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Abstract

In this article, we propose a new construction of probabilistic collusion-secure fingerprint codes against
up to three pirates and give a theoretical security evaluation. Our pirate tracing algorithm combines a
scoring method analogous to Tardos codes (J. ACM, 2008) with an extension of parent search techniques
of some preceding 2-secure codes. Numerical examples show that our code lengths are significantly shorter
than (about 30% to 40% of) the shortest known c-secure codes by Nuida et al. (Des. Codes Cryptogr.,
2009) with c = 3. Some preliminary proposal for improving efficiency of our tracing algorithm is also
given.

1 Introduction

1.1 Background and Related Works

Recently, digital content distribution services have been widespread by virtue of progress of information
technology. Digitization of content distribution has improved convenience for ordinary people. However,
the digitization also enables malicious persons to perform more powerful attacks, and the amount of illegal
content redistribution is increasing very rapidly. Hence technical countermeasures for such illegal activities
are strongly desired. A use of fingerprint code is a possible solution for such problems, which aims at giving
traceability of the attacker (pirate) when an illegally redistributed digital content is found, thus letting the
potential attackers abandon to perform actual attacks.

In the context of fingerprint codes, each copy of a content is divided into several segments (common
to all copies), in each of which a bit of an encoded user ID is embedded by the content provider by using
watermarking technique. The embedded encoded ID (fingerprint) provides traceability of an adversarial
user (pirate) when an unauthorized copy of the content is distributed. Such a scheme aims at tracing some
pirate, without falsely tracing any innocent user, from the fingerprint embedded in the pirated content
with an overwhelming probability. It has been noticed that a coalition of pirates can perform certain strong
attacks (collusion attacks) to the fingerprint, therefore any effective fingerprint code should be secure against
collusion attacks, called collusion-secure codes. In particular, if the code is secure against collusion attacks
by up to c pirates, then the code is called c-secure [2].

Several constructions of collusion-secure codes have been proposed so far. Among them, the one proposed
by Tardos [14] is “asymptotically optimal”, in the sense that the order of his code length with respect to
the allowable number c of pirates is theoretically the lowest (which is quadratic in c). For improvements of
Tardos codes, the constant factor of the asymptotic code length has been reduced by c-secure codes given
by Nuida et al. [10] to approximately 5.35% of Tardos codes, which is the smallest value so far provable
without any additional assumption. On the other hand, after the first proposal of Tardos codes there were
proposed several collusion-secure codes, e.g., [1, 3, 6, 9, 11], which restrict the number of pirates to c = 2
but achieve further short code lengths. Such constructions of short c-secure codes for a small c would have
not only theoretical but also practical importance; for example, when the users are less anonymous for the
content provider (e.g., the case of secret documents distributed in a company), it seems infeasible to make a
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large coalition confidentially. The aim of this article is to extend such a “compact” construction to the next
case c = 3.

For related works, we notice that there is an earlier work by Sebé and Domingo-Ferrer [13] for 3-secure
codes. On the other hand, there is another work by Kitagawa et al. [5] on construction of 3-secure codes, in
which very short code lengths are proposed but its security is evaluated only by computer experiments for
some special attack strategies.

1.2 Our Contribution

In this article, we propose a new construction of 3-secure codes and give a theoretical security evaluation. The
codeword generation algorithm is just a bit-wise random sampling, which has been used by many preceding
constructions as well. The novel point of our construction is in the pirate tracing algorithm, which combines
the use of score computation analogous to Tardos codes [14] with an extension of “parent search” technique
of some preceding works against two pirates [1, 6, 11]. Intuitively, the score computation method works
well when the parts of fingerprint in the pirated content are chosen evenly from the codewords of pirates,
while the extended “parent search” technique works well when the fingerprint is not evenly chosen from the
codewords of pirates, therefore their combination is effective.

In comparison under some parameter choices, our code lengths are approximately 3% to 4% of 3-secure
codes by Sebé and Domingo-Ferrer [13], and approximately 30% to 40% of c-secure codes by Nuida et al.
[10] for c = 3. This shows that our code length is even significantly shorter than the shortest known c-secure
codes [10].

In fact, Kitagawa et al. [5] claimed that their 3-secure code provides almost the same security level as our
code for the case of 100 users and 128-bit length. However, they evaluated the security by only computer
experiments for the case of some special attack algorithms (and they studied just one parameter choice as
above), while in this article we give a theoretical security evaluation for arbitrary attack algorithms under the
standard Marking Assumption (cf., [2]). (One may think that the perfect protection of so-called undetectable
positions required by Marking Assumption is not practical. However, this is in fact not a serious problem,
as a general conversion technique recently proposed by Nuida [7] can supply robustness against erasure of a
bounded number of undetectable bits.)

Moreover, for the sake of improving efficiency of our tracing algorithm, we also discuss an implementation
method for the algorithm. By an intuitive observation, it seems indeed more efficient for an average case
than the naive implementation. A detailed evaluation of the proposed implementation method will be a
future research topic.

1.3 Notations

In this article, log denotes the natural logarithm. We put [n] = {1, 2, . . . , n} for an integer n. Unless some
ambiguity emerges, we often abbreviate a set {i1, i2, . . . , ik} to i1i2 · · · ik. Let δa,b denote Kronecker delta,
i.e., we have δa,b = 1 if a = b and δa,b = 0 if a ̸= b. For a family F of sets, let

∪
F and

∩
F denote the union

and the intersection, respectively, of all members of F .

1.4 Organization of the Article

In Sect. 2, we give a formal definition of the notion of collusion-secure fingerprint codes. In Sect. 3, we describe
our codeword generation algorithm and pirate tracing algorithm, state the main results on the security of our
3-secure codes, and give some numerical examples for comparison to preceding works. Section 4 summarizes
the outline of the security proof. In Sect. 5, we discuss an implementation issue of our tracing algorithm.
Finally, Sect. 6 supplies the detail of our security proof omitted in Sect. 4.
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2 Collusion-Secure Fingerprint Codes

In this section, we introduce formal definitions for fingerprint codes. Let N and m be positive integers, and
1 ≤ c ≤ N an integer parameter. Put U = [N ]. Fix a symbol ‘?’ different from ‘0’ and ‘1’. We start with
the following definition:

Definition 1. Given the parameters N , m and c, we define the following game, which we refer to as pirate
tracing game. The players of the game is a provider and pirates, and the game is proceeded as follows:

1. Provider generates an N × m binary matrix W = (wi,j)i∈[N ],j∈[m] and an element st called state
information.

2. Pirates generate UP ⊆ U , 1 ≤ |UP| ≤ c, without knowing W and st.

3. Pirates receive the codeword wi = (wi,1, . . . , wi,m) for every i ∈ UP.

4. Pirates generate a word y = (y1, . . . , ym) on {0, 1, ?} under a certain restriction specified below, and
send y to provider.

5. Provider generates Acc ⊆ U from y, W , and st, without knowing UP.

6. Then pirates win if Acc ∩ UP = ∅ or Acc ̸⊆ UP, and otherwise provider wins.

We call the word y in Step 4 an attack word and call ‘?’ an erasure symbol. Put UI = U \ UP. In the
definition, U signifies the set of all users, UP is the coalition of pirates, and UI is the set of innocent users.
The codeword wi signifies the fingerprint for user i, and the word y signifies the fingerprint embedded in
the pirated content. The set Acc consists of the users traced by the provider from the pirated content. The
events Acc ∩ UP = ∅ and Acc ̸⊆ UP specified in Step 6 are referred to as false-negative and false-positive (or
false-alarm), respectively. Both of false-negative and false-positive are called tracing error.

Let Gen, Reg, ρ, and Tr denote the algorithms used in Steps 1, 2, 4, and 5, respectively. We call Gen,
Reg, ρ, and Tr codeword generation algorithm, registration algorithm, pirate strategy, and tracing algorithm,
respectively. We refer to the pair C = (Gen,Tr) as a fingerprint code, and the following quantity

Pr[(W, st)← Gen(); UP ← Reg(); y ← ρ(UP, (wi)i∈UP);

Acc← Tr(y,W, st) : Acc ∩ UP = ∅ or Acc ̸⊆ UP]
(1)

(i.e., the overall probability that pirates win) is called an error probability of C.
We specify the restriction for y mentioned in Step 4. First we present some terminology. For j ∈ [m], j-th

column in codewords is called undetectable if j-th bits wi,j of the codewords wi of pirates i ∈ UP coincide with
each other; otherwise the column is called detectable. Then, in this article, we put the following standard
assumption called Marking Assumption [2]:

Definition 2. The Marking Assumption states the following: For the attack word y, for every undetectable
column j, we have yj = wi,j for some (or equivalently, all) i ∈ UP.

