
ROTIV: RFID Ownership Transfer with Issuer
Verification

Kaoutar Elkhiyaoui, Erik-Oliver Blass, and Refik Molva

Eurecom, Sophia-Antipolis, France
Email: {kaoutar.elkhiyaoui, erik-oliver.blass, refik.molva}@eurecom.fr

Abstract. RFID tags travel between partner sites in a supply chain.
For privacy reasons, each partner owns the tags present at his site, i.e.,
the owner is the only entity able to authenticate his tags. When passing
tags on to the next partner in the supply chain, ownership of the old
partner is transferred to the new partner. In this paper, we propose RO-
TIV, a protocol that allows secure ownership transfer against malicious
owners. ROTIV offers as well issuer verification to prevent malicious
partners from injecting fake tags not originally issued by some trusted
party. As part of ownership, ROTIV provides a constant-time, privacy-
preserving authentication. ROTIV’s main idea is to combine an HMAC-
based authentication with public key encryption to achieve constant time
authentication and issuer verification. To assure privacy, ROTIV imple-
ments key update techniques and tag state re-encryption techniques,
performed on the reader. ROTIV is especially designed for lightweight
tags which are only required to evaluate a hash function.

1 Introduction

Supply chain management is one of the main applications of RFID tags today.
Each RFID tag is physically attached to a product to allow product tracking and
inventorying. As products travel in a supply chain, their ownership is transferred
from one supply chain partner to another, and so is the ownership of their
corresponding RFID tags. Tag ownership in this setting is the capability that
allows an owner of tag T to authenticate, access, and transfer the ownership of
T . Generally, the supply chain partners are reluctant into sharing their private
information. Therefore, each partner requires to be the only authorized entity
that can interact with tags in his site. To that effect, tags and partners in the
supply chain must implement a secure ownership transfer protocol.

A secure ownership transfer protocol should fulfill two main security require-
ments: 1) mutual authentication between the owner of a tag T (partner in the
supply chain) and tag T to tell apart legitimate tags from counterfeits. 2) exclu-
sive ownership: non-authorized parties must not be able to transfer the ownership
of tag T without the consent of T ’s owner. Furthermore, ownership transfer must
be privacy preserving. It must ensure 1) tag backward unlinkability: ownership
transfer has to prevent the previous owner of a tag from tracing a tag once
he releases its ownership, see Lim and Kwon [12]. 2) tag forward unlinkability:

ownership transfer must prevent the new owner of a tag from tracing the tag’s
past interactions.

In addition to the basic features of tag ownership transfer as previously ad-
dressed in [13, 12, 6, 17], this paper proposes an efficient ownership transfer
protocol that also allows a party possessing the right references to verify the
issuer of a tag. A possible scenario for issuer verification is a supply chain where
partners want to check that a product originates from a trusted partner.

An efficient ownership transfer protocol calls for an efficient authentication
protocol. Current RFID authentication schemes based on symmetric crypto-
graphic primitives require at least a logarithmic cost in the number of tags, see
Burmester et al. [4]. Previously proposed tag/reader authentication protocols
that achieve constant time authentication rely on public key cryptography per-
formed on the tag as in [11]. However, RFID tags are constrained devices that
cannot implement asymmetric cryptography.

The above schemes are designed to be privacy preserving against a strong ad-
versary as defined by Juels and Weis [8], who can continuously eavesdrop on tags’
communications. We claim that such an adversary is unrealistic in distributed
supply chains which is the targeted setting by ROTIV. In ROTIV, we relax some
privacy requirements to achieve mutual authentication in constant time while
the tag performs only symmetric cryptographic operations (hash functions).

In ROTIV, a tag T stores in addition to its symmetric key, a public key
encryption of its identification information computed by T ’s owner. The public
key encryption helps the owner to identify the tag T first, then the symmetric
key is used to authenticate both T and its current owner. In order to ensure
tag privacy, we update T ’s state after each successful authentication. Moreover,
each tag T in ROTIV is associated with a set of ownership references. T ’s owner-
ship references allow T ’s owner to authenticate T and to transfer T ’s ownership.
Finally, to allow tag issuer verification by third parties, a tag T stores an encryp-
tion of the issuer’s signature. Provided with some trapdoor information from T ’s
owner(the randomness used to encrypt I’s signature), a third party verifier can
verify whether the signature stored on T corresponds to a legitimate issuer or
not.

In summary, ROTIV’s contributions are:

– ownership transfer that ensures both tag forward unlinkability against the
tag’s new owner and tag backward unlinkability against the tag’s previous
owner.

– a privacy-preserving, and constant time authentication while tags are only
required to compute a hash function.

– contrary to related work [16, 13, 6, 10], ROTIV does not require a trusted
third party to perform tag ownership transfer.

– issuer verification protocol that allows prospective owners of a tag T to check
the identity of the party issuing T .

– formal definitions of privacy and security requirements of tag ownership
transfer.

– formal proofs of ROTIV security and privacy.

2

2 RFID ownership transfer with issuer verification

An ownership transfer protocol with issuer verification involves the following
entities.

2.1 Entities

– Tags Ti: Each tag is attached to a single item. A tag Ti has a re-writable
memory representing Ti’s current state s(i,j) at time j. Tags can compute
hash function G. T denotes the set of legitimate tags Ti.

– Issuer I: The issuer I initializes tags and attaches each tag Ti to a product.
For each tag Ti, I creates a set ownership references refOTi that he gives to
Ti’s owner. I writes an initial state s(i,0) into Ti.

– Owner O(Ti,k): Is the owner of a tag Ti at time k. O(Ti,k) stores a set of
ownership references refOTi that allows him to authenticate tags Ti and to
transfer Ti’s ownership to a new owner. O denotes the set of all owners
O(Ti,k). An owner O(Ti,k) comprises a database Dk and an RFID reader Rk.

– Verifier V: Before accepting the ownership of some tag Ti, any prospec-
tive owner O(Ti,k+1) wants to verify the identity of tag Ti’s issuer, therewith
becoming a verifier V. Owner O(Ti,k) of Ti provides V with verification ref-
erences refVTi allowing V to verify the identity of the issuer of Ti.

2.2 RFID ownership transfer with issuer verification

Secure ownership transfer raises four major requirements as follows:
1.) During daily operations, current owner O(Ti,k) of tag Ti in the supply

chain has to be able to perform a number of mutual authentications with Ti.
2.) Eventually, O(Ti,k) has to pass Ti to the next owner O(Ti,k+1) in the supply

chain. Therefore, O(Ti,k) and O(Ti,k+1) must exchange the ownership references.
3.) Once previous owner O(Ti,k) releases ownership of a tag Ti, new owner

O(Ti,k+1) must securely update any secrets stored on Ti, such that only O(Ti,k+1)

is able to authenticate Ti and eventually pass Ti to the next owner O(Ti,k+2).
4.) Before accepting tag ownership, a prospective owner O(Ti,k+1), has to

perform issuer verification. That is, upon receipt of Ti verification references
refVTi from Ti’s current owner, O(Ti,k+1) is able to verify whether Ti has been
originally issued by I.

3 Problem statement

Recently proposed protocols on RFID tag ownership transfer [12, 6, 17] rely on
symmetric primitives to perform privacy preserving mutual authentication and
secure ownership transfer. As depicted in Figure 1, a tag Ti in these protocols

– stores a state s(i,j) = k(i,j). This state corresponds to a secret key which is
shared between Ti and Ti’s owner O(Ti,k).

3

Tag Ti Owner O(Ti, k+1) Owner O(Ti, k)

N

R, σ(i, j)
N, R, σ(i,j)

k(i,j)

N’, σ’(i,j)

Tag

authentication

σ(i, j) =h(k(i,j) ,R, N)

σ'(i, j) =h(k(i,j), R, N’)

k(i, j+1) = f(k(i,j), N’)

Fig. 1. Ownership transfer protocol

– computes a secure symmetric primitive h that is used to authenticate mu-
tually Ti and O(Ti,k) using the secret key k(i,j).

– computes a function f that is used to update the secret key of Ti after a
successful mutual authentication.

However, such protocols suffer from inherent limitations:
1) Linear complexity: As previously proposed protocols in [12, 17, 10] use

symmetric primitives to authenticate a tag Ti, an owner has to try all the tags’
keys in his database to authenticate Ti. Thus, in these schemes the authentication
takes a linear time in the number of tags.

2) Denial of service: To ensure forward unlinkability, tag Ti updates its key
k(i,j) using a secure hash function g even if the authentication with its owner
O(Ti,k) is not successful as shown by Ohkubo et al. [14]. Also, O(Ti,k) keeps a lim-
ited set of η keys (k(i,j+1), k(i,j+2), ..., k(i,j+η)) = (g(k(i,j)), g2(k(i,j)), ..., gη(k(i,j)))
in his database Dk after each successful authentication with Ti. Thus, O(Ti,k)

will still be able to authenticate Ti even if the authentication fails up to η − 1
times. However, an adversary can query Ti up to p > η times, and therefore
desynchronize Ti and O(Ti,k).

3) No tag issuer verification: Without tag issuer verification, owners and
therewith partners in the supply chain will be able to inject tags that were not
issued by trusted parties. We claim that in the real world, the prospective owner
of tag Ti will require verifying the origin of Ti before accepting it.

