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Abstract

In this paper we find division polynomials for Huff curves, Jacobi quar-
tics, and Jacobi intersections. These curves are alternate models for ellip-
tic curves to the more common Weierstrass curve. Division polynomials
for Weierstrass curves are well known, and the division polynomials we
find are analogues for these alternate models. Using the division polyno-
mials, we show recursive formulas for the n-th multiple of a point on each
curve. As an application, we prove a type of mean-value theorem for Huff
curves, Jacobi quartics and Jacobi intersections.

1 Introduction

Elliptic curves have been an object of study in mathematics for well over a
century. Recently elliptic curves have proven useful in applications such as
factoring [18], cryptography [17],[20], and in the proof of Fermat’s last theorem
[5], [25]. The traditional way of writing the equation of an elliptic curve is to
use its Weierstrass form:

y2 + a1y + a3y2 =23+ a2x2 + a4 + ag.

In the past several years, other models of elliptic curves have been studied.
Such models include Edwards curves [2], [7], Jacobi intersections and Jacobi
quartics [3], [4],[13], Hessian curves [12], and Huff curves [9], [16], among others.
These models sometimes allow for more efficient computation on elliptic curves
or provide other features of interest to cryptographers, such as resistance to
side-channel attacks.

In this paper we find division polynomials for Huff curves, Jacobi quartics,
and Jacobi intersections. Division polynomials for Weierstrass curves are well
known, and play a key role in the theory of elliptic curves. They can be used
to find a formula for the n-th multiple of (z,y) in terms of z and y, as well as
determing when a point is an n-torsion point on a Weierstrass curve. Division
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polynomials are also a crucial ingredient in Schoof’s algorithm to count points
on an elliptic curve over a finite field [22]. In addition, they have been used to
efficiently compute multiples of points, see for example [6], [10].

Hitt, McGuire, and Moloney recently have found formulas for division poly-
nomials of twisted Edwards curves [14], [19]. The division polynomials we find
are the analogues for Huff curves, Jacobi quartics, and Jacobi intersections. We
illustrate a a recursive formula for the n-th multiple of a point using these di-
vision polynomials. We are also able to prove some properties of these division
polynomials. As an application, we show how they can be used to find the mean
value of a certain collection of points.

This paper is organized as follows. In section 2 we review Huff curves, Jacobi
quartics, and Jacobi intersections. In section 3 we examine division polynomials
for each of these models. As an application, in section 4 we look at a mean value
theorem for the three curves. We conclude in section 5 with some remarks and
open questions.

2 Alternate models of elliptic curves

2.1 Huff curves

Joye, Tibouchi, and Vergnaud re-introduced the Huff model ([15]) for elliptic
curves in [16]. They showed that common elliptic curve computations, including
point multiplications and pairings, can be efficiently performed on Huff curves.
In addition, they allow for complete addition formulas, which Weierstrass curves
do not. Complete addition formulas are formulas which are valid for all inputs.
Throughout the remainder of this paper, let K be a field whose characteristic
is not 2. The equation given in [16] for a Huff curve is az(y? — 1) = by(2? — 1).
Wu and Feng in [9] generalized this form to curves given by the equation

Ha,b : x(ayQ - 1) = y(b$2 - 1))

which includes the previous model as a special case. The curve H,; is an
elliptic curve provided ab(a — b) # 0. Given a point P = (z,y) on the curve
H,, its inverse is the point —P = (—z, —y). The additive identity is the point
(0,0). There are three points at infinity, given by (1, 0,0), (0, 1,0), and (a, b, 0) in
projective coordinates. These points at infinity are the three non-trivial points
of order 2. Addition for points which are not these points of order 2 is given by

(T1 +22)(L+ayrya)  (y1 +y2)(1 + bayas) )
1+b£171332)(1 —aylyg)’ (1 7bl‘1$2)(1+ay1y2) ’

For adding a non-trivial point (z,y) to a point of order 2 we have, (z,y) +
(1,0,0) = (1/bx, —y), (2,y) +(0,1,0) = (—=z,1/ay), and (z,y) + (a,b,0) =
(=1/bz, ~1/ay).

There is also a simple birational transformation from a curve in Huff form
to the Weierstrass curve

(x1,91) + (v2,92) = ((

s =13+ (a + b)r* + abr.



The transformation is given by
br—ay b—a
(’r‘7 S) = b )
y—r y—x

for points with & # y. The only point on H,; with z = y is (0,0) which is
mapped to co. The inverse transformation is given by

(@,y) = (r—ka’r—}-b),

S S

for points (r,s) with s # 0. The points with s = 0 are the points of order 2
which get sent to the points at infinity on H, .

2.2 Jacobi quartics

There is another model of elliptic curves known as Jacobi quartics. For a back-
ground on these curves, see [3], [4], [13]. We recall only the basic facts. Any
elliptic curve with a point of order 2 can be put into Jacobi quartic form, with
equation

Jde: y2 = ex* — 2dz? + 1,

where we require e(d? — e) # 0. The identity element is (0,1), and the point
(0,—1) has order 2. The inverse of the point (z,y) is (—z,y). The addition
formula on Jy . is given by

(x1,91) + (2, 92)

_ (T2t iz (1+ e(122)?) (Y192 — 2dz172) + 2ex122(21% + 222)
1 —e(x1m9)?’ (1 —e(z122)?)? '

This addition formula can be efficiently implemented, which is one of the pri-
mary advantages of writing an elliptic curve in this form [11]. Another is that
this addition formula protects against side-channel attacks [3], [13]. There is a
birational transformation from a Jacobi quartic curve to a curve in Weierstrass
form with point of order 2. For points with x # 0, the map

3(y+1)—dz? (y+1)—da?
(r,s) = (2 322 4 23 )

sends the curve Jg . to the Weierstrass curve

21
setd” ?d(dQ—Qe).