We say that a fingerprint code C is collusion-secure if the error probability of C is sufficiently small for
any Reg and ρ under Marking Assumption. More precisely, we say that C is c-secure (with ε-error) [2] if the
error probability is not higher than a sufficiently small value ε under Marking Assumption.

3 Our 3-Secure Codes

Here we propose a codeword generation algorithm Gen and a tracing algorithm Tr for 3-secure codes (c = 3).
The security property will be discussed below.

The algorithm Gen, with parameter 1/2 ≤ p < 1, is the codeword generation algorithm of Tardos codes
[14] but the probability distribution of biases is different: For each (say, j-th) column, each user’s bit wi,j
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is independently chosen by Pr[wi,j = 1] = pj , where pj = p or 1 − p with probability 1/2 each. Then Gen
outputs W = (wi,j)i∈[N , j ∈ [m] and st = (pj)j∈[m].

To describe the algorithm Tr, we introduce some notations. For binary words w(1), . . . , w(k) of length m,
we define

E(w(1), . . . , w(k)) = {y ∈ {0, 1}m | yj ∈ {w(1)
j , . . . , w

(k)
j } for every j ∈ [m]} , (2)

the envelope of w(1), . . . , w(k). Then for a binary word y of lengthm and a collectionW = (wi,j) of codewords
of users, we define

T (y) = {i1i2i3 ⊆ U | i1 ̸= i2 ̸= i3 ̸= i1, y ∈ E(wi1 , wi2 , wi3)} (3)

(see Sect. 1.3 for the notation i1i2i3). A key property implied by Marking Assumption is that if the attack
word y contains no erasure symbols, then y belongs to the envelope of the codewords of pirates and, if
furthermore |UP| = 3, the family T (y) contains the set of three pirates. By using these notations, we define
the algorithm Tr as follows, where the words y, w1, . . . , wN and the state information st = (pj)j∈[m] are
given:

1. Replace each erasure symbol ‘?’ in y with ‘0’ or ‘1’ independently in the following manner. If yj = ?,
then it is replaced with ‘1’ with probability pj , and with ‘0’ with probability 1− pj . Let y

′ denote the
resulting word.

2. Calculate a threshold parameter Z = Zy′ as specified below.

3. For each i ∈ U , calculate the score S(i) of i by

S(i) =
∑
j∈[m]
y′
j=1

δwi,j ,y′
j
log

1

pj
+
∑
j∈[m]
y′
j=0

δwi,j ,y′
j
log

1

1− pj
. (4)

4. If S(i) ≥ Z for some i ∈ U , then output every i ∈ U such that S(i) ≥ Z, and halt.

5. Calculate T ′ = {T ∈ T (y′) | T ∩ T ′ ̸= ∅ for every T ′ ∈ T (y′)}. If T ′ = ∅, then output nobody, and
halt.

6. If
∩
T ′ ̸= ∅, then output every member of

∩
T ′, and halt.

7. Calculate P = {P = i1i2 ⊆ U | i1 ̸= i2, P ∩ T ̸= ∅ for every T ∈ T ′}. Let Pk be the set of all i ∈ U
such that |{P ∈ P | i ∈ P}| = k.

8. If P1 ̸= ∅, then output every i ∈ U such that ii′ ∈ P for some i′ ∈ P1, and halt.

9. If |P| = 7, then output every i ∈ U such that ii′ ∈ P for some i′ ∈ P2, and halt.

10. If |P| = 6, then output every i ∈ P3, and halt.

11. If |P| = 5 and T ′′ = {i1i2i3 ∈ T ′ | i1i2, i2i3, i1i3 ∈ P} ≠ ∅, then output every member of P2 ∩ (
∪
T ′′),

and halt.

12. If |P| = 5 and T ′′ = ∅, then output every i ∈
∪
P such that ii′ ̸∈ P for some i′ ∈

∪
P, and halt.

13. If |P| = 4, then output every i ∈
∪
P such that T ∈ T ′ and T ⊆

∪
P imply i ∈ T , and halt.

14. If |P| = 3, then output every i ∈
∪
P, and halt.

15. Output nobody, and halt.
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This algorithm is divided into two parts; Steps 1–4 and the remaining steps. The former part aims at per-
forming coarse tracing to defy “unbalanced” pirate strategies; namely, if some pirates’ codewords contribute
to generate y at too many columns than the other pirates, then it is very likely that scores of such pirates
exceed the threshold and they are correctly accused by Step 4.

On the other hand, the latter complicated part aims at performing more refined tracing. First, the
algorithm enumerates the collections of three users such that y′ can be made (under Marking Assumption)
from their codewords, in other words, the collection is a candidate of the actual triple of pirates. Steps 5
and 6 are designed according to an intuition that a pirate would be very likely to be contained in much more
candidate triples than an innocent user. When the tracing algorithm did not halt until Step 6, the possibilities
of “structures” of the set T ′ are mostly limited, even allowing us to enumerate all the possibilities. However,
it is space-consuming to enumerate them and determine suitable outputs in a case-by-case manner. Instead,
we give an explicit algorithm (Steps 7–15) to determine a suitable output, which is artificial but not too
space-consuming. Some examples of the possibilities of T ′ are given in Fig. 1, where 1, 2, 3 are the pirates,
ij are innocent users and the members of T ′ are denoted by triangles.
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P = {13, 1i1, 23, 2i1, 3i1}
P1 = ∅, T ′′ = ∅∪
P = {1, 2, 3, i1}, 12 ̸∈ P

output = 1, 2

Figure 1: Examples of the sets T ′ and P

For the latter part, the tracing tends to fail in the case that the set T (y′) contains much more members
other than the triple of the pirates, which tends to occur when the contributions of the pirates’ codewords
to y was too unbalanced. However, such an unbalanced attack is defied by the former part, therefore the
latter part also works well. More precisely, an upper bound of the error probability at the latter part will be
derived by using the property that scores of pirates are lower than the threshold (as otherwise the tracing
halts at the former part); cf., Sect. 6.5. Our scoring function (4), which is different from the ones for Tardos
codes [14] and its symmetrized version [12], is adopted to simplify the derivation process. Although it is
possible that the true error probability is reduced by applying the preceding scoring functions, a proof of a
bound of error probability with those scoring functions requires another evaluation technique and would be
much more involved, which is a future research topic.

Note that, for the case p = 1/2, it is known that the “minority vote” by three pirates for generating y
cancels the mutual information between y and a single codeword, therefore the pirates are likely to escape
from the former part of Tr. However, even by such a strategy the pirates are unlikely to escape from the
latter part of Tr, as collections of users rather than individual users are considered there.

The threshold parameter Z = Zy′ in Step 2 is determined as follows. Let AH be the set of column indices
j such that (pj , y

′
j) = (p, 1) or (1−p, 0), i.e., the occurrence probability of the bit y′j ∈ {0, 1} at j-th column is

p ≥ 1/2, and let AL = [m] \AH. Put aH = |AH| and aL = |AL|. Choose a parameter ε0 > 0 which is smaller
than the desired bound ε of error probability. Then choose Z = Zy′ satisfying the following condition:

∑
kH,kL

(
aL
kL

)
paL−kL(1− p)kL

(
aH
kH

)
pkH(1− p)aH−kH ≤ ε0

N
, (5)
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where the sum runs over all integers kH, kL ≥ 0 such that kH log 1
p + kL log

1
1−p ≥ Z. An example of a

concrete choice of Z satisfying the condition (5) is as follows:

Z0 = aHp log
1

p
+ aL(1− p) log

1

1− p
+

√√√√ 1

2

((
log

1

p

)2

aH +

(
log

1

1− p

)2

aL

)
log

N

ε0
(6)

(see Sect. 6.1 for the proof). From now, we suppose that the threshold Z satisfies the condition (5) and
Z ≤ Z0.

For the security of the proposed fingerprint code, first we present the following result, which will be
proven in Sect. 4:

Theorem 1. By the above choice of ε0 and Z, if the number of pirates is three, then the error probability
of the proposed fingerprint code is lower than

ε0 +

(
N − 3

3

)
f1(p)

m + 3(N − 3)(N − 4)f2(p)
m + (N − 3)(1− p)−3

√
(m/2) log(N/ε0)f3(p)

m , (7)

where we put

f1(p) = 1− 3p2 + 10p3 − 15p4 + 12p5 − 4p6 ,

f2(p) = p2(1− p)2(
√
p+

√
1− p) + 1− p− p2 + 4p3 − 2p4 ,

f3(p) = p4−3p(p2 − 3p+ 3) + (1− p)3p+1(p2 + p+ 1) .

