An Evaluation of Hash Functions on a Power
Analysis Resistant Processor Architecture

Simon Hoerder!, Marcin Wojcik!, Stefan Tillich!, Dan Page!
{hoerder, wojcik, tillich, page}@compsci.bristol.ac.uk

Department of Computer Science, University of Bristol*

Abstract. Cryptographic hash functions are an omnipresent compo-
nents in security-critical software and devices; they support, for exam-
ple, digital signature and data authenticity schemes, mechanisms for key
derivation, pseudo-random number generation and so on. A criteria for
candidate hash functions in the SHA-3 contest is resistance against side-
channel analysis which is a major concern for mobile devices as well. This
paper explores the implementation of said candidates on a variant of the
Power-Trust platform; our results highlight this representing a flexible
solution to power analysis attacks, implying only a modest performance
overhead.

1 Introduction

Within the cryptographic community, open “contests” to evaluate, select
and standardise the use of secure and efficient primitives have become
de rigueur. The most high-profile example is the Advanced Encryption
Standard (AES) contest run by NIST from 1997 to 2000 to find a re-
placement for DES, the incumbent block cipher design. This model was
repeated in 2007 when, partly motivated by increasingly able attacks [1,
2] on SHA-1 [3], NIST launched the SHA-3 contest ([4]) to develop a new
cryptographic hash function. Briefly, this a hash function

H:{0,1} — {0,1}"

maps an arbitrary length input (or message) to a fixed length, n-bit out-
put (or digest). They support, for example, digital signature and data
authenticity schemes, mechanisms for key derivation and pseudo-random
number generation and are indispensable for security-critical devices. As
such, various security requirements (e.g., the need for H to be collision
resistant) are outlined in [5]. However, in common with the AES contest,

* The work done at the University of Bristol has been sponsored by EPSRC grant
EP/H001689/1.

other metrics are important for SHA-3; specifically, efficiency in hardware
and on a variety of software-based platforms is paramount.

Within the context of embedded and mobile computing, such metrics
are particularly pertinent: they represent the exact resources in short
supply. The same context may imply additional requirements in the sense
that physical security (e.g., against side-channel and fault attack) is also
a valid metric. Example attacks on hash functions are given by [6-11];
these are exacerbated by the wide range of use-cases. Ideally one has an
idea of the trade-offs different countermeasures offer so as to select the
right one before deployment, but in practice this topic has not drawn
much attention (for example, note the discussion triggered by Rivest’s
question [12] on the matter).

Keeping this difficulty in mind, one attractive approach is to provide
a “generic” countermeasure. For power analysis based attacks, and fo-
cusing on hardware implementation, this can be realised by utilising a
so-called secure logic style. The idea is to take a generic circuit and au-
tomatically replace CMOS cells with alternatives such as SABL [13] or
WDDL [14]. To consider a similar approach for software, one must in-
strument a generic countermeasure so that each instruction is prevented
from leaking information during execution. Several proposals exist, such
as NONDET [15], but a more concrete and complete implementation is
provided by Power-Trust ([16,17]). The SPARC V8 based Power-Trust
platform houses a secure zone, implemented in a secure logic style, and
security-critical instructions are executed only by this zone to avoid leak-
age; the result is a generic countermeasure, mounted in a general-purpose
processor, which offers an extremely flexible solution. The question is,
how does this solution fare wrt. the SHA-3 use-case? Does it, for exam-
ple, imply a performance overhead low enough to allow secure deployment
of the selected SHA-3 candidate in embedded and mobile applications?

Focusing on 6 of the 14 remaining (as per round-two) SHA-3 can-
didates, this paper addresses three points all stemming from the same
underlying work, namely investigation of said candidates on the Power-
Trust platform:

Performance of candidates, i.e., assuming that Power-Trust provides
an adequate countermeasure against power analysis attacks, what
overhead does this imply and is this the best approach? Section 2.1
presents a concrete attack scenario; the criteria for performance in-
cludes throughput and instruction mix (e.g., any bias toward memory
access).

.............

Fig. 1. Protecting HMAC from side-channel attack: only the operations and values
drawn with solid lines need to be protected.