2_ .3
=34 =2
S r 3 2

The point (0, 1) corresponds to oo, and the point of order 2 (0, —1) goes to the
point (4d/3,0). The inverse from the Weierstrass curve s? = r® + ar + b, with
point of order 2 (p,0) is given by

(2,y) = (2(7“—19) ©2r +p)(r —p)? — 32> |

b
s 52



with the image being the Jacobi quartic Jg . with d = 3p/4, and e = —(3p* +
4a)/16. The points oo, (p,0) are exceptional, and get sent to (0,1) and (0,—1)
respectively.

2.3 Jacobi intersections

Representing elliptic curves as the intersection of two quadratic surfaces was
first introduced in [4]. This model is known as Jacobi intersections. In [4],
Chudnovsky and Chudnovsky showed that common elliptic curve computations
can be efficiently performed on Jacobi intersections. Since then, more efficient
ways to implement these computations have been found. See for instance [3],
[11], and [13]. The equation for a curve given as a Jacobi intersection is

w4+t =1

Jp :
b bu? + w? = 1.

The curve J, is an elliptic curve provided b(1 — b) # 0. Given a point P =
(u,v,w) on the curve Jy, its inverse is the point —P = (—u, v, w). The additive
identity is the point (0,1,1). On any Jacobi intersection curve, there are always
three points of order 2, given by (0,1,—1),(0,—1,1), and (0,—1,—1). The
addition law is given by

(Ul,’l}l,W1) + (Ug,’l}g,ﬂ)z) =

2 )

<U1'U2’IU2 + U2V1W1 V1V2 — UTU2WL W2 W1W — bU1U2’U102>
2 2 2 2,2 ’ 2 2,42 :
vy + upwy vy + upwy vy + upwy

There is also a simple birational transformation from a Jacobi intersection
curve to the Weierstrass curve

v =xz(x+1)(z+1-0).
The transformation is given by

(4, 0,) = -2y ?+b—-1 22421 -bz+1-b
P T\ 2422 +1 -0 22+ 20 +1-0 22422 +1-0 ’

with co going to (0,1,1). The inverse transformation is given by

(=B (w—1)  b(1l—b)u
(z,y) = <bv_w+1—b’bv—w+1—b>’

for points (u,v,w) # (0,1,1). The point (0,1, 1) is mapped to co.

3 Division polynomials

3.1 Division polynomials for Weierstrass curves

We begin by recalling the standard division polynomials for Weierstrass curves.
We write [n](x,y) to denote the n-th multiple of a point (x,y).



Theorem 1 Let E be given by y*> = 23 +ax+b, over a field whose characteristic
is not 2. Then for any point (z,y)

B (bn(x’y) wn(CE,y)
i) = (G300 20

The functions ¢n,wn, and ¥y, in Z[z,y| are defined recursively by

0o=0
P =1
Yo =2y

Y3 = 3z + 6az® + 12bz — o®
Yy = dy(28 + bazt 4+ 20b2® — 502 — dabz — 8b* — a?)
Yong1 = Ynyathy, — o1y 4y for n > 2

Yo = ‘5—; (Y2t — Yot forn >3,

and

Pn = 1'1/}% - wn+11/}n—1

1
“n =1y (Ynt2tp_1 — Yn2¥iiy) -

Proof These formulas are well-known. For example, see [23] or [24] for details.
O

The polynomial v, is called the n-th division polynomial of E. It is easy to
see that a point P = (z,y) satisfies [n|P = oo if and only if ¢, (z) = 0. Divison
polynomials are an important tool for computing multiples of points. They
also play a key role in Schoof’s algorithm for counting the number of points
on an elliptic curve over a finite field [22]. In addition, they have been used to
efficiently compute multiples of points, see for example [6], [10].

3.2 Division polynomials for Huff curves

We now look at division polynomials for Huff curves. Again we write the co-
ordinates of [n](z,y) as (@, yn). In particular, let (z2,y2) be the coordinates
of [2](x,y). As the defining equation for the Huff curve H, j is symmetric with
regards to z and y when a and b are interchanged, we only look at the z-
coordinates. By symmetry, all our results are valid for the y-coordinates if we
replace y for z, and a for b.

Theorem 2 Let Fi(z) = 1,F3(z) = 1,G1(x) = 1, and Ga(z) = 1. Define
polynomials hy(z) = 4b%x* — 8bz? + 16ax? + 4, and ha(z) = b*z* — 1. Then we



have

T T Fon(2)
2n 2 G2n (.’17)
. _Fonga(2)
2n+1 G2n+1 (1:)

where the F; and G; are polynomials defined recursively for n > 1 by

Fonp1 = Gop1 (h1F22n - thgn)v
Gont1 = Fon—1 (h3G3, — b’z F}),
F2n+2 - h%GZn (F22n+1 - ngJrl) ’

Gont2 = h1Foy, (G§n+1 - 521‘4F22n+1)-

Proof The following proof comes from a similar approach in [19] to calculate
division polynomials for Edwards curves. They in turn were motivated by the
polynomials Abel studied in proving his theorem on the n-division points of the
lemniscate [1]. Let (r4,s4) = (r1,81) + (72, 82) and (r—,s_) = (r1, 1) — (r2, S2).
Then using the addition law for Huff curves, we have

2 2
ryer— = 77.1 _ T2
- 2,.2,.2°
1—0b2%rirs
Setting r1 = x,, and ro = x, we see that
2 2
1 Ty — X

Tpp)] = —— —D -
nt Tp_1 1 — b2x222

Now note that

- B 21,(1 + ay2) 2y(1 + bl‘Q)
2](z,y) = (x2,y2) = ((1 + b22)(1 — ay?)’ (1 — bx2)(1 + ay2)> .