(8)

Some numerical analysis suggests that the choice p = 1/2 would be optimal (or at least pretty good) to
decrease the bound of error probabilities specified in Theorem 1. In fact, an elementary analysis shows that
the second term

(
N−3
3

)
f1(p)

m in the sum, which seems dominant (cf., Theorem 2 below), takes the minimum
over p ∈ [1/2, 1) at p = 1/2. Hence we use p = 1/2 in the following argument. Now it is shown that the error
probability against less than three pirates also has the same bound under a condition (10) below (which
seems trivial in practical situations), therefore we have the following (which will be proven in Sect. 4):

Theorem 2. By using the value p = 1/2, the proposed fingerprint code is 3-secure with error probability
lower than

ε0 +

(
N − 3

3

)(
7

8

)m

+ 3(N − 3)(N − 4)

(
10 +

√
2

16

)m

+ (N − 3)8
√

(m/2) log(N/ε0)

(
7
√
2

16

)m

(9)

provided

m ≥ 8 log
N

ε0

(
1 +

1

16 log(N/ε0)

)2

. (10)

Note that when p = 1/2, the score S(i) of a user i is equal to log 2 times the number of columns in which
the words wi and y′ coincide. Hence the calculation of scores can be made easier by using the “normalized”
score S̃(i) = S(i)/ log 2 instead, which is equal to m minus the Hamming distance of wi from y′, together
with the “normalized” threshold Z0/ log 2 = m/2 +

√
(m/2) log(N/ε0).

Table 1 shows comparison of our code lengths (numerically calculated by using Theorem 2) with 3-secure
codes by Sebé and Domingo-Ferrer [13]. Table 2 shows the comparison with c-secure codes by Nuida et al.
[10] for c = 3. The values of N and ε and the corresponding code lengths are chosen from those articles.
The tables show that our code lengths are much shorter than the codes in [13], and even significantly shorter
than the codes in [10] which are in fact the shortest c-secure codes known so far (improving the celebrated
Tardos codes [14]). On the other hand, recently Kitagawa et al. [5] proposed another construction of 3-secure
codes, and evaluated the security against some typical pirate strategies in the case N = 100 and m = 128
by computer experiment. The resulting error probability was ε = 0.009. For the same error probability, our
code length (with parameter ε0 = ε/2) is m = 135. Therefore our code, which is provably secure in contrast
to their code, has almost the same length as their code.
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Table 1: Comparison of code lengths with the codes by Sebé and Domingo-Ferrer [13]
N 128 256 512
ε 0.14× 10−6 0.15× 10−13 0.19× 10−27

[13] 6985 14025 28105
Our code 282 502 934
(ε0 =) (1/2)ε (7/10)ε (7/10)ε
ratio 4.04% 3.58% 3.32%

Table 2: Comparison of code lengths with the codes by Nuida et al. [10] (c = 3)
N 300 109 106

ε 10−11 10−6 10−3

[10] 1309 1423 877
Our code 420 556 349
(ε0 =) (9/10)ε (1/100)ε (1/100)ε
ratio 32.1% 39.1% 39.8%

4 Security Proof

In this section, we present an outline of the proof of Theorems 1 and 2. Omitted details of the proof will be
supplied in Sect. 6.

First, we present some properties of the threshold parameter Z = Zy′ , which will be proven in Sect. 6.1:

Proposition 1. 1. If Z satisfies the condition (5), then the conditional probability that S(I) ≥ Z for
some I ∈ UI, conditioned on the choice of y′, is not higher than (N − 1)ε0/N .

2. The value Z = Z0 in (6) satisfies the condition (5).

To prove Theorem 1, we consider the case that the number of pirates |UP| is three. By symmetry, we
may assume that UP = {1, 2, 3}. Put TP = 123, therefore we have TP ∈ T (y′) by Marking Assumption. Now
we consider the following four kinds of events:

Type I error: S(I) ≥ Z for some innocent user I ∈ UI.

Type II error: T ∩ TP = ∅ for some T ∈ T (y′).

Type III error: There are T1, T2 ∈ T (y′) such that ∅ ̸= T1 ∩ T2 ⊆ UI, |T1 ∩ TP| = 1 and |T2 ∩ TP| = 1.

Type IV error: S(i) < Z for every i ∈ {1, 2, 3}, and there is an innocent user I such that 12I ∈ T (y′),
13I ∈ T (y′) and 23I ∈ T (y′).

Then we have the following property, which will be proven in Sect. 6.2:

Proposition 2. If |UP| = 3, then tracing error occurs only when one of the Type I, II, III and IV errors
occurs.

By this proposition, the error probability is bounded by the sum of the probabilities of Type I–IV
errors. By Proposition 1, the probability of Type I error is bounded by ε0. Now Theorem 1 is proven by
combining this with the following three propositions, which will be proven in Sect. 6.3, Sect. 6.4 and Sect. 6.5,
respectively (see (8) for the notations):

Proposition 3. If |UP| = 3, then the probability of Type II error is not higher than
(
N−3
3

)
f1(p)

m.

Proposition 4. If |UP| = 3, then the probability of Type III error is not higher than 3(N−3)(N−4)f2(p)
m.
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Proposition 5. If |UP| = 3 and the threshold Z is chosen so that the condition (5) holds and Z ≤ Z0, then

the probability of Type IV error is lower than (N − 3)(1− p)−3
√

(m/2) log(N/ε0)f3(p)
m.

To prove Theorem 2, we set p = 1/2. Then the bound of error probability given by Theorem 1 is
specialized to the value specified in Theorem 2. Hence our remaining task is to evaluate the error probabilities
for the case that the number of pirates is one or two.

First we consider the case that there are exactly two pirates, say, 1, 2 ∈ U . The key property is the
following, which will be proven in Sect. 6.6:

Proposition 6. In this situation, if the condition (10) is satisfied, then the probability that S(1) < Z and
S(2) < Z is lower than ε0/N .

By this proposition, when the condition (10) is satisfied, at least one of the two pirates is output in Step
4 of the tracing algorithm with probability not lower than 1− ε0/N . On the other hand, by Proposition 1,
some innocent user is output in Step 4 with probability not higher than (N − 1)ε0/N . Hence in Step 4, at
least one pirate and no innocent users are output with probability not lower than 1− ε0. This implies that
the error probability is bounded by ε0 in this case.

Secondly, we consider the case that there is exactly one pirate, say, 1 ∈ U . Then we have the following
property, which will be proven in Sect. 6.7:

Proposition 7. In this situation, if m ≥ 2 log(N/ε0), then the score S(1) of the pirate is always higher than
or equal to Z.

By this proposition, when the condition (10) is satisfied, the pirate is always output in Step 4 of the
tracing algorithm. Hence by the same argument as the previous paragraph, the error probability is bounded
by ε0 in this case as well. Summarizing, the proof of Theorem 2 is concluded.

5 On implementation of the tracing algorithm

In this section, we discuss some implementation issue of the tracing algorithm Tr of the proposed 3-secure
code. More precisely, we consider the calculation of the set T (y′) appeared in Step 5 of Tr. By a naive
calculation method based on the definition (3) of T (y′), we need to check the condition y′ ∈ E(wi1 , wi2 , wi3)
for every triple i1i2i3 of users, therefore the time complexity with respect to the user number N is inevitably
Ω(N3). As this complexity is larger than tracing algorithms of many other c-secure codes such as Tardos
codes [14], it is important to reduce the complexity of calculation of T (y′).

To calculate the collection T (y′), we consider the following algorithm, with codewords w1, . . . , wN and
the m-bit word y′ as input:

1. Set L(1)
1 = {i ∈ [N ] | wi,1 = y′1} and L

(1)
2 = L(1)

3 = ∅.

2. For each 2 ≤ j ≤ m, construct L(j)
1 , L(j)

2 and L(j)
3 inductively, in the following manner. (At the

beginning, set L(j)
1 = L(j)

2 = L(j)
3 = ∅.)

(a) Put Cj = {i ∈ [N ] | wi,j = y′j}.

(b) Set L(j)
1 = L(j−1)

1 ∩ Cj .

(c) Add the pair {L(j−1)
1 \ Cj , Cj \ L(j−1)

1 } of subsets of [N ] to L(j)
2 .