Agility of SPARC V8 analogous instructions, i.e., given a set of
protected instructions required for one SHA-3 candidate, can we im-
plement another candidate with the same set?

Potential for advanced Instruction Set Extensions (ISEs), i.e., for
which candidates can we find useful ISEs? For example, we suggest
several generic (i.e., not Power-Trust-specific) instruction set exten-
sions which could be used to accelerate BMW.

One can view the second and third points as evaluating the Power-Trust
design itself; the novel aspect in this respect is the workload used (namely
the SHA-3 candidates), which is more diverse than previously studied.

2 Background

2.1 Side-Channel Attacks on Hash Functions

There are numerous examples of successful side-channel attacks on spe-
cific hash functions, and a variety of specific countermeasures have been
proposed [6-11]. However, within the context of developing hash functions
it is attractive to be more general (both for attacks and countermeasures)
since this allows far easier high-level comparison. As such, we keep our
model of side-channel attack as generic as possible within practical limits:

Simple Power Analysis (SPA) is possible whenever the sequence of
operations performed during execution of H depends on a fixed, security-
critical input.

Differential Power Analysis (DPA) is possible when the input to an
invocation of H combines fixed security-critical data and variable data
which can be controlled by the attacker. That is, invocation resembles
H(s,m) for a fixed, security-critical s and variable m.

Timing Attacks are possible whenever a security-critical input affects
the time taken to execute H; examples include conditional branches
or cached table look-ups based on said input.

Additionally, for all three types of attacks we allow the attacker to perform
a profiling step to create templates. In the following, H;(s;—1, m;) denotes
the i-th invocation of the compression function used by H with the state
(or chaining variable) s and message m as input.

Neither SPA nor timing attacks matter for the hash functions that
we are considering: they always use the same instruction sequence (i.e.,
there are no input-dependant branches), and do not use any table look-
ups. Indeed, CubeHash [18, Page 3] makes this an explicit design criteria.
On the other hand, DPA does matter. Figure 1 illustrates this fact for H
used within the popular HMAC construction. The outputs of Hy and H g
are intermediate states; they are both fixed (they depend only on constant
values) and security-critical (since they are derived directly from sk, the
key used to authenticate messages). Thus, H; and Hy; fall squarely into
our attack scenario:

Hl(Hy(1V, 81{/‘,@ i_pad) mg)
constant, secret variable

Hyi(Hyo(IV, sk ® o_pad) , H((sk ® o_pad) || m))
constant, secret variable

To roughly outline a potential DPA attack, notice that the attacker can
repeatedly invoke the HMAC construction with an m of his choice. By
observing the power consumption during execution, correlation between
the data-dependent interaction of m and the secret constant allows him
to hypothesise about the value of the constant and ultimately to recover
it and hence undermines security.

This scenario demonstrates the value of an agile solution via two
points. First, an inflexible solution dictates the H to be used; this is
unattractive because if H is (seriously) broken, one might hope to change
it without incurring significant cost. Second, notice that the vulnerable

invocations are Hy and Hyy only, while Hy ., need no protection as long
as the compression function is one-way. An inflexible hardware-oriented
approach might implement a countermeasure for all invocations, hence
incurring a performance overhead in each. A more flexible solution would
apply the countermeasure only where necessary, and potentially provide
a performance advantage in other cases.

2.2 The Power-Trust Platform

The so-called “Power-Trust platform” is a SPARC V8 based ASIC pro-
totype of a side-channel resistant embedded processor based on the se-
curity concept developed in the context of the Power-Trust project [16,
17]; its main goal is to evaluate the validity and effectiveness of the se-
curity concept as a whole. Furthermore, the prototype allows to evaluate
various design options and trade-offs in practice, e.g., different manage-
ment instructions, exception handling features, and secure logic styles.
The Power-Trust prototype has integrated support for AES and ECC,
but the security concept itself is principally suited for handling a wide
range of cryptographic workloads.