To cope with these limitations we propose ROTIV. To achieve constant time
authentication, a tag Ti in ROTIV stores in addition to its symmetric key k(i,j),
an Elgamal ciphertext c(i,j) of Ti’s identification information. When Ti is queried,
it replies with c(i,j) and an HMAC computed using k(i,j). The owner decrypts
c(i,j) and identifies Ti. Once Ti is identified, the owner authenticates Ti through
HMAC. Furthermore, to prevent denial of service, a tag in ROTIV does not
update its symmetric key unless the authentication is successful. Finally, to
provide tag issuer verification, the ciphertext c(i,j) encrypts the signature of Ti’s
identifier by the issuer.

Note that protocols presented above [12, 6, 17] are designed to be forward
privacy preserving against a strong adversary that continuously monitors tags
[8, 18, 15]. However, in order to achieve both constant time authentication and
denial of service resistance while the tag only computes hash functions, ROTIV
must consider a more realistic adversary model. The adversary cannot continu-
ously monitor a tag, i.e., there is at least one communication between the tag
and its owner that is unobserved by the adversary.

4

Hence, ROTIV defines new privacy and security requirements that will be
further discussed in Section 5. These requirements are along the same lines as
recent research on RFID security such as [8, 18, 15].

Now, we present ROTIV in §4, followed by our privacy and security models
in §5.

4 ROTIV

ROTIV takes place in subgroups of elliptic curves that support bilinear pairings.

4.1 Preliminaries

Bilinear pairing Let G1, G2 and GT be groups, such that G1 and GT have the
same prime order q. Pairing e: G1 ×G2 → GT is a bilinear pairing if:

1. e is bilinear : ∀x, y ∈ Zq, g1 ∈ G1 and g2 ∈ G2, e(gx1 , g
y
2) = e(g1, g2)xy;

2. e is computable: there is an efficient algorithm to compute e(g1, g2) for any
(g1, g2) ∈ G1 ×G2;

3. e is non-degenerate: if g1 is a generator of G1 and g2 is a generator of G2,
then e(g1, g2) is a generator of GT .

ROTIV’s security and privacy rely on two assumptions.

Definition 1 (BCDH Assumption). Let g1 be a generator of G1 and g2 be a
generator of G2. We say that the BCDH assumption holds if, given g1, g

x
1 , g

y
1 , g

z
1 ∈

G1 and g2, g
x
2 , g

y
2 ∈ G2 for random x, y, z ∈ Fq, the probability to compute

e(g1, g2)xyz is negligible.

Definition 2 (SXDH Assumption). The SXDH assumption holds if G1 and
G2 are two groups with the following properties:

1. There exists a bilinear pairing e : G1 ×G2 → GT .
2. The decisional Diffie-Hellman problem (DDH) is hard in both G1 and G2.

Thus, ROTIV uses bilinear groups where DDH is hard, see Ballard et al.
[3], Ateniese et al. [1, 2]. Such groups can be chosen as specific subgroups of
MNT curves. Also, results by Galbraith et al. [7] indicate the high efficiency of
such pairings.

4.2 ROTIV description

1. Overview In ROTIV, a tag Ti stores a state s(i,j) = (k(i,j), c(i,j)), where
k(i,j) is a key shared with the owner of Ti, and c(i,j) is an Elgamal encryption of
Ti’s identification information.

When an owner O(Ti,k) starts a mutual authentication with Ti, Ti replies with
c(i,j) along with an HMAC computed using Ti’s secret key k(i,j). Upon receipt

5

of c(i,j), O(Ti,k) uses his Elgamal secret key to decrypt c(i,j). After decryption,
O(Ti,k) checks if the resulting plaintext is in his database Dk. If so, O(Ti,k) looks
up the symmetric key k(i,j) of tag Ti in his database and verifies the HMAC
sent by Ti. Therefore, ROTIV allows for mutual authentication with tag Ti in
constant time, while the tag is only required to compute a symmetric primitive,
i.e., HMAC.

To perform ownership transfer of tag Ti, the current owner O(Ti,k) of Ti
gives O(Ti,k+1) Ti’s ownership references refOTi that will be used by O(Ti,k+1) to
authenticate himself to Ti and to update Ti’s state.

In order to ensure Ti’s forward and backward privacy, the owner O(Ti,k) of
Ti updates the ciphertext stored on Ti in every authentication he runs with Ti,
using Elgamal re-encryption mechanisms. Moreoever, Ti updates its key k(i,j)

after each successful authentication.
Finally, to achieve tag issuer verification, the ciphertext c(i,j) stored on Ti

encrypts a signature of I on Ti’s identifier. To perform issuer verification for tag
Ti, a verifier V is provided with the ciphertext c(i,j) stored in Ti along with some
trapdoor information called verification references refVTi . Then, given c(i,j) and
refVTi , V is able to verify if c(i,j) is an encrypted signature by I of Ti’s identifier.

2. Description A ROTIV system comprises l owners O(Ti,k) and n tags Ti. Each
tag Ti can evaluate a cryptographic hash function G to compute an HMAC. The
HMAC is used to authenticate Ti and Ti’s owner, and to update the symmetric
key after each successful authentication.

In the rest of this section we use the notation HMACk(m,m′) = HMACk(m||m′),
where || denotes concatenation.

Setup The issuer I outputs (q,G1,G2,GT , g1, g2, e), where G1, GT are sub-
groups of prime order q, g1 and g2 are random generators of G1 and G2 respec-
tively, and e : G1 × G2 → GT is a bilinear pairing. The issuer chooses x ∈ Z∗q
and computes gx2 . I’s secret key is sk = x and his public key is pk = gx2 .

For each owner O(Ti,k) I randomly selects αk ∈ Z∗q and computes the pair

(gα
2
k

1 , gαk2). The system supplies each owner O(Ti,k) with his secret key sk = αk

and his public key pk = (gα
2
k

1 , gαk2). All owners know each other’s public key.

Tag Initialization The issuer I initializes a tag Ti owned by O(Ti,k). I picks
a random number ti ∈ Fq. Using a cryptographic hash function H : Fq → G1, I
computes hi = H(ti) ∈ G1. Then, I computes u(i,0) = 1 and v(i,0) = hxi . Finally,
I chooses randomly a key k(i,0) ∈ Fq. Tag Ti stores: s(i,0) = (k(i,0), c(i,0)), where
c(i,0) = (u(i,0), v(i,0)). I gives O(Ti,k) tag Ti and the corresponding ownership
references refOTi = (kold

i , knew
i , xi, yi) = (k(i,0), k(i,0), ti, h

x
i).

Before accepting the tag, O(Ti,k) reads Ti and checks if the ownership refer-
ences verify the equation: e(H(xi), gx2) = e(yi, g2). If so, this implies that Ti is
actually issued by I, that is yi = H(xi)x.

6

Tag Ti Owner O(Ti, k)1. N

2. σ(i, j) , c(i, j) , R(i, j)

3.σ’(i, j) , c(i, j+1)

Fig. 2. Authentication in ROTIV

The owner O(Ti,k) adds an entry ETi for tag Ti in his database Dk: ETi =
(yi, refOTi). yi acts as the index of Ti in O(Ti,k)’s database Dk. Once the owner
O(Ti,k) accepts the tag, he overwrites its content. He chooses randomly r(i,1) ∈ Fq
and computes an Elgamal encryption of yi using his public key g

α2
k

1 : c(i,1) =

(u(i,1), v(i,1)) = (gr(i,1)1 , yig
α2
kr(i,1)

1). Therefore, s(i,1) = (k(i,1) = k(i,0), c(i,1)).

Authentication protocol To authenticate a tag Ti, the owner O(Ti,k) de-
crypts the ciphertext c(i,j) = (u(i,j), v(i,j)) sent by Ti and gets yi. Using yi,
O(Ti,k) identifies Ti and starts a hash-based mutual authentication. If the mu-
tual authentication succeeds, both the owner O(Ti,k) and the tag Ti update their
keys.

1. To start an authentication with tag Ti, the owner O(Ti,k) sends a random
nonce N to Ti as depicted in Figure 2.
Once Ti receives N , it generates a random number R(i,j) ∈ Fq. Using its se-
cret key k(i,j), Ti computes: σ(i,j) = HMACk(i,j)(N,R(i,j), c(i,j)). This HMAC
serves two purposes, it authenticates Ti and ensures the integrity of the mes-
sage sent by Ti.

2. Ti replies with (R(i,j), c(i,j) = (u(i,j), v(i,j)), σ(i,j)).
Upon receiving Ti’s reply, the owner O(Ti,k) decrypts c(i,j) using his secret
key αk and gets yi = v(i,j)

(u(i,j))
α2
k

. O(Ti,k) checks if yi ∈ Dk. If not, O(Ti,k) aborts

authentication. Otherwise, O(Ti,k) looks up Ti’s ownership references refOTi =
(kold
i , knew

i , ti, h
x
i) in Dk and checks if: σ(i,j) = HMACknew

i
(N,R(i,j), c(i,j)) or

σ(i,j) = HMACkold
i

(N,R(i,j), c(i,j)). If not, O(Ti,k) aborts authentication. If
HMACkold

i
(N,R(i,j), c(i,j)) = σ(i,j) then k(i,j) = kold

i , otherwise k(i,j) = knew
i .

