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Abstract

Recent advances in biometric recognition and the increasing use of biometric data prompt
significant privacy challenges associated with the possible misuse, loss or theft, of biometric data.
Biometric matching is often performed by two mutually suspicious parties, one of which holds one
biometric image while the other owns a possibly large biometric collection. Due to privacy and
liability considerations, neither party is willing to share its data. This gives rise to the need to
develop secure computation techniques over biometric data where no information is revealed to
the parties except the outcome of the comparison or search. To address the problem, in this work
we develop and implement the first privacy-preserving identification protocol for iris codes. We
also design and implement a secure protocol for fingerprint identification based on FingerCodes
with a substantial improvement in the performance compared to existing solutions. We show
that new techniques and optimizations employed in this work allow us to achieve particularly
efficient protocols suitable for large data sets and obtain notable performance gain compared to
the state-of-the-art prior work.

1 Introduction

Recent advances in biometric recognition make the use of biometric data more prevalent for authen-
tication and other purposes. Today large-scale collections of biometric data include face, fingerprint,
and iris images collected by the US Department of Homeland Security (DHS) from visitors through
its US-VISIT program [24], iris images collected by the United Arab Emirates (UAE) Ministry
of Interior from all foreigners and also fingerprints and photographs from certain types of travel-
ers [26], and several others. While biometry serves as an excellent mechanism for authentication
and identification of individuals, such data is undeniably extremely sensitive and must be well pro-
tected. Furthermore, once leaked biometric data cannot be revoked or replaced. For these reasons,
biometric data cannot be easily shared between organizations or agencies. However, there could
be legitimate reasons to carry out computations on biometric data belonging to different entities.
For example, a non-government agency may need to know whether a biometric it possesses appears
on the government watch-list. In this case the agency would like to maintain the privacy of the
individual if no matches are found, and the government also does not want to release its database
to third parties.

The above requires carrying out computation over biometric data in a way that keeps the data
private and reveals only the outcome of the computation. In particular, we study the problem of
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biometric identification, where a client C is in a possession of a biometric X and a server S possesses
a biometric database D. The client would like to know whether X appears in the database D by
comparing its biometric to the records in D. The computation amounts to comparing X to each
Y ∈ D in a privacy-preserving manner. This formulation is general enough to apply to a number
of other scenarios, ranging from a single comparison of X and Y to the case where two parties need
to compute the intersection of their respective databases. We assume that the result of comparing
biometrics X and Y is a bit, and no additional information about X or Y should be learned by
the parties as a result of secure computation. With our secure protocols, the outcome can be made
available to either party or both of them; for concreteness in our description, we have the client
learn the outcome of each comparison.

In this work we assume that both the client’s and the server’s biometric images have been
processed and have representations suitable for biometric matching, i.e., each raw biometric image
has been processed by a feature extraction algorithm. For the types of biometric considered in this
work, this can be performed for each image independently and we do not discuss this further.

Algorithms for privacy-preserving two-party face recognition have recently appeared in the
literature [16, 41, 37], and therefore this work concentrates on iris and fingerprint identification,
which are popular types of biometric data with good distinguishing capability. We design and
implement secure and efficient two-party protocols for iris identification and two types of fingerprint
identification: matching based on FingerCodes [28] which are particularly well suited for privacy-
preserving computation and traditional minutiae-based matching.

Prior work. Literature on secure multi-party computation is extensive. Starting from the seminal
work on garbled circuit evaluation [44, 20], it has been known that any function can be securely
evaluated by representing it as a boolean circuit. Similar results are also known for securely
evaluating any function using secret sharing techniques (e.g., [40]) or homomorphic encryption
(e.g., [10]). In the last several years a number of tools have been developed for automatically creating
a secure protocol from a function description written in a high-level language. Examples include
Fairplay [34], VIFF [13], TASTY [21], and others. It is, however, well-known that custom optimized
protocols are often constructed for specific applications due to the inefficiency of generation solution.
Such custom solutions are known for a wide range of application (e.g., set operations [18, 30, 19,
15], DNA matching [42], k-means clustering [8], etc.), and this work focuses on secure biometric
identification using iris codes and fingerprints. Furthermore, some of the optimizations employed in
this work can find their uses in protocol design for other applications, as well as general compilers
and tools such as TASTY [21].

With the growing prevalence of applications that use biometrics, the need for secure biometric
identification was recognized in the research community. A number of recent publications address
the problem of privacy-preserving face recognition [16, 41, 37]. This problem was first treated by
Erkin et al. [16], where the authors designed a privacy-preserving face recognition protocol based
on the Eigenfaces algorithm. The performance of that solution was consequently improved by
Sadeghi et al. [41]. More recently, Osadchy et al. [37] designed a new face recognition algorithm
together with its privacy-preserving realization called SCiFI. The design targeted to simultaneously
address robustness to different viewing conditions and efficiency when used for secure computation.
As a result, SCiFI is currently recognized as the best face identification algorithm with efficient
privacy-preserving realization. SCiFI takes 0.31 sec (during the online phase) [37] to compare two
biometrics, and therefore would take about 99 sec to compare a biometric to a database of 320
images.

Another very recent work by Barni et al. [3] designs a privacy-preserving protocol for fingerprint
identification using FingerCodes [28]. FingerCodes use texture information from a fingerprint to
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compare two biometrics. The algorithm is not as discriminative as fingerprint matching techniques
based on location of minutiae points, but it was chosen by the authors as particularly suited for
efficient realization in the privacy-preserving framework. As of the time of this writing, similar
results for other types of biometrics or other fingerprint matching techniques are not available
in the literature. We narrow this gap by providing a secure two-party protocol for widely used
iris identification, as well as address fingerprint identification. Our protocols follow the standard
algorithms for comparing two biometrics, yet they are very efficient and outperform the state-of-
the-art protocols with a notable reduction in the overhead.

Bringer et al. [7] describe a biometric-based authentication mechanism with privacy protection
of biometric, where the Hamming distance is used as the distance metric. The authentication
server is composed of three entities that must not collude, and one of them, the matcher, learns
the computed Hamming distance. In our work, however, no information beyond the outcome of
the comparison is revealed, the computation itself is more complex and corresponds to the actual
algorithm used for iris code comparisons, and there is no need for additional or third-party entities.
Barbosa et al. [2] extend the framework with a classifier to improve authentication accuracy and
propose an instantiation based on Support Vector Machine using homomorphic encryption.

Our contributions. In this work we treat the problem of privacy preserving biometric identifica-
tion. We develop new secure protocols for two types of biometric, iris and fingerprints, and achieve
security against semi-honest adversaries. While iris codes are normally represented as binary strings
and use very similar matching algorithms, there is a variety of representations and comparison algo-
rithms for fingerprints. For that reason, we study two types of matching algorithms for fingerprints:
(i) FingerCodes that use fixed-size representations and a simple comparison algorithm and (ii) a
traditional and most widely used method for pairing minutia points in one fingerprint with minutiae
in another fingerprint. Our protocols were designed with efficiency in mind to permit their use on
relatively large databases, and possibly in real time. While direct performance comparison of our
protocols and the results available in the literature is possible only in the case of FingerCode, we
can use complexity of the computation to draw certain conclusions. The results we achieve in this
work are as follows:

1. Our secure FingerCode protocol is extremely fast and allows the parties to compare two
fingerprints X and Y using a small fraction of a second. For a database of 320 elements, the
online computation can be carried out in 0.45 sec with the communication of 277KB. This
is an over 30-fold improvement in both communication and computation over the privacy-
preserving solution of [3], as detailed in Section 5, and a significant improvement over an
adaptation of [41] to this context.

2. Iris codes use significantly longer representations (thousands of bits) and require more complex
transformation of the data. Despite the length and complexity, our solution allows two
iris codes to be compared in 0.15 sec. With respect to the state-of-the-art face recognition
protocol SCiFI, which also relies on Hamming distance computation, our protocol achieves
lower overhead despite the fact that the computation involves an order of magnitude larger
number of more complex operations.

3. Finally, we develop a secure protocol for traditional fingerprint matching based on pairing of
minutiae points in one biometric to minutiae points within the tolerance in another biometric.
This computation exhibits the largest complexity, but our secure protocol still allows us to
compare two fingerprints in about one second.
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2 Description of Computation

In what follows, we assume that client C holds a single biometric X and server S holds a database of
biometrics D. The goal is to learn whether C’s biometric appears in S’s database without learning
any additional information. This is accomplished by comparing X to each biometric Y ∈ D, and
as a result of each comparison C learns a bit that indicates whether the comparison resulted in a
match.

2.1 Iris

Let an iris biometric X be represented as an m-bit binary string. We use Xi to denote i-th bit of
X. In iris-based recognition, after feature extraction, biometric matching is normally performed by
computing the Hamming distance between two biometric representations. Furthermore, the feature
extraction process is such that some bits of the extracted string X are unreliable and are ignored
in the matching process. Information about such bits is stored in an additional m-bit string, called
mask, where its i-th bit is set to 1 if the i-th bit of X should be used in the matching process and is
set to 0 otherwise. For biometric X, we use M(X) to denote the mask associated with X. Often,
a predetermined number of bits (e.g., 25% in [23] and 35% in [4]) is considered unreliable in each
biometric template. Thus, to compare two biometric representations X and Y , their Hamming
distance takes into account the respective masks. That is, if the Hamming distance between two
iris codes without masks is computed as:

HD(X,Y ) =
(||X ⊕ Y ||)

m
=

∑m
i=1(Xi ⊕ Yi)

m

the computation of the Hamming distance that uses masks becomes [14]:

HD(X,M(X), Y,M(Y )) =
||(X ⊕ Y ) ∩M(X) ∩M(Y )||

||M(X) ∩M(Y )||
(1)

In other words, we have

HD(X,M(X), Y,M(Y )) =

∑m
i=1((Xi ⊕ Yi) ∧M(Xi) ∧M(Yi))

∑m
i=1(M(Xi) ∧M(Yi))

.

