
A Practical Platform for Cube-Attack-like Cryptanalyses

CS 758: Cryptography/Network Security
Course Project

Bo Zhu, Wenye Yu and Tao Wang
{bo.zhu,wenye.yu,t55wang}@uwaterloo.ca

University of Waterloo

Abstract. Recently, various cryptanalysis methods related to Cube Attack have attracted a
lot of interest. We designed a practical platform to perform such cryptanalysis attacks. We
also developed a web-based application at http://cube-attack.appspot.com/, which is open to
public for simple testing and verification. In this paper, we focus on linearity testing and try to
verify the data provided in several papers. Some interesting results produced in our work indicate
certain improper assumptions were made in these papers.

1 Introduction

Cube Attack was announced by Dinur and Shamir in 2008 [1], and published at Eurocrypt’09 [2]. Cube
Attack was first designed to search linear expressions of the secret keys in stream ciphers. In Cube
Attack, a cipher can be treated as a black box and expressed in Boolean functions. By manipulating
the inputs of certain public variables of the cipher, the attacker hopes to get enough information to
solve the linear Boolean equations to recover the secret keys. The idea behind Cube Attack can be
found in several pervious works, such as Algebraic IV Differential Attack [3,4] (AIDA) and Higher
Order Differential Attack [5]. Later, the idea of Cube Attack has been extended to other aspects
of cryptanalysis, not only limited to the linearity of stream ciphers. For example, the authors of [6]
detected certain non-random behaviour of the hash function MD6 [7], and in [8] the authors modified
Cube Attack to find quadratic equations.

A stream cipher consists of several shift registers and update rules for the registers. At each step
the rules are applied once to update the registers, and the registers are shifted once to give an output.
Typically, the encryption process of stream ciphers is simply XORing the string of plaintext with the
successive outputs of the ciphers. Trivium is a stream cipher designed by De Canniére and Preneel
in 2005 [9]. Due to its compact design, Trivium has served as an experimental target to perform
several cryptanalysis methods. For instance, Vielhaber presented AIDA against Trivium with 576
initialization rounds [3]. Cube Attack was also performed to break Trivium with 735 initialization
rounds [2]. Aumasson et al. augmented Cube Attack with property testers (calling it Cube Tester)
which can detect non-randomness of Trivium with 790 rounds [6].

In this paper, we emphasize on the linearity testing for Trivium, which is the most commonly
studied situation. We implemented an usable platform to perform such Cube-Attack-like cryptanalysis
methods mentioned above. Based on the platform, we wrote an open web-application such that every
one interested in this topic can easily perform some analyses. We also tried to verify the data provided
in several papers, and this verification produces rather interesting results, for which discussions are
given.

The next section briefly explains the mathematical background about Boolean algebra, Trivium,
Cube Attack and AIDA. Section 3 includes the detailed descriptions of our cryptanalysis platform and
website application. The verification results and discussions are given in Section 4. Section 5 concludes
the paper and discusses some further works.

http://cube-attack.appspot.com/

2 A Practical Platform for Cube-Attack-like Cryptanalyses

2 Preliminaries

In this section, we will first introduce the definition of Boolean functions. Based on Boolean functions,
the details of the stream cipher Trivium and two attacks on Trivium – Cube Attack and AIDA, will
be given. Finally, we will briefly discuss linearity testing.

2.1 Boolean Function

Let Fn2 denote the n-dimension vector space over F2 = {0, 1}. The following definition is from [10].

Definition 1. A Boolean function of n variables is a map from Fn2 to F2.

Boolean functions can always be expressed as multi-variable polynomials over F2 in Algebraic
Normal Form (ANF), as

f(x0, x1, · · · , xn−1) =
∑
α∈Fn

2

cαx
a0
0 x

a1
1 · · ·x

an−1

n−1 ,

where α = (a0, a1, · · · , an−1) and the coefficient cα is a constant in F2. Boolean functions in ANF
consist of only two operations, addition modulo 2 (i.e. XOR) and multiplication modulo 2 (AND). The
ANF of a Boolean function is also unique [11]. The Boolean functions in this paper are all written in
this way.

2.2 Specification of Trivium

A stream cipher can be viewed as an algorithm which produces a stream of bits based on some public
initial values and secret keys. Each of these output bits can be seen as being produced by a Boolean
function fi. Trivium is designed to generate up to 264 bits of key stream from an 80-bit secret key and
an 80-bit initial value (IV).

The step function of Trivium uses a 288-bit internal state, denoted as (s1, ..., s288). The key stream
generation process is given as the following algorithm.

for i = 1 to N do
t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288
zi ← t1 + t2 + t3
t1 ← t1 + s91 · s92 + s171
t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69
(s1, s2, ..., s93)← (t3, s1, ..., s92)
(s94, s95, ..., s177)← (t1, s94, ..., s176)
(s178, s279, ..., s288)← (t2, s178, ..., s287)

end for

For the initialization process, the key and IV are loaded into the 288-bit initial state, and all the
remaining bits, except s286, s287, and s288, are set to 0. This is illustrated as below

(s1, s2, ..., s93)← (K1, ...,K80, 0, ..., 0)
(s94, s95, ..., s177)← (IV1, ..., IV80, 0, ..., 0)

(s178, ..., s285, s286, s287, s288)← (0, ..., 0, 1, 1, 1)

Before outputting the key scream bit zi, the internal state is rotated for 4 cycles (N = 4×288 = 1152
steps) by the same method described above.

CS 758: Cryptography/Network Security Course Project 3

2.3 Cube Attack

In Cube Attack, we consider the problem of predicting the 1-bit output of a function, f , based on
its m-bit public input value V = {v1, v2, ..., vm} and the n-bit secret key K = {k1, k2, ..., kn}; for
convenience let X = V ∪K.

Suppose I is certain a subset of V . The function f can be written in the following form.

f(X) ≡ tI · pS(I) + qI(X) ,

where we have

– I is called the cube;
– tI is the multiple of all variables whose indices are in I;
– pS(I) is called the superpoly ;
– qI contains any and all terms that are not divisible by tI .