O(Ti,k) chooses a new random number r(i,j+1) ∈ F∗q and computes:

c(i,j+1) = (u(i,j+1), v(i,j+1)) = (gr(i,j+1)
1 , yig

α2
kr(i,j+1)

1)
σ′(i,j) = HMACk(i,j)(R(i,j), c(i,j+1))

Finally, O(Ti,k) updates the symmetric keys kold
i and knew

i in his database Dk:
(kold
i , knew

i) = (k(i,j), G(k(i,j), N)).
3. O(Ti,k) sends c(i,j+1) and σ′(i,j) to Ti.

Once Ti receives σ′(i,j) and c(i,j+1), it checks if σ′(i,j) = HMACk(i,j)(R(i,j), c(i,j+1)).
If not Ti aborts authentication. Otherwise, Ti updates its key such that
k(i,j+1) = G(k(i,j), N) and rewrites its state s(i,j+1) = (k(i,j+1), c(i,j+1)).

7

Tag Ti Verifier V
1. N

2. σ(i, j) , c(i, j) , R(i, j)

Owner O(Ti, k)

3. N, σ(i, j) , c(i, j) , R(i,j) , Av

Ti‘s authentication4. refVTi

Issuer verification

Fig. 3. Issuer verification in ROTIV

Desynchronization If the last message of the authentication protocol is lost, tag
Ti will not update its state and therewith, Ti will not update its symmetric key
k(i,j). However, as the owner O(Ti,k) keeps both keys kold

i = k(i,j) and knew
i =

G(k(i,j), N), O(Ti,k) can always re-synchronize with Ti using kold
i .

Issuer verification protocol In order to verify whether a tag Ti owned by
O(Ti,k) is actually issued by I, a verifier V proceeds as follows:

1. V sends a nonce N to Ti, as depicted in Figure 3.
Upon receiving N , Ti replies with c(i,j) = (u(i,j), v(i,j)) = (gr(i,j)1 , hxi g

α2
kr(i,j)

1),
a random number R(i,j), and σ(i,j) = HMACk(i,j)(N,R(i,j), c(i,j)).

2. Once V receives Ti’s reply, he chooses a random number rv ∈ F∗q and computes
Av = (u(i,j))

rv = g
r(i,j)rv
1 .

3. Then, V sends N,R(i,j), c(i,j), σ(i,j) along with Av to O(Ti,k).
When receiving the tuple (N ,R(i,j), c(i,j), σ(i,j), Av),O(Ti,k) identifies and au-
thenticates Ti. If O(Ti,k) is not willing to run the verification protocol for Ti he
aborts the verification. Otherwise,O(Ti,k) computes: refVTi = (A(i,j), B(i,j), C(i,j))
= (ti, H(ti)x, Aαkv).

4. O(Ti,k) sends refVTi = (A(i,j), B(i,j), C(i,j)) to V.

Given the verification references refVTi , V checks whether the following equations
hold:

e(H(A(i,j)), gx2) = e(B(i,j), g2) (1)
e(C(i,j), g2) = e(Av, gαk2) (2)

Equation (1) verifies whether B(i,j) = H(A(i,j))x, i.e., whether B(i,j) is the
signature of A(i,j) by issuer I. Equation (2) checks whether C(i,j) = Aαkv .

Finally, V verifies whether c(i,j) is the encryption of B(i,j) with the public

key gα
2
k

1 by checking if the following equation holds:

e(v(i,j), g2)rv = e(B(i,j), g2)rve(C(i,j), g
αk
2)

Note that if c(i,j) is the encryption of B(i,j) with the public key g
α2
k

1 , we have:

c(i,j) = (u(i,j), v(i,j)) = (gr(i,j)1 , B(i,j)g
α2
kr(i,j)

1). Therefore,

e(v(i,j), g2)rv = e(B(i,j), g2)rve(gα
2
kr(i,j)

1 , g2)rv = e(B(i,j), g2)rve(grvr(i,j)1 , g
α2
k

2)

= e(B(i,j), g2)rve(Av, g
α2
k

2) = e(B(i,j), g2)rve(Aαkv , gαk2)
= e(B(i,j), g2)rve(C(i,j), g

αk
2)

8

Tag Ti

1. N

2. σ(i, j) , c(i, j) , R(i, j)

Owner O(Ti, k)

3. N, σ(i, j) , c(i, j) , R(i, j) , Av

Ti‘s authentication4. refOTi, refVTi

Owner O(Ti, k+1)

Issuer verification5. σ’(i, j) , c(i, j+1)

Fig. 4. Ownership transfer in ROTIV

If all the equations hold, V outputs b = 1 meaning that I is Ti’s issuer.
Otherwise, V outputs b = 0 meaning that I is not the issuer of Ti.

Ownership transfer protocol The setup of the ownership transfer in ROTIV
consists of a current owner O(Ti,k), a prospective owner O(Ti,k+1) and a tag Ti
as shown in Figure 4. The ownership transfer consists of: a) a mutual authenti-
cation between Ti and O(Ti,k+1), b) an exchange of verification references refVTi
between O(Ti,k) and O(Ti,k+1) to perform issuer verification, and c) an exchange
of ownership references refOTi between O(Ti,k) and O(Ti,k+1) to allow O(Ti,k+1)

authentication.
The ownership transfer protocol between O(Ti,k) and O(Ti,k+1) for tag Ti is

as follows:

1. The owner O(Ti,k+1) sends a nonce N to tag Ti.
2. Ti replies with c(i,j) = (u(i,j), v(i,j)), a random number R(i,j) and HMAC

σ(i,j).
3. O(Ti,k+1) selects a random number rv and computes Av = urv(i,j). O(Ti,k+1)

sends N , R(i,j), c(i,j), σ(i,j) and Av to Ti’s owner O(Ti,k).
Given N , R(i,j), c(i,j) and σ(i,j), O(Ti,k) authenticates Ti. If the authen-
tication fails, O(Ti,k) informs O(Ti,k+1), who re-sends his first message to
Ti. Otherwise, O(Ti,k) supplies O(Ti,k+1) with: refOTi = (kold

i , knew
i , xi, yi) =

(k(i,j), k(i,j), ti, h
x
i = H(ti)x) and refVTi = (A(i,j), B(i,j), C(i,j)) = (ti, hxi , A

αk
v).

4. Provided with refOTi , O(Ti,k+1) checks if the equation σ(i,j) = HMACk(i,j)(N,
R(i,j), c(i,j)) holds. If it does, this implies that the key k(i,j) provided by
O(Ti,k) corresponds to tag Ti.
Given refVTi , O(Ti,k+1) verifies whether the issuer of Ti is I. If the verification
fails, O(Ti,k+1) aborts the ownership transfer. If not, O(Ti,k+1) adds the entry
(yi, refOTi) into his database Dk+1, and finishes the authentication with Ti.
O(Ti,k+1) chooses a new random number r(i,j+1) ∈ F∗q and computes:

c(i,j+1) = (u(i,j+1), v(i,j+1)) = (gr(i,j+1)
1 , yig

α2
k+1r(i,j+1)

1)
σ′(i,j) = HMACk(i,j)(R(i,j), c(i,j+1))

So, c(i,j+1) is the encryption of yi with O(Ti,k+1)’s public key g
α2
k+1

1 .

9

5. O(Ti,k+1) sends c(i,j+1) and σ′(i,j) to Ti, and updates its database Dk+1 as in
the authentication protocol presented above.
Upon receiving c(i,j+1) and σ′(i,j), Ti authenticates O(Ti,k+1). If the authenti-
cation succeeds Ti updates its state accordingly.

5 Privacy and security models

We assume that the communication channel between owners during an ownership
transfer and an owner and a verifier during an issuer verification protocol are
secure. That is, an adversary A has only access to the interactions between tags
and owners and the wireless interactions between tags and verifiers.

5.1 Privacy

Inspired by previous work on ownership transfer[12, 5], we formally define using
experiments the two major privacy requirements for ownership transfer which
are tag forward unlinkability and tag backward unlinkability. In the setting of
tag ownership transfer, forward unlinkability ensures that when a new owner
O(T,k+1) acquires T ’s secrets after a successful ownership transfer at time k+ 1,
he still cannot tell whether T has participated in protocol runs at time t < k+1.
On the other hand, backward unlinkability, ensures that when a previous owner
O(T,k) releases tag’s ownership at time k + 1, he still cannot tell whether T is
involved in interactions that occured at time t > k + 1.

In the remainder of this section, we assume that the adversary A has access
to oracles:

- OT is an oracle that, when queried, randomly returns a tag T from the set
of tags T .

- Oflip is an oracle that, when queried with two tags T0 and T1, randomly
chooses b ∈ {0, 1} and returns Tb.

-OO is an oracle that, when queried, returns a randomly selected owner O
from the set of legitimate owners O.

Forward unlinkability The forward unlinkability experiment captures the ca-
pabilities of adversary A who is allowed to own a tag T at the end of his attack,
and who has to decide if T was already involved in previous interactions.

As discussed in Section 3, in order to achieve constant time authentication
and denial of service resistance, we assume that there is at least one communi-
cation between T and its owner that is un-observed by A.