(d) For each pair {K1,K2} of subsets of [N ] in L(j−1)
2 ,

• add two pairs {K1 ∩ Cj ,K2} and {K1 \ Cj ,K2 ∩ Cj} to L(j)
2 ;

• add the triple {K1 \ Cj ,K2 \ Cj , Cj \ (K1 ∪K2)} of subsets of [N ] to L(j)
3 .

(e) For each triple {K1,K2,K3} of subsets of [N ] in L(j−1)
3 , add three triples {K1 ∩ Cj ,K2,K3},

{K1 \ Cj ,K2 ∩ Cj ,K3}, {K1 \ Cj ,K2 \ Cj ,K3 ∩ Cj} to L(j)
3 .
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(f) Remove from L(j)
2 every pair {K1,K2} with K1 or K2 being empty, and from L(j)

3 every triple
{K1,K2,K3} with K1, K2 or K3 being empty.

3. Output the collection of the triples T = i1i2i3 of distinct numbers i1, i2, i3 satisfying one of the following
conditions:

• we have i1 ∈ L(m)
1 and i2, i3 are arbitrary;

• for some {K1,K2} ∈ L(m)
2 , we have i1 ∈ K1, i2 ∈ K2 and i3 is arbitrary;

• for some {K1,K2,K3} ∈ L(m)
3 , we have i1 ∈ K1, i2 ∈ K2 and i3 ∈ K3.

An inductive argument shows that, for each j ∈ [m] and each triple of distinct i1, i2, i3, the j-bit initial
subword (y′1, . . . , y

′
j) of y

′ is in the envelope of the j-bit initial subwords of wi1 , wi2 , wi3 if and only if one of
the following conditions is satisfied (note that the order of members of a pair or triple is ignored):

• we have i1 ∈ L(j)
1 and i2, i3 are arbitrary;

• for some {K1,K2} ∈ L(j)
2 , we have i1 ∈ K1, i2 ∈ K2 and i3 is arbitrary;

• for some {K1,K2,K3} ∈ L(j)
3 , we have i1 ∈ K1, i2 ∈ K2 and i3 ∈ K3.

By setting j = m, it follows that the above algorithm outputs T (y′) correctly.
Now for each 2 ≤ j ≤ m, complexity of computing L(j)

1 , L(j)
2 , and L(j)

3 from L(j−1)
1 , L(j−1)

2 , and L(j−1)
3

is approximately proportional to N times the total number of members of L(j−1)
2 and L(j−1)

3 . Hence the
total complexity of the algorithm is approximately proportional to Nm times the average of total number

of members in L(j)
2 and L(j)

3 over all 1 ≤ j ≤ m − 1. This implies that the order (with respect to N) of

complexity of calculating T (y′) can be reduced from Θ(N3) if the average number of pairs and triples in L(j)
2

and L(j)
3 is sufficiently small. The author guesses that the latter average number is indeed sufficiently small

in most of the practical cases, as the size of T (y′) would be not large in average case (provided the code
length m is long enough to make the error probability of the fingerprint code sufficiently small). A detailed
analysis of this calculation method will be a future research topic. Instead, here we show some experimental
data for running time of the above algorithm, which was implemented on a usual PC with 1.83GHz Intel
Core 2 CPU and 2Gbytes memory. We chose parameters N = 1000, m = 180, ε0 = 0.001, and adopted
minority vote attack as pirate strategy. Then the average running time of the algorithm over 10 trials was
4331.5 seconds, i.e., about 1 hour and 13 minutes, where the calculation of running times was restricted to
the case that scores of all users are less than the threshold, as otherwise the tracing algorithm halts before
Step 5.

6 Proofs of the Propositions

6.1 Proof of Proposition 1

First, we prove the claim 1 of Proposition 1. For each I ∈ UI and σ ∈ {H,L}, let Kσ = {j ∈ Aσ | wI,j = y′j}.
Then we have S(I) = |KH| log(1/p) + |KL| log(1/(1 − p)). Now note that the choice of y′ is independent of
wI. This implies that we have Pr[wI,j = y′j | y′] = p for each j ∈ AH, and we have Pr[wI,j = y′j | y′] = 1− p
for each j ∈ AL. Hence the conditional probability that |KH| = kH and |KL| = kL, conditioned on this y′, is(
aL

kL

)
(1 − p)kLpaL−kL

(
aH

kH

)
pkH(1 − p)aH−kH . This implies that Pr[S(I) ≥ Z | y′] is equal to the left-hand side

of (5), therefore the claim 1 holds as there exist at most N − 1 innocent users I.
Secondly, to prove the claim 2 of Proposition 1, we use the following Hoeffding’s Inequality:

Theorem 3 ([4], Theorem 2). Let X1, X2, . . . , Xn be independent random variables such that ai ≤ Xi ≤ bi
for each i. Let X be the average value of X1, . . . , Xn. Then for t > 0, we have

Pr[X − E[X] ≥ t] ≤ exp

(
−2n2t2∑n

i=1(bi − ai)2

)
. (11)
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As mentioned above, the left-hand side of (5) is equal to Pr[S(I) ≥ Z | y′], where I is any specified
innocent user. Now for each j ∈ [m], let Xj be a random variable such that{

Pr[Xj = log(1/p)] = p , Pr[Xj = 0] = 1− p if j ∈ AH ,

P r[Xj = log(1/(1− p))] = 1− p , Pr[Xj = 0] = p if j ∈ AL .
(12)

Then, conditioned on this y′, the variables X1, . . . , Xm are independent and S(I) = mX. Now by a direct
calculation, we have E[S(I) | y′] = mE[X | y′] = µ where µ = aHp log(1/p) + aL(1 − p) log(1/(1 − p)).
Moreover, we have 0 ≤ Xj ≤ log(1/p) if j ∈ AH, and we have 0 ≤ Xj ≤ log(1/(1 − p)) if j ∈ AL. Hence
Theorem 3 implies that

Pr[S(I)− µ ≥ mt | y′] ≤ exp

(
−2m2t2

aH(log(1/p))2 + aL(log(1/(1− p)))2

)
(13)

for t > 0. Now by setting t = η/m where

η =

√√√√1

2

((
log

1

p

)2

aH +

(
log

1

1− p

)2

aL

)
log

N

ε0
, (14)

the right-hand side of (13) is equal to ε0/N . On the other hand, for the left-hand side of (13), we have

Pr[S(I)− µ ≥ mt | y′] = Pr[S(I) ≥ µ+ η | y′] , (15)

while the value of Z = Z0 in (6) is equal to µ+ η. Hence the condition (5) is satisfied, concluding the proof
of Proposition 1.

6.2 Proof of Proposition 2

To prove Proposition 2, suppose that it is not the case of Type I–IV errors. We show that tracing error does
not occur in this case. Recall that TP = 123 ∈ T (y′). By the absence of Type I error, it holds that either
some pirate and no innocent users are output in Step 4 of Tr, or S(i) < Z for every i ∈ U and nobody is
output in Step 4. It suffices to consider the latter case. We have TP ∈ T ′ by the absence of Type II error.
Hence every T ∈ T ′ intersects TP, and

∩
T ′ ⊆ TP. By virtue of Step 6, it suffices to consider the case that∩

T ′ = ∅. Now there are the following two cases: (A) we have |T ∩ TP| = 1 for some T ∈ T ′; (B) we have
|T ∩ TP| = 2 for every T ∈ T ′ \ {TP}.