Replacing y? by (y(ba? — 1) + z) /(ax) and simplifying the expression, we find
that
o 4b%xt — 8bx? 4 16ax? + 4 5 hi(x)
=z .
(b22% —1)2 ha(x)?
We will now use induction to prove the recursion formulas given above. For

21 and xo the theorem is trivially true. We assume the result holds for all n,
and show it is true for n + 1. There are two cases depending on whether n is

(3.1)

T3 =1



even or odd. For odd n = 2k + 1 we calculate

2 2
1 Ty — %
P} ’
Top 1 — b2x2x2k+1

2
2 F2k+1 2

T = — — X
G2k G%k+1

Tp4+1 = T2k4+2 =

2 )
TaFok 1 _ p2paFoen
GZk+1

22Go, Fopyr — Gop
? 3 Foy, G%kJrl - b2$4F22k+17

— h3Gar  Fiypn — Gopn
hiFop G§k+1 - b2m4F22k+1 ’

Fn+1

=X

Gn+1 ’

Similarly, when n = 2k is even,

2 2
1 Th, — T

Tn4l = T2k41 =
s + Top—1 1 — b2x2a?,’
2 F3,

Gop—1 T232
£

TFop—19 _ b2a2x3 3
2k

— 22

k
k

_ Gar hiF3;, — h3G3,
o1 W3G2, — VPt L,
Fn-i—l
CTYn+1 .

This proves the theorem. O

The recursive formulas given above lead to the polynomials F),, and G,, hav-
ing high degree in . Furthermore, the rational function g—z can be simplified by
removing common factors. The following theorem is important as it eliminates
these common factors, thus reducing the degrees of the division polynomials.
For example, the degree in = of Fy is 2304, while the degree of the reduced
polynomial fy is 80. In fact, the degrees of the F;, and G,, grow exponentially

while it will be shown that the degrees of the f,, and g,, only grow quadratically.
Theorem 3 Define fi =1,fa=1,g1 =1, and go =1. Forn > 1, let

h 2 _h2 2
Mt Z1a%n o0 1121 mod 4
thZn—l

f2n+1 -

7 , if2n+1=3 mod 4
2n—1



h%ggn — b2x4h1f22n
hégznfl

, if2n+1=1 mod4

gon+1 =
hgggn — b2x4h1f22n

, f2n+1=3 mod4

g2n-1
and 5 )
Fansa = ha(fini1 — 92n+1)7
hi fon
Gonsa = (g%nJrl - b2$4f22n+1).
hagan
The functions fn(x) and g,(x) are polynomials in x satisfying o, = xg%,

fant1(x)

and Tan+1 = ng'rL+1(a?) .

Proof Note the similarities in the definitions of F;, and f, and also between
G, and g,. Since the f, and g, are just the Fj,, and G, with their common
factors cancelled then F,/G, = fn/gn, and we immediately have that xq, =
T 52” Ew)’ and Topt1 = xﬁi"igg All we need to show is that the f,, and g, are
polynomials in . We do this on a case by case basis.

We begin by showing fa,_1|(h1f2, — h393,). Let v € K,v # 0 be a root of
fan—1. Then for some § € K, we have (v, §) is a point of order 2n — 1 on H, .
It follows that [2n](vy,d) = (v,9d), 80 Za,(y) = 7. Squaring this equation, we
find that by Theorem 2 and (3.1)

“\h

72 = z%n (7)
2n (7)

=X (
2 )g2n (7)
_ i)
h3(7)93,(7)
so h1 () f2.(v) —h3(7)g3,,(v) = 0. As v was an arbitrary root, then we’ve shown
that f2n—1 divides h1f22n — h%ggn

We similarly see that fa,_o divides f2, ; —g3,_1. Let v be a root of fa,_o.
Then it follows that x2,—1(7) = v and squaring this yields

)

n

72 — 72 f22n—1 (7)
g%nfl (’7)

So v is a root of f3, 1 — g3,_1, which proves fa,_o divides f3, | — g3,_;-
Next we check that ga,_1 is a factor of h3g3, — b%z*hyf3,. If 7 is a root
of gan—1, then for some 4, the point P = (v,6) is on H,p, and [2n — 1]P is a
point at infinity of order 2. As [2n]P = [2n — 1]P + P, by the addition law
for adding points at infinity we know that zs,(y) must equal —y or +1/by.
We claim that it is not —y. If z3,(y) = —<v then the point [2n — 1]P =
(0,1,0), and [2n — 2]P = —P + (0,1,0). We have that [4n — 1]P = —P, so



2n+ 1P = [dn —1JP — [2n — 2]P = —P + P — (0,1,0) = (0,1,0). But
[2n 4+ 1]P = (0,1,0) = [2n — 1] P implies that P is a point of order 2, which is
contrary to P being an affine point. So x3,(y) = 1/b%+? or

1 _ 72 hl(’Y)fQQn(’Y)
b2 h3(7)93,(7)

We see v is a root of h3g3, — b*x*hif2,. As v was an arbitrary root then
gon_1 divides h2g3, — b*x*hif2 . By an analogous argument (which we omit
for brevity) it can be shown that g, _» givides g3, ; — b*x*f2 .