Our forward unlinkability experiment is indistinguishability based as pro-
posed by Juels and Weis [8]. Adversary A(r, s, t, ε) has access to tags in two
phases. In the learning phase, as depicted in Algorithm 1, oracle OT gives A two
tags T0 and T1 that he can eavesdrop on by calling ObserveInteraction(Ti)
for a maximum of t times. Note that ObserveInteraction(Ti) eavesdrops on
tag Ti during mutual authentications, ownership transfer or issuer verification.

10

In addition to T0 and T1, OT gives A a set of r tags T ′i . The ownership of
T ′i is then transferred to A through TransferOwnership(T ′i , O(T ′i ,k),A). A is
now allowed to run up to s mutual authentication with T ′i .

In the challenge phase as depicted in Algorithm 2, T0 and T1 run once a
mutual authentication with their respective owners (cf., RunAuth) outside the
range of the adversary A. Then, the oracle Oflip queried with the tags T0 and T1,
selects randomly b ∈ {0, 1} and returns the tag Tb to A. Then, the ownership of
tag Tb will be transferred to A. Then, A can run up to t mutual authentication
with tag Tb.
A calls as well oracle OT that supplies him with r tags T ′′i . Then, the owner-

ship of T ′′i is transferred to A, who now can run up to s mutual authentication
with T ′′i . Finally, A outputs his guess of the value of b.
A is successful, if his guess of b is correct.

T0 ← OT ;
T1 ← OT ;
for j := 1 to t do

ObserveInteraction(T0);
ObserveInteraction(T1);

end
for i := 1 to r do

T ′i ← OT ;
TransferOwnership(T ′i , O(T ′i ,k),A);

for j := 1 to s do
RunAuth(T ′i ,A)

end
end

Algorithm 1: A’s forward unlinkabil-
ity learning phase

RunAuth(T0, O(T0,k));
// Unobserved by A.
RunAuth(T1, O(T1,k));
// Unobserved by A.
Tb ← Oflip{T0, T1};
TransferOwnership(Tb, O(Tb,k),A);

for j := 1 to t do
RunAuth(Tb,A);

end
for i := 1 to r do

T ′′i ← OT ;
TransferOwnership(T ′′i , O(T ′′i ,k),A);

for j := 1 to s do
RunAuth(T ′′i ,A)

end
end
Output b;

Algorithm 2: A’s forward unlinkabil-
ity challenge phase

Definition 3 (Forward Unlinkability). ROTIV provides forward unlinkabil-
ity ⇔ For any adversary A, inequality Pr(A is successful) ≤ 1

2 +ε holds, where
ε is negligible.

Backward unlinkability Note that in scenarios where mutual authentication
is required, the notion of backward unlinkability has been proven to be unachiev-
able without tag performing public key cryptography operations, see Paise and
Vaudenay [15]. In order to achieve at least a slightly weaker notion of back-
ward unlinkability, we add the assumption that a previous owner O(T,k) of tag
T cannot continuously monitor T after releasing T ’s ownership. This has been
previously suggested by, e.g., Lim and Kwon [12], Dimitrou [5].

11

The backward unlinkability experiment captures the capabilities of an ad-
versary A who releases the ownership of tag T during his attack and has to tell
whether T is involved in future protocol transactions.

In the learning phase, cf., Algorithm 3, oracle OT selects randomly two tags
T0 and T1. Then, the ownership of these two tags is transferred to A. A is allowed
to run up to t mutual authentications with tags T0 and T1.
OT gives A also a set of r tags T ′i . Then, the ownership of tags T ′i is trans-

ferred to A, who can then perform up to s mutual authentications with tags
T ′i .

At the end of the learning phase, the oracle OO supplies A with two randomly
selected owners. A then, releases the ownership of tags T0 and T1.

T0 ← OT ;
T1 ← OT ;
TransferOwnership(T0, O(T0,k),A);

TransferOwnership(T1, O(T1,k),A);

for j := 1 to t do
RunAuth(T0,A);
RunAuth(T1,A);

end
for i := 1 to r do

T ′i ← OT ;
TransferOwnership(T ′i , O(T ′i ,k),A);

for j := 1 to s do
RunAuth(T ′i ,A)

end
end
O(T0,k+1) ← OO;
TransferOwnership(T0,A, O(T0,k+1));

O(T1,k+1) ← OO;
TransferOwnership(T1,A, O(T1,k+1));

Algorithm 3: A’s backward unlinka-
bility learning phase

RunAuth(T0, O(T0,k+1));
// Unobserved by A.
RunAuth(T1, O(T1,k+1));
// Unobserved by A.
Tb ← Oflip{T0, T1};
for j := 1 to t do

ObserveInteraction(Tb);
end
for i := 1 to r do

T ′′i ← OT ;
TransferOwnership(T ′′i , O(T ′′i ,k),A);

for j := 1 to s do
RunAuth(T ′′i ,A)

end
end
Output b;

Algorithm 4: A’s backward unlinka-
bility challenge phase

In the challenge phase as depicted in Algorithm 4, T0 and T1 run a mutual
authentication with their respective owners outside the range of the adversary
A. The oracle Oflip queried with tags T0 and T1, chooses randomly b ∈ {0, 1}
and returns the tag Tb to A. A is allowed to eavesdrop on Tb for a maximum of
t times.
A queries also the oracle OT that supplies A with r tags T ′′i . The ownership

of T ′′i is transferred to A, who is allowed to run up to s mutual authentication
with T ′′i . Finally, A outputs his guess of the value of b. A is successful, if his
guess of b is correct.

12

Definition 4 (Backward Unlinkability). ROTIV provides backward unlink-
ability ⇔ For any adversary A, inequality Pr(A is successful) ≤ 1

2 + ε holds,
where ε is negligible.

5.2 Security

As ROTIV consists of two main protocols, an ownership transfer protocol and
an issuer verification protocol, we introduce the security requirements for each
protocol separately. The adversary A in this section is a direct adaptation of the
non-narrow destructive adversary by Vaudenay [18] and Paise and Vaudenay
[15] to tag ownership transfer in supply chains.

Ownership transfer A secure ownership transfer must assure the following
properties:

a) Mutual authentication A secure ownership transfer protocol must ensure that,
when a tag T runs a successful mutual authentication with owner O, this implies
that O is T ’s current owner with high probability. Also, when an owner O runs
a successful mutual authentication with a tag T , it yields that T is a legitimate
tag with high probability.

We define an authentication game in accordance with Lim and Kwon [12],
Vaudenay [18] and Paise and Vaudenay [15]. This game proceeds in two phases.
During the learning phase as depicted in Algorithm 5, an adversary A(r, s, t, ε)
is supplied with a challenge tag Tc from oracle OT . A is not allowed to read
the internal state of Tc. A is allowed to eavesdrop on r mutual authentications
between Tc and its owner O(Tc,k), cf., RunAuth(Tc, O(Tc,k)). He can also alter
authentications by modifying the messages exchanged between Tc and its owner
O(Tc,k), cf., AlterAuth(Tc, O(Tc,k)). A is allowed as well to start s authentica-
tions with Tc while impersonating O(Tc,k), (cf., RunAuth(Tc, A)). Also he can
start t authentications with O(Tc,k) while impersonating Tc, cf., RunAuth(A,
O(Tc,k)).

Tc ← OT ;
for i = 1 to r do

RunAuth(Tc, O(Tc,k));
AlterAuth(Tc, O(Tc,k));

end
for i = 1 to s do

RunAuth(Tc, A);
end
for i = 1 to t do

RunAuth(A, O(Tc,k));
end

Algorithm 5: A’s authentication
learning phase

RunAuth(Tc,A);
Tc outputs bTc ;
RunAuth(A, O(Tc,k));
O(Tc,k) outputs bO(Tc,k)

;

Algorithm 6: A’s authentication
challenge phase

A’s goal in the challenge phase is either to run a successful mutual authen-
tication with Tc, i.e., A succeeds in impersonating O(Tc,k), or to run a successful
mutual authentication with O(Tc,k), i.e., A succeeds in impersonating Tc.

13

In the challenge phase as depicted in Algorithm 6, A(r, s, t, ε) interacts with
Tc and initiates an authentication protocol run to impersonate O(Tc,k), cf.,
RunAuth(Tc,A). At the end of the authentication, Tc outputs a bit bTc , bTc = 1
if the authentication with A was successful, and bTc = 0 otherwise.
A can interact as well with O(Tc,k) and initiates an authentication protocol

run to impersonate Tc, cf., RunAuth(A, O(Tc,k)). At the end of this authenti-
cation, O(Tc,k) outputs a bit bO(Tc,k)

= 1, if the authentication was successful,
bO(Tc,k)

= 0 otherwise.
A is successful if, bTc = 1 or bO(Tc,k)

= 1.

Definition 5 (Authentication). ROTIV is secure with regard to authentica-
tion ⇔ For any adversary A, inequality Pr(A is successful) ≤ ε holds, where ε
is negligible.

b) Exclusive ownership It ensures that an adversary A who does not have T ’s
ownership references noted refOT , cannot transfer the ownership of T , unless he
rewrites the content of T .