Our objective is to find representations of the above form where pS(I) is a linear polynomial of the
variables in K, the key; each linear polynomial gives us 1-bit information about K. When pS(I) is such
a linear polynomial, we call tI a maxterm.

The main observation that allows us to make use of this linear polynomial is as follows.

Theorem 1. pS(I) ≡
∑
v∈CI

p modulo 2, where CI is the set of all possible value assignments to the

values indexed by I.

A proof is presented in [2]. This theorem gives us access to the linear polynomial corresponding to
any maxterm; that is to say, if we are able to find such a representation, we will be able to use the
linear polynomial in the keys to get 1 bit of information about the key.

2.4 AIDA

Algebraic IV Differential Attack (AIDA) is presented first in [3] and later in [4] as a powerful tool to
analyze stream ciphers. In AIDA, the Boolean functions of stream ciphers are written as

f(v1, v2, · · · , vn, κ) =
⊕

I⊆{1,2,··· ,n}

aI(κ)v∧I ,

where v1, v2, · · · , vn are the bits of IV, and κ denotes the vector of secret key bits. The notation v∧I is
similar to tI in Cube Attack, and aI(κ) is the coefficient of the monomial v∧I .

The fundamental principle of AIDA is the following equation.

aI(κ) =
⊕
M⊆I

dM ,

where dM denotes the corresponding entries in the truth table when the IV bits whose indices are in
the set M are set to one, and the other bits are assigned zero. Thus, 2|I| queries of the function f are
enough for calculating the value of aI(κ).

We think the main difference between Cube Attack and AIDA is how they treat the indices not in
the cubes. In Cube Attack, the variables outside the cubes are left undetermined1, because their values
do not influence the final output, i.e. pS(I). On the other hand, in AIDA, these variables are assigned
zero. This small difference will eventually result in big gaps in theoretical and practical analyses. We
will give more discussions on this in Section 4.1.

1 Please see the second line on the sixth page of [2].

4 A Practical Platform for Cube-Attack-like Cryptanalyses

2.5 Linearity Testing

By the standard Blum-Luby Rubinfeld (BLR) linearity testing [12], a polynomial f is linear in its
inputs if we have

f(0) + f(x) + f(y) + f(x+ y) = 0 for all x, y

Suppose that we test the linearity of a function f by uniformly choosing random input values x
and y. It is of interest to consider how likely it is that this method demonstrates that a function is
not linear. Suppose f is not linear and contains some term x1x2...xi. Then this term evaluates to 1
with chance 2−i (where all of the variables in the term are taken to be 1) and 0 with chance 1− 2−1.
However, note that when i increases, the function containing this term also tends to be more linear
in the sense that this non-linear term rarely appears. A tight bound on the relationship between the
linearity of the function and how often the BLR linearity testing rejects is given in [13]. One interesting
result shown in the paper can be presented as follows.

Theorem 2. Let Dist(f) = ming{Pru[f(u) 6= g(u)]}, where g is a linear function using the same
domain and range as f. Then, using the BLR test, the rejection probability of BLR is at least as large
as Dist(f).

In other words, the rejection probability of BLR is at least the non-linearity of the function concerned.
This demonstrates that BLR is a decent test.

3 Implementations of the Platform and Web-based Application

In this section, we will show how we implemented the practical platform for Cube-Attack-like crypt-
analyses, and discuss different kinds of linearity testing algorithms used in the platform. At last, a
brief description of the design of our cryptanalysis website will be given.

3.1 A Practical Cryptanalysis Platform

We provide a platform to perform the Cube-Attack-like cryptanalyses. It is an implementation of the
two attacks on Trivium in practice. The program can be divided into two parts: the part for generating
Trivium key stream employs the C source code with an interface for external invocation, and the main
part of the platform is realized in Python code, which enables the protability of the platform. This
platform can be further decomposed into four components:

1. Higher Order Differential calculates the higher order derivates needed to perform the actual attack
methods, such as AIDA or Cube. The difference between AIDA and Cube lies in their attack
process, which is illustrated in Section 2.4. Both of the methods are tested in our work.

2. Property Testing detects the properties, such as balance, low degree, linearity, and presence of
a variable, on the original polynomial. The property testing in the project is mainly focused on
linearity testing.

3. Ciphers invokes external libraries written in C to gain efficiency in the computation of stream
ciphers. There are two versions of libraries adopted: one imports ctypes and the other imports
Python.h. The version with Python.h is used in the actual implementation, as it allows Python
methods to be invoked directly in C programming and thus it is faster.

4. Main Controller acts as the attack control that communicates with outsider.

Each of these four components performs different roles independently, and thus are reusable in other
applications. The use of script language Python as our platform language is because of its simplicity
and portability, which is an obvious advantage in our website design in Section 3.3.

An overview of the platform code organization is illustrated in Fig. 1.

CS 758: Cryptography/Network Security Course Project 5

Tables of Data: data.pyController: attack.py

[Package] Ciphers [Package] Higher Order Diff [Package] Property Testing

AIDA.py Cube.pyctypesPython.hTrivium in Python linearity.py

Fig. 1. Organization of the source code for the platform.

3.2 Linearity Testing Algorithms

One of the important goals of this project is to verify the experimental results of attacks on the stream
cipher Trivium stated in related papers. Therefore in this section, the objective will be to test whether
or not a Boolean function f : {0, 1}n → {0, 1} is linear, and if so, we want to discover the expression
of f . The theorem of linearity testing is mentioned in Section 2.5. An algorithm strictly following
the definition is stated as Algorithm 1. If the equation f(0) + f(x) + f(y) + f(x + y) = 0 holds for
(sufficiently large) C times, then we consider f as a linear function. And after passing the linearity
testing, the algorithm will continue to output the indices of the linear variables. There is a small trick
that f(z) + f(0) = 1 implies the i-th input bit serves as a linear variable in f , which is like applying
AIDA to a 1-dimension cube. However, this textbook algorithm has some drawbacks. For example,

Algorithm 1 Standard Linearity Testing

for c = 1 to C do
Randomly choose two input values x and y
if f(0) + f(x) + f(y) + f(x + y) 6= 0 then

Reject and halt
end if

end for
for i = 1 to n do

z ← (0, 0, ..., 1, ..., 0) where only the i-th bit is 1
if f(z) + f(0) = 1 then

Output i
end if

end for

for each trail of the testing, we should generate two random inputs, and evaluate the function f three
times (f(0) can be evaluated only once, and stored for later use).