We now verify that hy and ho divide the numerators of fs, and gs, respec-
tively. For this we use induction. The base case is n = 2, and we calculate

f3 — g3 = —8hihy (b*2® + 8ab®2® — 40%2° + 6b%2* + 8az? — 4ba® + 1)
and
g2 — b2t f2 = hy(b*2® + 40%2° + 16 aba® — 10022 + 402 4 1)
(—b*2® + 40325 + 16 abx* — 6022 + 4ba® — 1).

Assume now that hy divides f2, | — g3, and hy divides g3, — b2zt f3, .
The numerator of f3, 1 — g3,,1 is

= g%nfl(hlfgn - hgggn)Q - fgnfl(hgggn - b2x4h1f22n)2
= hl](x) - hgggn(fgn—l - ggn—l)a
where .7 = g%n—3(h1f§n—2 - 2h§f22n—2.g%n—2) - f22n—3(_2b2$4h§f22n—2g§n—2 +

b*a®hy f3,_5). By the induction hypothesis, we see the expression for f3, ., —
g%n 41 in (3.2) is divisble by hy. Similarly, the numerator of g3, — b*z*f2, .,

1S
= fgnfl(hgg%n - b2x4h1f22n)2 - b2x4ggn71(h1f22n - hgggn)2

= th(m) - b2m4h%f§n(‘g§n—l - b2x4f22n—1)

(3.2)

9

for a certain polynomial k(x) (which we do not display). By the induction
hypothesis, this is divisible by hs.

Lastly, we need to show that h3|fZ , but h3ff2 _,. It is clearly true for
n = 1 by a straightforward check: fo = 1 and f; = —2h3(b*2® — 4b32° +
8v%x8a + 6b%2* — 4bx? + 8ax? + 1). Now we use induction to prove it. We have

h%(ffnfl _ an,1)2
h’%ffn72

fin =
We see h3 divides f3, as there is no cancellation in the denominator by the

induction hypothesis. For our other case,

2 7 h%(f42n+1 - g£n+1)2
f4n+2 - h2f2
1J4n




But by the induction hypothesis, we have that f7 has a factor of h3 which
cancels the h3 in the numerator. This is as desired.

We list the first few non-trivial division polynomials:

fz = —b*z® 4+ 6b%z* + (16a — 8b)z? + 3, (3.3)

g3 = —3b*2® — b?(16a — 8b)z® — 6b%2* + 1,
fa=—2%z* — 1)%(b*z® + b*(8a — 4b)x® + 6b%x* + (8a — 4b)x? + 1,
g1 = (b 28446320 4b(16a—b)z* +4bx? +1) (—b* 28 +4b? 20 +-b(16a—6b)x* +4bxr? —1).

We call the f,, and g, the Huff division polynomials. An advantage of our
division polynomials is that n-th one can be computed from the previous two
rounds, i.e., f, only depends on f,_1,9n—1, fn—2, and g,_o. The division poly-
nomials for Weierstrass curves given in Theorem 1 require the previous n/2
rounds of computation. Just as with the Weierstrass division polynomials, we
have an easy criterion for finding n-torsion points.

Corollary 1 Forn > 2, the point (z,y) # (0,0) on a Huff curve is an n-torsion
point if and only if fn(x) = 0.

Proof This follows immediately from the previous theorem and the observation
that the only point on a Huff curve with z-coordinate 0 is the identity point
(0,0). O

We are able to describe some properties of the f; and g; in the following
propositions.

Proposition 1 For n > 1 the functions f, and g, are even functions of x.
When n is odd,

Falx) = (1) D/2p =D /20 =1
gn(z) = (1) 2ppn* =121

and for even n,,

fol@) = (~) 222

gn () = (1) H2/2peng2en 4
where e, =n?/2 if n =0 mod 4 and e, =n?/2 — 2 if n =2 mod 4.
Proof As fi1, f2,91,92,h1, and hs are all even functions of z, then it follows
from the recursive formulas that the f, and g, are even functions of x.

To prove (3.4) and (3.5) we use induction. Trivially fi, f2, g1, and go satisfy
the claim and by (3.3) we see the proposition holds for fs, fy, g3, and g4.

10



Now

o h2 (f22n—1 - g%n—l)
f2n -
h1f2n—2

(b2t + ) (At =sn ) — (20— 1)20I kS Sk )
@2 + ) (1) (n = 1)bean2a2ean 2 1 ..

_(<1)" (022 + ..)(—4dn(n — 1)bin" —Ang8n®—8n 4
@22% + )((n— 1)boen222em 2 1.

_ (71)n+1nb4n274n762n,2z8n278n7262n,2 + .

We want this to equal (—1)27+2)/2ppe2ng2e2n 5o it remains to be seen that
ean = 4n% — 4n — eqy,_o. By the definition of es,, we have ea,_o + ea, equals
either 2(n — 1)% + 2n% — 2 or 2(n — 1)? — 2 + 2n? depending on 2n mod 4. In
either case, they both are 4n? — 4n. Thus the claim has been proved for fo,.
The proof for gs, is analogous, and we omit the details.

To verify the claim for the odd case, we again analyze the leading coefficients.
We first assume that 2n + 1 = 3 mod 4. Thus

(b2xt + ) (n2b2e2npdean + ) — (b1a® + ) (b%e2natean + )
(_1)n—1b2n2—2nx4n2—4n + ...

— (_1)nb4+2egn—2n2+2nm8+462n—4n2+4n 4o

fong1 =

The claim is true if 4 4+ 2e9, — 2n* + 2n = ((2n+1)? — 1) /2 = 2n? 4 2n. As
2n + 1 = 3 mod 4, then 2n = 2 mod 4, so es, = 2n% — 2. Substituting this in,
we see everything is as desired. If instead we have 2n + 1 = 1 mod 4, then we
need to divide fa,11 by h3 = (b*2® + ...). So for this case

f2n+1 _ (71)711)262”72n2+2n1:4€2n74n2+4n 4 (36)

As €2, = 2n? in this case then (3.6) is equal to (—1)"b2"° +2ng4n"+4n ag claimed.
This finishes the proof of the leading term for f,, n odd. As before, the case
gon+1 1s similar to the calculation for fo,11, so we leave it to the reader. O

The following proposition gives some functional equations for the Huff divi-
sion polynomials.