In the learning phase as shown in Algorithm 7, the oracle OT supplies
A(r, s, t, ε) with r tags Ti, then, the ownership of tag Ti is transferred to A.
A can run up to s successful mutual authentications with Ti, cf., RunAuth(Ti,
A). He can as well at the end of the learning phase, transfer the ownership of
tag Ti to an owner Oi selected randomly from the set of owners O.

for i := 1 to r do
Ti ← OT ;
TransferOwnership(Ti, O(Ti,k),A);

for j := 1 to s do
RunAuth(Ti, A);

end
Oi ← OO;
TransferOwnership(Ti,A, Oi);

end
Algorithm 7: A’s exclusive owner-
ship learning phase

Tc ← OT ;
for j := 1 to t do

s(Tc,j) := ReadState(Tc);
ObserveInteraction(Tc);

end
Oc ← OO;
TransferOwnership(Tc,A, Oc);
Oc outputs b;

Algorithm 8: A’s exclusive owner-
ship challenge phase

In the challenge phase, cf., Algorithm 8, the oracle OT gives A(r, s, t, ε) a
challenge tag Tc.
A can read Tc’s internal state, cf., ReadState(Tc), and eavesdrop on Tc’s

up to t times. However, A is not allowed to alter Tc’s internal state. At the end of
the challenge phase, A queries the oracle OO. OO returns a challenge owner Oc.
A runs an ownership transfer protocol for Tc with Oc. Oc outputs a bit b = 1,
if the ownership transfer was successful, and b = 0 otherwise. A is successful, if
b = 1.

Definition 6 (Exclusive ownership). ROTIV provides exclusive ownership
⇔ For any adversary A, inequality Pr(A is successful) ≤ ε holds, where ε is
negligible.

14

Issuer verification The security of issuer verification ensures that when a
verifier V outputs that the issuer of tag T is I, it implies that I is the issuer of
T with high probability.

An adversary A’s goal is to run an issuer verification protocol with V for tag
T that was not issued by I, and still V outputs that I is the issuer of T .

In the learning phase, A queries the oracle OT that gives A a total of r ran-
dom tags Ti. The ownership of Ti is then transferred toA, cf. TransferOwner-
ship(O(Ti,k),A, Ti). A can run up to s mutual authentications with tag Ti, cf.,
RunAuth(Tc, A). The adversary can also run s issuer verification protocol for
tag Ti with the verifier V, cf., Verify(Ti, A,V) and to transfer Ti’s ownership
to an owner Oi randomly selected from the set of owners O.

for i := 1 to r do
Ti ← OT ;
TransferOwnership(O(Ti,k),A, Ti);

for j := 1 to s do
RunAuth(Ti, A);
Verify(Ti,A, V);

end
Oi ← OO;
TransferOwnership(Ti,A, Oi);

end
Algorithm 9: A’s issuer verification
security learning phase

CreateTag Tc;
ModifyState(Tc, s

′
Tc);

Verify (Tc, A, V);
V outputs b;

Algorithm 10: A’s issuer verification
security challenge phase

In the challenge phase, A creates a tag Tc 6∈ T and write some state s′Tc
in it. Then, A starts a verification protocol for tag Tc with the verifier V, cf.,
Verify (Tc, A, V). Finally, V outputs a bit b = 1, if the issuer verification
protocol outputs I, and b = 0 otherwise. A is successful, if b = 1 and s′Tc does
not correspond to a state of tag Ti that was given to A in the learning phase.

Definition 7 (Issuer verification security). ROTIV is secure with regard to
issuer verification ⇔ For any adversary A, inequality Pr(A is successful) ≤ ε
holds, where ε is negligible.

6 Privacy analysis

6.1 Forward unlinkability

Theorem 1 (Forward unlinkability). ROTIV provides forward unlinkability
under the SXDH assumption (DDH is hard in both G1 and G2).

Proof. Assume that there is an adversary A(r, s, t, ε) who succeeds in the for-
ward unlinkability experiment with a non negligible advantage ε. We will now
construct an adversary A′(ε2), who uses A as a subroutine, and breaks the DDH
assumption in G1, therewith contradicting the SXDH assumption.

15

Let ODDH be an oracle that selects elements α, β ∈ Fq. Furthermore, ODDH

sets γ = αβ in 50% of the queries or selects a random γ ∈ Fq in the remaining
50% of the queries. ODDH returns the tuple (g1, g

α
1 , g

β
1 , g

γ
1). Adversary A′ breaks

DDH, if given (g1, g
α
1 , g

β
1 , g

γ
1), A′ can tell whether gγ1 = gαβ1 .

Rationale The idea of the proof is to build a ROTIV system with an issuer I of
public key gx2 , and an owner O whose public key is gα1 . the challenge tags T0 and
T1 stores a ciphertext c(i,j) = (gβr(i,j)1 , hxi g

γr(i,j)
1), i ∈ {0, 1} in the learning phase.

To break DDH, A′ stores in Tb in the challenge phase, a ciphertext c(i,j+1) =
(gr(i,j+1)

1 , hxi g
α
r(i,j+1)

1).
If γ = αβ and A’s advantage ε in breaking ROTIV is non-negligible, A will

be able to output a correct guess for b. Therefore, A′ will be able to break DDH.

Construction

– First, A′ queries ODDH to receive (g1, g
α
1 , g

β
1 , g

γ
1).

Now,A′ simulates a complete ROTIV system forA, i.e., issuer I, owners, and
tags. However for simplicity, we assume here that all tags in the simulation
belong to the same owner O. A′ issues tags. He randomly selects x ∈ Fq.
Here, x represents the secret key of the issuer.
1) To issue a tag Ti, 2 ≤ i ≤ n − 1 in the simulation, A′ randomly selects

ti, r(i,0) and k(i,0) ∈ Fq, computes hi = H(ti), and c(i,0) = (u(i,0), v(i,0)) =
(gr(i,0)1 , hxi (gα1)r(i,0)) = (gr(i,0)1 , hxi g

αr(i,0)
1). Finally,A′ stores s(i,0) = (k(i,0), c(i,0))

in tag Ti.
Therefore, Ti is a tag issued by an issuer with public key gx2 and owned
by owner O with a public key pk = (gα1 , g

r
2), where r is selected randomly

in Fq.
Note that given the DDH assumption in G2,A cannot distinguish gr2 from
g
√
α

2 . Therefore, from the point of view of A′ the public key pk = (gα1 , g
r
2)

is valid.
Also, A′ cannot compute the secret key sk =

√
α of O. Still, A′ can suc-

cessfully simulate O: as A′ knows the symmetric keys shared with tags,
A′ can compute the HMAC and authenticate tags. A′ can successfully
transfer tags’ ownership. Note that for each tag Ti A′ can provide 1) valid
verification references: refVTi = (ti, H(ti)x, Arv) which verifies equations
(1) and (2). 2) Valid ownership references refVTi = (ti, H(ti)x, kold

i , knew
i).

2) To issue tags Ti, i ∈ {0, 1}, A′ randomly selects r(i,0) and k(i,0) ∈ Fq,
computes hi = H(ti), and c(i,0) = (u(i,0), v(i,0)) = (gβr(i,0)1 , hxi g

γr(i,0)
1).

Finally, A′ stores s(i,0) = (k(i,0), c(i,0)) in tag Ti.
– In the learning phase of the forward unlinkability experiment, A′ simulates
OT and gives A two tags T0 and T1.

– A can eavesdrop on T0 and T1 a total of t times. A′ provides A with r tags
T ′i . The ownership of tags T ′i is transferred to A who can run up to s mutual
authentications with T ′i .

16

– In the challenge phase, A′ starts authentications outside the range of A with
T0 by sending a nonce N0 and with T1 by sending a nonce N1. We assume
T0 stores s(0,j) = (k(0,j), c(0,j)) and T1 stores s(1,j) = (k(1,j), c(1,j)).

– At the end of an authentication, A′ updates the state of T0 and T1 as follows:
s(i,j+1) = (k(i,j+1), c(i,j+1)), i ∈ {0, 1}, where k(i,j+1) = G(Ni, k(i,j)) and
c(i,j+1) = (gr(i,j+1)

1 , hxi g
αr(i,j+1)
1).

– A′ simulates Oflip and transfers the ownership of Tb to A.
– A′ simulates OT and supplies A with r tags T ′′i . Again, the ownership of tags
T ′′i is transferred to A, who is allowed to run up to s mutual authentications
with T ′′i .

– Given that A does not have access to Ni, i ∈ {0, 1}, k(i,j+1) = G(k(i,j), Ni)
cannot give A any information about Tb’s past interactions. So, A must focus
on ciphertext c(i,j+1).

– At the end of the challenge phase, A outputs his guess of b.

If γ = αβ, the ciphertext c(b,j+1) = (gr(b,j+1)
1 , hxb g

αr(b,j+1)
1) corresponds to a

re-encryption of c(b,j) and therefore to a valid state of tag Tb.
Therefore, A can output a correct guess for tag with non negligible advantage

ε.
If γ 6= αβ, the probability that A′ can break the DDH is a random guess,

i.e., 1
2 .

In general, given two events {E1, E2}, the probability that event E1 occurs
is Pr(E1) = Pr(E1|E2) · Pr(E2) + Pr(E1|E2) · Pr(E2).

Let E1 be the event that A′ can break DDH, and E2 is the event that γ = αβ
holds. The probability of event E2 is 1

2 .