Throughout this work, we assume that the latter formula is used and simplify the notation to
HD(X,Y ). Then the computed Hamming distance is compared with a specific threshold T , and
the biometrics X and Y are considered to be a match if the distance is below the threshold, and
a mismatch otherwise. The threshold T is chosen based on the distributions of authentic and
impostor data. (In the likely case of overlap of the two distributions, the threshold is set to achieve
the desired levels of false accept and false reject rates based on the security goals.)

Two iris representations can be slightly misaligned. This problem is caused by head tilt during
image acquisition. To account for this, the matching process attempts to compensate for the error
and rotates the biometric representation by a fixed amount to determine the lowest distance. Each
biometric is represented as a two-dimensional array, therefore a circular shift is applied to each
row by shifting its representation by a small fixed number of times, which we denote by c. The
minimum Hamming distance across all runs is then compared to the threshold. That is, if we let
LS

j(·) (resp., RSj(·)) denote a circular left (resp., right) shift of the argument by a fixed number of
bits (2 bits in experiments conducted by the biometrics group at our institution, where application
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of the Gabor filter during feature extraction results in a complex number, which is quantized into
a 2-bit value), the matching process becomes:

min(HD(X, LSc(Y )), . . .,HD(X, LS1(Y )),HD(X,Y ),

HD(X,RS1(Y )), . . .,HD(X,RSc(Y )))
?
< T

(2)

Throughout this work we assume that the algorithms for comparing two biometrics are public, as
well as any constant thresholds T . Our protocols, however, maintain their security and performance
guarantees if the (fixed) thresholds are known only to the server who owns the database.

2.2 Fingerprints

Work on fingerprint identification dates many years back with a number of different approaches
currently available (see, e.g., [35] for an overview). The most popular and widely used techniques
extract information about minutiae from a fingerprint and store that information as a set of points
in the two-dimensional plane. Fingerprint matching in this case consists of finding a matching
between two sets of points so that the number of minutiae pairings is maximized. In more detail,
a biometric X is represented as a set of mX points X = 〈(x1, y1, α1), . . ., (xmX

, ymX
, αmX

)〉. A
minutia Xi = (xi, yi, αi) in X and minutia Yj = (x′j, y

′

j , α
′

j) in Y are considered matching if the
spatial (i.e., Euclidean) distance between them is all smaller than a given threshold d0 and the
directional difference between them is smaller than a given threshold α0, computed as:

√

(x′j − xi)2 + (y′j − yi)2 < d0 and min(|α′

j − αi|, 360
◦ − |α′

j − αi|) < α0. (3)

These tolerance values are necessary to account for errors introduced by feature extraction algo-
rithms (e.g., quantizing) and small skin distortions. Two points within a single fingerprint are also
assumed to lie within at least distance d0 of each other.

Before two fingerprints can be compared, they need to be pre-aligned, which maximizes the
number of matching minutiae. The literature distinguishes two types of alignment: absolute and
relative. With absolute alignment, each fingerprint is pre-aligned independently using core point
of other information. With relative alignment, information contained in two biometrics is used to
guide their alignment relative to each other. While relative pre-alignment can be more accurate
that absolute pre-alignment, such techniques are not feasible to implement in a privacy-preserving
protocol, and we assume that absolute pre-alignment is used. To increase the accuracy of the
matching process, a single fingerprint can be stored using a small number of templates with slightly
different alignment, and the result of the comparison is a match if at least one of them matches the
biometric being queried. A more detailed treatment of this problem is outside of the scope of this
work.

A simple way used for determining a pairing between minutiae of fingerprints X and Y consists
of pairing a minutia Xi with the closest minutia Yj in Y . Let mm(Xi, Yj) denote minutiae matching
predicate in equation 3. Then the pairing function P (·) that determines the mapping of minutiae
in X and Y can be defined as follows: for i = 1, . . .,mX , P (i) = j if Yj is the closest to Xi among
all Yk ∈ Y such that mm(Xi, Yk) = 1, and P (i) =⊥ if no such Yj exists. Because each minutia Yj

can be paired with at most one minutia from X, the above algorithm needs to mark minutiae in Y
to enforce this constraint.

The above approach will not find the optimum assignment (i.e., the one that maximizes the
number of mates) when a minutia Xi should be paired with another minutia Yj which is not the
closest to Xi. The optimum pairing can be achieved by formulating the problem as an instance
of minimum-cost maximum flow, where fingerprints X and Y are used to create a flow network.
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Then this problem can be solve using one of the known algorithms such as Ford-Fulkerson [17]
and others. In particular, [29, 43] use a flow network representation of minutia pairing problem to
find an optimal pairing, where there is an edge from a node corresponding to minutia Xi ∈ X to
Yj ∈ Y iff mm(Xi, Yj) = 1. We refer the reader to [29, 43] for additional detail. For fingerprints
consisting of m minutiae, the optimal pairing can be found in O(m2) time using Ford-Fulkerson
algorithm because each minutia from X is connected to at most a constant number of minutiae
from Y . In a privacy-preserving setting, however, when information about connections between
minutiae in X and Y (and thus the structure of the graph) must remain private, the complexity of
this approach based on Ford-Fulkerson algorithm increases to O(m3).1 Such a solution would not
be of a practical importance even for modest values of m. This calls for alternative algorithms, and
we implement the pairing approach based on the minimum distance outlined above. The algorithm
is not guaranteed to find the optimal pairing, but is feasible for privacy-preserving computation.

For the purposes of this work, we assume that during fingerprint identification the number
of minutiae in a pairing is compared to a fixed threshold T . If in specific fingerprint matching
algorithms this threshold is not constant, but rather is a function of the biometrics X and Y being
compared (e.g., a number of points in each set), our solution can be easily extended to accommodate
those variations as well.

Fingerprint matching can also be performed using different type of information extracted from a
fingerprint image. One example is FingerCode [28] which uses texture information from a fingerprint
scan to form fingerprint representation X. While FingerCodes are not as distinctive as minutiae-
based representations and are best suited for use in combination with minutiae to improve the
overall matching accuracy [35], FingerCode-based identification can be implemented very efficiently
in a privacy-preserving protocol. In particular, each FingerCode consists of a fixed number m
elements of ℓ bits each. Then FingerCodes X = (x1, . . ., xm) and Y = (y1, . . ., ym) are considered a
match if the Euclidean distance between their elements is below the threshold T :

√

∑m

i=1
(xi − yi)2

?
< T (4)

Barni et al. [3] was the first to provide a privacy-preserving protocol for FingerCode-based biometric
identification. We first show that the techniques employed in this work improve both computation
and communication of the protocol of [3] by a large factor. We then proceed with providing a
secure protocol for superior (but less efficient) identification algorithm for minutia-based matching.

3 Preliminaries

Security model. We use the standard security model for secure two-party computation in
presence of semi-honest participants (also known as honest-but-curious or passive). In particular,
it means that the parties follow the prescribed behavior, but might try to compute additional
information from the information obtained during protocol execution. Security in this setting is

1The complexity of Ford-Fulkerson algorithm in a regular setting is O(Ef), where E is the number of edges in
the graph, which for this application would be O(m), and f is maximum flow in the graph which is also O(m). It
consists of repeatedly searching the graph for a new path (e.g., using depth-first search) which will allow the current
flow to be increased by 1, resulting in O(Ef) complexity. When the structure of the graph (which corresponds to the
matching information) is to be protected, the graph needs to be padded with dummy edges that do not change the
outcome of the algorithm. In that case the degree of each node in the graph becomes O(m), and the the total number
of edges increases to O(m2). Searching such a graph for a new path without disclosing any information about true
and available edges, all paths of length 5 must be considered. For a bipartite graph used in this setting, this can
be accomplished in O(m2) time, which means that constructing the entire flow after O(m) searches will take O(m3)
time.
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defined using simulation argument: the protocol is secure if the view of protocol execution for each
party is computationally indistinguishable from the view simulated using that party’s input and
output only. This means that the protocol execution does not reveal any additional information to
the participants. The definition below formalizes the notion of security for semi-honest participants:

Definition 1 Let parties P1 and P2 engage in a protocol π that computes function f(in1, in2) =
(out1, out2), where ini and outi denote input and output of party Pi, respectively. Let VIEWπ(Pi)
denote the view of participant Pi during the execution of protocol π. More precisely, Pi’s view is
formed by its input, internal random coin tosses ri, and messages m1, . . .,mt passed between the
parties during protocol execution:

VIEWπ(Pi) = (ini, ri,m1, . . .,mt).