Proposition 2 For n odd

2 2 1
gmw=04wlw%ww%"1%<m)’ (37)

and for n even

2 2en .4e 1 ?
e =verateg, (o)

11



1 2
2 2e, .4de
n = b "gn .
gn(T) r g (bl‘)

Proof Looking at the first few f,, and g, listed in (3.3), we see the result holds
for n = 1,2,3, and 4. We again use induction. The first case is when n = 2k.

Then
2

2 <1> 13 (55) (f2e—1(55) — 931 (55))

2k = :
h%(ﬁ)ka—Q(ﬁ)

We know that hy (7=) = hi(z)/b*z* and hs (3 ) = —ha(z)/b*z*. By the induc-

tion hypothesis

1 1
for (bx) = ngk—l (z),

and
o1 <blx> = Wﬁk—l (2),
" 2 2 2 2
() et )
bx h2 () b8k —8k—2eax 2 16k —16k—deak 2 f2 ()
_ Sl
h2ezi phezr

For the last step we again used the fact that es,_o + eor, = 4k? — 4k. The proof
for g3, (é) follows in the same way and we omit the details.
For n =2k + 1, n = 3 mod 4, we have

f (1) _ h1 (é) f22k (ﬁ) — h% (ﬁ) 92k (é)
2k+1 -

bz for—1 (é) ’

e @A) P @ )
- b4+2€2k 72k2+2kx8+462k 74k2+4k92k71 (x)

_ (71)]@ 92k+1(x)
- b2k2+2kl'4k2+4k ’

as egr, = 2k? — 2 in this case. For the case when n = 1 mod 4 then we need to
put an h3 in the denominator. Recall also that now eg), = 2k? as 2k = 0 mod

4. Thus
1Y () S5 (5g) — 13 (1)9%(%)
3( )9219( x) = b*x*h(2) f5),(x)

o 1\k
(=1 bh2ezi— 2k2+2kx4e%—4k2+4kh%(m)92k_1(x)

= (-1)F 92r+1(2)
- b2k2+2k pak2 -4k

This establishes that (3.7) is true for odd n.

12



3.3 Division polynomials for Jacobi quartics

We do a similar calculation for Jacobi quartics. The division polynomials we find
allow us to perform arithmetic on the Jacobi quartic with only the z-coordinate
along with one multiplication by the y-coordinate. We only list the results and
omit the proofs as the techniques are very similar to what was done for Huff
curves in the last subsection.

Theorem 4 Let F} = 1,G1 = 1,F, = =2, and Gy = ex* — 1. Let P, =
1,Q1 = 1, P, = e22® — 4dea® + 6ex? — 4dx® + 1, and Qo = (ex — 1)2. For
convenience, let h(z) = ex*—2dx?+1, so the curve equation is y> = h(z). Write
[n)(z,y) = (Tn,Yn). Then there are polynomials F,(x),Gp(x), Pn(x), Qn(x)

such that
Y Con(@) Qunle) )

_( Fopyi(a) P2n+1($)>
(Tont1, Yont1) = (xG%H(m)’yQQnH(x) ‘

Forn > 1 the F,,, Gy, P, and Q,, can be calculated recursively:

(1'2n7 y2n) = (17

Fopi1 = 2hFo,Gay1Gay — Fon_1(G3,, — ex*hF3),
G2n+1 = GQn—l(ng - 6x4hF22n)7

Fonyo = 2F5, 411Gy Gopir — Fon(G3, 1 — ex F3, 1),
Gant2 = G2n(G§n+1 - 6934F22n+1)7
and
Poni1 = 2G5, PonQay—1(G3, + ex*hF3) — Pay_1Q2, (G35, — ex*hF3,)?,
Q2n+1 = QanlQZn(ng - €$4hF22n)27

Ponio = 2hG3, 1 Pon1Qan (G5, 1 + €x F5, 1) — PonQoni1 (G, — ex'Fy, 4 )2,

Qant2 = Q2nQant1(G3, 11 — ex’F3, )%
As before, there are some common factors that can be cancelled in F, /G,
and P,/Q,. The degrees of the F,,, G, P,, and @Q,, grow exponentially, and by

removing these common factors our new division polynomials will have degrees
that only grow quadratically. The next proposition shows what these are.

Theorem 5 Let fi = 1,91 = 1, fo = —2, and g» = ex* — 1, as well as p =
1,po = e22® — 4dex® + 6ex? — 4dx® + 1. For n > 2, define

2 2
o fon—1— 92n—1

f2n B hf2n72 ’
h 2n _ 2n
Fomi1 = /3 92
,f2n—1

13



9on = 5
92n—2
_ g%n B 6$4hf22n
9onyl1 = ———,
92n—1
and 2 4 ¢2 2
2hp2n—1(93n 1 +ex* f5, 1) — Dan—295,
Pon = 5 P
9an—2
 2p20(93, +ea'hf3,) — P2n-19541
Pont+1 = ) .
9an—1

Then the fy, gn,pn and q, are even polynomials in x satisfying

(o yon) = (xyfzn(fﬂ) p2n () ) 7

gan(x)” g2n(z)?

LAen41(@)  Pans (@) > .