Pr(E1) = Pr(E2) · Pr(E1|E2) + Pr(E2) · Pr(E1|E2)

=
1
2
Pr(E1|E2) +

1
2
Pr(E1|E2) =

1
2

(
1
2

+ ε) +
1
2
Pr(E1|E2)

≥ 1
2

(
1
2

+ ε+
1
2

) =
1
2

+
ε

2
Therefore, with A’s non negligible advantage in breaking forward unlinkabil-

ity of ROTIV, A′’s advantage in breaking DDH in G1 is also non negligible.

6.2 Backward unlinkability

Theorem 2 (Backward unlinkability). ROTIV provides backward unlinka-
bility under the SXDH assumption.

Proof. The idea behind this proof is similar to the proof above. An adversary
A′ can break DDH in G1, using an adversary A who breaks ROTIV.

Rationale The idea of the proof is to build a ROTIV system with an issuer I of
public key gx2 , and owner O whose public key is gα1 . A tag Ti in ROTIV therefore
stores a ciphertext c(i,j) = (gr(i,j)1 , hxi g

α
r(i,j)

1). To break DDH, A′ stores in Tb in
the challenge phase, a ciphertext c(b,j+1) = (gβ1 , hbg

γ
1).

If γ = αβ and A’s advantage ε in breaking ROTIV is non-negligible, A will
be able to output a correct guess for b. Therefore, A′ will be able to break DDH.

17

Construction

– First, A′ queries ODDH to receive (g1, g
α
1 , g

β
1 , g

γ
1).

Now, A′ simulates a complete ROTIV system for A, i.e., issuer I, owners,
and tags. For simplicity we assume that ROTIV consists of one single owner
O whose public key is pk = (gα1 , g

r
2), and r is selected randomly in Fq.

Note that given the DDH assumption in G2, A cannot distinguish gr2 from
g
√
α

2 . Therefore, from the point of view of A′ the public key pk = (gα1 , g
r
2) is

valid.
– To issue a tag Ti, 0 ≤ i ≤ n − 1 in the simulation, A′ randomly selects
ti, r(i,0) and k(i,0) ∈ Fq, computes hi = H(ti), and c(i,0) = (u(i,0), v(i,0)) =
(gr(i,0)1 , hxi (gα1)r(i,0)) = (gr(i,0)1 , hxi g

αr(i,0)
1). Finally,A′ stores s(i,0) = (k(i,0), c(i,0))

in tag Ti.
– A′ cannot compute the secret key sk =

√
α of O. Still, A′ can successfully

simulate O: as A′ knows the symmetric keys shared with tags, A′ can com-
pute the HMAC and authenticate tags. A′ can successfully transfer tags’
ownership. Note that for each tag Ti A′ can provide 1) valid verification
references: refVTi = (ti, H(ti)x, Arv) which verifies equations (1) and (2). 2)
Valid ownership references refVTi = (ti, H(ti)x, kold

i , knew
i).

– In the learning phase of the backward unlinkability experiment, A′ simulates
OT and gives A two tags T0 and T1.

– The ownership of tags T0 and T1 is transferred to A. Adversary A now can
run up to t mutual authentications with T0 and T1.

– A′ simulates OT and provides A with r tags T ′i . The ownership of tags T ′i
is transferred to A who can run up to s mutual authentications with T ′i .

– At the end of the challenge phase, A transfers the ownership of tag T0 and
T1 to owner O.

– In the challenge phase, A′ simulating O starts authentications outside the
range of A with T0 by sending a nonce N0 and with T1 by sending a
nonce N1. We assume T0 stores s(0,j) = (k(0,j), c(0,j)) and T1 stores s(1,j) =
(k(1,j), c(1,j)).

– At the end of an authentication, A′ updates the state of T0 and T1 as follows:
s(i,j+1) = (k(i,j+1), c(i,j+1)), i ∈ {0, 1}, where k(i,j+1) = G(Ni, k(i,j)) and
c(i,j+1) = (gβ1 , h

x
i g
γ
1).

– A′ simulates Oflip and provides A with tag Tb.
– A′ simulates OT and supplies A with r tags T ′′i . Again, the ownership of tags
T ′′i is transferred to A, who is allowed to run up to s mutual authentications
with T ′′i .

– Given that A does not have access to Ni, i ∈ {0, 1}, k(i,j+1) = G(k(i,j), Ni)
cannot give A any information about Tb’s past interactions. So, A must focus
on ciphertext c(i,j+1).

– At the end of the challenge phase, A outputs his guess of b.

If γ = αβ, the ciphertext c(b,j+1) = (gβ1 , h
x
b g
γ
1) corresponds to a valid state

of tag Tb. Therefore, A can output a correct guess for tag Tb with non negligible
advantage ε.

18

If γ 6= αβ, the probability that A′ can break the DDH is a random guess,
i.e., 1

2 .
Thus, as in the proof above, if A has a non-negligible advantage ε in breaking

ROTIV, A will have a non negligible advantage ε′ = ε
2 in breaking DDH. This

leads to a contradiction.

7 Security Analysis

7.1 Secure authentication

Theorem 3 (Secure authentication). The ownership transfer protocol in
ROTIV provides secure authentication under the security of HMAC.

Before giving the security analysis, we introduce the security properties of
HMAC.

HMAC Security A secure HMAC satisfies the two following properties:

1.) Resistance to existential forgery: Let Oforge
HMACk

be an HMAC oracle that,
when provided with a messagem, returns HMACk(m). An adversaryA′(p, ε)
can choose p messages m1, . . . ,mp, and provide them to the oracle Oforge

HMACk
to get the corresponding HMACk(mi). Yet, the advantage ε of A′ to output
a new pair (m,HMACk(m)), where m 6= mi, 1 ≤ i ≤ p, is negligible.

2.) Indistinguishability: Let Odistinguish
HMACk

be an oracle, when queried with a mes-
sage m, it flips a coin b ∈ {0, 1} and returns a message σ such that: if b =
0, it returns a random number. If b = 1, it returns HMACk(m). A′ cannot
tell if σ is a random number or σ = HMACk(m) without having the secret
key k.

Proof. To simplify the proof, we assume that the key k shared between tag Ti
and Ti’s owner is not updated after each authentication. As the key update is
only required to achieve privacy and exclusive ownership, it is irrelevant for the
authentication proof.

We show that if A(r, s, t, ε) is able to break the security of the authentication
scheme with non-negligible advantage, then we can construct adversary A′(p, ε′)
that breaks the resistance to existential forgery of HMAC with non-negligible
advantage ε′ = ε.

Let ε = εTc + εO(Tc,k)
such that: εTc is A’s advantage in impersonating Tc,

and εO(Tc,k)
is A’s advantage in impersonating Tc’s owner O(Tc,k).

Rationale To break the existential forgery of an HMAC of secret key k, A′
simulates both the challenge tag Tc and the owner of Tc called O(Tc,k), where
Tc and O(Tc,k) share the secret key k. If A’s advantage ε is non negligible in
succeeding in the authentication experiment, A will be able to compute a valid
HMAC σ for a message m which he has not seen before. Thus, to break the
security of HMAC, A′ answers with the pair (m,σ).

19

Construction

– A′ simulates issuer I and creates n tags:
1) A′ selects randomly x ∈ Fq. Here, x will be the secret key of the issuer.
2) A′ selects randomly ti ∈ Fq, 1 ≤ i ≤ n − 1 and computes hi = H(ti).

Also,A′ selects randomly αk ∈ Fq and computes : c(i,0) = (u(i,0), v(i,0)) =

(gr(i,0)1 , hxi g
α2
kr(i,0)

1).
Finally, A′ selects randomly ki ∈ Fq, 1 ≤ i ≤ n − 1 and stores s(i,0) =
(ki, c(i,0)) into Ti, 1 ≤ i ≤ n− 1.

3) To create Tc whose secret key is k, A′ stores s(Tc,0) = c(Tc,0). To compute
the HMAC during the authentication, Tc does not use directly the secret
key k but instead queries the oracle Oforge

HMACk
.

– A′ simulates OT and returns Tc to A.
– In the learning phase, A′ starts r mutual authentications with Tc that A

can eavesdrop on. A′ as well starts another r mutual authentications that A
can alter by injecting fake messages up to r times. A can start s authenti-
cations with Tc while impersonating Tc’s owner O(Tc,k). He can also start t
authentications with O(Tc,k) while impersonating Tc.

– A′ simulates both Tc and O(Tc,k).
• A′ simulates Tc. When Tc receives the first message of the authentication

protocol which is a random nonce Nj :
1) A′ generates a random number Rj .
2) A′ queries the oracle, Oforge

HMACk
with mj = (Nj , Rj , c(Tc,j)). O

forge
HMACk

returns σj = HMACk(mj).
3) A′ sends Rj , c(Tc,j) and σj to O(Tc,k).

• A′ simulates O(Tc,k). When O(Tc,k) receives the second message of the
authentication protocol, that is (Rj , c(Tc,j), σj): 1) A′ identifies Tc by
decrypting c(Tc,j), if the identification fails, then A′ aborts the authen-
tication.
Otherwise, 2) A′ queries the oracle with message mj = (Nj , Rj , c(Tc,j)).
Oforge

HMACk
returns HMACk(mj).

