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Abstract. In this article we investigate algorithms for solving non-linear
multivariate equations over �nite �elds and the relation between them.
For non binary �elds usually computing the Gröbner basis of the cor-
responding ideal is the best choice in this context. One class of algo-
rithms is based on Buchberger's algorithm. Today's best algorithms like
F4 and F5 belong to this class. Another strategy to solve such systems
is called eXtended Linearization (XL) from Eurocrypt 2000. In the past
both strategies were treated as di�erent ideas and there was a heated
discussion which of them to prefer. Since Ars et al. proved in 2004 that
XL is a redundant version of F4, the latter seemed to be the winner.
But that was not the end of the line as piece for piece the idea emerged
that both classes are only di�erent views on the same problem. We even
think that they are just di�erent time-memory optimizations. One in-
dication to that can be found in the PhD of Albrecht, who introduced
MatrixF5, a F5 version of XL. A second indication can be found in the
PhD of Mohamed, who introduced a memory-friendly version of XL using
Wiedemanns algorithm. We want to give further evidence by providing
a theoretical analysis of MutantXL. We show that MutantXL solves at
the same degree of regularity as its competitors F4 and F5 for most in-
stances. Thereby we also con�rm recent results of Albrecht, who showed
that MutantXL is a redundant version of F4, i.e. it never solves below
the degree of regularity of F4. We show that MutantXL has, compared
to WiedemannXL, to pay its gain in e�ciency with memory.
To enhance the understanding of the whole XL-family of algorithms we
give a full overview from Relinearization over XL to MutantXL and pro-
vide some additional theoretical insights.
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1 Introduction

Solving systems ofMultivariate Quadratic (MQ) equations is hard in general.
More precisely, the associatedMQ-problem is known to be NP-complete [25].
The security of many cryptosystems relies directly or indirectly on this problem,
what makes solving systems ofMQ equations an established tool in cryptanal-
ysis.
Todays best known algorithms to solve such systems are based on a breakthrough
result due to Bruno Buchberger [7] in 1965. He used so-called S-polynomials to
compute the Gröbner Bases of the ideal spanned by theMQ-system. This algo-
rithm can be seen as a generalization of the well known Gaussian Elimination for
linear systems. In 1999 Jean-Charles Faugère proposed a more e�cient variant
of Buchberger's algorithm by using the Macaulay matrix as well as sparse matrix
algebra and called it F4-algorithm [17]. In 2002 he also got rid of the reductions
to zero and published the F5-algorithm [19]. In practice F5 and its variants have
an impressive track record in bringing down cryptographic systems and chal-
lenges [18, 20, 21, 23, 22, 6, 24]. On the theoretical site a complexity analysis
of both algorithms was unknown until Bardet et al. came up with a solution
in 2005 [5]. Before then it was hard to theoretically analyze the complexity of
attacks using F4 or F5. This might be the reason why Kipnis and Shamir de-
veloped a simpler but slower algorithm called Relinearization to analyze their
cryptanalysis of the HFE public key cryptosystem in 1999 [26]. One year later
Courtois et al. came up with a similar but scalable algorithm named eXtended
Linearization or XL for short [12]. As the idea is very simple, it turned out that
Lazard proposed a very similar algorithm already decades before [27]. Unfortu-
nately the latter provided only a bad upper bound on the complexity and Moh
[29] pointed out that the complexity analysis of XL was �awed and way more
di�cult as for Relinearization. So, at this time both XL and F5 su�ered from
a missing complexity analysis. Nevertheless Courtois and Pieprzyk claimed to
have broken AES [14] using a variant of XL, called XSL, in 2002. At least since
they were disproved by Cid and Leurent [9] only two years later, the community
of cryptographers became increasingly reserved against this method, even if the
complexity analysis is understood quit well today. This is mainly due to Moh
[29], Diem [15] and Yang and Chen [35].
During the last years XL and F5 were treated as two di�erent algorithms and
there was a heated discussion which of them is the better choice for cryptographic
problems. For example Ars et al. [3] showed 2004 that XL is a redundant version
of F4, i.e. it produces more equations than necessary. In 2011 Albrecht et al.
[2] even showed that MutantXL, one of the most promising variants of XL, is a
redundant version of F4. On the one hand these results suggest that F4/F5 is
always faster than the XL-family. On the other hand Mohamed et al. introduced
a variant of XL using Wiedemann's algorithm [32, 31] and thus consuming less
memory than F4.
This immediately suggests one of the questions we want to discuss in this article:
Might it be possible that both XL and F5 are just di�erent views of the same
problem? One attempt in this direction is due to Albrecht [1] who started with
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the polynomial view of F5 and ended with the matrix view of XL by introducing
Matrix-F5. Essentially this algorithm applies the F5 criteria to XL and provides
a Gröbner basis as output. Unfortunately Matrix-F5 is neither faster nor needs
less memory than F5.

1.1 Organization and Achievement

This article gives an overview of the XL-family with a strong link to Gröbner
basis algorithms and the most promising variant of XL, namely MutantXL or
also called XL2. Our work can be seen in line with the overview of XL-like
algorithms of Yang and Chen [35], the summary of XL-algorithms with focus on
applying Wiedemanns algorithm in the PhD of Mohamed [31] and the F5 view
on XL in the PhD of Albrecht [1].
First we shortly recap the well known technique of Relinearization in section 3.1.
Second we proof that this is a special case of the XL algorithm in section 3.3.
Third we shortly introduce most of the variants of XL, with a special focus on
MutantXL in section 3.4. Section 4 deals with the question how random systems
ofMQequations look like. Section 5 will repeat the complexity analysis of XL.
In section 6 we give a complexity analysis of MutantXL and observe that most of
the time it solves at the same degree as F4 and F5, what somehow con�rms the
results of Albrecht et al. [2]. Section 7 investigates the memory consumption of
F4/F5, MutantXL and WiedemannXL and thus gives rise to the assumption that
they are di�erent time-memory optimizations of the same class of algorithms.

2 Notation

Here we introduce the notation we use throughout the article. As mentioned
above, solving non-linear systems of m equations and n unknowns is a di�cult
problem in general. Restricting to the seemingly easy case of degree 2 equa-
tions is equally di�cult, as there is a polynomial time reduction. Actually the
associated problem to decide if some system is solvable or not, also known as
MQ-problem, is proven to be NP-complete [25].

Let P : Fnq → Fmq be anMQ-system of the form

p(1)(x1, . . . , xn) = 0

p(2)(x1, . . . , xn) = 0

... (1)

p(m)(x1, . . . , xn) = 0,

with

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj +

∑
1≤i≤n

β
(k)
i xi + α(k). (2)
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We call equation p(k) = 0 with p(k) de�ned by (2) inhomogeneous. The homoge-
neous case consists only of quadratic terms and is thus de�ned by

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj . (3)

We need the classi�cation into homogeneous and inhomogeneous polynomials
later on, because it is not always easy to see that formulas for both cases are
equal after transforming an inhomogeneous system in a homogeneous one.
Let π(k) be the coe�cient vector of p(k)(x1, . . . , xn) in lexicographic order, i.e.

