S(B, �3,m4), R(T, �1,m1),
S(A, �2,m3), R(B, �5,m5), S(T, �1,m2),
R(A, �4,m4), S(B, �5,m6), R(T, �8,m7),
S(A, �4,m5), S(B, �7,m7), S(T, �9,m8),
R(A, �6,m6), R(B, �c,m8), �0 < �1 < �8 < �9 < �c,
�0 < �2 < �4 < �6 < �c} �0 < �3 < �5 < �7 < �c} �s ≤ �9}

Taking all the local views together, we can get the global view of the protocol:

P := PA ∪ PB ∪ PT .

Initial assumption(S)

S1 : H(i, �, k+j ) ∧Bi′,� ′H(i, �, k+j ) S2 : ¬C([m1,m2,m3,m4,m7,m8], Xa)

S3 : k�s+ =k k̃�s− S4 : (� < �9)→ ¬S(T, �, Jk�s−K)
S5 : H(A, �0, [Xa, A]) S6 : A ∕=a B
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Authentication goals

G1 PB ∪ S ⊢ BB,�c∃��(�0 ≤ � ∧ S(A, �, JBK) ∧H(A, �,B))

G2 PA ∪ S ⊢ BA,�c∃��(�0 ≤ � ∧ S(B, �, JAK) ∧H(B, �,A))

Proof. First, we prove G1. Let m′
a

= [[Xa, Ra, A]�s+, A,B, �s, Nb, k�s+]. G1 is
proved as follows:

1. BB,�5R(B, �5,m5) PB , A10 5)

2. BB,�5G(B, �5,m5, [m
′]k−A

) S1, A6, A10 2)

3. BB,�5G(B, �5, [m
′]k−A

,m′) S1, A6, A10 2)

4. BB,�5R(B, �5, Jm′Kk−A ) 1, 2, 3, A6 4), A10 1)

5. BB,�5∃��((� < �5) ∧H(A, �,m′) ∧ S(A, �, Jm′K)) 4, A8 2), IR 2)

6. BB,�5((� ′ < �5) ∧H(A, � ′,m′) ∧ S(A, �, Jm′K)) 5, assumption

7. BB,�5(G(A, � ′,m′, B) ∧G(A, � ′,m′, Nb)) A6A10 2)

8. BB,�5(H(A, � ′, B) ∧H(A, � ′, Nb)) 6, 7, A9 2), IR 2), A1

9. BB,�5�(B, �3, Nb) PB , A10 3), A3 3)

10. BB,�5(�3 < � ′) 9, S6, 8, A8 5), A10 1)

11. BB,�5C(m′, B) 7, A7 1), IR 2)

12. BB,�5∃��(�3 < � ∧ S(A, �, JBK) ∧H(A, �,B)) 6, 8, 10, 11, A10 1), A1

13. BB,�c∃��(�0 ≤ � ∧ S(A, �, JBK) ∧H(A, �,B)) 12, PB , A4, A3 3).

Let m′′
a

= [[Xa, Ra, A]�s+, A,B, �s, Nb, k�s+]k−A
. The proof of G2 proceeds as

follows:

1. BA,�6R(A, �6, [m
′′]k−B

) PA, A10 5)

2. G(A, �6, [m
′′]k−B

,m′′) S1, A5 5), A6

3. BA,�6C([m′′]k−B
,m′′) 2, A10 2), A7 1), IR 2)

4. BA,�6R(A, �6, Jm′′Kk−B ) 1, 2, 3,Def. 4 1)

5. BA,�6∃��((� < �6) ∧ S(B, �, Jm′′K) ∧H(B, �,m′′)) 4, A8 2), IR 2), A10 1)

6. BA,�6(S(B, � ′, Jm′′K) ∧H(B, � ′,m′′) 5, assumption

7. BA,�6(H(B, � ′, k+A) ∧H(A, �6,K
+
A )) S1

8. BA,�6(G(A, �6,m
′′, A) ∧ C(m′′, A)

∧ C(m′′, [Xa, Ra, A]k�s+)) 7, A6, A10 2), A7 1)

9. BA,�6S(B, � ′, JAK) ∧H(B, � ′, A) 6, 8, A7 2),Def. 4 1)

10. H(A, �6,K�s+) P2, A9 1), S1, A6, A3 1)

11. H(A, �6, Ra) PA, A9 1), A3 1)
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12. H(A, �6, [Xa, Ra, A]) 11, S5, A3 1), A9 3)