We say that protocol π is secure against semi-honest adversaries if for each party Pi there exists a
probabilistic polynomial time simulator Si such that

{Si(ini, f(in1, in2))} ≡ {VIEWπ(Pi), outi},

where “≡” denotes computational indistinguishability.

Homomorphic encryption. Our constructions use a semantically secure additively homomor-
phic encryption scheme. In an additively homomorphic encryption scheme, Enc(m1) · Enc(m2) =
Enc(m1+m2) which also implies that Enc(m)a = Enc(a ·m). While any encryption scheme with the
above properties (such as the well known Paillier encryption scheme [38]) suffices for the purposes
of this work, the construction due to Damg̊ard et al. [12, 11] (DGK) is of particular interest here.

We also note that in Paillier encryption scheme, a public key consists of a k-bit RSA modulus
N = pq, where p and q are prime, and an element g whose order is a multiple of N in Z

∗

N2 . Given

a message m ∈ ZN , encryption is performed as Enc(m) = gmrn mod N2, where r
R
← ZN and

notation a
R
← A means that a is chosen uniformly at random from the set A. In DGK encryption

scheme [12, 11], which was designed to work with small plaintext spaces and has shorter ciphertext
size than other randomized encryption schemes, a public key consists of (i) a (small, possibly prime)
integer u that defines the plaintext space, (ii) k-bit RSA modulus N = pq such that p and q are
k/2-bit primes, vp and vq are t-bit primes, and uvp|(p − 1) and uvq|(q − 1), and (iii) elements
g, h ∈ Z

∗

N such that g has order uvpvq and h has order vpvq. Given a message m ∈ Zu, encryption

is performed as Enc(m) = gmhr mod N , where r
R
← {0, 1}2.5t. We refer the reader to the original

publications [38] and [12, 11], respectively, for any additional information.

Garbled circuit evaluation. Originated in Yao’s work [44], garbled circuit evaluation allows
two parties to securely evaluate any function represented as a boolean circuit. The basic idea is
that, given a circuit composed of gates, one party P1 creates a garbled circuit by assigning to
each wire two randomly chosen keys. P1 also encodes gate information in a way that given keys
corresponding to the input wires (encoding specific inputs), the key corresponding to the output of
the gate on those inputs can be recovered. The second party, P2, evaluates the circuit using keys
corresponding to inputs of both P1 and P2 (without learning anything in the process). At the end,
the result of the computation can be recovered by linking the output keys to the bits which they
encode.

Recent literature provides optimizations that reduce computation and communication overhead
associated with circuit construction and evaluation. Kolesnikov and Schneider [32] describe an
optimization that permits XOR gates to be evaluated for free, i.e., there is no communication
overhead associated with such gates and their evaluation does no involve cryptographic functions.
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This optimization is possible when the hash function used for creating garbled gates can be assumed
to be correlation robust (see [33, 32] for more detail). Under the same assumptions, Pinkas et
al. [39] additionally give a mechanism for reducing communication complexity of binary gates by
25%: now each gate can be specified by encoding only three outcomes of the gate instead of all
four. Finally, Kolesnikov et al. [31] improve the complexity of certain commonly used operations
such as addition, multiplication, comparison, etc. by reducing the number of non-XOR gates:
adding two n-bit integers requires 5n gates, n of which are non-XOR gates; comparing two n-bit
integers requires 4n gates, n of which are non-XOR gates; and computing the minimum of t n-bit
integers (without the location of the minimum value) requires 7n(t − 1) gates, 2n(t − 1) of which
are non-XOR gates.

With the above techniques, evaluating a non-XOR gates involves one invocation of the hash
function (which is assumed to be correlation robust). During garbled circuit evaluation, P2 directly
obtains keys corresponding to P1’s inputs from P1 and engages in the oblivious transfer (OT)
protocol to obtain keys corresponding to P2’s inputs.

Oblivious Transfer. In 1-out-of-2 Oblivious Transfer, OT 2
1 , one party, the sender, has as

its input two strings m0,m1 and another party, the receiver, has as its input a bit b. At the
end of the protocol, the receiver learns mb and the sender learns nothing. Similarly, in 1-out-
of-N OT the receiver obtains one of the N strings held by the sender. There is a rich body of
research literature on OT, and in this work we use its efficient implementation from [36] as well as
techniques from [27] that reduce a large number of OT protocol executions to κ of them, where κ
is the security parameter. This, in particular, means that obtaining the keys corresponding to P2’s
inputs in garbled circuit evaluation by P2 incurs only small overhead.

4 Secure Iris Identification

4.1 Structural Optimization of the Computation

As indicated in equation 1, computing the distance between two iris codes involves performing
the division operation. While techniques for carrying out this operation using secure multi-party
computation are known (see, e.g., [1, 8, 6, 9]), their performance in practice even using very
recent results is far from satisfactory for this application As an example, [5] reports that two-party
evaluation of garbled circuits produced by Fairplay takes several seconds for numbers of length
24–28 bits, but circuits for longer integers could not be constructed due to the rapidly increasing
memory requirements of Fairplay. [22] reports that building a multi-party division protocol using
homomorphic encryption alone requires on the order of an hour to carry out the operation for
32-bit integers. Fortunately, in our case the computation can be rewritten to completely avoid this
operation and replace it with multiplication. That is, using the notation

HD(X,Y ) = ||(X ⊕ Y ) ∩M(X) ∩M(Y )|| / ||M(X) ∩M(Y )|| = D(X,Y ) /M(X,Y ),

instead of testing whether HD(X,Y )
?
< T , we can test whether D(X,Y )

?
< T ·M(X,Y ). While the

computation of the minimum distance as used in equation 2 is no longer possible, we can replace
it with equivalent computation that does not increase its cost. Now the computation becomes:

D(X, LSc(Y ))
?
< T ·M(X, LSc(Y )) ∨ · · · ∨D(X,RSc(Y ))

?
< T ·M(X,RSc(Y )) (5)

When this computation is carried over real numbers, T lies in the range [0, 1]. In our case, we need
to carry the computation over the integers, which means that we “scale up” all values with the
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desired level of precision. That is, by using ℓ bits to achieve desired precision, we multiply D(X,Y )
by 2ℓ and let T range between 0 and 2ℓ. Now 2ℓD(X,Y ) and T ·M(X,Y ) can be represented using
⌈logm⌉+ ℓ bits.

4.2 Base Protocol

In what follows, we first describe the protocol in its simplest form. Section 4.3 presents optimizations
and the resulting performance of the protocol.

In our solution, the client C generates a public-private key pair (pk, sk) for a homomorphic
encryption scheme and distributes the public key pk. This is a one-time setup cost for the client
for all possible invocations of this protocol with any number of servers. During the protocol
itself, the secure computation proceeds as specified in equation 5. In the beginning, C sends its
inputs encrypted with pk to the server S. At the server side, the computation first proceeds using
homomorphic encryption, but later the client and the server convert the intermediate result into a
split form and finish the computation using garbled circuit evaluation. This is due to the fact that
secure two-party computation of the comparison is the fastest using garbled circuit evaluation [31],
but the rest of the computation in our case is best performed on encrypted values.

To compute D(X,Y ) =
∑m

i=1(Xi ⊕ Yi) ∧M(Xi) ∧M(Yi) using algebraic computation, we use
Xi ⊕ Yi = Xi(1− Yi) + (1−Xi)Yi and obtain:

D(X,Y ) =

m
∑

i=1

(Xi(1− Yi) + (1−Xi)Yi)M(Xi)M(Yi).

M(X,Y ) is computed as
∑m

i=1 M(Xi)M(Yi). Then if S obtains encryptions of XiM(Xi), (1 −
Xi)M(Xi), and M(Xi) for each i from C, the server will be able to compute D(X,Y ) and M(X,Y )
using its knowledge of the Yi’s and the homomorphic properties of the encryption. Figure 1 describes
the protocol, in which after receiving C’s encrypted values S produces Enc(M(Xi))’s and proceeds
to compute D(X,Y j) and M(X,Y j) in parallel for each Y in its database, where Y j denotes
biometric Y shifted by j positions and j ranges from −c to c. At the end of steps 3(a).i and
3(a).ii the server obtains Enc(2ℓD(X,Y j) + rjS) for a randomly chosen rjS of its choice, and at the

end of step 3(a).iii S obtains Enc(T ·M(X,Y j) + tjS) for a random tjS of its choice. The server
sends these values to the client who decrypts them. Therefore, at the end of step 3(a) C holds
rjC = 2ℓD(X,Y j) + rjS and tjC = T ·M(X,Y j) + tjS and S holds −rjS and −tjC , i.e., they additively
share 2ℓD(X,Y j) and T ·M(X,Y j).

What remains to compute is 2c+1 comparisons (one per each Y j) followed by 2c OR operations
as specified by equation 5. This is accomplished using garbled circuit evaluation, where C enters
rjC ’s and tjC ’s and S enters rjS ’s and tjS ’s and they learn a bit, which indicates whether Y was a
match.

Note that since rjC ’s, r
j
S’s, t

j
C ’s and tjS ’s are used as inputs to the garbled circuit and will need

to be added inside the circuit, we want them to be as small as possible. Therefore, instead of
providing unconditional hiding by choosing tjS and rjC from Z

∗

N (where N is from pk), the protocol
achieves statistical hiding by choosing these random values to be κ bits longer than the values that
they protect, where κ is a security parameter.