3) A′ checks whether σj = HMACk(mj), if not, then A′ aborts authen-
tication.
Otherwise, 4) A′ computes c(Tc,j+1) and queries Oforge

HMACk
with message

m′j = (R, c(Tc,j+1)). Oforge
HMACk

returns σ′j = HMACk(m′j).
5) A′ sends the last message of authentication (c(Tc,j+1), σ

′
j) to Tc.

• A′ simulates Tc. When Tc receives the last message of authentication
(c(Tc,j+1), σ

′
j): 1)A′ queriesOforge

HMACk
withm′j = (R, c(Tc,j+1)) andOforge

HMACk
returns HMACk(m′j).
2)A′ checks whether σ′j = HMACk(m′j). If not, A′ aborts the authenti-
cation. Otherwise, Tc updates its stored ciphertext to c(Tc,j+1).

– In the challenge phase, A runs a mutual authentication, either with
1) Tc while impersonating O(Tc,k). A sends a nonce N to Tc. A′, generates

R and queries the oracle Oforge
HMACk

with message m = (N,R, c(Tc,j′)).
Oforge

HMACk
returns σ = HMACk(m).

20

Finally, A′ sends R, c(Tc,j′) and σ to A.
A replies with (c(Tc,j′+1), σ

′), such that σ′ = HMACk(m′) and m′ =
(R, c(Tc,j′+1)) with advantage εO(Tc,k)

.
To break the existential forgery of HMAC, A′ simply outputs (m′, σ′).

2) or with Tc’s owner while impersonating Tc. A′ sends a fresh nonce N
to A. Upon receiving N , A generates a random number R and sends
R, a ciphertext c(Tc,j′) and σ to A′. Note that σ = HMACk(m) where
m = (N,R, c(Tc,j′)), with advantage εTc .
To break the existential forgery of HMACk, A′ outputs (m,σ).

Now, we quantify A’s advantage. A′ succeeds in breaking the existential forgery
of HMAC

1) If A′ makes at most l = 4r + s+ t+ 1 calls to Oforge
HMACk

.
2) With advantage ε(OTc ,k), if A impersonates O(Tc,k) in the challenge phase.
3) With advantage εTc , if A impersonates Tc in the challenge phase.

Let p denotes the probability that A impersonates Tc. Hence, A’s advantage
is: ε′ = (1 − p) εO(Tc,k)

+ p εTc ≤ ε. Therefore, if A’s advantage ε in breaking
ROTIV’s security is non-negligible,A′ will be able to break the existential forgery
of HMAC with a non-negligible advantage ε. This leads to a contradiction under
the security of HMAC.

7.2 Exclusive ownership

Theorem 4 (Exclusive Ownership). The ownership transfer protocol in RO-
TIV provides exclusive ownership under the security of hash function H.

Proof. Assume there is an adversary A(r, s, t, ε) who succeeds in the exclusive
ownership experiment with a non negligible advantage ε. If so, we can construct
an adversaryA′ who breaks the one wayness ofH with a non negligible advantage
ε′.

One Wayness Let OH be an oracle that, when queried, returns a hash H(t).
A′ breaks the one wayness of H, if given H(t), he outputs t with non negligible
advantage over simple guessing.

Rationale To break the one wayness of H, A′ queries the oracle OH which
returns a hash hc. A′ creates a tag Tc such that s(0,c) = (k(0,c), c(0,c)), where

c(0,c) = (gr(0,c)1 , hxc g
α2
kr(0,c)

1). If A has a non negligible advantage in succeeding in
the exclusive ownership transfer, A will be able to transfer the ownership of Tc
with a non negligible advantage. That is, A outputs valid ownership references
for Tc, refOTc = (tc, hxc , kold, knew), where hc = H(tc).

To break H’s one wayness, A′ outputs tn.

21

Construction

– A′ simulates the issuer I and creates n tags Ti, 1 ≤ i ≤ n.
1) A′ selects randomly x ∈ Fq. Here x will be the secret key of the issuer.
2) For each tag Ti, 1 ≤ i ≤ n − 1, A′ selects randomly ti ∈ Fq and

computes hi = H(ti). A′ selects randomly αk ∈ Fq and computes

c(i,0) = (u(i,0), v(i,0)) = (gr(i,0)1 , hxi g
α2
kr(i,0)

1). Also, A′ selects randomly
k(i,0) ∈ Fq and stores s(i,0) = (k(i,0), c(i,0)) into Ti. A′ outputs refOTi =
(ti, hxi , k(i,0), k(i,0)).

3) Finally, he creates tag Tc. A′ queries OH that returns hash hc. A′ se-
lects a random number r(c,0) and computes c(c,0) = (u(c,0), v(c,0)) =

(gr(c,0)1 , hxc g
α2
kr(c,0)

1). Therewith,A′ selects randomly k(c,0) ∈ Fq and stores
s(c,0) = (k(c,0), c(c,0)) into tag Tc.

– A enters the learning phase. A′ simulates OT , i.e., A′ supplies A with r
tags. A′ selects randomly a tag Ti from the n tags he created and checks
whether Ti = Tc. If so, A′ stops the experiment, otherwise, A′ supplies A
with tag Ti, and transfers Ti’s ownership to A using the ownership references
refOTi = (ti, hxi , k(i,0), k(i,0)).

– A can run up to s mutual authentications with Ti.
– At the end of the learning phase, A transfers the ownership of tag Ti to an

owner from the set of legitimate owners.
– In the challenge phase, A′ simulates OT and selects randomly a tag T . If
T 6= Tc, A′ stops the experiment. Otherwise, A′ provides A with Tc.

– A now can read Tc’s internal state and he eavesdrops on Tc for a maximum
of t times.

– A′ simulates OO and returns an owner Oc.
– At the end of the challenge phase, A runs an ownership transfer with Oc.

If A’s advantage in breaking the exclusive ownership is non negligible, A will
supplyOc during the ownership transfer protocol with refOTc = (tc, hxc , kold, knew),
where hc = H(tc).
Therefore, to break the one wayness of H, A′ outputs tn.

Note that A′ succeeds in breaking H, if he does not stop the experiment. The
probability that A′ does not stop the experiment corresponds to not choosing Tn
in the learning phase, and choosing Tn in the challenge phase. The probability
that A′ does not choose Tn in the learning phase is (1 − 1

n)r. The probability
that A′ chooses Tn in the challenge phase is 1

n .
Hence, A′’s advantage is: ε′ = Pr(A′ does not abort the experiment) · ε =

1
n (1− 1

n)r · ε.
This leads to a contradiction under the security of H.

7.3 Issuer verification protocol

Theorem 5 (Issuer verification security). The issuer verification protocol
in ROTIV is secure under the BCDH assumption.

22

Proof. Assume there is an adversary A(r, s, ε) who breaks the issuer verification
protocol with a non negligible advantage ε, we build an adversary A′ that uses
A to break the BCDH assumption with a non negligible advantage ε′.

BCDH assumption: Given g1, g
x
1 , g

y
1 , g

z
1 ∈ G1 and g2, g

x
2 , g

y
2 ∈ G2, the

probability to compute e(g1, g2)xyz is negligible.
Let OBCDH be an oracle, when queried selects randomly x, y, z ∈ Fq and

returns g1, g
x
1 , g

y
1 , g

z
1 , g2,

gx2 , g
y
2 .

Rationale If A has a non negligible advantage in succeeding in the issuer veri-
fication experiment, A will be able to output valid verification references for a
fake tag Tc which he creates. That is, refVTc = (Ac, Bc, Cc) = (tc, hxc , Cc), where
hc is the hash of tc. Therefore, to break the BCDH assumption, A′ simulates
the outputs of H as a random oracle during the issuer verification experiment.
When A queries H with Tc’s identifier tc, A′ selects randomly rc ∈ Fq and
outputs hc = H(tc) = gzrc1 .

At the end of the challenge phase,A outputs a valid tuple: refVTc = (Ac, Bc, Cc) =

(tc, hxc , Cc) = (tc, gxzrc1 , Cc). To break BCDHA′ outputs e(g1, g2)xyz = e(gxzrc1 , gy2)r
−1
c .

Random oracle H On a query H(t), if t has never been queried before, A′ picks
rt ∈ Fq and stores the pair (t, rt) in a table TH . Then, A′ flips a random coin
coin(t) ∈ {0, 1} such that: coin(t) = 1 with probability p, and is equals to 0 with
probability 1 − p. To compute H(t), A′ checks coin(t) : if coin(t) = 0, A′ looks
up rt in TH , and answers H(t) = grt1 . Otherwise, if coin(t) = 1, A′ answers with
H(t) = (gz1)rt .

Construction

– A′ first queries OBCDH to receive g1, g
x
1 , g

y
1 , g

z
1 ∈ G1 and g2, g

x
2 , g

y
2 ∈ G2.

– A′ simulates an issuer I of public key gx2 to create r tags Ti:
1) He selects randomly ti ∈ Fq, then computes hi = H(ti) as above. If

coin(ti) = 1 A′ aborts the experiment. Otherwise, A′ computes hxi . To
do so, he looks up his table TH for ti, gets rti , and computes hxi = (gx1)rti .
A′ selects randomly αk , r(i,0) ∈ Fq and computes c(i,0) = (u(i,0), v(i,0)) =

(gr(i,0)1 , hxi g
α2
kr(i,0)

1).
Finally,A′ chooses randomly a key k(i,0) ∈ Fq and stores s(i,0) = (k(i,0), c(i,0))
into Ti.