During the verification process, the linear variables are usually provided and need to be tested
carefully. Define a function h(S) to be the LSB of the set S’s Hamming weight, i.e. h(S) = 0 when
the number of non-zero variables in the set is even; h(S) = 1 when odd. Then we design the following
Algorithm 2.

It is easy to see that if f is a linear function in terms of the variables in S, then f(x) +h(S) = f(0)
will always hold. One disadvantage of this algorithm is that if the size of the set S increases, the number
of testings will grow exponentially. However, fortunately the numbers of the linear variables that we
have tested are fairly small, typically 1 or 2. Algorithm 2 is suitable for verification and counting the

6 A Practical Platform for Cube-Attack-like Cryptanalyses

Algorithm 2 Dense Linearity Testing

S ← the set of linear variables to be tested
for c = 1 to C do

for each possible 0/1 combinations of the values of the variables in S do
Randomly assign 0/1 to the other variables of x not in S
if f(x) + h(S) 6= f(0) then

Reject and halt
end if

end for
end for

number of failures, because each linear variable is tested equally and thoroughly. This algorithm is the
one we actually used in our verification programs. As long as one 0/1 combination fails, the counter
of failures will increase by 1.

For attacks, we also devise an efficient algorithm, shown as Algorithm 3. Compared with Algo-
rithm 1, this algorithm moves ahead the process of searching linear variables, and then test the linear-
ity of each term. It is easy to prove that as long as these terms are linear, their linear combination is
also linear. In Algorithm 2, if the number of linear variables is d, then f will be evaluated 2d ·C times
for verification. While in Algorithm 3, we only need to perform 2 · d · C times.

Algorithm 3 Term-by-Term Linearity Testing
S ← an empty set
for i = 1 to n do

x← (0, 0, ..., 1, ..., 0) where only the i-th bit is 1
if f(x) + f(0) = 1 then

Add i into the set S
end if

end for
for each j in the set S do

for c = 1 to C do
Randomly choose an input value y
z ← y
yj ← 0 and zj ← 1
if f(y) = f(z) then

Reject and halt
end if

end for
end for

3.3 Website Application

Besides the platform for Cube-Attack-like cryptanalyses running on local machines, a web-based appli-
cation is also developed and is open to public2. This website aims to provide a user-friendly interface
to any person who is interested in Cube-Attack-like cryptanalyses.

Linearity is tested at the website. The user first can select from a list of target ciphers, such as
Trivium (and only Trivium is provided at this moment), to perform an attack. By sending the request
to the server, our program is able to verify whether we can obtain a linear function in terms of the
secret key bits, and if so, the corresponding key expression will be returned and displayed on the web
page, along with the total execution time. Fig. 2 shows part of the web page.

2 Please have a try at http://cube-attack.appspot.com/.

http://cube-attack.appspot.com/

CS 758: Cryptography/Network Security Course Project 7

Fig. 2. An illustration of the Cube-Attack-like cryptanalysis website (part).

The application is developed by Google App Engine with Python3, which is portable and easy
to maintain. The web application interacts with Google’s web server using the CGI protocol. Third-
party frameworks such as Django is also used, with the AJAX technique to synchronize the dynamic
response on the web page. Here is a brief description of how the whole process works: When a user sends
the remote procedure call (RPC) requesting for the linearity testing, the RPCHandler at server side
captures the AJAX request and the Python methods defined in class RPCMethods will be remote called
directly and thus able to invoke other Python methods to perform the linearity testing. The portability
of Python allows us to easily integrate our previous offline platform with the web application.

As a web application, security becomes a big concern. The remote calls are limited to only those
methods in a single class RPCMethods. Besides, the use of interface libraries is restricted, so we
changed our generating code of Trivium key stream from C code to a Python version, which is more
conformed, but slower.

4 Testing Results and Discussions

By running our program, we have tested the data provided in several papers [2,3,8,14]. During the
testing, we found some interesting problems. For examples, Dinur and Shamir did not follow their
theoretical analysis when they were programming, in which case they cannot guarantee the terms
derived from the obtained Cubes were maxterms. Nevertheless, this set of data falls perfectly into the
theorem of AIDA [3]. And we disprove the argument given in another paper [14], where the authors
state the data in [3] is wrong. We will give the detailed programming results and analyses in this
section. The following subsections are titled using the names of tested papers.

4.1 Cube Attacks on Tweakable Black Box Polynomials

In Cube Attack, the attacker assigns all the possible combinations of 0/1 values to variables in the
cube, and leave all the other variables undetermined. This means that in the testing we should assign
random values to the variables outside the cubes. However, in this way, all the data in this paper failed
during the verification process. This situation is also mentioned in [14]. Our testing results are shown
in Table 1.

The values in the column named #Failures (Random) show the failure numbers of the linearity
testing in the case when the IV bits outside the cubes are chosen randomly. However if the bit variables
outside the cubes are set to zero, then all the data can pass the linearity test (please see the numbers
in the last column of Table 1). Dinur and Shamir also mentioned in their paper4 that all the public
variables outside the cubes were set to 0 in their program. However, in this way, the obtained cubes

3 For more details, please visit http://code.google.com/appengine/docs/python/overview.html.
4 Please see the last fifth line on the twentieth page of [2].

http://code.google.com/appengine/docs/python/overview.html

8 A Practical Platform for Cube-Attack-like Cryptanalyses

Table 1. Verification Results for Table 1 in [2] (1000 times for each entry).