4.3 Optimizations

Pre-computation and offline communication. Similar to prior literature on secure biometric
identification [16, 41, 37, 3], we distinguish between offline and online stages, where any computation
and communication that does not depend on the inputs of the participating parties can be moved
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Input: C has biometric X , M(X) and key pair (pk, sk); S has a database D composed of Y , M(Y )
biometrics.
Output: C learns what records in D resulted in match with X if any, i.e., it learns a bit as a result of
comparison of X with each Y ∈ D.
Protocol steps:

1. For each i = 1, . . .,m, C computes encryptions 〈ai1, ai2〉 = 〈Enc(XiM(Xi)),Enc((1 − Xi)M(Xi))〉
and sends them to S.

2. For each i = 1, . . .,m, S computes encryption of M(Xi) by setting ai3 = ai1 · ai2 = Enc(XiM(Xi)) ·
Enc((1−Xi)M(Xi)) = Enc(M(Xi)).

3. For each record Y in the database, S and C perform the following steps in parallel:

(a) For each amount of shift j = −c, . . ., 0, . . ., c, S rotates the bits of Y by the appropriate number
of positions to obtain Y j and proceeds with all Y j ’s in parallel.

i. To compute (Xi⊕Y
j
i )M(Xi)M(Y j

i ) = (Xi(1−Y
j
i )+(1−Xi)Y

j
i )M(Xi)M(Y j

i ) in encrypted

form, S computes bji = a
(1−Y

j
i
)M(Y j

i
)

i1 · a
Y

j
i
M(Y j

i
)

i2 = Enc(XiM(Xi)(1 − Y j
i )M(Y j

i ) + (1 −

Xi)M(Xi)Y
j
i M(Y j

i )).

ii. S adds the values contained in bji ’s to obtain bj =
∏m

i=1 b
j
i = Enc(

∑m

i=1(Xi ⊕

Y j
i )M(Xi)M(Y j

i )) = Enc(||(X ⊕ Y j) ∩M(X) ∩M(Y j)||). S then “lifts up” the result,

blinds, and randomizes it as cj = (bj)2
ℓ

·Enc(rjS), where r
j
S

R
← {0, 1}⌈logm⌉+ℓ+κ, and sends

the resulting cj to C.

iii. To obtain T (||M(X) ∩M(Y j)||), S computes dji = a
M(Y j

i
)

i3 = Enc(M(Xi) ·M(Y j
i )) and

dj = (
∏m

i=1 d
j
i )

T = Enc(T (
∑m

i=1 M(Xi)M(Y j
i ))). S blinds and randomizes the result as

ej = dj · Enc(tjS), where tjS
R
← {0, 1}⌈logm⌉+ℓ+κ, and sends ej to C.

iv. C decrypts the received values and sets rjC = Dec(cj) and tjC = Dec(ej).

(b) C and S perform 2c+ 1 comparisons and OR of the results of the comparisons using garbled
circuit. C enters rjC ’s and tjC ’s, S enters −rjS ’s and −tjS ’s, and C learns bit b computed as
∨c

j=−c((r
j
C − rjS)

?
< (tjC − tjS)). To achieve this, S creates the garbled circuit and sends it to C.

C obtains keys corresponding to its inputs using OT, evaluates the circuit, and S sends to C
the key-value mapping for the output gate.

Figure 1: Secure two-party protocol for iris identification.

to the offline stage. In our protocol, first notice that most modular exponentiations (the most
expensive operation in the encryption scheme) can be precomputed. That is, the client needs to
produce 2m encryptions of bits. Because both m and the average number of 0’s and 1’s in a
biometric and a mask are known, the client can produce a sufficient number of bit encryptions
in advance. In particular, X normally will have 50% of 0’s and 50% of 1’s, while 75% (or a
similar number) of M(X)’s bits are set to 1 and 25% to 0 during biometric processing. Let p0
and p1 (q0 and q1) denote the fraction of 0’s and 1’s in an iris code (resp., its mask), where
p0 + p1 = q0 + q1 = 1. Therefore, to have a sufficient supply of ciphertexts to form tuples 〈ai1, ai2〉,
the client needs to precompute (2q0 + q1(p1 + ε) + q1(p0 + ε))m = (1 + q0 + 2q1ε)m encryptions of
0 and (q1(p1 + ε) + q1(p0 + ε))m = q1(1 + 2ε)m encryptions of 1, where ε is used as a cushion since
the number of 0’s and 1’s in X might not be exactly p0 and p1, respectively. Then at the time of
the protocol the client simply uses the appropriate ciphertexts to form its transmission.

Similarly, the server can precompute a sufficient supply of encryptions of rjS ’s and tjS ’s for all
records. That is, the server needs for produce 2(2c + 1)|D| encryptions of different random values
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of length ⌈logm⌉+ ℓ+ κ, where |D| denotes the size of the database D. The server also generates
one garbled circuit per record Y in its database (for step 3(b) of the protocol) and communicates
the circuits to the client. In addition, the most expensive part of the oblivious transfer can also be
performed during the offline stage, as detailed below.

Optimized multiplication. Server’s computation in steps 3(a).i and 3(a).iii of the protocol can

be significantly lowered as follows. To compute ciphertexts bji , S needs to calculate a
(1−Y

j
i )M(Y j

i )
i1 ·

a
Y

j
i
M(Y j

i
)

i2 . Since the bits Y j
i and M(Y j

i ) are known to S, this computation can be rewritten using
one of the following cases:

• Y j
i = 0 and M(Y j

i ) = 0: in this case both (1 − Y j
i )M(Y j

i ) and Y j
i M(Y j

i ) are zero, which

means that bji should correspond to an encryption of 0 regardless of ai1 and ai2. Instead

of having S create an encryption 0, we set bji to the empty value, i.e., it is not used in the
computation of bj in step 3(a).ii.

• Y j
i = 1 and M(Y j

i ) = 0: the same as above.

• Y j
i = 0 and M(Y j

i ) = 1: in this case (1 − Y j
i )M(Y j

i ) = 1 and Y j
i M(Y j

i ) = 0, which means

that S sets bji = ai1.

• Y j
i = 1 and M(Y j

i ) = 1: in this case (1− Y j
i )M(Y j

i ) = 0 and Y j
i M(Y j

i ) = 1, and S therefore

sets bji = ai2.

The above implies that only q1m ciphertexts bji need to be added in step 3(a).ii to form bj (i.e.,
q1m− 1 modular multiplications to compute the hamming distance between m-element strings).

Similar optimization applies to the computation of dji and dj in step 3(a).iii of the protocol.

That is, when M(Y j
i ) = 0, dji is set to the empty value and is not used in the computation of dj ;

when M(Y j
i ) = 1, S sets dji = ai3. Consequently, q1m ciphertexts are used in computing dj .

To further reduce the number of modular multiplications, we can adopt the idea from [37],
which consists of precomputing all possible combinations for ciphertexts at positions i and i + 1
and reducing the number of modular multiplications used during processing a database record in
half. In our case, the value of bji b

j
i+1 requires computation only when M(Y j

i ) = M(Y j
i+1) = 1.

In this case, computing ai1a(i+1)1, ai1a(i+1)2, ai2a(i+1)1, and ai2a(i+1)2, for each odd i between
1 and m − 1 will cover all possibilities. Note that these values need to be computed once for
all possible shift amounts of the biometrics (since only server’s Y ’s are shifted). Depending on
the distribution of the set bits in each M(Y ), the number of modular multiplication now will
be between q1m/2 (when M(Yi) = M(Yi+1) for each odd i) and m(q0 + (1 − 2q0)/2) = m/2
(when M(Yi) 6= M(Yi+1) for as many odd i’s as possible). This approach can be also applied
to the computation of dj (where only the value of ai3a(i+1)3 needs to be precomputed for each
odd i) resulting in the same computational savings during computation of the hamming distance.
Furthermore, by precomputing the combinations of more than two values additional savings can
be achieved during processing of each Y .

Optimized encryption scheme. As it is clear from the protocol description, its performance
crucially relies on the performance of the underlying homomorphic encryption scheme for encryp-
tion, addition of two encrypted values, and decryption. Instead of utilizing a general purpose
encryption scheme such as Paillier, we turn our attention to schemes of restricted functionality
which promise to offer improved efficiency. In particular, the DGK additively homomorphic en-
cryption scheme [12, 11] was developed to be used for secure comparison, where each ciphertext
encrypts a bit. In that setting, it has faster encryption and decryption time than Paillier and each
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ciphertext has size k using a k-bit RSA modulus (while Paillier ciphertext has size 2k). To be
suitable for our application, the encryption scheme needs to support larger plaintext sizes. The
DGK scheme can be modified to work with longer plaintexts. In that case, at decryption time, one
needs to additionally solve the discrete logarithm problem where the base is 2-smooth using Pohlig-
Hellman algorithm. This means that decryption uses additional O(n) modular multiplications for
n-bit plaintexts. Now recall that in the protocol we encrypt messages of length ⌈logm⌉ + ℓ + κ
bits. The use of the security parameter κ significantly increases the length of the plaintexts. We,
however, notice that the DGK encryption can be setup to permit arithmetic on encrypted values
such that all computations on the underlying plaintexts are carried modulo 2n for any n. For
our protocol it implies that (i) the blinding values rjS and tjS can now be chosen from the range
[0, 2n−1], where n = ⌈logm⌉+ℓ, and (ii) this provides information-theoretic hiding (thus improving
the security properties of the protocol). This observation has a profound impact not only on the
client decryption time in step 3(a).iv (which decreases by about an order of magnitude), but also
on the consecutive garbled circuit evaluation, where likewise the circuit size is significantly reduced
in size.