6.2.1 Case (A)

Let T1 ∈ T ′ and |T1 ∩ TP| = 1. By symmetry, we may assume that T1 ∩ TP = {1}. By the fact
∩
T ′ = ∅,

there is a T2 ∈ T ′ such that 1 ̸∈ T2. We may assume by symmetry that 2 ∈ T2, as T2 ∩ TP ̸= ∅. We have
T1∩T2 ̸= ∅ as T1 ∈ T ′, therefore the absence of Type III error implies that 3 ∈ T2. Put T2 = 23I with I ∈ UI,
and T1 = 1II′ with I′ ∈ UI. Now if we calculate the set P by using {TP, T1, T2} instead of T ′, then the result
is

{12, 13, 1I, 2I, 2I′, 3I, 3I′} . (16)

In general, the actual set P is included in the set (16). Now we present two properties. First, we show that
12, 13 ∈ P. Indeed, if 12 ̸∈ P, then we have 12 ∩ T = ∅ for some t ∈ T ′. Now we have 3 ∈ T and T1 ∩ T ̸= ∅
as T ∈ T ′, therefore T1 and T contradict the absence of Type III error. Hence we have 12 ∈ P, and 13 ∈ P
by symmetry. Secondly, we show that no innocent users are output in Step 8. Indeed, if an I′′ ∈ UI is output
in Step 8, then the possibility of P mentioned above implies that I′′ ∈ {I, I′} and we have i ∈ P1 and iI′′ ∈ P
for some i ∈ 123. This is impossible, as 12, 13 ∈ P. Hence this claim holds, therefore it suffices to consider
the case that nobody is output in Step 8, namely P1 = ∅.
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By these properties, we have either 2I′, 3I′ ∈ P or 2I′, 3I′ ̸∈ P (otherwise I′ ∈ P1, a contradiction).
Similarly, we have P ∩ {2I, 2I′} ̸= ∅ and P ∩ {3I, 3I′} ̸= ∅. First we consider the case that 2I′, 3I′ ∈ P. As
P1 = ∅, it does not hold that |P ∩ {1I, 2I, 3I}| ̸= 1. If 1I, 2I, 3I ∈ P, then |P| = 7, P2 = {I′}, and 2 and 3
are output in Step 9. If |P ∩ {1I, 2I, 3I}| = 2, then |P| = 6, ∅ ̸= P3 ⊆ UP and a pirate is correctly output in
Step 10. Finally, if 1I, 2I, 3I ̸∈ P, then |P| = 4 and P = {12, 13, 2I′, 3I′}. Now I′ is not output in Step 13, as
123 ∈ T ′. Moreover, if none of 1, 2, and 3 is output in Step 13, then it should hold that 12I′, 13I′, 23I′ ∈ T ′,
contradicting the absence of Type IV error. Hence a pirate is correctly output in Step 13, concluding the
proof in the case 2I′, 3I′ ∈ P.

Secondly, we suppose that 2I′, 3I′ ̸∈ P, therefore 2I, 3I ∈ P. There are two possibilities P = {12, 13, 2I, 3I}
and P = {12, 13, 1I, 2I, 3I}. The former case is the same as the previous paragraph. In the latter case, we
have |P| = 5, T ′′ ⊆ {12I, 13I} and P2 = 23. Hence 2 or 3 is correctly output in Step 11 when T ′′ ̸= ∅. On the
other hand, when T ′′ = ∅, 2 and 3 are correctly output in Step 12. Hence the proof in the case 2I′, 3I′ ̸∈ P
(therefore in the case (A)) is concluded.

6.2.2 Case (B)

As
∩
T ′ = ∅, there are I1, I2, I3 ∈ UI such that 12I3, 13I2, 23I1 ∈ T ′. By the absence of Type IV error, it does

not hold that I1 = I2 = I3. By symmetry, we may assume that I1 ̸= I2. Then by calculating the set P by
using {123, 12I3, 13I2, 23I1} instead of T ′, it follows that the actual P satisfies P ⊆ {12, 13, 23, 1I1, 2I2, 3I3},
while 12, 13, 23 ∈ P by the assumption of the case (B). If P = {12, 13, 23}, then 1, 2 and 3 are output in
Step 14. Therefore it suffices to consider the case that {12, 13, 23} ( P.

If I1 ̸= I3 ̸= I2, then we have ∅ ̸= P1 ⊆ I1I2I3 and a pirate is correctly output in Step 8. Hence it suffices
to consider the remaining case. By symmetry, we may assume that I1 = I3 ̸= I2. If 2I2 ∈ P, then we have
I2 ∈ P1 ⊆ I1I2, and 2 is correctly output in Step 8. From now, we assume that 2I2 ̸∈ P. If 1I1 ̸∈ P or 3I1 ̸∈ P,
then we have P1 = {I1} as {12, 13, 23} ( P, therefore 1 or 3 is correctly output in Step 8. On the other
hand, if 1I1, 3I1 ∈ P, then we have P = {12, 13, 23, 1I1, 3I1}, while 13I1 ̸∈ T ′ by the absence of Type IV error
(note that 12I1, 23I1 ∈ T ′), therefore T ′′ = {123}, P2 = 2I1 and 2 is correctly output in Step 11. Hence the
proof in the case (B), therefore the proof of Proposition 2, is concluded.

6.3 Proof of Proposition 3

To prove Proposition 3, let I1, I2 and I3 be three distinct innocent users. Given y′ and st = (pj)j , we introduce
the following notation for j ∈ [m]:

ξHj =

{
1 if pj = p ,

0 if pj = 1− p ,
ξLj = 1− ξHj . (17)

Note that the sets Aσ for σ ∈ {H,L} defined in Sect. 3 satisfy that Aσ = {j | y′j = ξσj }. We write
Aσ = Aσ(y

′, st) and aσ = |Aσ| = aσ(y
′, st) when we emphasize the dependency on y′ and st. Then, as the

bits of codewords are independently chosen, we have

Pr[I1I2I3 ∈ T (y′) | y′, st] = (1− p3)aL(1− (1− p)3)aH , (18)

therefore
Pr[I1I2I3 ∈ T (y′)] =

∑
y′,st

Pr[y′, st](1− p3)aL(y
′,st)(1− (1− p)3)aH(y′,st) . (19)

Now we present the following key lemma, which will be proven later:

Lemma 1. Among the possible pirate strategies ρ, the maximum value of the right-hand side of (19) is
attained by the majority vote attack, namely the attack word y for codewords w1, w2, w3 of three pirates
satisfies that yj = 0 if at least two of w1,j , w2,j , w3,j are 0 and yj = 1 otherwise.
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If ρ is the majority vote attack, then for each j ∈ [m], we have j ∈ AH(y
′, st) (i.e., ξHj becomes the

majority in w1,j , w2,j , w3,j) with probability 3p2(1− p) + p3 = 3p2 − 2p3 and j ∈ AL(y
′, st) with probability

1− 3p2 + 2p3. This implies that

Pr[I1I2I3 ∈ T (y′)]

=
∑

αL,αH
αL+αH=m

Pr[aL = αL, aH = αH](1− p3)αL(1− (1− p)3)αH

=
∑

αL,αH
αL+αH=m

((
m

αL

)
(1− 3p2 + 2p3)αL(3p2 − 2p3)αH(1− p3)αL(1− (1− p)3)αH

)

=
∑

αL,αH
αL+αH=m

((
m

αL

)
(1− 3p2 + p3 + 3p5 − 2p6)αL(9p3 − 15p4 + 9p5 − 2p6)αH

)

= (1− 3p2 + 10p3 − 15p4 + 12p5 − 4p6)m = f1(p)
m .

(20)

By virtue of Lemma 1, for a general ρ, Pr[I1I2I3 ∈ T (y′)] is bounded by the right-hand side of the above
equality. This implies the claim of Proposition 3, as there are

(
N−3
3

)
choices of the triple I1, I2, I3.

To complete the proof of Proposition 3, we give a proof of Lemma 1.

Proof of Lemma 1. Fix the codewords w1, w2, w3 of the three pirates 1, 2, 3 ∈ U . Let w⃗P denote the collection
of those three codewords. Let j0 ∈ [m] be the index of a detectable column. By symmetry, we may assume
without loss of generality that w1,j0 = w2,j0 = 0 and w3,j0 = 1. Now let y0 be an arbitrary attack word such
that y0j0 = 0, and let y1 and y? be the attack words obtained from y0 by changing the j0-th column to 1
and to ?, respectively. We show that if the pirate strategy ρ for the input w⃗p is modified so that it outputs
y0 instead of y1 and y?, then the right-hand side of (19) will not decrease. As w⃗P, j0 and y0 are arbitrarily
chosen, the claim of Lemma 1 then follows.

Let y′0 be an m-bit word such that y′0j = y0j for any j ∈ [m] with y0j ̸= ?, therefore y′0 is obtained from

y0 in Step 1 in the tracing algorithm with positive probability. Let y′1 be the m-bit word obtained from y′0

by changing the j0-th column to 1. Moreover, let st0 = (pj)j be any state information such that pj0 = 1− p,
and let st1 be the state information obtained from st0 by changing the j0-th component to p.