Ton41,Y2n+1) = ,
(@241, Y2 1) <92n+1(l‘) Gont1(x)?

We list the division polynomials for n = 3:
f3 = —e?2® + 6ea’ — 8dx? + 3,
g3 = —3€%z” + 8dex® — Gext +1,
p3 = etz'0—8de3 114283212 —56de? 210+ (64d? e+-662) 28 —56dex’ +-28ex —8dx?+1.

We call the f,, the Jacobi quartic division polynomials, as they satisfy the
following corollary.

Corollary 2 For n > 2, the point (z,y), with xy # 0, satisfies [n](z,y) =
(0, £1) if and only if we have f,(x) = 0.

We see some of the properties of the Jacobi division polynomials.

Proposition 3 For odd n we have

fo = (—1)(P=D/2e07 =D a0 1y

ey

Gn = (_1)(n—l)/2n€(n2—1)/4xn2—1 + .

)

while for even n
fn = (—1)"/2ne("2_4)/4x"2_4 + ..

gn = (71)"/2“6”2/‘{%"2 + .o

Proposition 4 For odd n,

e e 1
(@) = (=1) (=D 2P =D /4y 1fn< >

14



while for even n,

2 2 1
— (_1)(nt2)/2,(n*—4)/4 n"—4 L
fu(x) = (=1) e " vexr )’

1
gn(z) = (=1)"2e" 1 1a g, (x/éx> '
We also have

1
pn(l') = G(nzil)/QCEz(ngil)pn <\/é.’)3) )

for odd n, and for even n

1

3.4 Division polynomials for Jacobi intersections

We now look at division polynomials for Jacobi intersections. Write the coordi-
nates of [n](u, v, w) as (un, vy, wy,). The division polynomials we find allow us to
perform arithmetic on the Jacobi intersection curve using mostly the coordinate
u, as seen in the following theorem. Again, we omit the proofs in this subsection
as they are analagous to the ones in section 3.2.

Theorem 6 Let Fi(u) = 1,F(u) = 2,G1(u) = 1,Ga(u) = bu* — 2u? +
1,Hy(u) = 1,Ho(u) = bu* — 2bu® + 1,D1(u) = 1, and Da(u) = —bu* + 1.
Then we have

)

F2n+1 = 2(1 - UQ)(I - bUQ)FQnDQ’rL—lDQn - FQn—l((l - UQ)Dgn + u2H22n)7

Fopy1(u)  Gopyr(u) wH2n+1(U
Daony1(u)’ Dopyi(u)’ Dapyi(u

Fonya(u) Gango(u) Hapio(u
Dony2(u)’ Danya(u)’ Dapya(u

(U2n+1 y U2n+1, w2n+1) = (U

)
)
(U2n+2, Vant2, Wonta) = (uvw ;

where the F,, Gy, Hy, and D,, are defined recursively for n > 1 by

Gont1 = 2GoyDap—1Day, — Gop—1((1 — u?)D3, +u*H3,),
Hapy1 = 2H2, Doy 1Day, — Hoy 1 (1 — u?) D3, +w?H3,),
D2n+1 = D2n*1((1 - ’U’Z)Dgn + u2H22n)7
and
Fopto = 2Fon41D2,Dopi1 — Fop (1 — UQ)Dgn-H +u?(1— buz)H22n+1)a
Gonto = 2(1 = u?)Gopy1 Doy Dopi1 — Gop (1 —w?) D3, 1 +u?(1— ) H3, L),
Hopio = 2(1—bu?)Hapy1D2nDopy1 — Hap (1 —u?) D3, 41 +u?(1—bu?)Hs, L),
Danta = Don((1 —?)D3, 1 +u?(1 — bu®)H3, ).

15



Again, the recursive formulas given above lead to the polynomials F,,, G,,, H,,

and D,, having high degree. Furthermore, the rational functions £=, G=  and

Dy’ Dy’
% can be simplified by removing common factors. Theorem 7 eliminates these
n

common factors, thus reducing the degrees of the division polynomials.

Theorem 7 Let fi(u) = 1, fa(u) = 2,91 (u) = 1, g2 (u) = bu* — 2u® + 1, hy (u) =
1, ho(u) = bu* — 2bu? + 1,d;(u) = 1, and da(u) = —bu* + 1. For n > 1, define
fr, Gns b, and d,, recursively by:

(1 - u2)(1 — bu2)f22n - dgn

f2n+1 ==

f2n—1 ’
Gong1 = (1 — bu2)g§n - (1 B b)u2d%n
" (1 —u?)gan—1 ’
b (P, (0 )i,
2n+1 (1 _ bu2)h2n71 ?
d2 41 = ((1 — UZ)d%n + u2h%n)
" dan—1 ’
and ) )
f _ f2n+1 B d2n+1
22T —u2) (1 — bu?) fan
Goniz = (1 - u2)(1 - bu2)g%n+1 - (1 - b)uzd%nJrl
n+ Gon )
b (b (b Dt
2n+2 hQn 5
d _ ((1 - u2>d%n+1 + u2(1 - b’U’Q)h%nJrl)
2n—+2 d2n .

The functions fn(u), gn(u), hn(u), and d,(u) are even polynomials and

m+1 Gon+1  Ponga
font UgnJr w n+>7

(U2n+1, V2n+2, w2n+1) = (U s ,
d2n+1 d2n+1 d2n+1

font2 Gont2 h2n+2>

(u2n+2»v2n+2;w2n+2) = (uvw , ,
d2n+2 d2n+2 d2n+2

If desired, all the functions in Theorem 7 can be expressed in terms of h,,
and d,, by using the curve equation of J,. We list the division polynomials for
n=3:

fz = —b*u® 4+ 6bu* — 4(b+ 1)u? + 3, (3.8)
g3 = b*u® — 4b%uS + 6but — 4u® + 1,
hsy = b*u® — 4bu® + 6bu’ — 4bu® + 1,
ds = —3b%u® 4+ 4b(b + 1)u’® — 6bu* + 1,
We call the f,,gn, hyn, and d,, the Jacobi intersection division polynomials.