Circuit construction. We construct garbled circuits using the most efficient techniques from [39]
and references therein. By performing addition modulo 2n and eliminating gates which have a
constant value as one of their inputs, we reduce the complexity of the circuit for addition to n− 1
non-XOR gates and 5(n − 1) − 1 total gates. Similarly, after eliminating gates with one constant
input, the complexity of the circuit for comparison of n-bit values becomes n non-XOR gates
and 4n − 2 gates overall. Since in the protocol there are two additions and one comparison per
each j followed by 2c OR gates, the size of the overall circuit is 14(n − 1)(2c + 1) + 2c gates,
(3n− 2)(2c+1)+2c of which are non-XOR gates. Note that this circuit does not use multiplexers,
which are required (and add complexity) during direct computation of minimum.

Oblivious transfer. The above circuit requires each party to supply 2n(2c+1) input bits, and a
new circuit is used for each Y in D. Similar to [21], the combination of techniques from [27] and [36]
achieves the best performance in our case. Let the server create each circuit and the client evaluate
them. Using the results of [27], performing OT 2

1 the total of 2n(2c+ 1)|D| times, where the client
receives a κ-bit string as a result of each OT for a a security parameter κ, can be reduced to κ
invocations of OT 2

1 (that communicates to the receiver κ-bit strings) at the cost of 4κ·2n(2n+1)|D|
bits of communication and 4n(2c+1) applications of a hash function for the sender and 2n(2c+1)
applications for the receiver. Then κ OT 2

1 protocols can be implemented using the construction
of [36] with low amortized complexity, where the sender performs 2+κ and the receiver performs 2κ
modular exponentiations with the communication of 2κ2 bits and κ public keys. The OT protocols
can be performed during the offline stage, while the additional communication takes place once the
inputs are known.

Further reducing online communication. If transmitting 2m ciphertexts during the online
stage of the protocol (which amounts to a few hundred KB for our set of parameters) constitutes a
burden, this communication can be performed at the offline stage before the protocol begins. This
can be achieved using the technique of [37], where the client transmits 2m encryptions of randomly
chosen bits u1, . . ., u2m during the offline stage, and the online communication consists of 2m bits
v1, . . ., v2m. Each bit vi corresponds to the XOR of the bit wi that the client wants to use in the
protocol with the previously communicated random bit ui. After receiving the 2m-bit correction
string w1⊕u1, . . ., w2m⊕u2m, the server needs to compute encryption of wi’s using Enc(ui) and vi,
which is done by XORing ui and vi inside the encryption. Using ui⊕ vi = ui(1− vi) + (1− ui)vi =
ui+vi−2uivi, we see that when vi = 0, the server can simply set Enc(wi) = Enc(ui), but when vi = 1,
the server will need to perform subtraction of (encrypted) ui. While subtraction is usually one of the

12



most expensive operations, note that because of our use of DGK encryption with short plaintexts
the subtraction operations can be performed on a ciphertext significantly faster than using generic
full-domain encryption schemes such as Paillier. The speed up is on the order of k/n ≈ 50, where
k ≥ 1024 is the security parameter for a public-key encryption scheme and n = ⌈logm⌉ + ℓ = 20
is the length of the values we operate on. Furthermore, this entire computation can be completely
removed from the online stage if, upon the receipt of Enc(ui), the server computes Enc(1 − ui)
during the offline stage. Then when the protocol begins, the server sets either Enc(wi) = Enc(ui)
or Enc(wi) = Enc(1− ui) depending on the bit vi it receives.

4.4 Security Analysis

Security of the iris protocol relies on the security of the underlying building blocks. In particular,
we need to assume that (i) the DGK encryption scheme is semantically secure (which was shown
under a hardness assumption that uses subgroups of an RSA modulus [12, 11]); (ii) garbled circuit
evaluation is secure (which was shown assuming that the hash function is correlation robust [32],
or if it is modeled as a random oracle); and (iii) the oblivious transfer is secure as well (to achieve
this, techniques of [27] require the hash function to be correlation robust and the use of a pseudo-
random number generator, while techniques of [36] model the hash functions as a random oracle
and use the computational Diffie-Hellman (CDH) assumption). Therefore, assuming the security
of the DGK encryption, CDH, and using the random oracle model for hash functions is sufficient
for our solution.

To show the security of the protocol, we sketch how to simulate the view of each party using
its inputs and outputs alone. If such simulation is indistinguishable from the real execution of
the protocol, for semi-honest parties this implies that the protocol does not reveal any unintended
information to the participants (i.e., they learn only the output and what can be deduced from
their respective inputs and outputs).

First, consider the client C. The client’s input consists of its biometric X, M(X) and the
private key, and its outputs consists of a bit b for each record in S’s database D. A simulator that
is given these values simulates C’s view by sending encrypted bits of C’s input to the server as
prescribed in step 1 of the protocol. It then simulates the messages received by the client in step
3(a).iii using encryptions of two randomly chosen strings rjC and tjC of length n. The simulator next

creates a garbled circuit for the computation given in step 3(b) that, on input client’s rjC ’s and tjC ’s
computes bit b, sends the circuit to the client, and simulates the OT. It is clear that given secure
implementation of garbled circuit evaluation in the real protocol, the client cannot distinguish
simulation from real protocol execution. Furthermore, the values that C recovers in step 3(a).iv of
the protocol are distributed identically to the values used in the real protocol execution that uses
DGK encryption (and they are statistically indistinguishable when other encryption schemes are
used).

Now consider the server’s view. The server has its database D consisting of Y , M(Y ) and the
threshold T as the input and no output. In this case, a simulator with access to D first sends to S
ciphertexts (as in step 1 of the protocol) that encrypt bits of its choice. For each Y ∈ D, S performs
its computation in step 3(a) of the protocol and forms garbled circuits as specified in step 3(b).
The server and the simulator engage in the OT protocol, where the simulator uses arbitrary bits
as its input to the OT protocol and the server sends the key-value mapping for the output gate. It
is clear that the server cannot distinguish the above interaction from the real protocol execution.
In particular, due to semantic security of the encryption scheme S learns no information about the
encrypted values and due to security of OT S learns no information about the values chosen by
the simulator for the garbled circuit.
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Offline
Setup enc circuit total
c = 5 1398 msec + 71 msec/rec 1780 msec + 8.5 msec/rec 3178 msec + 79.5 msec/rec

Server c = 0 1398 msec + 6.5 msec/rec 1457 msec + 0.75 msec/rec 2855 msec + 7.25 msec/rec
c = 5 with [38] 131.37 sec + 780 msec/rec 1780 msec + 8.5 msec/rec 131.37 sec + 993.5 msec/rec

c = 5 11.93 sec 1693 msec + 3.39 msec/rec 13.62 sec + 3.39 msec/rec
Client c = 0 11.93 sec 1055 msec + 0.34 msec/rec 12.99 sec + 0.34 msec/rec

c = 5 with [38] 161.37 sec 1693 msec + 3.39 msec/rec 163.06 sec + 3.39 msec/rec
c = 5 512KB 11.6KB + 22.1KB/rec 524KB + 22.1KB/rec

Comm c = 0 512KB 11.6KB + 2KB/rec 524KB + 2KB/rec
c = 5 with [38] 1024KB 11.6KB + 22.1KB/rec 1036KB + 22.1KB/rec

Online
Setup enc circuit total
c = 5 108 msec + 148 msec/rec 1.25 msec/rec 89 msec + 149.25 msec/rec

Server c = 0 108 msec + 13.6 msec/rec 0.11 msec/rec 89 msec + 13.71 msec/rec
c = 5 with [38] 427 msec + 586 msec/rec 1.25 msec/rec 427 msec + 587.25 msec/rec

c = 5 20 msec/rec 2.61 msec/rec 22.61 msec/rec
Client c = 0 1.8 msec/rec 0.22 msec/rec 2.02 msec/rec

c = 5 with [38] 197 msec/rec 2.61 msec/rec 199.61 msec/rec
c = 5 0.5 KB + 2.7 KB/rec 17.2 KB/rec 0.5 KB + 19.9 KB/rec

Comm c = 0 0.5 KB + 0.2 KB/rec 1.6 KB/rec 0.5 KB + 1.8 KB/rec
c = 5 with [38] 0.5 KB + 5.5 KB/rec 17.2 KB/rec 0.5 KB + 22.7 KB/rec

Table 1: Breakdown of the performance of the iris identification protocol.

4.5 Implementation and Performance

We implemented the secure iris identification protocol in C using MIRACL library [25] for cryp-
tographic operations. The implementation used DGK encryption scheme [12, 11] with a 1024-bit
modulus and another security parameter t set to 160, as suggested in [12, 11]. To illustrate the
advantage of the tools we utilize, we also run selected experiments using Paillier encryption [38].
The Paillier encryption scheme was implemented using a 1024-bit modulus and a number of op-
timizations suggested in [38] for best performance. In particular, small generator g = 2 was used
to achieve lower encryption time, and decryption is sped up using precomputation and Chinese
remainder computation (see [38], section 7 for more detail). To simplify comparisons with prior
work, throughout this work we use k = 1024 security parameter for public-key cryptography and
κ = 80 for symmetric and statistical security. The experiments were run on an Intel Core 2 Duo
2.13 GHz machine running Linux (kernel 2.6.35) with 3GB of RAM and gcc version 4.4.5.