π(k) = (γ
(k)
11 , γ

(k)
12 , . . . , γ

(k)
1n , γ

(k)
22 , γ

(k)
23 , . . . , γ

(k)
nn , β

(k)
1 , . . . , β(k)

n , α(k)),

then Π denote the coe�cient matrix of P

Π :=

π(1)

...
π(m)

 .

Denote by IΠ the number of linearly independent equations of Π. More for-
mal IΠ is the dimension of the vector space generated by {π(k)|1 ≤ k ≤ m}.
Sometimes we just write I instead of IΠ . The number of di�erent monomials
occurring in P is denoted by T .

Note that the problem of solving non-linear equations becomes easier ifm exceeds
n or vice versa. Even if not proven yet, experience suggest that m = n is the
hardest instance. The naive algorithm is to solve (1) by linearization, i.e. to
substitute every monomial in p(k) by a new variable and to solve the obtained
linear system of equations Π via Gaussian Elimination. This leads to a correct

solution if we have m = n(n+1)
2 + n linearly independent equations, i.e. if the

number of linearly independent equations I is equal to the number of monomials
T . Otherwise we obtain an exponential number of parasitic solutions. With the
technique of Relinearization, introduced in [26], we can solve P (asymptotically)
if we have m ≥ 0.09175 · n2 linearly independent equations. Lowering the trivial
factor of 1

2 to roughly 1
10 was a big leap and su�cient to cryptanalyze HFE.

3 From Relinearization to MutantXL

3.1 Relinearization

The idea of Relinearization is very clear and simple. Given a random MQ-
system P we �rst linearize, i.e. introduce new variables yk := xixj . For the
simplicity of the analysis we assume P to be homogeneous. That means the

number of unknowns xixj is
(
n+1
2

)
= n(n+1)

2 . Notice that this is no restriction as
we can express any non-homogeneous system in form of a homogeneous system
by introducing one more variable. For random systems it is very likely that all
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of the m equations are linearly independent, cf. section 4. This underdetermined
system of linear equations is now solved by Gaussian Elimination, see �gure 1

for illustration. As we can see there, we obtain q
n(n+1)

2 −m parasitic solutions in
ym+1, . . . , yn(n+1)

2
, i.e. a number exponential in n.

∗
0

0

Π

x1x1 x1x2 . . .
n(n+1)

2
−m remaining unknowns︷ ︸︸ ︷

y1 y2 . . . ym ym+1 . . .

Fig. 1. Coe�cient Matrix Π of P after Gaussian elimination

After linearization both y1 := x1x1 and y2 := x1x2 are two independent lin-
ear variables. But from an algebraic point of view this is not true as both y1
and y2 depend on x1. Relinearization exploits this structure to eliminate par-
asitic solutions, i.e. to �x the remaining variables ym+1, . . . , yn(n+1)

2
implicitly

via new equations. The following equations are trivially true and also linearly
independent for some ya = xixj :

xixjxkxl = xixkxjxl = xixlxjxk (4)

⇔ yi1yi2 = yi3yi4 = yi5yi6

Kipnis and Shamir required i < j < k < l in the above equation. There are
(
n
4

)
possible choices for xixjxkxl and thus we get 2

(
n
4

)
linearly independent equations

by (4). If this is larger than the number of unknowns in the remaining variables
y's we are done and can solve the system, i.e. for

2

(
n

4

)
≥
(n(n+1)

2 −m+ 1

2

)
.

For m in the same magnitude as n this is not the case in general. For m = εn2

and only considering the n4 part, we get the following asymptotic equation

0 ≤ −ε2 + ε− 1

12

and hence ε ≥ 0.09175.

Note that for inhomogeneous equations the overall analysis is the same but with
a bigger number of unknowns. By

2

(
n

4

)
≥
(n(n+1)

2 + n−m+ 1

2

)
,
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we obtain the same asymptotic result. But later in the exact analysis we will
need to distinguish between these two cases, as Relinearization in the homoge-
neous case is exactly the same as XL of degree 2.

3.2 The XL algorithm

The idea of XL [12] is simpler but not as easy to analyze. Basically we multiply
every equation of P by every monomial of a certain degree D. Obviously this
preserves the original solution. At some pointD is large enough to obtain roughly
as many linearly independent equations as monomials and thus we can solve the
system by linearization. We call this D solving degree and the corresponding
degree D + 2 of the polynomials saturation degree. The crucial question is, how
many of the produced equations are linearly independent. We will look at this
in section 5. First let us de�ne the XL algorithm in a rigorous way.

De�nition 1. Let Pinh := {p(k) | 1 ≤ k ≤ m} be the set of inhomogeneous
quadratic polynomials p(k) as de�ned in (2) and Phom := {p(k)| 1 ≤ k ≤ m} the
set of homogeneous quadratic polynomials p(k) as de�ned in (3). We de�ne the
set of all monomials of degree D ∈ N0 by

MonD(n) := {
D∏
j=1

xij | 1 ≤ i1 ≤ i2 ≤ . . . ≤ iD ≤ n}.

Multiplying Pinh by all monomials of degree D yields the set

BlowinhD (n) := {ab | a ∈ MonD(n) and b ∈ Pinh}.

The set BlowhomD (n) is de�ned analogously. The following set describes what is
commonly used as XL algorithm of degree D.

XLinhD (n) :=

D⋃
i=0

Blowinhi (n).

If n is clear out of the context, we just write MonD, Blow
inh
D or XLinhD .

Notice that XLinhD (n) and BlowhomD (n+1) are equivalent sets of polynomials and
thus we can restrict our analysis to the homogeneous case (see section 5 for a
proof). Furthermore we describe the XL algorithm forMQ-systems only. First
this is the most important case for cryptanalysis and second substituting the
term D + 2 by D + deg(P ) easily generalizes the algorithm.

De�nition 2 (XL algorithm). First we generate XLinhD and check if the num-
ber of linearly independent equations I is equal to the number of produced mono-
mials T subtracted by D+2. In this case we linearize the system and solve it by
Gaussian elimination. Notice, if T − I ≤ D + 2 we can choose the order of the
monomials such that we obtain at least one univariate equation after Gaussian
elimination, which can be solved, e.g. by Berlekamp's algorithm. If T−I > D+2
we set D := D + 1 and try again.
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Another way of looking at this algorithm is to �rst homogenize P and then
just produce BlowhomD (n + 1). Notice that the corresponding coe�cient matrix
of BlowhomD (n+ 1) is also known as Macaulay matrix. We speak of XL of degree
D+2, referring to the highest total degree of all polynomials and not the solving
degree. This degree D + 2 is called the saturation degree of XL.