In this case, by independence of the columns, we have Pr[w⃗P | st0] = αp2(1 − p) and Pr[w⃗P | st1] =
αp(1 − p)2 for a common α > 0. As Pr[st0] = Pr[st1] > 0 and Pr[w⃗P] > 0, Bayes Theorem implies that
Pr[st0 | w⃗P] = α′p2(1− p) and Pr[st1 | w⃗P] = α′p(1− p)2 for a common α′ > 0, therefore

Pr[st0 | w⃗P, (st0 or st1) ] =
α′p2(1− p)

α′p2(1− p) + α′p(1− p)2
= p (21)

and Pr[st1 | w⃗P, (st0 or st1) ] = 1− p. Now there is a common β > 0 such that, for each x ∈ {0, 1},

Pr[y′0 | stx, y0] = Pr[y′1 | stx, y1] = β ,

Pr[y′0 | stx, y1] = Pr[y′1 | stx, y0] = 0 ,

P r[y′0 | st0, y?] = Pr[y′1 | st1, y?] = βp ,

Pr[y′0 | st1, y?] = Pr[y′1 | st0, y?] = β(1− p) .

(22)

As the choice of the attack word y for given w⃗P is independent of st, and the choice of the word y′ will be
independent of w⃗P once the attack word y is determined, it follows that

Pr[y′x, stx
′
| w⃗P, (st0 or st1) , yx

′′
] = Pr[stx

′
| w⃗P, (st0 or st1) ]Pr[y′x | stx

′
, yx

′′
] (23)
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for x, x′ ∈ {0, 1} and x′′ ∈ {0, 1, ?}. By these relations, we have

Pr[(y′0, st0) or (y′1, st1) | w⃗P, (st0 or st1) , y0] = p · β + (1− p) · 0 = pβ ,

Pr[(y′1, st0) or (y′0, st1) | w⃗P, (st0 or st1) , y0] = 1− pβ ,

Pr[(y′0, st0) or (y′1, st1) | w⃗P, (st0 or st1) , y1] = p · 0 + (1− p) · β = (1− p)β ,

Pr[(y′1, st0) or (y′0, st1) | w⃗P, (st0 or st1) , y1] = 1− (1− p)β ,

Pr[(y′0, st0) or (y′1, st1) | w⃗P, (st0 or st1) , y?] = p · βp+ (1− p) · βp = pβ ,

Pr[(y′1, st0) or (y′0, st1) | w⃗P, (st0 or st1) , y?] = 1− pβ .

(24)

Now note that p ≥ 1/2, therefore we have 1 − p3 ≤ 1 − (1 − p)3 and pβ ≥ (1 − p)β. Note also that
aH(y

′0, st0) = aH(y
′1, st1) = aH(y

′0, st1) + 1 = aH(y
′1, st0) + 1. This implies that, in the case st ∈ {st0, st1},

if the pirate strategy ρ for the input w⃗p is modified in such a way that it outputs y0 instead of y1 and y?,
then the right-hand side of (19) will not decrease. As this property is in fact independent of the choice of
st0 and st1, the claim in the proof follows, concluding the proof of Lemma 1.

6.4 Proof of Proposition 4

To prove Proposition 4, we fix an innocent user I0 ∈ UI and consider the probability that there are T1, T2 ∈
T (y′) such that I0 ∈ T1∩T2 ⊆ UI, T1∩TP = {1} and T2∩TP = {2}; or equivalently, there are innocent users
I1, I2 ∈ UI \ {I0} such that 1I0I1 ∈ T (y′) and 2I0I2 ∈ T (y′). We introduce some notations. Given y′, w1, w2,
wI0 , and st = (pj)j , we define, for α, β, γ, δ ∈ {H,L},

aαβγδ = |{j ∈ [m] | y′j = ξαj , w1,j = ξβj , w2,j = ξγj , wI0,j = ξδj }| (25)

(see (17) for the notations). Moreover, by using ‘∗’ as a wild-card, we extend naturally the definition of
aαβγδ to the case α, β, γ, δ ∈ {H,L, ∗}. For example, we have aα∗∗δ = aαHHδ + aαHLδ + aαLHδ + aαLLδ. Note
that ax∗∗∗ (x ∈ {H,L}) is equal to the value ax in Sect. 3.

Now for an innocent user I1 ̸= I0, we have

Pr[1I0I1 ∈ T (y′) | y′, w1, w2, wI0 , st] = paHL∗L(1− p)aLH∗H . (26)

Therefore we have

Pr[1I0I1 ∈ T (y′) for some I1 ∈ UI | y′, w1, w2, wI0 , st] ≤ (N − 4)paHL∗L(1− p)aLH∗H (27)

as there are N − 4 choices of I1. Similarly, we have

Pr[2I0I2 ∈ T (y′) for some I2 ∈ UI | y′, w1, w2, wI0 , st] ≤ (N − 4)paH∗LL(1− p)aL∗HH . (28)

Hence the probability that 1I0I1, 2I0I2 ∈ T (y′) for some I1, I2 ∈ UI, conditioned on the given y′, w1, w2, wI0 ,
and st, is lower than the minimum of the two values (N−4)paHL∗L(1−p)aLH∗H and (N−4)paH∗LL(1−p)aL∗HH ,
which is not higher than √

(N − 4)paHL∗L(1− p)aLH∗H · (N − 4)paH∗LL(1− p)aL∗HH

= (N − 4)
√
p
aHL∗L+aH∗LL

√
1− p

aLH∗H+aL∗HH
.

(29)

Now given y′, w1, w2, and st, the probability that wI0 attains the given values of aHLLL, aHLHL, aHHLL,
aLHLH, aLHHH, and aLLHH (denoted here by η) is the product of the following six values(

aHLL∗

aHLLL

)
(1− p)aHLLLpaHLL∗−aHLLL ,

(
aHLH∗

aHLHL

)
(1− p)aHLHLpaHLH∗−aHLHL ,(

aHHL∗

aHHLL

)
(1− p)aHHLLpaHHL∗−aHHLL ,

(
aLHL∗

aLHLH

)
paLHLH(1− p)aLHL∗−aLHLH ,(

aLHH∗

aLHHH

)
paLHHH(1− p)aLHH∗−aLHHH ,

(
aLLH∗

aLLHH

)
paLLHH(1− p)aLLH∗−aLLHH .

(30)

13



By the above results, it follows that

Pr[1I0I1, 2I0I2 ∈ T (y′) for some I1, I2 ∈ UI | y′, w1, w2, st]

≤
∑

η(N − 4)
√
p
2aHLLL+aHLHL+aHHLL

√
1− p

aLLHH+aLHLH+2aLHHH
,

(31)

where the sum runs over the possible values of aHLLL, aHLHL, aHHLL, aLHLH, aLHHH, and aLLHH. Now by
the above definition of η, the summand in the right-hand side is the product of N − 4 and the following six
values (

aHLL∗

aHLLL

)
(1− p)aHLLLpaHLL∗ ,

(
aHLH∗

aHLHL

)
((1− p)

√
p)

aHLHL paHLH∗−aHLHL ,(
aHHL∗

aHHLL

)
((1− p)

√
p)

aHHLL paHHL∗−aHHLL ,

(
aLHL∗

aLHLH

)(
p
√
1− p

)aLHLH

(1− p)aLHL∗−aLHLH ,(
aLHH∗

aLHHH

)
paLHHH(1− p)aLHH∗ ,

(
aLLH∗

aLLHH

)(
p
√
1− p

)aLLHH

(1− p)aLLH∗−aLLHH .

(32)

Then by the binomial theorem, the sum is equal to

(N − 4) (p(2− p))
aHLL∗ (p+ (1− p)

√
p)

aHLH∗+aHHL∗

·
(
1− p+ p

√
1− p

)aLHL∗+aLLH∗
((1− p)(1 + p))

aLHH∗ .
(33)

Given y′, st, w1, w2, and w3, we define, for α, β, γ, δ ∈ {H,L},

bαβγδ = |{j ∈ [m] | y′j = ξαj , w1,j = ξβj , w2,j = ξγj , w3,j = ξδj }| . (34)

Then by Marking Assumption, (33) is equal to

(N − 4)(2p− p2)bHLLH (p+ (1− p)
√
p)

bHLHL+bHLHH+bHHLL+bHHLH

·
(
1− p+ p

√
1− p

)bLHLL+bLHLH+bLLHL+bLLHH

(1− p2)bLHHL

= (N − 4)(2p− p2)bHLLH(1− p2)bLHHL (p+ (1− p)
√
p)

bHLHL+bHHLH

·
(
1− p+ p

√
1− p

)bLHLH+bLLHL

(p+ (1− p)
√
p)

bHLHH+bHHLL

(
1− p+ p

√
1− p

)bLHLL+bLLHH

.

(35)

By writing the right-hand side of (35) as η′, it follows that

Pr[1I0I1, 2I0I2 ∈ T (y′) for some I1, I2 ∈ UI | w1, w2, w3] ≤
∑
y′,st

Pr[y′, st | w1, w2, w3]η
′ . (36)

Now we present the following key lemma, which will be proven later:

Lemma 2. Among the possible pirate strategies ρ, the maximum value of the right-hand side of (36) is
attained by majority vote attack ρmaj (cf., Lemma 1).