#Init Rounds IV Bits in a Cube Linear Key Bits #Failures (Random) #Failures (Zero)

675 v2, v13, v20, v24, v37, v42, v43, v46, v53, v55, v57, v67 k0, k9, k50 995 0
673 v2, v12, v17, v25, v37, v39, v46, v48, v54, v56, v65, v78 k0, k24 941 0
674 v3, v14, v21, v25, v38, v43, v44, v47, v54, v56, v58, v68 k1, k10, k51 995 0
672 v3, v13, v18, v26, v38, v40, v47, v49, v55, v57, v66, v79 k1, k25 939 0
678 v0, v5, v7, v18, v21, v32, v38, v43, v59, v67, v73, v78 k2, k34, k62 995 0
677 v1, v6, v8, v19, v22, v33, v39, v44, v60, v68, v74, v79 k3, k35, k63 1000 0
675 v11, v18, v20, v33, v45, v47, v53, v60, v61, v63, v69, v78 k4 748 0
677 v5, v14, v16, v18, v27, v31, v37, v43, v48, v55, v63, v78 k5 731 0
675 v1, v3, v6, v7, v12, v18, v22, v38, v47, v58, v67, v74 k7 750 0
676 v1, v12, v19, v23, v36, v41, v42, v45, v52, v54, v56, v66 k8, k49, k68 994 0
684 v0, v4, v9, v11, v22, v24, v27, v29, v44, v46, v51, v76 k11 750 0
673 v0, v5, v8, v11, v13, v21, v22, v26, v36, v38, v53, v79 k12 745 0
673 v0, v5, v8, v11, v13, v22, v26, v36, v37, v38, v53, v79 k13 742 0
672 v2, v5, v7, v10, v14, v24, v27, v39, v49, v56, v57, v61 k14 775 0
685 v0, v2, v9, v11, v13, v37, v44, v47, v49, v68, v74, v78 k15 731 0
675 v1, v6, v7, v12, v18, v21, v29, v33, v34, v45, v49, v70 k16 740 0
677 v8, v11, v15, v17, v26, v23, v32, v42, v51, v62, v64, v79 k17 735 0
676 v0, v10, v16, v19, v28, v31, v43, v50, v53, v66, v69, v79 k18 744 0
672 v4, v9, v10, v15, v21, v24, v32, v36, v37, v48, v52, v73 k19 750 0
675 v7, v10, v18, v20, v23, v25, v31, v45, v53, v63, v71, v78 k20 748 0
675 v11, v16, v20, v22, v35, v43, v46, v51, v55, v58, v62, v63 k20, k50 944 0
673 v10, v13, v15, v17, v30, v37, v39, v42, v47, v57, v73, v79 k21, k66 931 0
673 v2, v4, v21, v23, v25, v41, v44, v54, v58, v66, v73, v78 k22 733 0
672 v3, v6, v14, v21, v23, v27, v32, v40, v54, v57, v70, v71 k23 736 0
672 v3, v5, v14, v16, v18, v20, v33, v56, v57, v65, v73, v75 k24 744 0
676 v6, v11, v14, v19, v33, v39, v44, v52, v58, v60, v74, v79 k28 768 0
675 v1, v7, v12, v18, v21, v25, v29, v45, v46, v61, v68, v70 k29 745 0
674 v2, v8, v13, v19, v22, v26, v30, v46, v47, v62, v69, v71 k30 784 0
673 v3, v9, v14, v20, v23, v27, v31, v47, v48, v63, v70, v72 k31 752 0
672 v4, v10, v15, v21, v24, v28, v32, v48, v49, v64, v71, v73 k32 748 0
680 v2, v4, v6, v12, v23, v29, v32, v37, v46, v49, v52, v76 k33 761 0
678 v0, v5, v7, v13, v18, v21, v32, v38, v43, v59, v73, v78 k34, k62 937 0
677 v1, v6, v8, v14, v19, v22, v33, v39, v44, v60, v74, v79 k35, k63 940 0
677 v2, v4, v5, v8, v15, v19, v27, v32, v35, v57, v71, v78 k36 730 0
678 v0, v3, v4, v9, v20, v28, v33, v41, v54, v58, v72, v79 k38, k56 946 0
674 v8, v11, v13, v17, v23, v25, v35, v45, v47, v54, v70, v79 k39, k57, k66 1000 0
676 v0, v6, v10, v16, v19, v31, v43, v50, v66, v69, v77, v79 k40, k58, k64 993 0
674 v2, v15, v17, v20, v21, v37, v39, v44, v46, v56, v67, v73 k41 756 0
674 v1, v16, v20, v22, v34, v37, v38, v53, v58, v69, v71, v78 k42, k60 951 0
673 v2, v7, v14, v22, v41, v45, v48, v58, v68, v70, v72, v76 k43 751 0
672 v3, v14, v16, v18, v20, v23, v32, v46, v56, v57, v65, v73 k44, k62 928 0
676 v0, v6, v10, v16, v18, v28, v31, v43, v53, v69, v77, v79 k45, k64 947 0
684 v2, v8, v11, v13, v28, v31, v35, v37, v49, v51, v68, v78 k46, k55 931 0
676 v5, v8, v20, v32, v36, v39, v45, v51, v65, v69, v76, v78 k47 754 0
678 v2, v4, v10, v14, v16, v22, v25, v44, v49, v51, v57, v78 k48 724 0
676 v1, v12, v19, v23, v36, v41, v42, v45, v52, v56, v69, v75 k49, k62 939 0
674 v1, v7, v8, v13, v21, v23, v28, v30, v47, v68, v71, v75 k51, k62 942 0
674 v5, v8, v9, v12, v16, v18, v23, v40, v44, v63, v66, v70 k52 751 0
675 v2, v11, v21, v24, v32, v55, v57, v60, v63, v66, v70, v77 k53 739 0
675 v4, v7, v10, v18, v20, v25, v50, v53, v61, v63, v71, v78 k54, k60 930 0
674 v5, v12, v16, v19, v22, v36, v47, v55, v63, v71, v77, v79 k55, k64 929 0
677 v4, v9, v18, v21, v23, v27, v32, v38, v43, v58, v67, v69 k56 751 0
675 v1, v7, v9, v14, v18, v21, v33, v40, v45, v49, v59, v68 k57 743 0
673 v2, v6, v12, v13, v19, v23, v30, v48, v55, v59, v69, v79 k58 744 0
681 v5, v7, v10, v13, v15, v17, v28, v40, v47, v73, v76, v79 k60 756 0
673 v13, v21, v24, v39, v42, v46, v48, v51, v55, v61, v72, v78 k61 741 0
674 v2, v4, v10, v11, v19, v34, v47, v55, v56, v58, v69, v77 k62 755 0
674 v5, v7, v10, v15, v17, v35, v40, v47, v52, v57, v76, v79 k63 739 0
673 v8, v11, v13, v17, v23, v25, v35, v47, v62, v64, v68, v79 k64 757 0
682 v2, v3, v13, v15, v19, v29, v32, v37, v39, v51, v76, v79 k65 756 0
678 v5, v7, v10, v13, v15, v17, v35, v40, v52, v70, v76, v79 k66 755 0
677 v5, v20, v24, v29, v33, v35, v37, v39, v63, v65, v74, v78 k67 732 0
676 v1, v12, v19, v23, v36, v41, v52, v54, v56, v66, v69, v75 k68 776 0