3.3 Relinearization as special case of XL

The claim of Relinearization being a special case of XL was already made in
the paper that introduced XL [12]. Due to many technical details the proof was
omitted and referred to the extended version of the paper, what is to the best
of our knowledge not publicly available. But as we use Moh's detailed analysis
of Relinearization, i.e. i ≤ j ≤ k ≤ l [29], to compare Relinearization with XL,
we think our proof di�ers from what Courtois et al. had in their mind.

For i ≤ j ≤ k ≤ l we get

2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
equations by Relinearization, instead of 2

(
n
4

)
in the case i < j < k < l. To

allow to distinguish di�erent cases in the proof we assume m to be of the form
γ−1∑
i=0

(n − i) = γn + γ−γ2

2 for γ = εn and thus m = (ε − ε2

2 )n
2 + ε

2n. Through

this ym+1 = xγ+1xγ+1 holds and due to the graded lexicographical order for
all indices of not speci�ed monomials xixj in the ∗ block, see �gure 2, it holds
i, j > γ. This allows us to analyse xixjxkxl in the two cases i ≤ γ and i > γ.

∗
0

0

Π

x1x1 xγxn. . . xγ+1xγ+1 . . .

y1 y2 . . . ym ym+1 . . .

Fig. 2. Coe�cient Matrix Π of P after Gaussian elimination

We want to show that multiplying by special monomials is exactly the same as
Relinearization. Due to the choice of m we can distinguish two cases.
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Case 1, i ≤ γ. For i ≤ γ Relinearization behaves exactly as XL, as we will show
now. Remember Relinearization uses

xixj︸︷︷︸
yi1

xkxl = xixk︸︷︷︸
yi2

xjxl = xixl︸︷︷︸
yi3

xjxk with i1, i2, i3 ∈ {1, . . . ,m}. (5)

As XL do not make use of additional variables yi, equations (5) are trivially true
and thus of no use for solving the original system. But instead we can produce
all monomials of (5) by multiplying the row containing yi1 , yi2 and yi3 in �gure
2 with xkxl, xjxl and xjxk. This way we obtain 3 equations which are obviously
linearly independent. To calculate the gain of this, i.e. the di�erence between
the number of linearly independent equations and monomials, we have to dis-
tinguish 3 more cases.

Case 1.1, i < j < k < l. There are
γ∑
i=1

(
n−i
3

)
possibilities for xixjxkxl, as well as

for xixkxjxl and xixlxjxk for i < j < k < l. So we produce 3
γ∑
i=1

(
n−i
3

)
equations

with XL by multiplying yi by xkxl. But we also produce
γ∑
i=1

(
n−i
3

)
new mono-

mials containing variables xi with i ≤ γ and so the number of remaining new

equations is 2 ·
γ∑
i=1

(
n−i
3

)
.

Case 1.2, (j = i and k 6= l) or (j = k and i 6= l) or (k = l and i 6= j). In the
case of two equal and two di�erent indices we have the following 3 possibilities of
monomials: xixixkxl, xixjxjxl and xixjxkxk. Any of them produces 2 equations
due to xixixkxl = xixkxixl = xixlxixk. Notice that the last equality is not used
by Relinearization, because it is trivial. So we ignore them too. Since xixixkxl
introduce one new monomial containing variables xi with i ≤ γ, only xixkxixl

gives us a new equation. So we have 3 ·
γ∑
i=1

(
n−i
2

)
new equations in total.

Case 1.3, i = j and k = l and i 6= k. In this case Relinearization uses xixixkxk =
xixkxixk. The left monomial produces one new monomial containing variables
xi with i ≤ γ for every equation in XL and thus only the right monomial pro-

duces
γ∑
i=1

(n− i) new equations.
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To sum up cases 1.1 - 1.3, we produced

2 ·
γ∑
i=1

(
n− i
3

)
+ 3 ·

γ∑
i=1

(
n− i
2

)
+

γ∑
i=1

(n− i)

new linearly independent equations by adapting Relinearization to XL. Notice
that we produced more equations than this, but used them to eliminate the
newly introduced monomials of degree 4 with variables xi and i ≤ γ. So the
number of unknowns in XL is only the number of degree 4 monomials contain-
ing variables xi with i > γ, i.e.

(
n−γ+3

4

)
.

Case 2, i > γ. For i > γ Relinearization uses the equations

xixjxkxl = xixkxjxl = xixlxjxk.

These equations cannot be rebuilt by XL. But the di�erence between both meth-
ods is that Relinearization introduce more variables after the second linearization
step and XL does not. So we do not need these equations for XL because they
are only needed in Relinearization to eliminate variables we do not have in XL.

The following equations sum up the number of unknowns and equations in both
methods. The terms on the left hand side are the number of unknowns and on
the right hand side the number of equations.

Relinearization:

(
(
n+1
2

)
−m)(

(
n+1
2

)
−m+ 1)

2
≤ 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
↑ ↑
∆1 ∆2

↓ ↓
XL: (

n− γ + 3

4

)
≤ 2 ·

γ∑
i=1

(
n− i
3

)
+ 3 ·

γ∑
i=1

(
n− i
2

)
+

γ∑
i=1

(n− i)

To show that both are equal, we have to show that the di�erence ∆1 between
the terms on the left is equal to the di�erence ∆2 of the terms on the right. We

us m = γn+ γ−γ2

2 (∗) and the following equality for k ∈ N>0

(
n

k

)
−
(
n− γ
k

)
=

γ∑
i=1

(
n− i
k − 1

)
.
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We get

∆1 =
(
(
n+1
2

)
−m)(

(
n+1
2

)
−m+ 1)

2
−
(
n− γ + 3

4

)
(∗)
= 2

(
n− γ
4

)
+ 3

(
n− γ
3

)
+

(
n− γ
2

)
= 2

((
n− γ
4

)
−
(
n

4

)
+

(
n

4

))
+3

((
n− γ
3

)
−
(
n

3

)
+

(
n

3

))
+

(
n− γ
2

)
−
(
n

2

)
+

(
n

2

)
= 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
−2 ·

γ∑
i=1

(
n− i
3

)
− 3 ·

γ∑
i=1

(
n− i
2

)
−

γ∑
i=1

(n− i)

= ∆2 �

To conclude, if we use XL and multiply not by all quadratic monomials, but only
by special ones, we do the same as Relinearization and thus Relinearization is
a special case of XL. Now we want to show that it is equal in the homogeneous
case of degree two.

In section 5 we will explain that the number of linearly independent equations
produced by Blowhom2 is m

(
n+1
2

)
−
(
m
2

)
. Using this we can analyze if XL outper-

forms Relinearization or not. In the homogeneous case the following must hold
for Blowhom2 to obtain a solution.

m

(
n+ 1

2

)
−
(
m

2

)
−
(
n+ 3

4

)
≥ −D − 2 (6)

The following must hold for Relinearization to obtain a solution.