13. BA,�6C([Xa, Ra, A]k�s+ , [Xa, Ra, A]) 10, 12, A10 7)

14. BA,�6C([Xa, Ra, A]k�s+ , Ra) 13, A7, IR 2)

15. BA,�6C(m′′, Ra) 8, 14, A7 2), IR 2)

16. BA,�6S(B, � ′, JRaK) 6, 15,Def. 4 1)

17. BA,�6H(B, � ′, JRaK) 16, A9 1), IR 2)

18. BA,�6�(A, �4, Ra) PA, A10 3), A3, 3)

19. BA,�6(�4 < � ′) S6, 17, 18, IR 2)

20. BA,�6∃��((�4 ≤ �) ∧ S(B, �, JAK) ∧H(B, �,A)) 9, 19, A1, A10 1)

21. BA,�c∃��(�0 ≤ � ∧ S(B, �, JAK) ∧H(B, �,A)) 20, PA, A4, A3 3), A10 1)

Time-dependent authentication goals It is not hard to see that, in G1 and
G2, A can authenticate B, and B can authenticate B only when the protocol
completes. However, in this protocol, what we really need is a stronger authenti-
cation, i.e., the time-dependent authentication goals. Specifically, the latest time
when A needs to authenticate B is the time when she sends the message con-
taining Xa, say �4, and the latest time when B needs to authenticate A is the
time when he acknowledges a receipt, say �5. Such authentication can not be
expressed by a logic without time, but can be easily modeled in ℒ as follows:

G′1 PB ∪ S ⊢ BB,�5∃��(�0 < � ∧ S(A, �, JBK) ∧H(A, �,B))

G′2 PA ∪ S ⊢ BA,�4∃��(�0 < � ∧ S(B, �, JAK) ∧H(B, �,A))

Similar to the proof of G1, we can easily prove that G′1 holds. However, to prove
G′2, we need a proof to show that, at �4, A believes that B can receive message
5. Since at �4, A cannot confirm whether B will reply a receipt, G2 cannot be
satisfied. This indicates that, before A can authenticate B, she has sent the
message containing Xa to B. What if an adversary C imitates B, and selects
not to acknowledge the receipt? The result is that C can also get k�s− from T
after �s. Thus, an attack appears. We illustrate such an attack as follows:

A↣ T : [′′enc′′, �s]
T ↣ A : [′′enc′′, �s, k�s+]k−T
A↣ B(C) : A

B(C) ↣ A : Nc
A↣ B(C) : [[[Xa, Ra, A]k�s+ , A,B, �s, Nc, k�s+]k−A

, [′′enc′′, �s, k�s+]k−T
]

B(C) ↣ T : [′′dec′′, �s]
if (�s ≤ current time),

T ↣ B(C) : [′′dec′′, �s, k�s−]k−T

We can see that, the explicit support of time in the proposed logic helps us
find the above vulnerability. To our knowledge, this vulnerability has not been
discovered before in the literature.



28 X. Lei, R. Xue, T. Yu

Time-dependent secrecy goals

G3 P ∪ S ⊢ (i ∕=a A) ∧ (i ∕=a T )→ ¬G(i, �s,M�s , Xa)

in which M�s

a

= [m1,m2,m3,m4,m5,m6,m7]

G4 P ∪ S ⊢ H(B, �c, Xa)

Given a global view P , we can easily prove G3 and G4. We prove G3 by contra-
diction as follows:

1. (i ∕=a A) ∧ (i ∕=a T ) premise

2. G(i, �s,M�s , Xa) assumption

3. �s ≤ �9 P,A1

4. G(i, �9,M�s , Xa) 2, 3, A3 2)

5. G(i, �9,M�9 ,M�s) 3, A6 3), A6 1)

6. G(i, �9,M�9 , Xa) 4, 5, A6 4)

7. ¬G(i, �9, [m1,m2,m3,m4,m7,m8], Xa) S2, A7 1), A1

8. G(i, �9,m5, Xa) ∨G(i, �9,m6, Xa) 6, 7, A6 3), A1

9. G(i, �9,m5, Xa) 8, assumption

10. H(i, �9, k
+
A) ∧H(i, �9, k�s−) 9, A6, A5 5), S3, A1

11. G(i, �9,m5, Xa)→ H(i, �9, k�s−) 9, 10, A1

12. G(i, �9,m6, Xa) 8, assumption

13. H(i, �9, k
+
B) ∧H(i, �9, k

+
A) ∧H(i, �9, k�s−) 12, A6 2), A6 1), A1

14. G(i, �9,m6, Xa)→ H(i, �9, k�s−) 12, 13, A1

15. H(i, �9, k�s−) 8, 11, 14, A1

16. ∃��((�1 < � < �9) ∧ S(T, �, Jk�s−K) 1, P, 15, A8 5)