cannot be guaranteed to construct maxterms. To illustrate this situation, please consider the following
Boolean function.

k0 · v0 + k1 · v0v1
Based on the original definition, in this Boolean function, only v0v1 is a maxterm. But if we let {v0}
to be a fake cube and assign 0 to the variable outside the cube, i.e. v1, then the linearity testing of

CS 758: Cryptography/Network Security Course Project 9

Table 2. Verification Results for the Data in [3] (1000 times for each entry).

#Init Rounds IV Bits in a Cube Linear Key Bits #Failures (Zero)

596 v3, v6, v11, v14, v1, v55 k0 0
579 v3, v6, v11, v14, v7, v32 k1, k64 0
579 v3, v6, v11, v14, v13, v31 k2, k65 0
578 v3, v6, v11, v14, v5, v46 k3 0
576 v6, v11, v14, v0, v78 k4 0
610 v3, v6, v11, v14, v40, v50 k5 0
588 v3, v6, v11, v14, v22, v53 k7 0
588 v3, v6, v11, v14, v35, v62 k8 0
594 v3, v6, v11, v14, v23, v40 k10 0
603 v3, v6, v11, v14, v20, v31 k13 0
577 v3, v6, v11, v14, v76, v78 k15 0
587 v3, v6, v11, v14, v19, v78 k16 0
586 v3, v6, v11, v14, v22, v39 k18 0
579 v3, v11, v14, v22, v48 k24 0
579 v3, v11, v14, v21, v48 k25 0
578 v3, v6, v11, v22, v47 k26 0
582 v3, v6, v11, v33, v43 k35 0
579 v6, v11, v14, v48, v54 k37 0
577 v6, v11, v14, v51, v78 k38 0
597 v3, v6, v11, v14, v50, v57 k54 0
577 v3, v6, v11, v14, v25, v49 k55 0
587 v3, v6, v11, v13, v23 k56, k62 0
611 v3, v6, v11, v14, v9, v40 k58, k64 0
588 v3, v11, v14, v37, v47 k59, k65 0
586 v3, v6, v11, v14, v39, v73 k60 0
603 v3, v6, v11, v14, v22, v74 k61 0
603 v3, v6, v11, v14, v22, v73 k62 0
596 v3, v6, v11, v14, v2, v29 k63 0
579 v3, v6, v11, v14, v1, v32 k64 0
579 v3, v6, v11, v14, v15, v33 k65 0
595 v3, v6, v11, v14, v39, v64 k66 0
595 v3, v6, v11, v14, v39, v63 k67 0
580 v3, v27, v30, v78, v2, v46 k14 0
599 v3, v27, v30, v78, v0, v68 k17 0
597 v3, v27, v30, v78, v2, v49 k19 0
624 v3, v27, v30, v78, v7, v11 k22 0
605 v3, v27, v30, v78, v11, v45 k29 0
605 v3, v27, v30, v78, v0, v16 k31 0
590 v27, v30, v78, v1, v36 k32 0
588 v3, v27, v30, v78, v13, v50 k34 0
587 v3, v27, v30, v78, v34, v37 k57 518
582 v1, v6, v7, v11, v18, v44 k20 0
582 v1, v6, v7, v11, v19, v55 k21 0
582 v1, v7, v79, v18, v42 k9 517
581 v1, v7, v11, v79, v18, v43 k11 501
606 v1, v7, v11, v79, v18, v70 k57 0
578 v1, v7, v11, v79, v13, v48 k68 0

k0 will also succeed. We should mention that this does not mean Dinur and Shamir made mistakes in
their theoretical analysis or the programming results, and this just shows their programming results
do not serves a support to their theorem. Assigning zero to the variables outside the cubes is also a
powerful approach to perform attacks, which is exactly what AIDA does. It is easy to see that if Cube
Attack can be performed on a certain maxterm (i.e. leaving the other bits undetermined), then AIDA
can succeed on the same maxterm (letting the other variables to be zero), but not vice versa.

We will keep the computers running for testing Table 2 in [2], but this may take a very long time,
because Table 2 involves three times number of variables than Table 1, requiring 220 more computations
for each cube. Maybe we can put the verification results of Table 2 on our website later.

4.2 Breaking One.Fivium by AIDA – an Algebraic IV Differential Attack

Algebraic IV Differential Attack was proposed earlier than Cube Attack, and it also aims to deduce
linear functions of Trivium. We also verified the data provided in the AIDA paper. Our results are
listed in Table 2.

10 A Practical Platform for Cube-Attack-like Cryptanalyses

Table 3. Verification Results for the Data in [14] (1000 times for each entry).