The basic idea of the security concept used in Power-Trust is to com-
bat side-channel leakage directly in the processor hardware. The main
concern are power and EM analysis attacks, but also timing attacks are
mitigated. As a first measure, the circulation of potentially vulnerable
datums is restricted to a tiny portion of the processor (essentially the
functional units) by masking them whenever they are not required. This
includes values which pass through various pipeline stages or which are
written to caches and memories. The second measure protects all remain-
ing vulnerable parts of the processor containing the unmasked data values
themselves, the masks, and any values related to mask generation, by im-
plementing them in a secure logic style. This part of the processor is
referred to as “secure zone” and shown in Fig. 2. The secure zone offers a
range of instructions which can be executed within its boundaries. From
its interface, the secure zone looks very similar to a regular functional
unit, which facilitates integration into the processor.

In the following, we explain the secure zone concept from a program-
mer’s point of view. In order to implement a cryptographic algorithm in
a power-analysis resistant manner, the following steps are necessary:

— Before execution, the inputs to the cryptographic algorithm are masked
explicitly by the caller.

opl, op2, Opladar OP2addr r€Saddr

VY N ¢
é}_/_moL P
Mask
ANL Mo storage
o NP)
s op1 op2
N
™ A v
S
3 Mask
@ FU
(2] generator
res
KV\A Mres v
™
v
resy,

Fig. 2. The secure zone of the Power-Trust platform.

— Any instructions which produce potentially vulnerable values must be
executed within the secure zone.

— Depending on the implementation and the secure zone capabilities, it
might be required to save some masks to memory and restore them
later on to the secure zone.

— Once the output of the cryptographic algorithm has been calculated,
the mask is removed by the caller.

Explicit masking and unmasking of inputs and outputs can be seen as
transferring values between “normal” domain and “masked” domain. In
the masked domain, values can only be manipulated by instructions of
the secure zone (in the following denoted as secure zone instructions)!,
and consequently a cryptographic algorithm can only be protected if it
can be implemented with secure zone instructions. The number of masked
values which are readily available for processing is limited by the number
of masks that the secure zone can actually store. However, masks can be
swapped in and out of the secure zone in order to extend the number

1 Of course, masked values could be manipulated by “normal” processor instructions,
but this would mean that masked values and masks become desynchronised, leading
to erroneous output from the algorithm.

of masked values at the expense of some additional mask management
instructions and storage.

In relation to the workload of typical cryptographic algorithms, mask-
ing and unmasking constitute only a minor overhead. Implementations
using secure zone instructions can even see a considerable speed-up in
comparison to the use of native processor instructions, since secure zone
instructions can be tailor-made to fit specific algorithms or classes of al-
gorithms. However, the management of masks might entail overheads,
especially if a large number of masked values is required. Thanks to the
flexibility of the mask management instruction set, this overhead can often
be minimised by exploiting the structure of the protected cryptographic
algorithm.

A mask may never directly leave the protection of the secure zone, as
otherwise an attacker might launch a higher-order attack [19] on masked
data and the corresponding mask. However, masks need to be extracted
if the secure zone runs out of storage entries for masks or if there is a task
switch. For this case, masks can be represented as a specific state of the
mask generator unit which originally produced the mask and the number
of steps the mask generator has taken till it produced the mask. The
secure zone features mask management instructions for extracting the
state of the mask generator and the step count. Similarly, instructions
for setting the mask generator state and regenerating masks from a given
step count exist for restoring masks to the secure zone.

In the Power-Trust prototype, the mask generator state consists of 128
bits and the step count (including some additional meta-information) is
another 32 bits; therefore in the worst case a mask requires five 32-bit
words of storage. However, several stored masks can relate to the same
state of the mask generator, thus greatly reducing the required memory.
Similarly, the software can take steps to ensure the step count from a given
mask generator state is low when a mask is written out to memory. In this
way, when the mask is then restored, the required number of instructions
is limited.

2.3 Our Variant of the Power-Trust Platform

We made two additional choices at the architectural level in order to
ensure realistic and comparable results:

— We needed to decide on the number of masks that can be held within
the mask storage, selecting 32 as a trade-off between 8 masks sup-
ported by the current prototype and the theoretic upper bound of

210 We believe this to be at the upper-edge of economic possibilities,

but will demonstrate that some candidates can be implemented with
a much smaller mask store.