2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
−
( (n+1)n

2 −m+ 1

2

)
≥ −D − 2 (7)

Because of the following equality, inequations (6) and (7) are equal.

m

(
n+ 1

2

)
−
(
m

2

)
−
(
n+ 3

4

)
=
n4

24
+
n3

4
− n2m

2
+

11n2

24
− nm

2
+
n

4
+
m2

2
− m

2

= 2

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
−
( (n+1)n

2 −m+ 1

2

)
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In the inhomogeneous case, Blowinh2 is slightly better than Relinearization. We
gain a factor of 1

12 instead of 0.09175 in the asymptotic analysis. We can also
derive this from the inequations above. If we homogenize the inhomogeneous
system, we have to substitute n by (n + 1) in inequation (6). Relinearization
does not depend on whether equations are homogeneous or not, i.e. inequation
(7) remains the same and thus both are not longer equal.

3.4 Variants of XL

Inspired by Gröbner bases and some other observations there is a whole family
of XL-like algorithms, which try to use some additional ideas to speed up the
original XL algorithm. We revisit the most important ones, namely FXL, XFL,
XLF, XL', XSL, MutantXL/XL2 and WXL. [6, 11, 12, 13, 16, 30, 35] and give
some reasons if and under which circumstances they are useful. See the PhD
thesis of Mohamed [31] for a more extensive list of XL variants.

FXL
FXL, or �xing extended linearization, was suggested in the original paper of
Courtois et al. [12] and is XL with guessing some variables beforehand. This
is quite a good idea also for the Gröbner base algorithm F4 [6]. An empirical
con�rmation for XL was given in [36]. They showed thatD is exponential, namely
2m, in the case m = n and already polynomial in the case m = n+1. So it helps
to guess at least one variable. The optimal number of guessed variables is given
by Yang and Chen [35, section 5.2].

XFL
XFL is a variant of FXL. We choose f variables, but do not guess them in the
beginning. We choose the order of the monomials in a way that all monomials
containing any of the f variables are eliminated last. Now we linearize the system
and apply Gaussian elimination. Because the system was underdetermined, we
obtain no unique solution. To do so, we guess one of the f variables and apply
Gaussian elimination again. Why is this stepwise guessing better than FXL in
some case? First we have to do the most work, i.e. the �rst Gaussian elimination,
only once. In FXL we have to do this after every wrong guessing. But notice,
that there the number of monomials is smaller, so we carefully have to calculate
the right tradeo� between the two variants. Second XFL may use dependencies
among the f variables and thus succeed.

XLF
XLF just takes the �eld equations (xq − x) = 0 in Fq into account and was
�rst mentioned in [11]. XLF makes sense in the inhomogeneous case, if D gets
larger than (q − 2). In this case the analysis becomes slightly di�erent, because
the number of produced monomials decrease, i.e. monomials xD+2

i reduce to the
already existing xi. This means we need less linearly independent equations to
succeed.
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XL'
Introduced by Courtois and Patarin in [13] this variant solves the equation sys-
tem by XL until there are only

(
r+D+2
D+2

)
equations in r variables left. This re-

maining system of equations is solved by brute force or other algorithms like
Gröbner bases.

Claim. For practical purposes, FXL is better than XL'.

Proof. We call FXL better than XL', i.e. FXL ≥ XL', if (T − I)FXL is smaller
than (T − I)XL'. With section 5 and D = 2k we can write

(T − I)FXL =

(
n− r +D + 1

D + 2

)
−

k∑
i=0

(−1)i
(

m

i+ 1

)(
n− r +D − 2i− 1

n− r − 1

)

=

2k+2∑
i=0

(−1)i
(
m− n+ r

i

)(
m

2k − i+ 2

)
and

(T − I)XL' =
(
n+D + 1

D + 2

)
−

k∑
i=0

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)
−
(
r + 2k + 2

2k + 2

)

=

2k+2∑
i=0

(−1)i
(
m− n
i

)(
m

2k − i+ 2

)
−
(
r + 2k + 2

2k + 2

)
+ 1.

If we plotted formula (T − I)XL' − (T − I)FXL we would see that this is greater
than zero, i.e. FXL is better than XL', for r less than some bound depending on
k. For increasing k the bound on r decrease. It seems very hard to calculate this
bound in an analytical way. But for real world parameter k < 10 and r � n we
are below this bound. W.l.o.g. we can assume m = n, otherwise we substitute
r. See table 1 for the upper bound on r depending on m and k. With F5 we
can solveMQ-systems up to m = 20 in 266 operations, so we stopped the table
at m = 30 for practical purpose. Even k > 6 is of no practical interest because
the workload without considering guessing would be larger than

(
n+2k+2
2k+2

)ω
for

2 ≤ ω ≤ 3. Note that the cases marked gray are always solvable by XLinh2k

m\k 1 2 3 4 5 6

5 1 0 0 0 0 0
10 6 3 1 0 0 0
15 11 8 6 5 1 1
20 15 13 12 10 8 6
25 20 18 17 15 12 10
30 25 23 22 19 17 15

Table 1. Upper bound on r such that FXL ≥ XL'.
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without guessing. In any other case the bound on r is high enough to guess as
many variables as we need to solve the equation system with FXL. So we claim
that FXL is always better than XL' for practical purpose.

XSL
Courtois and Pieprzyk [14] published this method at Asiacrypt 2002 and claimed
to have broken AES using it. This was disproved in 2005 by Leurent and Cid
[9]. The idea of XSL is to use the special structure of the equation system.
If some equations are sparse you might introduce more new monomials than
equations by multiplying them by all monomials of a special degree. So in some
case it might be better to multiply some equations only by some monomials.
It still is an open question how to do this. The idea of XSL is connected to
Coppersmiths lattice based method to solve modular equations. Like in XL you
multiply the equation by so called shift polynomials. Choosing the correct shift
set is a di�cult problem. In the case of two unknowns, we can plot the Newton
polytope and get an intuition. But in multivariate cryptography you deal with
a lot more unknowns. So it even is an open problem to �nd the correct shift set
for some given equation.

MutantXL
One of the most e�cient variants of XL is called MutantXL [16, 30] respectively
XL2 [35]. It is claimed to be as fast as F4 in some cases. This claim was derived
from experiments on HFE [8].

Let I be the number of linearly independent equations produced by XLinhD and
T =

(
n+D+2
D+2

)
the number of monomials of degree ≤ D+ 2. If (T − I) > (D+2)

it is highly unlikely that XL �nds a univariate polynomial and thus solves the
system. As outlined above, XL will continue with D := D + 1. MutantXL is
a step in between. Instead of doing a full extension from D to D + 1 it uses
equations that would be produced by XLinhD+k with k > 0 as long as they do not
introduce new monomials. To this aim we use polynomials of degree < D+2 that
are produced in the Gaussian elimination step of XLinhD . These polynomials are
called mutants. For example multiplying these polynomials by all monomials of
Mon1 leads to new equations without generating new monomials. However, this
strategy is only useful for inhomogeneous equations. In the homogeneous case
all monomials have same degree and thus mutants simply never occur.