#Init Rounds IV Bits in a Cube Linear Variables #Failures (Zero)

579 v3, v20, v28, v36, v42, v55, v77, v78 k68 0
579 v18, v26, v36, v45, v61, v73, v78, v79 v77, v64, k67 0
588 v11, v18, v34, v37, v45, v51, v70, v79 v78, k66 0
581 v1, v3, v28, v34, v51, v61, v67 k65 0
578 v3, v12, v19, v29, v37, v62, v77 k64 0
577 v8, v13, v21, v39, v53, v73, v74 k63 0
576 v6, v7, v12, v13, v15, v16, v36, v73 k62 0
584 v0, v10, v35, v45, v55, v58, v72, v77 k61 0
581 v6, v7, v10, v27, v35, v36, v67 v72, v9, v8, k60 0
587 v1, v20, v29, v36, v48, v55, v73 k59 0
586 v8, v16, v19, v28, v52, v62, v69, v72 k58 0
593 v0, v10, v11, v23, v25, v26, v29, v57, v68, v71 k57 0
578 v5, v6, v11, v27, v44, v55, v60, v67 k56 0
578 v0, v3, v7, v20, v21, v31, v66 k55 0
577 v5, v6, v11, v44, v60, v65, v67 k54 0
581 v17, v25, v27, v35, v54, v62, v63, v79 v65, v64, v50, k53 0
579 v1, v2, v8, v39, v61, v62, v69, v70 v64, v63, v49, v7, k52 0
584 v15, v23, v32, v47, v49, v58, v76 k51 0
584 v0, v5, v14, v23, v38, v48, v67 k50 0
585 v14, v22, v30, v45, v48, v50, v59, v75 k49 0
586 v4, v29, v38, v43, v46, v47, v57, v66, v73 k48 0
587 v18, v28, v38, v39, v42, v45, v46, v65, v79 k47 0
614 v1, v17, v19, v21, v24, v27, v59, v60, v71 v25, k46 0
590 v9, v18, v25, v28, v43, v45, v55, v69 k45 0
577 v2, v21, v29, v40, v57, v66, v73 v20, k44 0
591 v1, v7, v8, v32, v39, v42, v67, v74 v40, k43 0
592 v7, v15, v29, v38, v41, v42, v50, v75 v39, k42 0
589 v3, v9, v12, v22, v30, v49, v52, v53 v51, v38, k41 0
595 v19, v30, v36, v38, v43, v46, v58, v63, v79 k40 0
595 v4, v5, v21, v22, v37, v38, v39, v72 v36, k39 0
580 v3, v7, v11, v23, v44, v49, v50 v48, v35, k38 0
582 v1, v7, v9, v15, v46, v47, v59, v68 v49, v48, v34, k37 0
584 v7, v21, v23, v45, v46, v58, v74, v76 v48, v47, v33, k36 0
581 v22, v25, v41, v44, v45, v51, v55, v58, v67 v47, v46, v32, k35 0
583 v1, v15, v45, v46, v50, v57, v68, v69 v44, v31, k34 0
582 v5, v22, v28, v31, v42, v43, v51, v75 v45, v44, v30, v27, k33 0
585 v0, v3, v32, v39, v41, v42, v47, v48, v61 v44, v43, v29, k32 0
587 v4, v20, v37, v42, v43, v54, v64 v41, v28, k31 0
588 v10, v11, v25, v26, v39, v40, v47, v56, v70 v42, v41, v27, k30 0
589 v0, v2, v11, v30, v40, v41, v53, v54 v39, v26, k29 0
588 v18, v28, v37, v38, v42, v45, v46, v65, v79 v40, v39, v25, k28 0
579 v5, v9, v10, v11, v12, v42, v68, v77 k3 0
576 v5, v8, v12, v28, v31, v67, v74 v68, v29, k2 0
590 v9, v10, v19, v33, v41, v68, v77 v67, k1 0
578 v3, v12, v37, v63, v65, v71, v74 v66, k0 0

We can see most of the entries of the table in [3] passed the linearity testing. However, in another
paper [14], which also tried to verify the data of AIDA, shows that almost all the data is wrong, which
contradicts our results. We think the authors of [14] made a mistake that they confused the indices
used in AIDA and Cube Attack. In [3] the indices are counted from 1 to 80, while the indices in [2]
are listed from 0 to 79.

4.3 Cube Attacks on Trivium

The paper [14] mentioned in the last subsection also provides new cubes. In these cubes, the linear
equations involve both the key and IV bits. All the data passed our testing, and the results are listed
in Table 3.

However there is a small mistake in the original Table 3 in [14] . The title of the second column is

p(x1, . . . , x80, v1, . . . , v80) ,

but the indices the authors actually used in the table are from 0 to 79.

CS 758: Cryptography/Network Security Course Project 11

Table 4. Verification Results for the Data in [8] (10 times for each entry).

#Init Indices of the IV Bits in a Cube Linear Key Bits #Failures (Zero)