— We only add instructions to the secure zone if they can be executed in
one cycle and do not affect the critical path. Designing more elaborate
functional units (e.g., multipliers) for the secure zone is principally
possible but would require considerable design effort and is left for
further research.

Based on these choices, we are confident that any subsequent prototypes
can support our candidates without significant differences in performance
from the original.

A third choice had to be made on the software level; any consideration
of operating system influences such as trap handling, interrupts and con-
text switches would have biased our results towards a specific use-case,
e.g., toward mobile devices or smart-cards. However, we want our results
to be as generic as possible, and therefore did not consider any operating
system.

3 Implementation of Hash Functions on the Power-Trust
Platform

To make comparison easier, we chose the following hash functions for
implementation on the Power-Trust platform:

BLAKE-32 ([20])

— BlueMidnightWish—256 ([21], [22])

CubeHash160+16/32+160-256 and CubeHash16+16/32+32-256 which
was suggested for the third round ([18], [23])

— Keccak[1088,512, 32] ([24], [25])

— SHA-256 (]26])

Shabal-256 ([27], [28])

— Skein-256-256 (this is the the “low-memory” proposal of [29])

In the following we will motivate these choices, and highlight noteworthy
specifics in our implementations. Where possible we follow the notation
of the original submissions.

BLAKE-32 and SHA-256 were easy to implement for us due to their
small internal states; for BLAKE-32 we followed the example of the “Op-
timized_32bit” implementation provided by the BLAKE team.

CubeHash operates on a state that is too large to fit completely into the
registers, and uses a large number of round function iterations within
each Hj;; this is a bad combination for Power-Trust because masked data
has to be swapped in and out of memory frequently. However, by choos-
ing a suitable memory layout the number of memory accesses can be
reduced. The 1024-bit CubeHash state is represented as a 5-dimensional
cube state[|[][] [][] of two 32-bit words per dimension but can be split
into four 3-dimensional subcubes state [x1][] [] [[xs] with 215 € {0,1}
requiring 8 masked registers each. The first 9 steps of the round function
can be computed first on the two subcubes state [x4][][] [] [0], and then
on the two subcubes state [x4] [] [] [] [1] since there are no interedependen-
cies during these 9 steps. Therefore, no more than two of these subcubes
have to be kept in registers at any point of time. The 10-th (and last) step
swaps the subcubes state [1][] [] [] [xs] which can be implemented simply
by swapping pointers. Overall, this means that only three subcubes have
to be loaded and stored per iteration of the round function.

Keccak[1088,512,32] allows a similar separation in the memory layout
as CubeHash if one follows the example given by the unrolled “Opti-
mized_32bit” implementation by the Keccak team. However, one has to
deal with ten memory blocks of five 32-bit values, using 10 masked regis-
ters for each of the intermediate variables D[5] [2] and C[5] [2].

BMW 256 had to be implemented without optimisation regarding memory
usage since its internal state can not be separated into bigger blocks, as
it was for CubeHash or Keccak, due to its high interdependency. However,
we were able to identify two possible sets of generic ISEs that implement
the six sg, .. s-functions

Sief0,...3} (%) = SHR(z,c;0) ® SHL(z, ¢; 1) ® ROTL(x, ¢; 2) © ROTL(w, ¢; 3)
Sie{a5y(®) = SHR(z,ci0) ®

where ¢; ; are constants specifying the number of bits to shift or rotate.
Furthermore, they always occur in combination with a modular addition

2« si(z) + y mod 232

where y in some cases is the output of another s-function. Thus we im-
plemented and compared three versions of BMW256:

BMW Plain: This implementation of BMW256 uses no ISEs.

BMW “generic s”: This implementation uses one ISE, namely
SZ_BMWS %x, %i, %z

to compute
z — si(x).

BMW “special s”: This implementation uses six ISEs, namely
SZ BMWS; %x, hy, %z

to compute
Z + 8icqo,...5} (z) +y mod 232,

Shabal-256 according to our results, has significantly worse performance
than other SHA-3 candidates. One of the main reason is the relatively
large internal state comprising forty-eight 32-bit words which exceeds the
number of processor registers. Additionally, it requires a relatively large
amount of iterations with a high interdependency between the internal
state variables. The resulting memory accesses for masked values generate
considerable overhead on the Power-Trust platform.