2) A′ stores the ownership references of tag Ti, refOTi = (k(i,0), k(i,0), hi, h
x
i).

– A enters the learning phase.
– A′ simulates OT and supplies A with r tags Ti. A′ using the ownership

references of tag Ti refOTi , transfers the ownership of Ti to A.
– Provided with the ownership references A has full control of Ti, and he can

now run s authentications with Ti and s issuer verification for tag Ti. At the
end of the learning phase, A transfers the ownership of Ti.

– In the challenge phase, A′ simulates the verifier V.

23

– A is required to create a new tag Tc. Therefore, A selects randomly tc ∈ Fq
and queries H. To answer this query, A′ flips a coin coin(tc), if coin(tc) = 0,
A′ stops the experiment. Otherwise,A′ selects randomly rc ∈ Fq and answers
with hc = (gz1)rc = gzrc1 .
If A’s advantage in breaking ROTIV verification protocol is non negligi-
ble, A will output valid verification references refVTc for Tc during the issuer
verification protocol. That is:

refVTc = (Ac, Bc, Cc) = (tc, hxc , Cc) = (tc, (gzrc1)x, Cc)

Finally, to break BCDH, A′ computes

e(Bc, g
y
2)r
−1
c = e(hxc , g

y
2)r
−1
c = e(gxzrc1 , gy2)r

−1
c = e(g1, g2)xyz

Note that A′ succeeds in breaking BCDH if he does not stop this experiment.
A′ does not stop the experiment, if for all the r tags Ti in the learning phase,
coin(ti) = 0, and if for tag Tc coin(tc) = 1.

Therefore the probability that A′ does not stop the experiment is p(1− p)r.
Thus, A′’s advantage is:

ε′ = p(1− p)r · ε

If ε is non negligible, so is ε′. This leads to a contradiction under the BCDH
assumption.

8 Related work

Molnar et al. [13] address the problem of ownership transfer in RFID systems by
using tag pseudonyms and relying on a trusted third party. Here, the TTP is the
only entity than can identify tags. To transfer ownership of tag T , the current
owner of T , O(T,k), and the prospective owner of T , O(T,k+1), contact the TTP.
who then, provides O(T,k+1) with T ’s identity. Once the ownership transfer of T
takes place, the TTP refuses identity requests from T ’s previous owner O(T,k).
However, relying on a TTP is a drawback: in many scenarios, the availability of
a trusted third party during tag ownership transfer is probably unrealistic.

Other solutions based on symmetric primitives have been proposed by Lim
and Kwon [12], Fouladgar and Afifi [6], Song [17], and Kulseng et al. [10]. These
schemes however suffer as discussed in section 2.2 from three major drawbacks:
1.) tag identification and authentication is linear in the number of tags, 2.)
desynchronization and 3.) no tag issuer verification.

Kapoor and Piramuthu [9] suggests a two party ownership transfer protocol
based on keyed hash functions. In order to provide forward unlinkability, the new
owner of tag T , O(T,k+1) does not have access to the key of the previous owner
O(T,k+1). Also, to cope with desynchronization, T ’s owner does not update the
shared key unless he receives an acknowledgment from T . However, as the scheme
relies on symmetric primitives it still suffers from linear time authentication and
lack of issuer verification.

24

Dimitrou [5] proposes a solution to ownership transfer that relies on sym-
metric cryptography while relaxing the privacy requirements for both backward
and forward unlinkability. Unlike previous schemes on ownership transfer, this
solution allows an owner of a tag to revert the tag to its original state. This is
useful for after sales services where a retailer can recognize a sold tag T . Note
that ROTIV offers the same feature: a tag T ’s unique identifier will allow any
owner to verify whether he owned T before or not.

9 Conclusion

In this paper, we presented ROTIV to address security and privacy issues re-
lated to RFID ownership transfer in supply chains. Moreover, ROTIV enables
ownership transfer together with issuer verification. Such verification will pre-
vent partners in a supply chain from injecting fake products. ROTIV’s main
idea is to store a signature of the issuer in tags that can be verified by every
partner in the supply chain. Also, to allow for efficient ownership transfer, RO-
TIV comprises an efficient, constant time authentication protocol. To guarantee
tag privacy, we use re-encryption and key update techniques. Despite the high
security and privacy properties, ROTIV is lightweight and requires a tag to only
evaluate a hash function.

References

[1] G. Ateniese, J. Camenisch, and B. de Medeiros. Untraceable rfid tags via in-
subvertible encryption. In CCS ’05: Proceedings of the 12th ACM conference on
Computer and communications security, pages 92–101, New York, NY, USA, 2005.
ACM. ISBN 1-59593-226-7.

[2] G. Ateniese, J. Kirsch, and M. Blanton. Secret handshakes with dynamic and
fuzzy matching. In Proceedings of the Network and Distributed System Security
Symposium, NDSS. The Internet Society, 2007.

[3] L. Ballard, M. Green, B. de Medeiros, and F. Monrose. Correlation-resistant
storage via keyword-searchable encryption. Cryptology ePrint Archive, Report
2005/417, 2005. http://eprint.iacr.org/.

[4] M. Burmester, B. de Medeiros, and R. Motta. Robust, anonymous RFID authen-
tication with constant key-lookup. In Proceedings of the 2008 ACM symposium on
Information, computer and communications security, ASIACCS ’08, pages 283–
291, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-979-1.

[5] T. Dimitrou. rfidDOT: RFID delegation and ownership transfer made simple. In
Proceedings of International Conference on Security and privacy in Communica-
tion Networks, Istanbul, Turkey, 2008. ISBN 978-1-60558-241-2.

[6] S. Fouladgar and H. Afifi. An Efficient Delegation and Transfer of Ownership
Protocol for RFID Tags. In First International EURASIP Workshop on RFID
Technology, Vienna, Austria, September 2007.

[7] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for
cryptographers. Discrete Appl. Math., 156:3113–3121, September 2008. ISSN
0166-218X.

25

[8] A. Juels and S.A. Weis. Defining Strong Privacy for RFID. In PerCom Workshops,
pages 342–347, White Plains, USA, 2007. ISBN 978-0-7695-2788-8.

[9] G. Kapoor and S. Piramuthu. Single RFID Tag Ownership Transfer Protocols.
IEEE Transactions on Systems, Man, and Cybernetics, Issue 99:1–10, 2011. ISSN
1094-6977.

[10] L. Kulseng, Z. Yu, Y. Wei, and Y. Guan. Lightweight mutual authentication and
ownership transfer for rfid systems. In INFOCOM, pages 251–255, 2010.

[11] Y. K. Lee, L. Batina, D. Singelée, and I. Verbauwhede. Low-Cost Untraceable
Authentication Protocols for RFID. In Susanne Wetzel, Cristina Nita-Rotaru,
and Frank Stajano, editors, Proceedings of the 3rd ACM Conference on Wireless
Network Security – WiSec’10, pages 55–64, Hoboken, New Jersey, USA, March
2010. ACM, ACM Press.

[12] C. H. Lim and T. Kwon. Strong and Robust RFID Authentication Enabling Per-
fect Ownership Transfer. In Peng Ning, Sihan Qing, and Ninghui Li, editors, In-
ternational Conference on Information and Communications Security – ICICS’06,
volume 4307 of Lecture Notes in Computer Science, pages 1–20, Raleigh, North
Carolina, USA, December 2006. Springer.

[13] D. Molnar, A. Soppera, and D. Wagner. A Scalable, Delegatable Pseudonym
Protocol Enabling Ownership Transfer of RFID Tags. In Bart Preneel and Stafford
Tavares, editors, Selected Areas in Cryptography, volume 3897 of Lecture Notes in
Computer Science, pages 276–290. Springer Berlin / Heidelberg, 2006.

[14] M. Ohkubo, K. Suzuki, and S. Kinoshita. Cryptographic Approach to “Privacy-
Friendly” Tags. In RFID Privacy Workshop, MIT, Massachusetts, USA, November
2003.

[15] R. Paise and S. Vaudenay. Mutual authentication in RFID: security and privacy.
In Proceedings of the 2008 ACM symposium on Information, computer and com-
munications security, ASIACCS ’08, pages 292–299, New York, NY, USA, 2008.
ACM. ISBN 978-1-59593-979-1.

[16] J. Saito, K. Imamoto, and K. Sakurai. Reassignment scheme of an RFID tag’s key
for owner transfer. In Embedded and Ubiquitous Computing, volume 3823 of Lec-
ture Notes in Computer Science, pages 1303–1312. Springer Berlin / Heidelberg,
2005.

[17] B. Song. RFID Tag Ownership Transfer. In Workshop on RFID Security – RFID-
Sec’08, Budapest, Hungary, July 2008.

[18] S. Vaudenay. On privacy models for RFID. In Proceedings of the Advances in
Crypotology 13th international conference on Theory and application of cryptology
and information security, ASIACRYPT’07, pages 68–87, Berlin, Heidelberg, 2007.
Springer-Verlag. ISBN 3-540-76899-8, 978-3-540-76899-9.

26