By (36), we have

Pr[1I0I1, 2I0I2 ∈ T (y′) for some I1, I2 ∈ UI] ≤
∑

w1,w2,w3

Pr[w1, w2, w3]
∑
y′,st

Pr[y′, st | w1, w2, w3]η
′

=
∑

y′,st,w1,w2,w3

Pr[y′, st, w1, w2, w3]η
′ .

(37)

By virtue of Lemma 2, the maximum value of the right-hand side is attained by majority vote attack ρmaj.
Now for ρ = ρmaj, the word y′ is uniquely determined by w1, w2, and w3, and we have bHLLH = bLHHL =
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bHLHL = bLHLH = bHHLL = bLLHH = 0, bHHLH = dHLH, bLLHL = dLHL, bHLHH = dLHH, and bLHLL = dHLL,
where, for α, β, γ ∈ {H,L},

dαβγ = |{j ∈ [m] | w1,j = ξαj , w2,j = ξβj , w3,j = ξγj }| . (38)

This implies that

η′ = (N − 4) (p+ (1− p)
√
p)

dLHH+dHLH

(
1− p+ p

√
1− p

)dHLL+dLHL

. (39)

Put dother = m− dHLL − dLHL − dLHH − dHLH. Now given st, the probability that w1, w2 and w3 attain the
given values of dHLL, dLHL, dLHH and dHLH is(

m

dHLL, dLHL, dLHH, dHLH, dother

)
(p(1− p)2)dHLL+dLHL(p2(1− p))dLHH+dHLH(1− 2p(1− p))dother (40)

which is independent of st. This implies that∑
y′,st,w1,w2,w3

Pr[y′, st, w1, w2, w3]η
′

=
∑(

m

dHLL, dLHL, dLHH, dHLH, dother

)
(N − 4)

(
p(1− p)2(1− p+ p

√
1− p)

)dHLL+dLHL

·
(
p2(1− p)(p+ (1− p)

√
p)
)dLHH+dHLH

(1− 2p(1− p))
dother

(41)

(where the sum runs over the possible values of dHLL, dLHL, dLHH, and dHLH)

=
∑(

m

d−−L, d−−H, dother

)
(N − 4)

(
p(1− p)5/2(p+

√
1− p)

)d−−L

·
(
p5/2(1− p)(1− p+

√
p)
)d−−H (

1− 2p+ 2p2
)dother

(42)

(where the sum runs over the possible values of d−−L = dHLL + dLHL and d−−H = dLHH + dHLH)

= (N − 4)
(
p(1− p)5/2(p+

√
1− p) + p5/2(1− p)(1− p+

√
p) + 1− 2p+ 2p2

)m
= (N − 4)f2(p)

m . (43)

By the above argument, the value Pr[1I0I1, 2I0I2 ∈ T (y′)for some I1, I2 ∈ UI] for a general ρ is also bounded
by the above value. Hence Proposition 4 follows, by considering the number of choices of the pair 1, 2 and
the innocent user I0.

To complete the proof of Proposition 4, we give a proof of Lemma 2.

Proof of Lemma 2. First, note that 1/2 ≤ p < 1, therefore 0 < 2p − p2 < 1, 0 < 1 − p2 < 1 and 0 <
1 − p + p

√
1− p ≤ p + (1 − p)

√
p < 1. Now by the definition (35) of η′, for each j ∈ [m] such that

w1,j = w2,j ̸= w3,j , the value of η
′ is increased by setting the j-th bit of the attack word y to be w1,j instead

of w3,j or ‘?’ (which makes the values of bHLLH and bLHHL smaller).
We consider the case that w1,j = w3,j ̸= w2,j . If w1,j = ξHj , then the contribution of the j-th column to

the value η′ is p + (1 − p)
√
p when y′j = w1,j and 1 − p + p

√
1− p when y′j = w2,j . On the other hand, if

w1,j = ξLj , then the contribution of the j-th column to the value η′ is 1 − p + p
√
1− p when y′j = w1,j and

p+(1− p)
√
p when y′j = w2,j . Recall the relation 1− p+ p

√
1− p ≤ p+(1− p)

√
p. Now the same argument

as Lemma 1 implies that Pr[w1,j = ξHj ] = p ≥ 1 − p = Pr[w1,j = ξLj ] in this case. This implies that the
value of the right-hand side of (36) is not decreased by setting y′j to be w1,j instead of w2,j (the detail of the
proof is similar to the proof of Lemma 1). Similarly, in the case that w1,j ̸= w2,j = w3,j , the value of the
right-hand side of (36) is not decreased by setting y′j to be w2,j instead of w1,j .

Summarizing, the value of the right-hand side of (36) is not decreased by setting y′j to be the majority
of w1,j , w2,j , and w3,j , instead of the minority of them. Hence the maximum value of the right-hand side of
(36) is attained by the majority vote attack, concluding the proof of Lemma 2.
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6.5 Proof of Proposition 5

To prove Proposition 5, we fix an innocent user I and suppose that S(i) < Z for every i ∈ 123. Given y′, w1,
w2, w3, and st, we define, for α, β, γ, δ ∈ {H,L},

aαβγδ = |{j ∈ [m] | y′j = ξαj , w1,j = ξβj , w2,j = ξγj , w3,j = ξδj }| . (44)

Then we have

Pr[12I, 13I, 23I ∈ T (y′) | y′, w1, w2, w3, st] = paHLLH+aHLHL+aHHLL(1− p)aLLHH+aLHLH+aLHHL . (45)

Let aL and aH be as defined in Sect. 3. For x ∈ {L,H}, let aux and adx be the number of indices j ∈ [m] of
undetectable and detectable columns, respectively, such that y′j = ξxj . Note that aH = auH + adH, while we
have auH = aHHHH and auL = aLLLL by Marking Assumption. Now we have

S(1) + S(2) + S(3)

=
(
3aHHHH + 2(aHLHH + aHHLH + aHHHL) + aHLLH + aHLHL + aHHLL

)
log

1

p

+
(
3aLLLL + 2(aLLLH + aLLHL + aLHLL) + aLLHH + aLHLH + aLHHL

)
log

1

1− p

= auH log
1

p
+ auL log

1

1− p
+ 2

(
aH log

1

p
+ aL log

1

1− p

)
− (aHLLH + aHLHL + aHHLL) log

1

p
− (aLLHH + aLHLH + aLHHL) log

1

1− p
,

(46)

therefore

(aHLLH + aHLHL + aHHLL) log
1

p
+ (aLLHH + aLHLH + aLHHL) log

1

1− p

= 2

(
aH log

1

p
+ aL log

1

1− p

)
+ auH log

1

p
+ auH log

1

1− p
− S(1)− S(2)− S(3)

> 2

(
aH log

1

p
+ aL log

1

1− p

)
+ auH log

1

p
+ auL log

1

1− p
− 3Z0

(47)

where we used the assumptions that S(i) < Z for every i ∈ 123 and Z ≤ Z0. By using the relation
aL = m− aH and the definition (6) of Z0, the right-hand side of the above inequality is equal to

(3p− 1)m log
1

1− p
+ aH

(
(2− 3p) log

1

p
+ (1− 3p) log

1

1− p

)

+ auH log
1

p
+ auL log

1

1− p
− 3

√√√√1

2

((
log

1

p

)2

aH +

(
log

1

1− p

)2

aL

)
log

N

ε0

= (3p− 1)m log
1

1− p
+ auL log

1

1− p
+ auH

(
(3− 3p) log

1

p
+ (1− 3p) log

1

1− p

)
+ adH

(
(2− 3p) log

1

p
+ (1− 3p) log

1

1− p

)

− 3

(
1

2

((
log

1

1− p

)2

m−

((
log

1

1− p

)2

−
(
log

1

p

)2
)
aH

)
log

N

ε0

)1/2

(48)

(where we used the relation aH = auH + adH)

≥ (3p− 1)m log
1

1− p
+ auH

(
(3− 3p) log

1

p
+ (1− 3p) log

1

1− p

)
+ adH

(
(2− 3p) log

1

p
+ (1− 3p) log

1

1− p

)
+ auL log

1

1− p
− 3

√
1

2
m log

N

ε0
log

1

1− p

(49)
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(where we used the fact log(1/(1− p)) ≥ log(1/p) > 0). By applying the above inequalities to (45), we have

Pr[12I, 13I, 23I ∈ T (y′) | y′, w1, w2, w3, st]

< (1− p)(3p−1)m(1− p)−3
√

(m/2) log(N/ε0)
(
p3−3p(1− p)1−3p

)au
H (1− p)a

u
L
(
p2−3p(1− p)1−3p

)ad
H .