De�nition 3. Let f =
m∑
i=1

gjih
(i) with h(i) ∈ Pinh and gji some polynomial of

degree ≤ D be a representation of f . This representation is not unique. The set J
denotes all representations (j1, . . . , jm) of f . The level (lev) of this representation
j ∈ J is de�ned by

lev

(
m∑
i=1

gjih
(i)

)
:= max

{
deg
(
gjih

(i)
)
| 1 ≤ i ≤ m

}
.
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The level (Lev) of f is de�ned by the minimum level of all its representations.

Lev (f) := min{lev

(
m∑
i=1

gjih
(i)

)
| j ∈ J}

We call g a mutant if deg(f) < Lev(f).

We will give a detailed complexity analysis of MutantXL in section 6.

WXL, PWXL and WMXL
In his PhD thesis [31] Mohamed used Wiedemann's algorithm instead of Gaus-
sian Elimination to decrease the amount of memory needed for XL and called
this algorithmWXL. He showed experimentally that his variant always consumes
less memory than F4. As Wiedemanns algorithm allows easy parallelization he
also introduced a parallel version called PWXL. The claim that this version is
faster than F4 is not completely fair as they used several processors in parallel
but compared to F4 running on only one processor. In cryptanalysis it is very
common to guess some variables before solving a system of equations. Due to
this guessing you can also easily run F4 in parallel. Combining Wiedemanns
algorithm with MutantXL is called WMXL.

4 The generic case of random systems

To analyze the complexity of XL in section 5 we need to count the dimension
of the vector space spanned by {ap(k) | 1 ≤ k ≤ m and a ∈ MonD} or to put it
simpler, the number of linearly independent equations I generated by BlowhomD .
Obviously if two rows of Π are linearly dependent, all their multiples are, too.
Moreover, even if two polynomials share a common factor, we get a nontrivial
dependency in XLinh1 (see section 5 for details). Thus it seems infeasible to derive
one formula covering all MQ-systems. Instead we concentrate our analysis on
the generic case of random MQ-systems. The question to deal with in this
section is: Which properties does a randomMQ-system typically have? A �rst
attempt is due to Macaulay [28], who de�ned regular sequences as early as 1916.

De�nition 4 (regular sequence). A sequence of m polynomials (p1, . . . , pm)
is regular if for all i = 1, . . . ,m, pi is not a zero-divisor in the quotient ring
F[x1, . . . , xn]/(p1, . . . , pi−1). In other words if there exists g such that gpi ∈
〈p1, . . . , pi−1〉 then g ∈ 〈p1, . . . , pi−1〉 also holds.

According to this de�nition regular sequences can be viewed as sequences with-
out any special internal structure, i.e. the only relations holding are the trivial
ones. More precisely gpi ∈ 〈p1, . . . , pi−1〉means that there is a linear combination
of multiples of p1, . . . , pi−1 that equals gpi and thus gpi is linearly dependent
to the equations produced by p1, . . . , pi−1. For regular sequences this implies
g ∈ 〈p1, . . . , pi−1〉 which means that pig ∈ 〈p1, . . . , pi−1〉 is trivially true and
thus there only exist the trivial dependency gpi = pig.



From Relinearization to MutantXL 15

De�nition 4, i.e. gpi ∈ 〈p1, . . . , pi−1〉 ⇔ g ∈ 〈p1, . . . , pi−1〉 can also be written as

gpi =

i−1∑
j=1

hjpj ⇔ g =

i−1∑
j=1

ljpj (8)

⇔ gpi =

i−1∑
j=1

ljpjpi,

for some polynomials hj and lj .

If we denote the linear closure of degree k of a polynomial f or a set P , respec-
tively, as

Lin(f, k) := span ({µf : µ ∈ Monk})
Lin(P, k) := span ({µp : µ ∈ Monk, p ∈ P}) ,

and de�ne with #Lin(P, k) the dimension of Lin(P, k) or to put it simpler the
number of linearly independent equations, then condition (8) can, due to Moh
[29, section 4], be equivalently formulated as follows.

#(Lin({p1, . . . , pi−1}, k) ∩ Lin(pi, k)) = #Lin({p1, . . . , pi−1}, k − 2) (9)

We will need this equation to proof lemma 1 later on.

Bardet et al. mentioned in their complexity analysis of Gröbner basis compu-
tations [4, 5] that regular systems only exists if the number of equations m is
less or equal the number of variables n. Thus they introduced the de�nition of
semi-regular systems to cover the overdetermined case m > n. Therefore they
�rst needed the notion of the degree of regularity, which is the smallest degree
d such that the dimension of the vector space spanned by all polynomials of an
ideal I = 〈p1, . . . , pm〉 with degree d equals the number of monomials of degree
d. Or to put it simpler, the number of linearly independent equations I equals
the number of monomials T .

De�nition 5 (degree of regularity). The degree of regularity of a homoge-
neous ideal I = 〈p1, . . . , pm〉 is de�ned by

dreg := min

{
d ≥ 0 : dim ({p ∈ I | deg(p) = d}) =

(
n+ d− 1

d

)}
.

De�nition 6 (semi-regular sequence). A homogeneous sequence of m poly-
nomials (p1, . . . , pm) is semi-regular if for all i = 1, . . . ,m and g such that
gpi ∈ 〈p1, . . . , pn〉 and deg(gpi) < dreg then g ∈ 〈p1, . . . , pi−1〉 also holds.

Unfortunately it is not proven yet that semi-regular sequences are generic and
thus all the proofs are built on this assumption. Diem [15] reduced this as-
sumption to the more common MinRank conjecture or also known as Fröbergs
conjecture.
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To give some intuition on the behavior of random MQ-systems, we will now
calculate the probability for such a system with m = n = 2 to be regular. In that
special case de�nition 4 is equivalent to the condition of both polynomials being
co-prime. Let f = h1h2 and g = h1h3 be two quadratic polynomials sharing
a common factor h1, then obviously h3f = h2g is a nontrivial dependency.
Conversely if h1g = h2f and h1 /∈ 〈f〉 then obviously gcd(f, g) 6= 1. The following
corollary gives the probability of two random quadratic polynomials f, g being
not co-prime.

Corollary 1. Two randomly chosen MQ-polynomials f, g ∈ Fq[x1, x2] are not
co-prime with probability

(q − 1)2 + (q3 − q)3

(q6 − q3)2
≈ O(q−3).

Proof. Two randomly chosen quadratic polynomials f and g are not co-prime i�
they share a common factor. There are (q− 1)2 possibilities for λ1, λ2 ∈ F∗

q with
λ1g = λ2f . Let g = ab and f = ac with a, b, c ∈ F[x1, x2] and deg(a) = deg(b) =
deg(c) = 1. There exist (q3 − q) possibilities each for a, b, c. The total amount
of quadratic polynomials in Fq[x1, x2] is (q6 − q3) and thus we have (q6 − q3)2
possibilities to choose f and g. ut

For the common setting q = 28, the probability of a system with m = n = 2 to
be not regular is 2−24. Note that this probability quickly decrease if n increase.