Just as with the Weierstrass, Huff, and Jacobi quartic division polynomials, we
have a simple criterion to help find n-torsion points.

16



Corollary 3 Forn > 2, the point (u,v,w) # (0,£1,+1) on a Jacobi intersec-
tion curve satisfies [n)(u, v, w) = (0,1, +1) if and only if f,(u) = 0.

Notice that if the curve is defined over a finite field F;, and the number of points
on Jp(F,) is odd, then the corollary states that a point (u,v,w) is n-torsion if
and only if f,(u) = 0. We now describe some properties of the f,,gn,h, and
d,, in the following propositions.

Proposition 5 For n > 1, the functions f,, gn, hy and d,, have leading coeffi-
cients as described here. For n odd,

o = (=)D 2D Ay 1)

eey

Gn = b(n271)/4u(n271) +.

ey

h, = p(n*=1)/4,,(n*=1)

ceey

dy, = (=1) =D/ 2ppm*=D/4y (n* 1)

and for n even,

ceey

fo = (_1)n/2+1nb(n2—4)/4un2—4 +
gn = b /Ay 4 .
hy = b7 4

dy = (=) 257 4y 4

Proposition 6 For n odd,

Falu) = (1) D/2p =D /Ay =1, (

g~ &l
\_/ v

dn(u) _ ( )(n 1)/2b n?—1) /4 n —1 (

)
)

In ( ) b(n —1)/4 n —1h (

&\H;\H
IS IS

hn( ) _ b(n —1)/4 n —1 (

and for n even,

fn(u) _ (_1)n/2+1bn2/471un274fn <> 7

. 1
gn(u) ="/ g, (\/Bu> ’

oo ().
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do (1) = (=1)"20" /44 d, (;5) .

If we regard g, and h, as functions of u and b, then for n even

11
ault ) =/ (1),

2y 2 (11
o (byu) = b /™ gy (= .
(b, u) ug<b,u>

4 Mean value theorems

4.1 Weierstrass and Edwards mean value theorems

Let K be an algebraically closed field of characteristic not equal to 2 or 3. Let
E : y* = 23+ Az + B be an elliptic curve defined over K, and Q = (zg,yg) # o
a point on E. Let P; = (x;,y;) be the n? points such that [n]P; = Q, where
n € Z, (char (K),n)=1. The P; are known as the n-division points of Q). In [8],
Feng and Wu showed that

1 71,2 1 TLQ
ﬁzxi:va Ezyi:”yQ-
=1 =1

This shows the mean value of the z-coordinates of the n-division points of @ is
equal to zg, and nyg for the y-coordinates.

In [21] a similar formula was established for elliptic curves in twisted Edwards
form. Let Q # (0,£1) be a point on a twisted Edwards curve. Let P; be the
n-division points of @. If n is odd, then

2 2
If n is even, then 25 > 2; =0, and 5 > | y; = 0.

1=

4.2 Huff mean value theorem
We are able to prove the following mean value formula for Huff curves

Theorem 8 Let @ # (0,0) be a point on a Huff curve. Let P; = (x;,y;) be the
n? points such that [n]P; = Q.
If n is odd, then

2 2
1 n 1 1 n 1
— Y = —xg, — ;= —Yo.
2 2
If n is even, then both -5 31" | x; and n—lz St yi equal 0.
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Before giving the proof, we establish some results that will be needed in the
proof. The first shows the theorem is true for n = 2.

Lemma 1 Let Py, P>, P3, and Py be the 4 distinct points on H,p such that
[2]P; = Q, where Q # (0,0). Then

4 4
ZLL’Z‘ =0= Zyi.
i=1 i=1

Proof Let P, = (z,y) be a point such that [2](z,y) = Q. If @ # (0,0) then it
follows that neither x nor y equals 0. Using the addition law, it can be checked
that the points P, = (—x,1/ay), Ps = (1/bx, —y), and Py = (—1/bx,—1/ay)
also satisfy [2]P; = Q. For example,

P —2z(1+ 1/ay?) 2/ay(1 + bz?)
2T\ +b22)(1 = 1/ay?)’ (1 — ba?)(1 + 1/ay?)
_ 22(1 + ay?) 2y(1 + ba?)
(14 b22)(1 — ay?’ (1 —bx2)(1 + ay?)
= Q.
The points P;, i = 2,3,4 arise by adding the three points at infinity to P;. If
we sum the x and y-coordinates of Py, Py, P3, and Py, the result is clear. O

We look at how we can combine mean value results for n-division points and
m-division points to obtain one for the mn-division points.

Pr0p051t10n 7 Fiz m and n. Suppose we have that " 1xpl = cprg and

S yp = dmyQ for some constants Cp,, dy, which depend only on m, whenever

the Py, i =1,2,...,m? are points such that [m]P; = Q, for some Q. Similarly,
2

suppose we have that Z TR, = enTs andy . Yr, = fnys for some constants
€n, fn which depend only on n, where the R;, i = 1,2,...,n? are points such that
[n|R; = S, for some S.