Table 1 shows performance of the secure iris identification protocol and its components. The
performance was obtained using the following set of parameters: the size of iris code and mask
m = 2048 (this value of m is used in commercial iris recognition software), 75% of bits are reliable
in each iris code, and the length n of values is 20 bits. All optimizations described earlier in
this section were implemented. In our implementation, upon receipt of client’s data, the server
precomputes all combinations for pairs of ciphertexts bibi+1 in step 3(a).ii (one-time cost of the
total of 4(m/2) modular multiplications) and all combinations of 4 elements didi+1di+2di+3 in
step 3(a).iii (one-time cost of 11(m/4) modular multiplications). This cuts the server’s time for
processing each Y by more than a half. Furthermore, the constant overhead associated with the
OT (circuit) can be reduced in terms of both communication and computation for both parties if
public-key operations are implemented over elliptic curves.
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The table shows performance using three different configurations: (i) the amount of rotation
c was set to 5, (ii) no rotation was used by setting c = 0 (this is used when the images are well
aligned, which is the case for iris biometrics collected at our institution), and (iii) with c = 5
using Paillier encryption [38] instead of DGK scheme. In the table, we divide the computation and
communication into offline precomputation and online protocol execution. No inputs are assumed
to be known by any party at precomputation time. All times are shown in seconds (or fraction,
where specified) and communication is shown in KB. Some of the overhead depends on the server’s
database size, in which case the computation and communication are indicated per record (using
notation “/rec”). The overhead associated with the part of the protocol that uses homomorphic
encryption is shown separately from the overhead associated with garbled circuits. The offline and
online computation for the part based on homomorphic encryption is computed as described in
Section 4.3. For circuits, garbled circuit creation, communication, and some of OT is performed at
the offline stage, while the rest of OT (as described in Section 4.3) and garbled circuit evaluation
takes place during the online protocol execution.

It is evident that our protocol design and optimizations allow us to achieve notable performance.
In particular, comparison of two iris codes, which includes computation of 2(2c+1) = 22 Hamming
distances over 2048-bit biometrics in encrypted form, is done in 0.15 sec. This is noticeably lower
than 0.3 sec online time per record reported by the best currently known face recognition protocol
SCiFI [37], which computes a single Hamming distance over 900-bit values. That is, despite an
order of magnitude larger number of operations and more complex operations such as division,
computation of minimum, etc., we are able to outperform prior work by roughly 50%. This in
particular implies that using the techniques suggested in this work (and DGK encryption scheme
in particular) performance of SCiFI and other existing protocols can be improved to a fraction of
the previously reported time. When iris images are well aligned and no rotation is necessary our
protocol requires only 14 msec online computation time and under 2KB of data to compare two
biometrics.

5 Secure Fingerprint Identification

Before proceeding with the novel protocol for fingerprint identification based on minutiae pairing,
we first illustrate how a number of the techniques developed in this work for iris identification can
be applied to other types of biometric computations such as FingerCodes. In particular, we show
that the efficiency of the secure protocol for FingerCode identification [3] can be improved by an
order of magnitude.

5.1 FingerCode Identification

The computation involved in FingerCode comparisons is very simple, which results in an extremely
efficient privacy-preserving realization. Similar to [3], we rewrite the computation in equation 4 as
∑m

i=1(xi−yi)
2 =

∑m
i=1(xi)

2+
∑m

i=1(yi)
2−

∑m
i=1 2xiyi < T 2. In our protocol, the Euclidean distance

is computed using homomorphic encryption, while the comparisons are performed using garbled
circuits. The secure FingerCode protocol is given in Figure 2: the client contributes encryptions of
−2xi and

∑

(xi)
2 to the computation, while the server contributes

∑

(yi)
2 and computes encryption

of −2xiyi from −2xi. Note that by using Enc(−2xi) instead of Enc(xi), the server’s work for each
Y is reduced since negative values use significantly longer representations. The protocol in Figure 2
uses DGK encryption with the plaintext space of [0, 2n − 1]. To be able to represent the Euclidean
distance, we need to set n = ⌈logm⌉+ 2ℓ+ 1, where ℓ is the bitlength of elements xi and yi. This
implies that all computation on plaintexts is performed modulo 2n; for instance, 2n− 2xi is used in
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Input: C has biometric X = (x1, . . ., xm) and DGK encryption key pair (pk, sk); S has a database D
composed of biometrics Y = (y1, . . ., ym).
Output: C learns what records in D resulted in match with X if any, i.e., it learns a bit as a result of
comparison of X with each Y ∈ D.
Protocol steps:

1. C computes and sends to S encryptions Enc(−2x1), . . .,Enc(−2xm),Enc(
∑m

i=1 x
2
i ).

2. For each Y = (y1, . . ., ym) ∈ D, S and C perform in parallel:

(a) S computes the encrypted distance d between X and Y as d = Enc(
∑m

i=1 x
2
i ) · Enc(

∑m

i=1 y
2
i ) ·

∏m

i=1 Enc(−2xi)
yi = Enc(

∑m

i=1(xi − yi)
2), blinds it as d′ = d · Enc(rS), where rS

R
← {0, 1}n,

and sends d′ to C.

(b) C decrypts the value it receives and sets rC = Dec(d′).

(c) C and S engage in a secure protocol that computes ((rC − rS) mod 2n)
?
< T 2 using garbled

circuit evaluation. S creates the circuit and sends it to C along with the key-value mapping
for the output gate. C obtains keys corresponding to its inputs from S using OT, evaluates
the circuit, and learns the result.

Figure 2: Secure two-party protocol for FingerCode identification.

step 1 to form Enc(−2xi). The circuit used in step 2(c) takes two n-bit values, adds them modulo
2n, and compares the result to a constant as described in Section 4.3.

Finally, some of the computation can be performed offline: for the client it includes precomput-
ing the random values used in the m+1 ciphertexts it sends in step 1 (computation of hr mod N),
and for the server includes precomputing Enc(rS) and preparing a garbled circuit for each Y , as well
as one-time computation of random values for Enc(

∑m
i=1(yi)

2) since the reuse of such randomness
does not affect security. The client and the server also perform some of OT functionality prior to
protocol initiation.

In the FingerCode protocol of [3], each fingerprint in the server’s database is represented by c
FingerCodes that correspond to different orientations of the same fingerprint, which improves the
accuracy of matching. The protocol of [3], however, reports all matches within the c FingerCodes
corresponding to the same fingerprint, and this is what our protocol in Figure 2 computes. If it
is desirable to output only a single bit for all c instances of a fingerprint, it is easy to modify the
circuit evaluated in step 2(c) of the protocol to compute the OR of the bits produced by the original
c circuits.

Security. The security of this protocol is straightforward to show and we omit the details of
the simulator from the current description. As before, by using only tools known to be secure
and protecting the information at intermediate stages, neither the client nor the server learns
information beyond what the protocol prescribes.

Implementation and performance. The FingerCode parameters can range as m = 16–640,
ℓ = 4–8, and c = 5. We implement the protocol using parameters m = 16 and ℓ = 7 (the same as
in [3]) and therefore n = 19. The performance of our secure FingerCode identification protocol is
given in Table 2. No inputs (X or Y ) are assumed to be known at the offline stage when the parties
compute randomization values of the ciphertexts. For that reason, a small fixed cost is inquired in
the beginning of the protocol to finish forming the ciphertext using the data itself. We also note
that, based on our additional experiments, by using Paillier encryption instead of DGK encryption,
the server’s online work increases by an order of magnitude, even if packing is used.

It is evident that the overhead reported in the table is minimal and the protocol is well suited
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Offline
enc circuit total

Server 3.6 msec + 3.9 msec/rec 1448 msec + 0.37 msec/rec 1451.6 msec + 4.3 msec/rec
Client 61 msec 1025 msec + 0.15 msec/rec 1086 msec + 0.15 msec/rec
Comm 0 11.6 KB + 1.26 KB/rec 11.6 KB + 1.26 KB/rec

Online
enc circuit total

Server 0.22 msec + 1.37 msec/rec 0.05 msec/rec 0.22 msec + 1.42 msec/rec
Client 4.7 msec + 0.92 msec/rec 0.16 msec/rec 4.7 msec + 1.08 msec/rec
Comm 2.12 KB + 0.12 KB/rec 0.74 KB/rec 2.12 KB + 0.86 KB/rec

Table 2: Breakdown of the performance of the FingerCode identification protocol.

for processing fingerprint data in real time. In particular, for a database of 320 records used in prior
work (64 fingerprints with 5 FingerCodes each used in [3]), client’s online work is 0.35 sec and the
server’s online work is 0.45 sec, with online communication of 277KB. As can be seen from these
results, computation is no longer the bottleneck and this secure two-party protocol can be carried
out extremely efficiently. Compared to the solution in [3] that took 16 sec for the online stage with
the same setup, the computation speed up is by a factor of 35. Communication efficiency, however,
is what was specifically emphasized in the protocol of [3] resulting in 10101KB online overhead for
a database of size 320. Our solution therefore improves such result by a factor of 35. We also would
like to note that all offline work in [3] is for ciphertext precomputation (since no garbled circuits
are used) and is non-interactive, while in our protocol circuit transmission and input-independent
portions of OT can be done prior to the protocol itself and involve interaction. We, however, note
that the overall (offline and online) computation for |D| = 320 is 1.48 sec for the client and 3.27
sec for the server with the total of 692KB communication, which is still at least several times lower
than the online portion of the time and communication in [3].