5 Complexity Analysis of XL revisited

The crucial point when using XL is to determine the number of linearly inde-
pendent equations I produced by BlowhomD or XLinhD . This is needed to calculate
D through T − I < D + 2 and therefore implies the complexity of the whole
algorithm. For random equation systems (see section 4) we will now revisit the
formulas derived theoretically by Moh [29], Yang and Chen [35] or by experi-
ments for D between 0 and 5 over F2 by Courtois and Patarin [13].

We run own experiments to con�rm previous results. All equations in table 2, 3
and 4 were obtained by a total of several 10,000 experiments. We omitted dis-
cordant values which occurred with very low probability every time the random
system did not match the conditions of section 4. All experiments were performed
on a Intel Xeon X33502.66GHz (Quadcore) with 8 GB of RAM using only one
core and the software system Magma V2.16-1 [10]. Parameters were running for
various tuples (n,m,D) in the range 3 ≤ n ≤ 15, 3 ≤ m ≤ 50, 1 ≤ D ≤ 8.
Notice, for a ground �eld Fq and D + 2 < q, the formulas are independent of
the ground �eld. If D + 2 ≥ q we have to take the �eld equations xq = x into
account and things get messy�at least from a theoretical perspective. For ex-
ample if q = 2 the number of monomials of degree D decreases from

(
n+D−1

D

)
to
(
n
D

)
and besides of the trivial dependency fg = gf there is an additional
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dependency due to f2 = f for f, g quadratic polynomials. The important case
of F2 was treated by Rønjom and Raddum in [34]. See table 5 for their results
restricted to the homogeneous case.

Table 2. Number of linearly independent equations produced by BlowhomD , experimen-
tally derived.

D Number of linearly independent equations

0 m

1 mn

2 m
(
n+1
2

)
−
(
m
2

)
3 m

(
n+2
3

)
−
(
m
2

)
n

4 m
(
n+3
4

)
−
(
m
2

)(
n+1
2

)
+
(
m
3

)
5 m

(
n+4
5

)
−
(
m
2

)(
n+2
3

)
+
(
m
3

)
n

Table 3. Number of linearly independent equations produced by BlowinhD , experimen-
tally derived.

D Number of linearly independent equations

0 m

1 mn

2 m
(
n+1
2

)
3 m

(
n+2
3

)
−
(
m−1

3

)
4 m

(
n+3
4

)
−
(
m−1

3

)
n+

(
m−1

4

)
5 m

(
n+4
5

)
−
(
m−1

3

)(
n+1
2

)
+
(
m−1

4

)
n−

(
m−1

5

)
+
(
m−1

4

)
6 m

(
n+5
6

)
−
(
m−1

3

)(
n+2
3

)
+
(
m−1

4

)(
n+1
2

)
−
(
m−1

5

)
n+

(
m−1

4

)
n+

(
m−1

6

)
−
(
m−1

5

)

Table 4. Number of linearly independent equations produced by XLinhD , experimentally
derived.

D Number of linearly independent equations

0 m

1 m+mn

2 m+mn+m
(
n+1
2

)
−
(
m
2

)
3 m

(
n+3
3

)
−
(
m
2

)
(n+ 1)

4 m
(
n+4
4

)
−
(
m
2

)(
n+2
2

)
+
(
m
3

)
5 m

(
n+5
5

)
−
(
m
2

)(
n+3
3

)
+
(
m
3

)
(n+ 1)
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Table 5. Number of linearly independent equations produced by BlowhomD over F2.

D Number of linearly independent equations

0 m

1 mn

2 m
(
n
2

)
− (
(
m
2

)
+m)

3 m
(
n
3

)
− (
(
m
2

)
+m)n

4 m
(
n
4

)
− (
(
m
2

)
+m)

(
n
2

)
+ (
(
m
3

)
+ 2
(
m
2

)
+m)

5 m
(
n
5

)
− (
(
m
2

)
+m)

(
n
3

)
+ (
(
m
3

)
+ 2
(
m
2

)
+m)n

We restrict our analysis to D + 2 < q in the whole paper. Replacing formulas
will easily cover the other cases.

In section 3.2 we claimed that BlowhomD (n+ 1) and XLinhD (n) are equivalent due
to homogenization. With the formulas of table 2 and 4 we proof this claim
exemplarily for D = 2:
Note that for BlowhomD (n + 1), the number of monomials is

(
n+4
4

)
− 1 because

we know x4n+1 by the choice of xn+1 = 1 for homogenization. Considering the
formula I − T we get the following.

Blowhom2 (n+ 1) :

m

(
n+ 2

2

)
−
(
m

2

)
−
(
n+ 4

4

)
+ 1

= m

(
n+ 1

2

)
+m

(
n+ 1

1

)
−
(
m

2

)
−
(
n+ 3

4

)
−
(
n+ 3

3

)
+ 1

= m+mn+m

(
n+ 1

2

)
−
(
m

2

)
−
(
n+ 3

4

)
−
(
n+ 2

3

)
−
(
n+ 2

2

)
+ 1

= m+mn+m

(
n+ 1

2

)
−
(
m

2

)
−
(
n+ 3

4

)
−
(
n+ 2

3

)
−
(
n+ 1

2

)
− n

: XLinh2 (n)

Now we proof the formulas given in table 2 theoretically. The following result
was given and proven inductively by Moh [29]. We want to formulate this proof
in more detail and show were the systematic linear dependencies arise.

Lemma 1. If Phom is a semi-regular sequence, then the number of linearly in-
dependent equations produced by BlowhomD with D = 2k+b and b ∈ {0, 1} is given
by

IBlowhomD ,n :=

k∑
i=0

(−1)i
(

m

i+ 1

)(
n+ 2(k − i)− 1 + b

2(k − i) + b

)
. (10)

Before proving this lemma at the end of this section, we need some intermediate
results. First we concentrate on Blowhom2 and search for the

(
m
2

)
linear dependent
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equations out of all m
(
n+1
2

)
produced equations. Let f, g be two Multivari-

ate Quadratic polynomials in n variables each. Denote Monf , Mong the set of
monomials in f and g, respectively. Assume the existence of some admissible
ordering for multivariate polynomials f, g, e.g. degrev-lex or lex.

Lemma 2. Let f, g be a pair of co-prime Multivariate Quadratic polynomials.
Moreover, let F := {bf : b ∈ Mong} and G := {ag : a ∈ Monf} be the sets of
cross-wise monomial multiplication of f and g, respectively. Then these two sets
produce |F |+ |G| − 1 linearly independent equations.