Skein offers two replacements for SHA-256, a “primary proposal”
Skein-512-256 and a “low-memory” proposal Skein-256-256 targeted at
embedded devices; since our platform is intended for mobile and embed-
ded devices we chose to implement Skein-256-256. The Skein family is
optimised for 64-bit architectures, but most of the Skein-256-256 kernel
can be easily implemented on our 32-bit architecture; the exception is
addition of 64-bit values. To implement it, we use SZ_ADDcc and SZ_ADDX
commands analogous to the SPARC V8 ADDX and ADDcc instructions
which require a carry flag within the secure zone?. The flag has to be
taken care of by the scheduling algorithm of the operating system and is
not reflected in our analysis any further.

Other hash functions We did not consider the AES-based candidates (e.g.,
ECHO) since we expect they can be implemented using the existing AES-
oriented ISEs within Power-Trust. In addition, we did not consider can-
didates requiring multiplication (e.g., SIMD); as mentioned before, imple-
mentation of sufficiently efficient multipliers for the Power-Trust secure
zone is a non-trivial task which we reserve for future work.
2 One straight forward possibility to do this is to provide a command that reads the
value of the flag (and all other flags if there are any) into a masked registers which

can then be stored to memory and another command to restore the flags from a
masked register.

]
1
'
:
E" """"" [S N
1| SZXOR |:+i SZAND -
1’ :I
Caneran] joseceacd
ubeHas e H
BLAKE | SZROTR ' SZ.OR Keccak
LBEARE N T
.\ "
1| szapp |'i sz ADDcc
o
ATARARRRAALS ¥ Skein
1
, SZ_SRL : SZ_ADDX
1

Fig. 3. Generic commands required from the secure zone to implement SHA-3 candi-
dates. With the exception of SZ_ROTR they have a unprotected equivalent in the SPARC
V8 instructions (see appendix B, [30]).

4 Results

4.1 Instruction Set Agility

Many SHA-3 candidates have been developed with ISEs in mind: CubeHash,
for example, can capitalise on the availability of SSE-based ISEs on x86
platforms. In a similar way, certain candidates can capitalise on ISEs
available in the Power-Trust platform. For example, it already provides
AES-oriented ISEs and, in Section 3, we outlined various extensions for
BMW256.

Despite the advantage this implies on platforms which support such
ISEs, the approach is a potential disadvantage on platforms which do not:
on many mobile and embedded platforms, for example, SIMD ISEs are
missing (unless one counts packed arithmetic within word-sized values).
As a result, it is useful to consider the agility of a minimal instruction
set as a design metric for Power-Trust. That is, given there is an inher-
ent cost associated with adding an ISE to Power-Trust, it is attractive to
support as broad a workload (i.e., as many SHA-3 candidates) as possible
using as few secure zone instructions as possible. This is especially im-
portant when considering the need to support migration from SHA-256
to SHA-3 within the device lifetime. With this in mind, we investigated
which Power-Trust instructions are required by each candidates; the re-
sult is shown in Figure 3. A major feature of the results is that a secure
zone processor that provides instructions which can implement SHA-256,
also provides all instructions needed for BLAKE-32 and CubeHash as well.

For all the other candidates considered, additional instructions must be
implemented in the secure zone and will incur additional expenses.

4.2 Performance

. Ops Ops/byte Registers
Hash Function HL(;#) 7 H H:,’%I)) | yH majliedg in total
BLAKE-32 4122| 4122 64.41| 64.41 18 23
BMW256 5850| 14404 91.41] 225.06
BMW?256, “generic s” ISE 4494| 11692 70.22| 182.69 29 32
BMW256, “specialised s” ISEs 4430| 11564 69.22| 180.69
CubeHash160+16/324160-256 14112(152044| 441.00(4751.38 17 91
CubeHash16+16/32+32-256 14112| 42092| 441.00{1315.38
Keccak[1088,512, 32] 107960(107960| 793.82| 793.82 30 32
SHA-256 6833| 6833| 106.77| 106.77 22 27
Shabal-256 115919(463676| 1811.23|7244.94 31 32
Skein-256-256 (“low-memory” variant) 13222| 39666 413.19]1239.56 28 31
see Fig. 4 see Fig. 5

Table 1. Total number of instructions required for one iteration of the compression
function H;(-,-), to hash a one block message and the register usage of the implemen-
tations.