Comparison with [41]. Privacy-preserving face recognition techniques by Sadeghi et al. [41] can
also be adapted to perform secure FingerCode comparisons. Even though they were developed for
different applications, they present some analogies with our approach. In particular, they involve
computing Euclidean distances using homomorphic encryption, followed by garbled circuits-based
comparisons of the results. Although at the high-level the techniques are similar, the optimizations
employed in this work allow us to achieve superior performance. For the distance computation, [41]
reports runtime of 6.08 sec for the client and 0.47 sec for the server for a database of 320 records;
distance computation in our protocol (including precomputation) is 0.36 sec for the client and 1.69
sec for the server for the same database size. In [41] the number of dimensions is m = 12, while we
have m = 16, but the length of values is n = 50 in [41], and n = 19 in our tests. The computation
itself in [41] is more expensive (including interaction between the parties, which we do not have)
due to the need to transform client’s data, but [41] uses faster machines.

We performed additional experiments, in which we adapted the solution of Sadeghi et al. to
carry out FingerCode computation and implemented it. These experiments show that our tech-
nique is several times faster than that of Sadeghi et al. while requiring a comparable amount of
communication bandwidth.

5.2 Minutiae-based Fingerprint Identification

Our secure protocol for minutiae-based fingerprint identification preserves the high-level idea of
using homomorphic encryption for computing the distance between minutia points and garbled
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circuit evaluation for comparisons, but introduces a number of new techniques. At high-level,
computing the pairing between minutiae of fingerprints X = 〈(x1, y1, α1), . . ., (xmX

, ymX
, αmX

)〉
and Y = 〈(x′1, y

′

1, α
′

1), . . ., (x
′

mY
, y′mY

, α′

mY
)〉 based on minimum distances proceeds in iterations as

follows. C and S maintain an mY -bit array M , the i-th bit of which indicates whether minutia Yi

has been marked or not. Initially, all bits of M are set to 0. For i = 1, . . .,mX , perform:

1. Compute the set S of minutiae from Y matching Xi that have not been marked, i.e., S =
{Yj | mm(Xi, Yj) and M [j] = 0}.

2. Compute the minutia Yk (if any) from S with the minimum (spatial) distance from Xi and
set M [k] = 1.

To preserve secrecy of the data, each bit of the array M is maintained by C and S in XOR-split
form, i.e., C stores MC [i] and S stores MS [i] such that M [i] = MC [i]⊕MS [i]. During each iteration
of the computation, at the end of step 2 above, C and S obtain XOR-shares of an array A that has
bit k set to 1 and all other bits set to 0 (or all bits set to 1 if no pairing for Xi exists). Both C and
S update their share of M by XORing the share of A that they received with the current share of
M . This ensures that the array M is properly maintained.

In the beginning of the protocol the client sends information about its fingerprint X . For best
performance, we utilize DGK encryption with two pairs of keys. The first pair (pk1, sk1) is used
for encrypting spatial coordinates xi, yi and computing Euclidean distance between points, and the
second pair (pk2, sk2) is used for encrypting directional information αi and directional difference.
Therefore, we set u = 22ℓ+2 in pk1, where ℓ is the bitlength of coordinates xi, yi, and u = 360
in pk2. This implies that computing α′

j − αi on encrypted values will automatically result in the
value being reduced modulo 360, which simplifies computation with the directional difference in
this form. Also note that, while decryption in the DGK encryption scheme involves solving the
discrete logarithm, when u = 360 this can be achieved at low cost using Pohlig-Hellman algorithm
because 360 has only small factors.

Our secure fingerprint identification protocol is given in Figure 3. At iteration i, after computing
the distances in encrypted form (step 2(b).i) and decrypting them in a split form (step 2(b).ii), the
parties engage in garbled circuit evaluation using a circuit that performs the main computation and
produces an mY -bit vector A with at most one bit set to one indicating the position of the mate
of minutia Xi. This (optimized) circuit is the most involved part of the protocol and is discussed
in detail below. At the end of each iteration the vector M is updated with the output of the
circuit, and after all iterations have been performed the rest of the protocol consists of counting the
number of marked elements in M comparing that number to the threshold T . This is done using
an additional garbled circuit, where the client learns the output bit.

Note that the protocol requires that both parties know the number of minutiae in client’s
X and server’s Y s, which is assumed not to leak information about the fingerprints themselves.
While biometric images of similar quality are expected to have similar numbers of minutiae, if
for the purposes of this computation mX and mY are considered to be sensitive information, the
fingerprints can be slightly padded to always use the same number m of minutia points. This can
achieved by agreeing on a fixed m and inserting fake elements into each fingerprint until its size
becomes m. The fake elements should not affect the result of the computation, which means that
the fake elements of client’s X should be matching either original or fake elements of any Y . The
easiest way to ensure this is by setting fake xi in X to its maximum value plus d0 and by setting
fake x′j in each Y to its maximum value plus 2d0.

We design the circuit evaluation in step 2(b).iii of the protocol to minimize the number of
comparisons. In particular, each directional difference α′

j − αi is compared to the threshold α0 in
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Input: C has biometric X = 〈(x1, y1, α1), . . ., (xmX
, ymX

, αmX
)〉 and DGK encryption key pairs (pk1, sk1)

and (pk2, sk2); S has a database D composed of biometrics Y = 〈(x′
1, y

′
1, α

′
1), . . ., (x

′
mY

, y′mY
, α′

mY
)〉.

Output: C learns what records in D resulted in match with X if any, i.e., it learns a bit as a result of
comparison of X with each Y ∈ D.
Protocol steps:

1. C computes encryptions 〈ai1, ai2, ai3, ai4〉 = 〈Encpk1(−2xi),Encpk1
(−2yi),Encpk1

(x2
i + y2i ),

Encpk2
(−αi)〉 for each i = 1, . . .,mX and sends them to S.

2. For each Y = 〈(x′
1, y

′
1, α

′
1), . . ., (x

′
mY

, y′mY
, α′

mY
)〉 ∈ D, S and C perform in parallel:

(a) S and C setup mY -bit vector M , where initially S’s and C’s shares MS and MC , respectively,
are set to all 0’s.

(b) For i = 1, . . .,mX S and C perform the following computation:

i. S computes the encrypted spatial distance sj between Xi and each Yj in Y as sj =

(ai1)
x′

j ·(ai2)
y′

j ·ai3 ·Encpk1
((x′

j)
2+(y′j)

2) and encrypted directional distance as dj = (ai4)
α′

j .

S blinds all pairs as s′j = sj · Enc(r
j
S), where rjS

R
← {0, 1}2ℓ+2 and d′j = dj · Enc(t

j
S) where

tjS
R
← Z360 and sends s′j , d

′
j to C.

ii. C decrypts received pairs for all j = 1, . . .,mY and sets rjC = Decsk1
(s′j) and tjC =

Decsk2
(d′j).

iii. C and S engage in garbled circuit evaluation, where S inputs the bits ofMS and −rjS ( mod

22ℓ+2),−tjS (mod 360) for j = 1, . . .,mY , C inputs the bits of MC and rjC , t
j
C for j =

1, . . .,mY , S learns mY -bit AS , and C learns mY -bit AC . The vector A = AS ⊕ AC has
at most one bit set which indicates the index of the mate of minutia Xi in Y .

iv. S updates its MS as MS = MS ⊕AS , and C updates its MC as MC = MC ⊕AC .

(c) C and S engage in the garbled circuit evaluation where, on input MS from S and MC from C,

C learns the bit corresponding to the computation ||MS ⊕MS||
?
< T .

Figure 3: Secure two-party protocol for minutiae-based fingerprint identification.

the beginning, and if it exceeds the threshold, the corresponding distance between Xi and Yj is
modified so that it will not be chosen as the minimum. This is done by prepending the resulting
bit of computation ((α′

j − αi) ≥ α0) ∧ ((α′

j − αi) ≤ (360 − α0)) to the spatial distance between Xi

and Yj (as the most significant bit). The same technique is used to ensure that marked minutiae
from Y is not selected as well. What remains to compute is to verify what spatial distances fall
below the threshold and computing the minimum of such values. In the (oblivious) garbled circuit,
instead of first comparing each distance to the threshold and then computing the minimum of
(possibly modified) distances, we directly compute the minimum and then compare the minimum
to the threshold. This reduces the number of distance comparisons from 2mY − 1 to mY . The two
previously prepended bits are preserved throughout comparisons, and the final result will have no
mate for Xi selected if the computed minimum (squared) distance is not below the threshold (d0)

2.
Both the computation of the minimum and creation of vector A require the use of multiplexers in

the circuit. In particular, after comparing two values a1 and a2 one type of multiplexer used in our
circuit chooses either the bits of a1 or a2 based on the resulting bit of the comparison. This permits
the computation of the minimum in a hierarchical manner using a small number of non-XOR gates
as described in [31]. We also use multiplexers to collect information about A throughout the circuit.
In particular, after a single comparison of distances a1 and a2, the portion of A corresponding to
these two bits will be chosen to be either 01 or 10. Suppose that after comparing a1 and a2 this
value is 01 and after comparing a3 and a4 the value is 10. Then after performing the comparison
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MS[j]MC [j] −tjS −rjS

add

≥ 360?