Proof. We denote our two polynomials by f :=
∑σ
i=1 αiai and g :=

∑τ
i=1 βibi

for non-zero �eld elements αi, βj ∈ F∗ and monomials ai, bj for 1 ≤ i ≤ σ and
1 ≤ j ≤ τ . All monomials have degree 2, i.e. we have deg(ai), deg(bi) = 2. The
important property of the two sets F,G is that each monomial ab for a ∈ Monf
and b ∈ Mong exists twice, namely once in bf ∈ F and once in ag ∈ G. The
following equation shows that adding all equations of F multiplied by coe�cients
βi is equal to adding all equations of G multiplied by coe�cients αi and thus
the set F ∪G is linear dependent.

τ∑
i=1

βibif =

τ∑
i=1

βibi

σ∑
j=1

αjaj =

σ∑
j=1

αjaj

τ∑
i=1

βibi =

σ∑
j=1

αjajg

For short we write fg = gf and call this relation trivial syzygy. On the other
hand assume the existence of a nontrivial syzygy h1f = h2g. As g and f are
co-prime this directly implies f |h2 and g |h1 which contradicts that h1f = h2g
is a nontrivial syzygy . ut

Corollary 2. The largest linearly independent subset of Blowhom2 for regular or
semi-regular sequences is of size

(
n+1
2

)
m−

(
m
2

)
.

Proof. By its de�nition, we have at most
(
n+1
2

)
m distinct elements in Blowhom2 .

This explains the �rst part of the sum and also gives an upper bound. Considering
all pairs (f, g) ∈ P × P with f < g and also Lemma 2, we obtain

(
m
2

)
linear

dependencies. ut

Corollary 3. The largest linearly independent subset of XLinh2 is of size
(
n
2

)
m+

nm+m−
(
m
2

)
.

Proof. This corollary works similar to corollary 2. By its de�nition, we have at
most

(
n
2

)
m+ nm+m elements in XLinh2 . This explains the �rst part of the sum

and also gives an upper bound. Considering all pairs (f, g) ∈ P × P with f < g
and also Lemma 2, we obtain

(
m
2

)
linear dependencies. ut

Lemma 3. Let f, g be a pair of linearly independent, homogeneousMultivariate
Quadratic polynomials. For n ≥ k > 2, the set Blowhomk = {µf, µg : µ ∈ Monk}
contains at most 2

(
n+k−1

k

)
−
(
n+k−3
k−2

)
linearly independent equations.
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Proof. The �rst part of the sum is a result of the
(
n+k−1

k

)
choices of the monomial

µ. We �x some monomial v ∈ Monk−2 and study the two sets Fv := {vfb : b ∈
Mong} and Gv := {vga : a ∈ Monf}. For a given pair Fv, Gv, we can now apply

lemma 2. We have |Monk−2| =
(
n+k−3
k−2

)
individual choices for v. ut

Extending this lemma from pairs to sets is kind of tricky, because since D ≥ 4
we obtain new linear dependencies between 3 and more equations. Thus we are
counting linear dependencies twice if we only consider pairs f, g. To count all
equations only once, we need (9) cf. section 4.

Proof (lemma 1). First we reformulate the formula of lemma 1. The number of
linearly independent equations #Lin(Phom, D) there is given by∑

0≤2i≤D

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)
. (11)

We proof this by induction via m. The case m = 1 is trivial.
Let us assume (11) holds for m. We have to show that it also holds for m+ 1.

We have Phom
m+1 := Phom

m ∪ {pm+1} and write

#Lin(Phom
m+1, D) = #Lin(Phom

m , D) + #Lin(pm+1, D)

− #(Lin(Phom
m , D) ∩ Lin(pm+1, D)).

The last term simpli�es to #Lin(Phom
m , D − 2) using (9). Using the induction

hypothesis we obtain the following formula for #Lin(Phom
m+1, D).∑

0≤2i≤D

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)

+

(
n+D − 1

D

)
−

∑
0≤2i≤D−2

(−1)i
(

m

i+ 1

)(
n+D − 2i− 3

n− 1

)

=
∑

0≤2i≤D

(−1)i
(

m

i+ 1

)(
n+D − 2i− 1

n− 1

)

+
∑

0≤2i≤D

(−1)i
(
m

i

)(
n+D − 2i− 1

n− 1

)
(12)

Exploiting
(
m
l

)
=
(
m−1
l

)
+
(
m−1
l−1

)
yields

(12) =
∑

0≤2i≤D

(−1)i
(
m+ 1

i+ 1

)(
n+D − 2i− 1

n− 1

)
.

ut
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The overall complexity of the XL algorithm is essentially the workload of the
Gaussian Elimination step and thus given by

(
n+D+2
D+2

)ω
for 2 ≤ ω ≤ 3. For

plain Gaussian Elimination we have ω = 3. Using sparse matrix algebra, we can
assume ω = 2 [32]. Table 6 give the saturation degree D + 2 for some practical
important choices of m equations and n = m − r variables, i.e. r variables are
guessed. The corresponding log2 complexity, including guessing over F28 , can be
found in table 7.

m\r 0 1 2 3 5

5 - 5 3 2 2
10 - 10 6 5 3
15 - 15 8 7 5
20 - 20 11 9 7
25 - 25 13 11 9
30 - 30 16 14 11

Table 6. Degree D + 2 of XL.

m\r 0 1 2 3 5

5 - 22 25 29 40
10 - 41 39 43 52
15 - 60 51 55 63
20 - 80 66 67 75
25 - 100 78 79 87
30 - 119 93 94 98

Table 7. Complexity of XL over F28

6 Complexity Analysis of MutantXL

Again, the crucial question is how many equations produced by mutants are
linearly independent to the previous ones. We give a nontrivial upper bound
on this number. Assuming this bound to be tight we are able to calculate the
saturation degree of MutantXL, which matches empirical data. To conclude we
compare MutantXL to Gröbner basis algorithms like F4 and show that it solves
at the degree of regularity more often than not, but never below.

First we observe that not all mutants are useful, as some of them trivially produce
linearly dependent elements.

De�nition 7 (trivial mutant). Let D+2 be the saturation degree of Mutant-
XL. We call mutants (cf. Def. 3) in the linear hull of XLinhD−1 trivial.

The de�nition of trivial mutants is motivated by the following observation. Let
g be a trivial mutant, i.e. g ∈ span(Blowinhd ), deg(g) < (d + 2) and d < D. For
every x ∈ MonD−d we obtain by xg a mutant of BlowinhD . Thus all the linearly
independent equation produced by trivial mutants are produced twice by non-
trivial mutants of BlowinhD .