. load store load+store
Hash Function Hz(#) I Hi?i) o Zi(,) I
BLAKE-32 192 192 26 26 218 218
BMW256 512| 1634 302| 757 814 2391
CubeHash160+16/32+160-256 1256|13814 1668|17544 2924| 31358
CubeHash16+16/32+32-256 1256| 3830 1668| 4872 2924| 8702
Keccak[1088,512, 32] 14674|14674 9810| 9810| 24484| 24484
SHA-256 328 328 48 48 376 376
Shabal-256 20268|81072 12111]48444| 32379|129516
Skein-256-256 (“low-memory” variant) 544| 1632 541| 1623 1085| 3255

see Fig. 6

Table 2. Total number of load and store instructions required for one iteration of the
compression function H;(-,-) and to hash a one block message.

To optimise performance, we fully-unrolled all implementations and
hard-coded any constants and ran them on a cycle-accurate simulator of
the platform. We did not implement message padding; instead we assumed
having a padded but unmasked message block stored in memory which
is loaded when appropriate and then masked. As shown in Section 2.1,
the most common case for hash function implementations with counter-
measures against side-channel attack will have a preformatted, unmasked
message in memory which has to be hashed without leaking information
on the previous states. The code can easily be adopted to hash masked
messages and the costs of loading a masked message block is to some
extent absorbed by the then superfluous message masking. However, this

450000
400000
350000
300000
250000
200000
150000
100000
50000
BLAKE ——3
14000 BMW Plain o]
BMW GENERIC_S
12000 BMW SPECIAL_S
cien
ubeHas|
a 10000 Keccak
o Sha-256 *:
‘s 8000 Shabal
5 Skein EXX=
e}
E 6000
z
4000
2000

compression function hash function

Fig. 4. Total number of instructions (including loads and stores) for one block (see
Table 1).

7700
7000
6300
5600
4900 -
4200
3500
2800
2100
1400 S
700 :
BLAKE ———
400 BMW Plain &
® BMW %EN%RIC—g
BMW SPECIAL —
.% 350 CuEeHasﬂl
5 CubeHash 2 :
2 300 Keccak
= Sha-256 ¢
g 250 Shabal :
2 Skein ExXx=
O 200
k]
g 150
E 100
z
50 [

compression function

Fig. 5. Number of instructions per-byte of input for one block (see Table 1).

130000
110000
90000
70000
50000
30000

BLAKE ——

BMW Plain

BMW GENERIC_S
BMW SPECIAL_S

8000

7000

6000

5000

4000

3000 o

Number of loads + stores

2000 N

1000

B

compression function hash function

Fig. 6. Total number of load and store instructions for one block (see Table 2).

would have required a convention with the calling function how to store
a masked message and the related mask information.

The performance results of our implementations are shown in Table 1;
the instruction counts show the candidates separated into three distinct
but constant groups. The first group is formed by BLAKE-32, SHA-256
and all three BMW256 implementations. The second group comprises
CubeHash16+16/324-32-256, Keccak[1088, 512, 32] and Skein-256-256; the
ranking within this group varies depending on the performance criteria.
Most notably, it shows the performance disadvantage
CubeHash16+16/32+32-256 and Keccak[1088,512,32] incur in software
implementations for supporting only one state size for all security parame-
ters. The third group comprises CubeHash160+16/32+160-256 (which has
been superseded by CubeHash16+16/32+32-256) and Shabal-256. Both
are not competitive on this platform. (See also Figure 4 and Figure 5.)