17. ⊥(under assumption) 16, S4, A1

18. ¬G(i, �s,M�s , Xa) 2, 17, A1

19. (i ∕=a A) ∧ (i ∕=a T )→ ¬G(i, �s,M�s , Xa) 1, 18, A1.

We now prove G4 : H(B, �c, Xa).

1. H(B, �5,m5) P,A9 1)

2. H(B, �5, k
+
A) S1

3. G(B, �5,m5, [Xa, Ra, A]k�
s+

) 2, A6, A5 5)

4. H(B, �5, [Xa, Ra, A]k�
s+

) 1, 3, A9 2)

5. H(B, �c,m8) P8, A9 1)

6. G(B, �c,m8, k�s− ) 5, S3, A6

7. H(B, �c, k�s− ) 5, 6, A9 2)

8. H(B, �c, [Xa, Ra, A]k�
s+

) 4, P,A4, A3 1)

9. H(B, �c, Xa) 7, 8, A6, A9 3), A9 2)
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However, since G2 is not satisfied, a local view cannot be extended to a
global view P . So, the premise in G3 and G4 is over-used. In fact, when a local
view is used, G3 can also be proved, while G4 cannot be proved in the local
view of A. Intuitively, from the vulnerability mentioned above, we can see that
if an adversary C imitates B, B may know nothing about Xa. Moreover, in
this situation, G3 will become a trivial goal. That is, although Xa is kept secret
before time �s, B may learn nothing about Xa after �s.

5.2 Needham-Schroeder (NS) public key protocol

This is a well-known protocol[41] which is often used as an example in reasoning
about protocol. We use this example to show two things:

– ℒ can be used not only to a timed protocol, but also to a general protocol.
– The modeling scheme can accurately capture some security goals which may

be neglected by other modeling scheme.

Assume the readers are familiar with NS protocol. Here, as usual, we only
use its three core steps. We just give the specification (with time attached) of it
without further explanation.

�0 (A↣ B : [Na, A]k+B
) �1

�1 (B ↣ A : [Na, Nb]k+A
) �2

�2 (A↣ B : [Nb]k+B
) �c

Protocol formalization

PA : PB :
{�(A, �0, Na), {�(B, �1, Nb),
S(A, �0, [Na, A]k+B

), R(B, �1, [Na, A]k+B
),

R(A, �2, [Na, Nb]k+A
), S(B, �1, [Na, Nb]k+A

),

S(A, �2, [Nb]k+B
), R(B, �3, [Nb]k+B

),

�0 < �2 < �c} �0 < �1 < �c}

Initial assumption

S1 : H(i, �, k+j ) ∧Bi′,� ′H(i, �, k+j )

S2 : H(i, �0, i)

Protocol goals

G1 PA ∪ S ⊢ BA,�c∃��(�0 ≤ � ∧R(B, �, JAK) ∧H(B, �,A))

G2 PB ∪ S ⊢ BB,�c∃��(�0 ≤ � ∧R(A, �, JBK) ∧H(A, �,B)).

Since the public key is used, we express the goals with predicate R instead of S.
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Proof. Prove G1 as follows:

1. BA,�0S(A, �0, [Na, A]k+B
) PA, A10 4)

2. H(A, �0, [Na, A]) ∧H(A, �0, k
+
B) N1, A9 1), S1, S2

3. BA,�0C([Na, A]k+B
, [Na, A]) 2, A10 7)

4. BA,�2S(A, �0, JNa, AKk+B ) 1, 3,Definition 4 1), A3 3)

5. BA,�2C([Na, A], Na) A6, A10 2), A7 1), IR 2)

6. BA,�2R(A, �2, [Na, Nb]k+A
) PA, A10 5)

7. BA,�2G(A, �2, [Na, Nb]k+A
, Na) S1, A6, A10 2)

8. BA,�2�(A, �0, Na) N1, A10 3), A3 3)

9. BA,�2∃��(�0 ≤ � < �2 ∧R(B, �, JNa, AKk+B )) 4, 5, 6, 7, 8, A8 3), IR 2)

10. BA,�2∃��(�0 ≤ � < �2 ∧R(B, �, JAKk+B ) ∧H(B, �,A)) 9, S1, A9, A6, A7, IR 2)

11. BA,�c∃��(�0 ≤ � ∧R(B, �, JAK) ∧H(B, �,A)) PA, A10 7), A3 3)

Then, let’s turn to G2. Similar to the proof of G1, we can prove the following
conclusion:

BB,�c∃��(�0 ≤ � ∧R(A, �, JNbK) ∧H(A, �,Nb)) (7)

Unfortunately, this is not our goal, and no further conclusion about this goal
can be draw. This implies that B cannot assure whether A knows his identity.
As known, this is just the vulnerability of the NS protocol. [6] gives the details
on this vulnerability and provides an improved protocol (NSL) which adds B to
the second message. We can prove G2 in NSL with the similar proof of G1 in
NS.

Often, to model the authentication goal, a variant of formula (7) is frequently
used. From the above example, we can see that such modeling may leave the
vulnerability neglected. So, this example shows that the modeling scheme in ℒ
can capture the goals of the protocols more accurately.

6 Further Discussion

We will give some further discussions:

1. About barcan formula. Since ℒ is based on predicate modal logic, we must
consider the order of qualifiers and modal operators which related to the
identification of individual in different possible worlds. This problem is solved
by barcan formula, because the domain of our model is fixed, that is, different
worlds share the same domain.

2. About many-sorted variables. We use many-sorted variables in ℒ which can
simplify our description. Certainly, they can be transformed into single type
variables, but it needs more complicate description.
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3. About belief. From the semantics of the proposed logic, we can see that belief
is modeled by system S5 in this paper. But in general, people often model
belief by system KD45 [42]. Considering the difference between a computer
process and a human being, here, we adopt the idea of belief in literature
[43] which models belief by S5, and extend it by adding time.

4. About accessible relationship. In [4], the accessible relationship between pos-
sible worlds is defined basing on many facts except the messages that an
agent cannot comprehend, while in our definition, these messages are in-
cluded. The reason lies in that we think any message can be compared to
decide whether they are equal if we take a message as a sequence of bits,
even if the message is in the encrypted form which cannot be comprehended
by an agent.

5. About implicitly modeling. In our approach, an adversary is modeled implic-
itly. In authentication goals, we use the local views of agents in protocols.
It implicitly says that, in view of agent i, any agents, except i himself, are
possible adversaries. In secrecy goals, i′ ∕=a i ∧ i′ ∕=a j → ¬G(i′, �c,M�c ,m)
implicitly says that any agents except i and j, are possible adversaries.

6. About completeness. We have proven the soundness of ℒ. One might also
ask whether the axiomatization is complete. The answer is “no”. Simply
speaking, only required axioms are included in the logic.

7. About local view. In our modeling scheme, we only give the local view of
an agent. It is easy to extend a local view to many local views with time
specified. Specifically, define the local view of agent i at time � , which may
make the modeling scheme more flexible.

7 Conclusion

We present a timed logic for modeling and reasoning about security protocols. In
this logic, time is expressed explicitly, which makes it possible to model agents’
actions, knowledge or beliefs at different time points. Under this logic, a modeling
scheme is provided to formalize protocols and their security properties, especially
time-dependent properties. The logic and the modeling scheme can be used to
reason about protocols flexibly in several angles. We summery them follows:

– In the angle of time, the following things can be modeled: 1) the running
order of protocols, 2) the time-dependent security properties of protocols,
3) fresh values(nonce, random number, and timestamp, etc.), and 4) the
properties of partially executed protocols.

– In the angle of space, there exist two views about a protocol: 1) the global
view of the protocols and 2) the local view of the protocols.

The result of our case study shows that the logic can accurately model pro-
tocols, capture the goals of protocols and is helpful in finding vulnerability.

Further work can be done to give the application of ℒ in analyzing various
security protocols. It would be interesting to know whether the logic can be
used to analyze the non-repudiation and fairness of the protocols, especially the
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fairness with time limit. Still another work can be done to show whether the
logic is computationally sound.
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