Then given (mn)? points Ty, Ty, ...,T(mn)z on Hg,y such that [mn]T; = U
for some U # (0,0), we have that ZEZL T, = Cmenry and Z(mn)2 YT,
dmfnyU'

Proof Consider the set of points {[m|T1, [m]|Ts, ..., [m]T(;n)2}. Each element
[m]T; satisfies [n]([m]T;) = U. So this set must be equal to the same set of
n? points V that satisfy [n]V = U. Call this set {Vi, V5, ...,V,2}. For each V},
there must be m? elements of the 7; which satisfy [m]T; = V. This partitions
our original set of the (mn)? points T; into n? subsets of m? points. Then by
assumption, we have

(mn)?

§ T, = E CmTy;, = Cm€nlU,
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and

(mn)? n?
Z yr, = Z dmy\/i = dmfnyU~
=1 =1

O
For example, fix an elliptic curve and suppose we know the mean value of the
z-coordinates of the 3-division points, or Z?:1 x; = 3xq. Similary if know the
same for the 5-division points, 2321 x; = 5z g, then by Proposition 7 we know

the mean value for the 15-division points. It will be Zﬁi r; = 15zq.

We now give the proof of the mean value theorem for Huff’s curves.

Proof By the obvious symmetry, we need only prove the result for the x-
coordinates. We begin with the case when n is odd. By Theorem 3, we know

that
fn(2)
In ()
has the x; as roots. By Proposition 1 this can be rewritten as

T —29g=0

b=/ b D2 -1,

As the z; are the n? roots, then this must be the same as

2
If we compare the coefficients of x”z_l, we see that > I, #; = nxg, which

proves the mean value theorem for the z-coordinates where n is odd.

2
We conclude (by induction) that whenever n = 2% we have >, zp, =0 =
2
™ yp by combining Lemma 1 and Proposition 7. So using proposition 7
i=1Yp; DY g P g prop

again combined with our proof for odd n, we can conclude that whenever n is
even the mean value theorem for xz-coordinates holds as well. O

We remark that Theorem 8 was proved for points @ # (0,0). For @ = (0,0),
recall that (x;,y;) # (0,0) is an n-torsion point if and only if f,(x;) = 0. Note
that for odd n, f, is an even function of x and so

2
and hence ZL;I x; = 0. When we consider (0,0) as the last n-torsion point,

of the y-coordinates when @ = (0,0).

2
then we have Z? 1 ; = 0. By symmetry, the same is true for the mean value
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4.3 Jacobi quartic mean value theorem

We have a similar mean value theorem for the z-coordinates of Jacobi quartics.

Theorem 9 Let Q) be a point on Jg.. Let P; = (x;,y;) be the n? points such
that [n]P; = Q. Then if n is odd

1 1
SN = —ao,
n2;z n @

2
and 537 x; =0, if n is even.

Proof When n = 2, the addition formula shows that if [2](z,y) = @, then
[2](—z, —y) = Q as well. So the four points P; with [2] P, = Q can be written as
(z1,91), (x2,y2), (—x1, —y1), and (—z2, —y2). The rest of the proof is identical
to the proof of the Huff mean value theorem. O

We are unable to prove, but conjecture the following mean-value theorem
for the y-coordinates of the n-division points on a Jacobian quartic:

1 &
i=1

2
for n odd, and # Yoy =0, for n even. Note that in our proof above, we
showed it is true for n = 2. Thus, by Propositon 7, it suffices to show (4.1) for
odd n.

4.4 Jacobi intersection mean value theorem

Finally, we have

Theorem 10 Let (Q be a point on the Jacobi intersection curve J,. Let P; =
(u;,vi,w;) be the n? points such that [n]P; = Q. Then

2
1 uQ
=
i=1
forn odd, and # Zil u; = 0, for n even.
Proof Let Py, Py, P3, and Py be the 4 distinct points on J, such that [2]P; = @,
where @ is a point on J,. If we add the three non-trivial points of order 2 to
Py, we find that the other P; are (—u, —v,w), (u, —v, —w), and (—u,v, —w). If

we sum the coordinates, the result is immediate for n = 2. The remainder of
the proof is identical to the proof of the Huff mean value theorem. O
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We also conjecture the following mean-value theorem for the v and w-
coordinates of the n-division points on a Jacobi intersection curve:

n2

1 ’UQ 1 U/Q

S vi=—% S wi=——%,

n= 4 1 n n= “4 n
1=

2 2
for n odd, and 5 3", v; =0, % 3", w; = 0, for n even. By Propositon 7,
the even result follows immediately once this is shown to be true for odd n.

5 Conclusion

In this paper we looked at division polynomials for Huff curves, Jacobi quartics,
and Jacobi intersections. Using them we were able to find a formula for the
n-th multiple of a point. We also proved some of the properties of these division
polynomials, and some mean-value theorems for some alternate models of elliptic
curves. Some directions for future study would be to find division polynomials
for other models of elliptic curves, such as Hessian curves. It would also be
interesting to see if the formulas derived in this paper could be used to perform
efficient scalar multiplication, as has been done in some cases with Weierstrass
curves. This is the most important computation in elliptic curve cryptography
and the subject of much research. We leave this for a future project.

Based on numerical evidence, we conjecture the following formula for the
mean values of the coordinates for Hessian curves. If (x;,y;) are the n? points
on a Hessian curve with [n](z;,y;) = Q = (2@, yqg), then

2
1 « 1o n=1mod3
rED DR Pl
n: 0 n =0 mod 3,
and ,
1 nz B %yQ n =1 mod 3
n? = vi 0 n =0 mod 3.
It is an open problem to prove these formulas. We have not been able to adapt
the technique used in this paper to prove the mean value results for Hessian
curves. Also note, we are unable to conjecture the mean value for these points
when n = 2 mod 3. Based on numerical examples, we do know it is not a
constant times the corresponding coordinate of Q.
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