709 6, 8, 9, 13, 22, 24, 28, 30, 32, 36, 39, 40, 43, 45, 47, 48, 60, 63, 67, 68, 73, 76, 79 k14 10
709 2, 9, 15, 17, 27, 28, 32, 40, 44, 46, 52, 54, 59, 64, 68, 70, 71, 72, 73, 74, 76, 78, 79 k15 6
709 1, 3, 9, 10, 13, 14, 16, 28, 34, 37, 42, 51, 52, 56, 59, 60, 62, 68, 69, 72, 74, 79 k16 7
709 4, 5, 6, 10, 11, 12, 17, 19, 21, 26, 32, 40, 44, 49, 54, 58, 60, 61, 67, 72, 74, 77, 78 k17 8
709 5, 9, 15, 16, 20, 21, 32, 33, 35, 38, 41, 43, 46, 52, 56, 58, 60, 61, 62, 69, 77, 78, 79 k18 9
709 6, 8, 13, 17, 23, 27, 28, 33, 44, 45, 46, 53, 54, 56, 60, 61, 67, 68, 72, 74, 75, 77, 79 k19 10
709 1, 2, 7, 13, 15, 18, 19, 23, 29, 34, 35, 36, 38, 47, 49, 54, 57, 62, 64, 65, 66, 68, 74 k20 10
709 4, 7, 10, 11, 19, 20, 22, 23, 24, 30, 32, 33, 38, 41, 49, 52, 54, 59, 66, 67, 69, 74, 77 k21 10
709 8, 16, 18, 22, 24, 26, 29, 31, 34, 36, 40, 41, 45, 46, 47, 48, 50, 59, 63, 69, 72, 76, 78 k22 6
709 6, 10, 13, 16, 19, 25, 28, 35, 39, 42, 44, 48, 57, 61, 62, 63, 64, 65, 67, 68, 73, 77, 78 k23 8
709 2, 4, 7, 15, 17, 18, 20, 23, 24, 27, 29, 35, 45, 47, 48, 51, 57, 59, 63, 65, 67, 74, 77 k24 10
710 3, 5, 8, 16, 18, 19, 21, 24, 25, 28, 30, 36, 46, 48, 49, 52, 58, 60, 64, 66, 68, 75, 78 k25 10
709 5, 10, 13, 14, 15, 22, 26, 27, 32, 35, 36, 45, 46, 50, 51, 56, 59, 60, 63, 64, 77, 78, 79 k33 8
710 2, 6, 8, 9, 19, 23, 24, 29, 32, 33, 34, 42, 47, 49, 51, 52, 53, 57, 61, 64, 73, 77 k35 10
709 0, 3, 6, 8, 11, 17, 28, 34, 38, 39, 41, 43, 46, 51, 52, 53, 54, 56, 64, 65, 70, 72, 78 k39 8
709 5, 6, 11, 19, 27, 31, 32, 39, 40, 44, 47, 49, 51, 52, 56, 58, 59, 63, 65, 66, 69, 71, 79 k40 6
709 7, 9, 10, 15, 17, 24, 25, 26, 33, 36, 43, 45, 52, 56, 59, 60, 61, 63, 68, 71, 74, 77 k41 8
710 8, 10, 11, 16, 18, 25, 26, 27, 34, 37, 44, 46, 53, 57, 60, 61, 62, 64, 69, 72, 75, 78 k42 7
711 9, 11, 12, 17, 19, 26, 27, 28, 35, 38, 45, 47, 54, 58, 61, 62, 63, 65, 70, 73, 76, 79 k43 9
709 4, 5, 7, 13, 15, 18, 27, 30, 33, 34, 36, 39, 42, 44, 45, 46, 51, 53, 57, 63, 75, 77, 78 k47 6
709 6, 7, 15, 19, 27, 30, 35, 37, 44, 45, 46, 47, 49, 50, 56, 59, 60, 67, 70, 71, 72, 75, 79 k48 9
709 0, 8, 14, 18, 25, 28, 31, 35, 38, 42, 44, 45, 51, 52, 58, 60, 66, 67, 70, 73, 76, 77 k49 9
709 0, 2, 8, 11, 14, 15, 17, 21, 22, 28, 31, 32, 39, 41, 52, 53, 59, 60, 65, 67, 74, 77, 78 k50 7
709 1, 8, 10, 15, 18, 26, 28, 29, 33, 35, 37, 38, 42, 51, 53, 55, 57, 60, 61, 65, 66, 67, 75 k51 6
710 7, 10, 11, 12, 15, 21, 29, 32, 37, 39, 41, 44, 47, 53, 56, 57, 59, 62, 63, 66, 70, 76 k21, k52 10
710 1, 4, 8, 10, 11, 12, 14, 15, 19, 22, 24, 29, 31, 33, 39, 42, 50, 52, 55, 58, 60, 61, 65 k53 10
712 9, 12, 13, 14, 17, 23, 31, 34, 39, 41, 43, 46, 49, 55, 58, 59, 61, 64, 65, 68, 72, 78 k23, k54 10
713 10, 13, 14, 15, 18, 24, 32, 35, 40, 42, 44, 47, 50, 56, 59, 60, 62, 65, 66, 69, 73, 79 k24, k55 10
709 1, 3, 6, 10, 11, 14, 15, 16, 23, 25, 28, 35, 40, 41, 42, 44, 46, 52, 58, 66, 68, 69, 75 k57 10
709 8, 12, 14, 19, 26, 28, 30, 40, 41, 42, 43, 48, 50, 53, 59, 62, 63, 67, 71, 72, 74, 79 k21, k49, k58 10
709 6, 14, 16, 31, 37, 40, 43, 48, 50, 53, 54, 55, 57, 58, 60, 61, 62, 68, 72, 73, 74, 76 k59 9
709 3, 4, 14, 16, 26, 29, 30, 38, 40, 43, 47, 54, 56, 58, 60, 64, 65, 67, 69, 70, 75, 76, 77 k60 7
711 3, 8, 11, 14, 16, 17, 18, 20, 22, 24, 27, 33, 35, 38, 44, 48, 52, 53, 59, 66, 73, 77 k61 10
712 4, 9, 12, 15, 17, 18, 19, 21, 23, 25, 28, 34, 36, 39, 45, 49, 53, 54, 60, 67, 74, 78 k62 10
709 2, 5, 9, 17, 21, 27, 28, 30, 35, 37, 46, 48, 50, 53, 54, 60, 61, 63, 65, 69, 71, 73, 79 k19, k63 10
709 1, 7, 12, 15, 18, 27, 30, 41, 44, 46, 47, 48, 49, 52, 53, 54, 56, 59, 62, 63, 66, 69, 79 k67 6
709 6, 11, 16, 19, 26, 34, 36, 39, 41, 42, 47, 49, 52, 54, 57, 59, 66, 67, 71, 72, 76, 79 k72 8
709 1, 3, 4, 6, 12, 14, 15, 19, 25, 26, 28, 29, 35, 40, 49, 52, 57, 64, 66, 67, 68, 72, 75 k73 8
710 2, 4, 5, 7, 13, 15, 16, 20, 26, 27, 29, 30, 36, 41, 50, 53, 58, 65, 67, 68, 69, 73, 76 k74 6
711 3, 5, 6, 8, 14, 16, 17, 21, 27, 28, 30, 31, 37, 42, 51, 54, 59, 66, 68, 69, 70, 74, 77 k75 10
712 4, 6, 7, 9, 15, 17, 18, 22, 28, 29, 31, 32, 38, 43, 52, 55, 60, 67, 69, 70, 71, 75, 78 k76 10

4.4 The Cube Attack on Stream Cipher Trivium and Quadraticity Tests

Recently, one paper which extends the idea of Cube-Attack-like cryptanalyses to solving quadratic
functions was put online [8]. This paper also provides some new cubes to compute linear functions.
We also tested this set of data, but unfortunately little data passed. The results are listed in Table 4.