(50)

We write the right-hand side of (50) as η. Then we have

Pr[12I, 13I, 23I ∈ T (y′) | w1, w2, w3] <
∑
y′,st

S(1),S(2),S(3)<Z

Pr[y′, st | w1, w2, w3]η

≤
∑
y′,st

Pr[y′, st | w1, w2, w3]η .

(51)

Now we present the following key lemma, which will be proven later:

Lemma 3. Among the possible pirate strategies ρ, the maximum value of the right-hand side of (51) is
attained by majority vote attack ρmaj (cf., Lemma 1).

By (51), we have

Pr[12I, 13I, 23I ∈ T (y′)] <
∑

w1,w2,w3

Pr[w1, w2, w3]
∑
y′,st

Pr[y′, st | w1, w2, w3]η

=
∑

y′,st,w1,w2,w3

Pr[y′, st, w1, w2, w3]η .
(52)

By virtue of Lemma 3, the maximum value of the right-hand side is attained by majority vote attack ρmaj.
Now for ρ = ρmaj and given st, the probability that w1, w2, w3 and y′ attain the given values of auH, a

u
L, and

adH is (
m

auH, a
u
L, a

d
H, a

d
L

)
(p3)a

u
H((1− p)3)a

u
L(3p2(1− p))a

d
H(3p(1− p)2)a

d
L (53)

which is independent of st, where we put adL = m− auH − auL − adH. Hence we have∑
y′,st,w1,w2,w3

Pr[y′, st, w1, w2, w3]η

=
∑

au
H,au

L,a
d
H

((
m

auH, a
u
L, a

d
H, a

d
L

)
(p3)a

u
H((1− p)3)a

u
L(3p2(1− p))a

d
H(3p(1− p)2)a

d
Lη

)

= (1− p)(3p−1)m(1− p)−3
√

(m/2) log(N/εL)

·
∑((

m

auH, a
u
L, a

d
H, a

d
L

)(
p6−3p(1− p)1−3p

)au
H
(
(1− p)4

)au
L
(
3p4−3p(1− p)2−3p

)ad
H
(
3p(1− p)2

)ad
L

)
(54)

(where the sum runs over the possible values of auH, a
u
L, a

d
H, and adL)

= (1− p)(3p−1)m(1− p)−3
√

(m/2) log(N/ε0)

·
(
p6−3p(1− p)1−3p + (1− p)4 + 3p4−3p(1− p)2−3p + 3p(1− p)2

)m
= (1− p)(3p−1)m(1− p)−3

√
(m/2) log(N/ε0)

(
p4−3p(p2 − 3p+ 3)(1− p)1−3p + (1− p)2(p2 + p+ 1)

)m
= (1− p)−3

√
(m/2) log(N/ε0)f3(p)

m .

(55)

By the above argument, the value Pr[12I, 13I, 23I ∈ T (y′)] for a general ρ is also bounded by the above value.
Hence Proposition 5 follows, as there exist N − 3 choices of the innocent user I.

To complete the proof of Proposition 5, we give a proof of Lemma 3.
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Proof of Lemma 3. First note that, by Marking Assumption, the terms in η other than
(
p2−3p(1− p)1−3p

)ad
H

are independent of the choice of y′ for given w1, w2, and w3. An elementary analysis shows that p2−3p(1−
p)1−3p is an increasing function of p ∈ [1/2, 1), therefore p2−3p(1−p)1−3p ≥ (1/2)2−3/2(1/2)1−3/2 = 1. Hence
the value of η will be increased by making the value of adH as large as possible. By the same argument as
Lemma 1, under the condition that the j-th column is detectable, the probabilities that the majority among
w1,j , w2,j , and w3,j is ξHj and ξLj are p and 1 − p, respectively. In other words, the probabilities that ξHj
is the majority and the minority among w1,j , w2,j , and w3,j are p and 1 − p, respectively. As p ≥ 1 − p,
it follows that the value of the right-hand side of (51) will not decrease by setting the j-th bit of y′ to be
the majority of w1,j , w2,j , and w3,j instead of the minority of them (the detail of the proof is similar to the
proof of Lemma 1). Hence the maximum value of the right-hand side of (51) is attained by the majority
vote attack, concluding the proof of Lemma 3.

6.6 Proof of Proposition 6

First we introduce some notations. Given the codewords w1 and w2 of the two pirates 1 and 2, let au and
ad denote the numbers of undetectable and detectable columns, respectively. Then by Marking Assumption
and the choice p = 1/2, we have S(1) + S(2) = (2au + ad) log 2 regardless of the pirate strategy ρ. This
implies that, if S(1) < Z and S(2) < Z, then we have

(2au + ad) log 2 < 2Z ≤ 2Z0 = m log 2 +

√
2m log

N

ε0
log 2 . (56)

By the relation au + ad = m, this implies that 2m− ad < m+
√
2m log(N/ε0), or equivalently ad −m/2 >

m/2 −
√
2m log(N/ε0). Now for each j ∈ [m], the probability that the j-th column becomes detectable is

1/2, therefore the expected value of ad is m/2. Then Hoeffding’s Inequality (Theorem 3) implies that

Pr[S(1) < Z and S(2) < Z] ≤ Pr[ad −m/2 > m/2−
√

2m log(N/ε0)]

≤ exp

−2m2
(
m/2−

√
2m log(N/ε0)

)2
m


= exp

−m2
(√

m−
√
8 log(N/ε0)

)2
2


(57)

provided m/2 −
√
2m log(N/ε0) > 0. The last condition is equivalent to that m > 8 log(N/ε0) which is

satisfied under the condition (10). Now put m = 8α log(N/ε0) with α > 1. Then under the condition (10),
we have

m2
(√

m−
√
8 log(N/ε0)

)2
2

=
m2

2

(
√
α ·
√
8 log

N

ε0
−
√
8 log

N

ε0

)2

= 4m2
(√

α− 1
)2

log
N

ε0

> 162
(
log

N

ε0

)3(
1 +

1

16 log(N/ε0)
− 1

)2

= log
N

ε0
,

(58)

therefore the right-hand side of (57) is smaller than ε0/N . Hence the proof of Proposition 6 is concluded.

6.7 Proof of Proposition 7

Let 1 ∈ U be the unique pirate. Then by Marking Assumption and the choice p = 1/2, we have y′ = w1

and S(1) = m log 2, while Z ≤ Z0 = (m/2) log 2 +
√
(m/2) log(N/ε0) log 2. Now by the assumption m ≥
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2 log(N/ε0), we have

S(1)− Z0

log 2
=

m

2
−
√

m

2
log

N

ε0
=

√
m

2

(√
m

2
−
√
log

N

ε0

)
≥ 0 , (59)

therefore S(1) ≥ Z0 ≥ Z. Hence the proof of Proposition 7 is concluded.

7 Conclusion

In this article, we proposed a new construction of probabilistic 3-secure codes and presented a theoretical
evaluation of their error probabilities. A characteristic of our tracing algorithm is to make use of both
score comparison and search of the triples of “parents” for a given pirated fingerprint word. Some numerical
examples showed that code lengths of our proposed codes are significantly shorter than the previous provably
secure 3-secure codes. Moreover, for the sake of improving efficiency of our tracing algorithm, we also
proposed an implementation method for the algorithm, which seems indeed more efficient for an average
case than the naive implementation. A detailed evaluation of the proposed implementation method will be
a future research topic.

Acknowledgements. A preliminary version of this paper was presented at The 12th Information Hiding
(IH 2010), Calgary, Canada, June 28–30, 2010 [8]. The author would like to express his deep gratitude to
Dr. Teddy Furon, who gave several invaluable comments and suggestions as the shepherd of the author’s
paper in that conference. Also, the author would like to thank the anonymous referees at that conference
for their precious comments.

References

[1] Blakley, G.R., Kabatiansky, G.: Random coding technique for digital fingerprinting codes. In: Proceed-
ings of IEEE ISIT 2004, p. 202. IEEE, Los Alamitos (2004)

[2] Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inform. Th. 44,
1897–1905 (1998)

[3] Cotrina-Navau, J., Fernandez, M., Soriano, M.: A family of collusion 2-secure codes. In: Barni, M.,
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