≥ α0? ≥ 360− α0?

subtract

add mod 2n

t
j
C r

j
C

Figure 4: Component of circuit in fingerprint identification protocol performed for each value of
j ∈ [1,mY ].

mux3

AS

AC

<?

< d20?

mux1 mux2

mux1

mux4

<?

Figure 5: Computation of minimum and its index in circuit of fingerprint identification.

of min(a1, a2) and min(a3, a4) either 0100 or 0010 will be chosen as the current portion of A. This
process continues until the overall minimum and the entire A is computed. This value of A will
have a single bit set to 1, and after the final comparison of the minimum with the threshold A will
either remain unchanged or will be reset to contain all 0s.

Figure 4 shows the initial computation in the circuit performed for each value of j, where
n = 2ℓ+2, and Figure 5 shows the computation of the minimum and the output for a toy example
of mY = 4. In Figure 4, after adding tjC and −tjS (mod 360) together, the sum is compared to
360. If it exceeds the value, 360 is subtracted from the sum (in our implementation the subtracted
value is bitwise AND of the outcome of comparison and each bit of the binary representation of
360). Finally, the resulting value is compared to two thresholds and the result is prepended to
the spatial distance rjC − rjS . In Figure 4, multiplexer mux1 chooses the smaller value based on
the result of the comparison, mux2 chooses either 01 or 10 based on the result of the comparison,
mux3 chooses a 4-bit string based on its inputs from two multiplexers mux2 and the outcome of
another comparison, and mux4 chooses either its input from mux3 or a zero string based on the
result of the final comparison. The server (circuit creator) supplies a stream of random bits AS to
the circuit, and the client learns the outcome of the XOR of that stream and the output of the last
multiplexer.
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Offline
Setup enc circuit total

Server m = 20 72 msec + 2990 msec/rec 1868 msec + 1159 msec/rec 1940 msec + 4149 msec/rec
m = 32 114 msec + 7682 msec/rec 2114 msec + 2117 msec/rec 2228 msec + 9799 msec/rec

Client m = 20 288 msec 1866 msec + 212 msec/rec 2154 msec + 212 msec/rec
m = 32 460 msec 2380 msec + 552 msec/rec 2840 msec + 552 msec/rec

Comm m = 20 0 11.6KB + 83KB/rec 11.6KB + 83KB/rec
m = 32 0 11.6KB + 133KB/rec 11.6KB + 133KB/rec

Online
Setup enc circuit total

Server m = 20 3.6 msec + 100 msec/rec 30 msec/rec 3.6 msec + 130 msec/rec
m = 32 6 msec + 262 msec/rec 77 msec/rec 6 msec + 339 msec/rec

Client m = 20 15 msec + 580 msec/rec 145 msec/rec 15 msec + 725 msec/rec
m = 32 25 msec + 1502 msec/rec 374 msec/rec 25 msec + 1876 msec/rec

Comm m = 20 10KB + 100KB/rec 22.3KB/rec 10KB + 122.3KB/rec
m = 32 16KB + 256KB/rec 38.2KB/rec 16KB + 294.2KB/rec

Table 3: Breakdown of the performance of the fingerprint identification protocol.

Precomputation. Precomputation in this protocol takes similar form as in the FingerCode
protocol. Namely, the random values (hr mod N) in the ciphertexts are precomputed and the server
chooses all rjS and tjS in advance and encrypts them. Furthermore, encrypted values Enc((x′j)

2 +

(y′j)
2) are formed by the server once for each j (independent of mY or the size of D) and can

also reuse (or use no) randomness. In addition, all garbled circuits are created and transferred
in advance, as well as the expensive portion of the OT is performed in advance. Note that it is
sufficient to have two input wires to implement all constants in the circuit such as 360, α0, d

2
0,

inputs to multiplexers, etc.

Security. As before, it is easy to show that the protocol is secure, where the simulator relies on
the security of the encryption scheme, garbled circuits, and OT.

Implementation and performance. We implement the protocol using a grid of size 250× 250
for fingerprint images, which means that each xi, yi ∈ [0, 249] and ℓ is set to 8. In our experiments
we use m = mX = mX with two values of 20 and 32 minutiae per fingerprint. It is clear that
the protocol incurs cost quadratic in m and is expected to have higher overhead than two previous
protocols. Table 3 shows performance of the protocol. The online work is dominated by 2m2

decryptions at the client side and adds up to 0.73 sec per fingerprint comparison for m = 20 and
1.88 sec for m = 32. The circuit evaluated by the client in step 2(b).iii of the protocol has size of
2372 non-XOR gates (and 8836 gates total) for m = 20 and 3820 non-XOR gates (and 14212 gates
total) for m = 32. It is evaluated m times by the client for each Y . The circuit evaluated by the
client in step 2(c) of the protocol has size of 39 non-XOR gates (and 153 gates total) for m = 20
and 63 non-XOR gates (and 246 gates total) for m = 32. It is evaluated once for each Y .

We also would like to mention that a protocol solely based on garbled circuit evaluation for
this type of computation is likely to result in comparable performance. That is, the circuit would
need to perform additional 2m2 multiplications (as well as additional additions and subtractions)
per Y , with the additional number of gates exceeding the number of gates in the current circuit.
This means that the offline work associated with circuit construction (per Y ) will increase, but the
online communication should decrease.
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6 Summary of Design Principles and Conclusions

The protocol design presented in this work suggests certain principles that lead to an efficient
implementation of a privacy-preserving protocol for biometric identification, which we summarize
next. First, notice that in the computation used in this work, as well as in prior literature, first
a distance between biometric X and each biometric Y in the database is computed followed by
a comparison operation. The comparison can be performed to either (i) determine whether the
distance dist(X,Y ) is below a certain threshold (where the threshold can be specific to each Y or
fixed for all Y ) or (ii) determine whether the minimum of all distances dist(X,Y ) is below a certain
threshold. In both cases an equivalent number of comparisons is performed. The most efficient
protocols known to date compute the distance function using homomorphic encryption, but then
resort to a different technique for the comparisons. Therefore, the client first communicates its
encrypted biometric X to the server, the server next computes the distances, and both the client
and the server are involved in the comparison protocol. We thus obtain the following:

1. Representation of client’s biometric matters. The server’s work for processing each record
in its database can be significantly reduced if the client’s data is provided in the form that
optimizes server’s computation (for instance, computing Enc(−a) from Enc(a) could be one
of the most expensive operations). This one-time cost at the client’s side has far-reaching
consequences for the performance of the overall protocol.

2. Operations that manipulate bits are the fastest outside encryption. Any protocol for biometric
identification is expected to use comparisons. Despite recent advances in the techniques for
carrying out secure comparisons over encrypted data which make them practical (as, e.g.,
in [12]), garbled circuit evaluation is better suited for a large volume of such operations.
Furthermore, when the range of values being compared is small and many comparisons are
necessary, additional techniques such as OT can be utilized at low cost [37].

3. The largest speedup can be seen from proper tuning of encryption tools. Privacy-preserving
protocols that rely on homomorphic encryption can benefit immensely from a wise choice
of encryption scheme and its usage. Traditionally, packing was used to reduce overhead of
privacy-preserving protocols including asymptotic complexity (see, e.g., [18] for an example).
When computation is carried out on integers of small size, alternative encryption schemes
such as DGK or additively homomorphic ElGamal implemented over elliptic curves can sig-
nificantly improve performance. Our results would not be possible without our choice of
encryption schemes.

Using these principles and a number of new techniques in this work we develop and implement
secure protocols for iris and fingerprint identification that use standard biometric recognition algo-
rithms. The optimization techniques employed in this work allow us to achieve notable performance
results for three secure biometric identification protocols:

• We develop the first privacy-preserving two-party protocol for iris codes using current biomet-
ric recognition algorithms. Despite the length of iris codes’ representation and complexity
of their processing, our protocol allows a secure comparison between two biometrics to be
performed in 0.15 second with communication of under 18KB. Furthermore, when the iris
codes are known to be well-aligned and their rotation is not necessary, the overhead decreases
by an order of magnitude to 14 msec computation and 2KB communication per comparison.

• Two FingerCodes used for fingerprint recognition can be compared at low cost, which allowed
us to develop an extremely efficient privacy-preserving protocol. Comparing two fingerprints
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requires approximately 1 msec of computation, allowing thousands of biometrics to be pro-
cessed in a matter of seconds. Communication overhead is also very modest with less than
1KB per biometric comparison. Compared to prior privacy-preserving implementation of
FingerCode [3], we simultaneously improve computation and communication by a factor of
30 or more.

• Fingerprint recognition based on minutiae pairings utilizes most complex algorithms over
unordered sets with spatial and directional differences, and in our secure implementation
fingerprint identification can be performed using approximately 1 second per record.
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