5 Conclusion and Further Works

In this paper, we have designed a platform to perform the Cube-Attack-like cryptanalyses. Efficient
algorithms are applied in the program. The experimental data in the papers [2,3,8,14] are tested and
interesting results showed up. By analyzing the testing results, we find certain improper assumption
made by Dinur and Shamir when they implemented their theorem by setting the variables outside
cubes to be 0. And another paper [14] argues that the verifications for AIDA all failed, but our second
finding implies that the author may have been confused by the indices used in AIDA and Cube Attack,
because our experimental result shows a pretty good survival of the data from AIDA.

Besides the local/offline platform, a web-based application is also launched for public use. Linearity
verification of AIDA on Trivium is available to test online by user-specified IV indices and with reduced
rounds. Indication of whether the result is linear and the matched keys expression are returned and
displayed on the web page, along with the total processing time.

12 A Practical Platform for Cube-Attack-like Cryptanalyses

We also found and fixed a bug in the source code of Trivium provided on the official website. The
original source code cannot be compiled on many 64-bit platforms, such as Mac and Ubuntu. We also
notified the authors of Trivium and provided the patch to the code. Please refer to the appendix for
the details.

In the future, we will continue exploring the linearity verification of data in other papers, such as [6]
and [15]. Besides, other properties, such as unbalance and presence of a variable, will also be tested
based on our current work. In order to do all jobs efficiently, we plan to change the platform language
from Python to C, so that cubes with large sizes are also possible to be evaluated. In addition, although
the paper [4] is not targeted for the attacks on Trivium, it indeed reveals a number of innovative ideas
that can be used in our future works to speed up the linearity testing algorithm, e.g. by utilizing
Reed-Muller transform.

References

1. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. Cryptology ePrint Archive,
Report 2008/385 (2008) http://eprint.iacr.org/.

2. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. EUROCRYPT’09. LNCS 5479
(2009) pp. 278–299

3. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA – an Algebraic IV Differential Attack. Cryptology ePrint
Archive, Report 2007/413 (2007) http://eprint.iacr.org/.

4. Vielhaber, M.: AIDA Breaks BIVIUM (A&B) in 1 Minute Dual Core CPU Time. Cryptology ePrint
Archive, Report 2009/402 (2009) http://eprint.iacr.org/.

5. Lai, X.: Higher Order Derivatives and Differential Cryptanalysis. Communications and Cryptography:
Two Sides of One Tapestry (1994) pp. 227

6. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube Testers and Key Recovery Attacks on Reduced-
Round MD6 and Trivium. FSE’09. LNCS 5665 (2009) pp. 1–22

7. Rivest, R., Agre, B., Bailey, D., Crutchfield, C., Dodis, Y., Fleming, K., Khan, A., Krishnamurthy, J., Lin,
Y., Reyzin, L., et al.: The MD6 hash function – A proposal to NIST for SHA-3. (2008)

8. Mroczkowski, P., Szmidt, J.: The Cube Attack on Stream Cipher Trivium and Quadraticity Tests. Cryp-
tology ePrint Archive, Report 2010/580 (2010) http://eprint.iacr.org/.

9. De Canniere, C., Preneel, B.: Trivium specifications. In: eSTREAM, ECRYPT Stream Cipher Project,
Citeseer

10. Cusick, T., Stanica, P.: Cryptographic Boolean Functions and Applications. Academic Press (2009)
11. Carlet, C.: Boolean Function. In: Encyclopedia of Cryptography and Security. Springer (2005)
12. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. In:

Proceedings of the twenty-second annual ACM symposium on Theory of computing. STOC ’90, New York,
NY, USA, ACM (1990) 73–83

13. Bellare, M., Coppersmith, D., Hastad, J., Kiwi, M., Sudan, M.: Linearity Testing in Characteristic Two.
In: 1995 IEEE 36th Annual Symposium on Foundations of Computer Science, IEEE Computer Society
Press (1995) 432

14. Bedi, S.S., Pillai, N.R.: Cube Attacks on Trivium. Cryptology ePrint Archive, Report 2009/015 (2009)
http://eprint.iacr.org/.

15. Dinur, I., Shamir, A.: Breaking Grain-128 with Dynamic Cube Attacks. Cryptology ePrint Archive, Report
2010/570 (2010) http://eprint.iacr.org/.

Appendix. A Bug in the Source Code of Trivium

There is a bug in the original source code of Trivium provided on the official website. Here we briefly
talk about how to target and fix the bug.

Since different C compilers may interpret the code differently, the source code can pass the compi-
lation on 32-bit platform as well as Windows 64-bit Visual Studio building environment, but will fail
on 64-bit Linux or Mac OS, since the latter two are more restricted on compiling rules.

The bug appears in trivium.c, at the line where Z(w) is pre-defined as the following statement.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

CS 758: Cryptography/Network Security Course Project 13

#de f i n e Z(w) (U32TO8 LITTLE(output + 4 ∗ i , U8TO32 LITTLE(i npu t + 4 ∗ i) ˆ w))

The error may not be so obvious if we only look at the code itself. We found the problem by expanding
and checking the assembled code: Although the reason is not clear, the outer pair of brackets in the
macro will be unbalanced after compilation. To solve the problem, the original code should be manually
changed as follows.

#de f i n e Z(w) U32TO8 LITTLE(output + 4 ∗ i , U8TO32 LITTLE(i npu t + 4 ∗ i) ˆ w)

Please notice that, while the code is working well on our computers, we cannot guarantee its liability
on other machines.

	CS 758: Cryptography/Network Security Course Project
	A Practical Platform for Cube-Attack-like Cryptanalyses