Another interesting metric are the number of load and store instruc-
tions contained within the total number of instructions; these are listed in
Tab. 2. The ISEs for BMW256 have, as expected, no influence on the num-
ber of memory accesses. The ranking of algorithms in respect to memory
access is not very different from the ranking in respect to instructions
per byte; while Keccak[1088,512,32] ranks better on the number of in-
structions per byte than Skein-256-256 and CubeHash16+16/32+4-32-256,
it is behind them in the number of memory access. The poor ranking
of Shabal-256 with respect to any of the instruction counts is easily ex-
plained by the high number of memory access required to implement it;
about 28% of all instructions are memory accesses.

Working in the design phase of a processor architecture, we can only
present operation counts that do not represent the costs of load and
store instructions properly. Therefore we decided not to compare our
results with other studies such as eBASH [31] as they measure their results
in processor cycles.

5 Conclusions

In this paper we demonstrated the flexibility of the Power-Trust plat-
form wrt. to provision of generic countermeasures against side-channel
attacks at reasonable costs; these metrics are paramount in the design
and deployment of hash functions on secure embedded and mobile de-
vices. Furthermore, our analysis contributes to the SHA-3 competition
by highlighting, for the first time, the cost each candidate incurs from
hardware protection. We additionally provided the first example of (non-

AES) ISEs for BMW256, and outlined design requirements for general
ISEs in this area. Furthermore, the effort to produce human optimized
code for these hash functions highlights the need to develop a compiler
for this platform in the future; this work will then provide a good base
to measure the compilers efficiency.

References

10.

11.

12.

Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In:
Advances in Cryptology (CRYPTO), Springer-Verlag LNCS 3621 (2005) 1-16

. Wang, X., Yin, Y., Yu, H.: Finding collisions in the full SHA-1. In: Advances in

Cryptology (CRYPTO), Springer-Verlag LNCS 3621 (2005) 17-36

National Institute of Standards and Technology (NIST): Secure Hash Standard
(SHS). Federal Information Processing Standards Publication 180-2 (Aug. 2002)
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf.
NIST: Cryptographic Hash Algorithm Competition.
http://csrc.nist.gov/groups/ST /hash/sha-3/index.html

Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, im-
plications, and separations for preimage resistance, second-preimage resistance and
collision resistance. In: Fast Software Encryption (FSE), Springer-Verlag LNCS
3017 (2004) 371-388

Dent, A., Dottax, E.: An overview of side-channel at-
tacks on the asymmetric NESSIE encryption primitives.
NESSIE Public Report NES/DOC/RHU/WP5/020/a (May 2002)
https://www.cosic.esat.kuleuven.be/nessie/reports/phase2/sidechannels.pdf.
Lemke, K., Schramm, K., Paar, C.: DPA on n-Bit Sized Boolean and Arithmetic
Operations and Its Application to IDEA, RC6, and the HMAC-Construction.
In Joye, M., Quisquater, J.J., eds.: Cryptographic Hardware and Embedded
Systems (CHES 2004). Volume LNCS 3156., Springer Verlag (2004) 205-219
http://dx.doi.org/10.1007/978-3-540-28632-5_15.

K. Okeya: Side Channel Attacks Against HMACs Based on Block-Cipher Based
Hash Functions. In L.M. Batten, R. Safavi-Naini, ed.: Information Security and
Privacy (ACISP 2006). Volume LNCS 4058., Springer Verlag (2006) 432-443
McEvoy, R., Tunstall, M., Murphy, C., Marnane, W.: Differential Power Analysis
of HMAC based on SHA-2, and Countermeasures. In Sehun, K., Yung, M., Lee,
H.W., eds.: Proceedings of the 8th International Workshop on Information Security
Applications (WISA 2007). Volume LNCS 4867., Springer Verlag (2007) 317-332
ISBN: 3-540-77534-X.

Gauravaram, P., Okeya, K.: Side Channel Analysis of Some hash Based MACs: A
Response to SHA-3 Requirements. In Chen, L., Ryan, M., Wang, G., eds.: Pro-
ceedings of the 10th International Conference Information and Communications
Security (ICICS 2008). Volume LNCS 5308., Springer Verlag (2008) 111-127
Fouque, P.A., Leurent, G., Réal, D., Valette, F.: Practical Electromagnetic Tem-
plate Attack on HMAC. In Clavier, C., Gaj, K., eds.: Cryptographic Hardware
and Embedded Systems (CHES 2009). Volume LNCS 5747., Springer Verlag (2009)
66-80 http://dx.doi.org/10.1007/978-3-642-04138-9_6.

Rivest, R.: Side-channel-free timings ? E-Mail to the hash-forum@nist.gov mailing
list (Nov 2010) http://cio.nist.gov/esd/emaildir/lists /hash-forum/msg02189.html.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Tiri, K., Akmal, M., Verbauwhede, I.: A Dynamic and Differential CMOS Logic
with Signal Independent Power Consumption to Withstand Differential Power
Analysis on Smart Cards. In: European Solid-State Circuits Conference (ESS-
CIRC). (2002) 403-406

Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure dpa
resistant asic or fpga implementation. In: Design, Automation, and Test in Europe
(DATE). (2004) 246-251

May, D., Muller, H., Smart, N.: Non-deterministic processors. In: Australasian
Conference on Information Security and Privacy (ACISP), Springer-Verlag LNCS
2119 (2001) 115-129

IAIK TU Graz and M. Aigner: Low POWer & En-
ergy Relevant techniques Targetting Robust Universal Secu-
rity in deep sub-micron Technologies- POWER TRUST

http://www.iaik.tugraz.at/content /research/implementation_attacks/prj-powertrust/

Tillich, S., Kirschbaum, M., Szekely, A.: SCA-Resistant Embedded Processors—
The Next Generation. In: 26th Annual Computer Security Applications Conference
(ACSAC 2010), 6-10 December 2010, Austin, Texas, USA. (To appear)

D.J. Bernstein: CubeHash specification (2.B.1). Submission to NIST (Round 2)
(2009)

Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in Cryp-
tology (CRYPTO), Springer-Verlag LNCS 1666 (1999) 388-397

J.-P. Aumasson, L. Henzen, W. Meier, R.C.-W. Phan: SHA-3 proposal BLAKE.
Submission to NIST (2008)

D. Gligoroski, V. Klima, S.J. Knapskog, M. El-Hadedy, J. Amundsen, S. Mjglsnes:
Cryptographic Hash Function BLUE MIDNIGHT WISH. Submission to NIST
(Round 2) (2009)

D. Gligoroski, V. Klima, S.J. Knapskog, M. El-Hadedy, J. Amundsen, S. Mjglsnes:
Clarification on the rotation constant for the variable M_15. Official Comment to
hash-forum@nist.gov (Round 2) (Nov 2009)

D.J. Bernstein: CubeHash parameter tweak: 10x smaller MAC overhead. Submis-
sion to NIST (Round 2) (2010)

G. Bertoni, J. Daemen, M. Peeters, G. Van Assche: Keccak sponge function family
main document. Submission to NIST (Round 2) (2009)

G. Bertoni, J. Daemen, M. Peeters, G. Van Assche: Keccak specifications. Sub-
mission to NIST (Round 2) (2009)

National Institute of Standards and Technology (NIST): Secure Hash Standard
(SHS). Federal Information Processing Standards Publication 180-3 (Oct. 2008)
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf.

E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget,
T. Icart, J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Rein-
hard, C. Thuillet, M. Videau: Shabal, a Submission to NISTs Cryptographic Hash
Algorithm Competition. Submission to NIST (2008)

E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget,
T. Icart, J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard,
C. Thuillet, M. Videau: Indifferentiability with Distinguishers: Why Shabal Does
Not Require Ideal Ciphers. Cryptology ePrint Archive, Report 2009/199 (2009)
N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas,
J. Walker: The Skein Hash Function Family. Submission to NIST (Round 2)
(2009)

30. SPARC International Inc. 535 Middlefield Road, Suite 210, Menlo Park, CA
94025, USA: The SPARC Architecture Manual. Version 8 edn. (1991) Revision
SAV080SI9308.

31. eBACS: ECRYPT Benchmarking of Cryptographic Systems: ECRYPT Bench-
marking of All Submitted Hashes. http://bench.cr.yp.to/results-sha3.html