Let DBlow
inh

D ,n := dim(span(XLinhD )) − dim(span(XLinhD−1)) denote the di�erence

between the dimensions of the vector spaces generated by XLinhD and XLinhD−1 or
to put it simpler the number of new linearly independent equations produced by
BlowinhD . We calculate DBlow

inh

D ,n using (11) by

DBlow
inh

D ,n = IXLinhD ,n − IXLinhD−1,n
= IBlowhomD ,n+1 − IBlowhomD−1,n+1 . (13)
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Recall the strategy of MutantXL (cf. section 3.4). In step 0 we produce XLinhD sim-
ilar to the XL algorithm. In step 1 we determine all nontrivial mutants through
BlowinhD and multiply them by all monomials with degree at most k, with k ∈ N
full�lling the following condition.

k−1∑
j=0

|MonD+2−j | ≤ DBlow
inh

D ,n ≤
k∑
j=0

|MonD+2−j | . (14)

For the sake of simplicity we use k = 1, i.e. |MonD+2| ≤ DBlow
inh

D ,n ≤ |MonD+2|+
|MonD+1| illustrated in �gure 3, in our explanation. Note that neither we found
a set of parameters m,n with k > 1 in step 1 nor could formally proof this fact.
But as we only distinguish the cases k = 0 and k > 0 in our �nal analysis that
question is of no e�ect. For k = 1 mutants will produce at most n(DBlow

inh

D ,n −

∗

∗

0

0

0

0
0

0

MonD+2︷ ︸︸ ︷ MonD+1︷ ︸︸ ︷ . . .

︸ ︷︷ ︸(
n+D+1
D+1

)︷︸︸
︷

m̃

Fig. 3. Coe�cient Matrix Π of BlowinhD after Gaussian elimination. Here m̃ indicates
the number of mutants for the corresponding system P .

|MonD+2|) equations or nm̃ using the notation of �gure 3, as we multiply all
m̃ mutants by all n monomials of degree one. See corollary 4 for arbitrary k.
Experiments for 2 ≤ n ≤ 7 and n ≤ m ≤ 9 over F28 show that this trivial bound
is far above the correct number of new linearly independent equations.

Corollary 4. The maximal number of equations produced by nontrivial mutants
is given by

k−1∑
i=1

(
n+ i− 1

i

)
|MonD+2−i|+

(
n+ k − 1

k

)(
DBlow

inh

D ,n −
k−1∑
i=0

|MonD+2−i|

)
.

Our nontrivial upper bound uses the fact that all nm̃ equations produced by
mutants are implicit equations of BlowinhD+1. Exactly DBlow

inh

D+1,n
(see eqn. 13)

of them are linearly independent to XLinhD . But they all contain monomials of
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MonD+3. Equations produced by mutants have maximal degree D + 2 and thus
�rst all |MonD+3| monomials have to be reduced. Therefore DBlow

inh

D+1,n
−|MonD+3|

is an upper bound on the number of linearly independent equations produced
by mutants. For arbitrary k this leads to the following upper bound.

Corollary 5. A nontrivial upper bound on the number of linearly independent
equations produced by mutants is given by

k∑
i=1

(
IXLinhD+i,n

− IXLinhD+i−1,n
− |MonD+2+i|

)
= IXLinhD+k,n

− IXLinhD ,n −
k∑
j=1

|MonD+2+j | . (15)

In step 2 we would reduce the equations obtained in step 1 and thus receive
new mutants which we would multiply by all monomials of a certain degree to
obtain new equations and so on and so forth. We can iterate this process and
thus get an upper bound on the number of new linearly independent equations
produced by mutants, if we consider k such that equation 15 is maximal. We do
not even have do go that far, as obviously T − I is a trivial upper bound and we
can show that for k →∞ equation 15 matches these trivial bound. Let therefore
transform equation 15 as follows.

IXLinhD+k,n
− IXLinhD ,n −

k∑
j=1

|MonD+2+j |

=

(
n+D + 2

D + 2

)
− IXLinhD ,n + IXLinhD+k,n

−
(
n+D + k + 2

D + k + 2

)
=

(
n+D + 2

D + 2

)
− IXLinhD ,n −

D+k∑
i=0

(−1)i
(
m− n− 1

i

)(
m

D + k + 2− i

)
︸ ︷︷ ︸

=:Ω

Note, the second equality is due to Yang and Chen [35]. Obviously Ω is zero if
D+ k+ 2−m > i > m− n− 1 and thus for k > 2m− n− 3−D the number of
new linearly independent equations produced by mutants is upper bounded by
T − I, what is exactly the range left until we obtain maximal rank. Note that
depending on the solution of theMQ-system T = I might be impossible. But as
T −I < D+2 su�ces to �nd a solution using MutantXL the upper bound might
not be matched but su�ciently tight to obtain a solution. Even if we are not
able to proof that mutants produce su�ciently many equations to solve theMQ-
system, there are three good arguments. First all the equations are from di�erent
spaces BlowinhD+i for i > 0. Second, if we multiply equations with monomials of

degree one that are implicitly from BlowinhD+k and D+k is even, than all multiples
should be linearly independent as new trivial syzygies are only introduced from
odd to even degree (cf. sec. 5). And last but not least experimental evidence. We
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did experiments for 2 ≤ n ≤ 7 and n+ 1 ≤ m ≤ (n+ 1)n/2 which all con�rmed
the saturation degree for MutantXL given in the following lemma.

Lemma 4. If we assume T−I to be a su�ciently tight upper bound on the num-
ber of new linearly independent equations produced by mutants, then MutantXL
solves at saturation degree D + 2 as soon as nontrivial mutants occur, i.e.

DBlow
inh

D ,n >

(
n+D + 1

D + 2

)
.

We want to mention that a similar result was given by Yang and Chen [35,
Prop.4] looking at the problem from a di�erent perspective. They also state that
MutantXL (respectively XL2) solves as soon as Mutants occur. This happens as
soon as all top-degree monomials are eliminated. If we separate the top-degree
monomials of every equation, we can think of an homogeneous system with
n variables or equivalently an inhomogeneous system of n − 1 variables. Thus
Yang and Chen concluded that Mutants �rst occur at the saturation degree of
XLinhD (n− 1). Due to the following equality this is equal to lemma 4.

DBlow
inh

D ,n = IXLinhD ,n − IXLinhD−1,n
= IXLinhD ,n−1

By having a closer look at the problem, especially by corollary 5, we gave addi-
tional intuition and hopefully did a step to proof lemma 4 without assumptions.
In �gures 4 and 5 we calculated the saturation degree D + 2 of MutantXL
with the degree of regularity dreg [5] of Gröbner basis algorithms like F4 or
F5 for random MQ-systems with n ∈ [1, 10] respectively n ∈ [1, 30] variables

and m ∈
[
n+ 1, n(n+1)

2

]
equations. Note, the case m = n is an exception, as

D + 2 = 2m both for XL and MutantXL.

In a nutshell, MutantXL almost always solves at the degree of regularity. Only
in very few cases, except m = n, it solves at most one degree higher than F4/F5.
Table 8 and 9 give numerical values. Table 10 show the corresponding di�erence
of the saturation degree of MutantXL and dreg. To mention the gain of Mutan-
tXL over XL, table 11 shows the di�erence between the saturation degrees of
both.
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Fig. 4. Visualization ∆ := D + 2 − dreg for n = 1 . . . 10. Black: ∆ = 1, gray: ∆ = 0.
Y-Axis is number of variables n, x-axis the number of equations m.
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Fig. 5. Visualization ∆ := D + 2 − dreg for n = 1 . . . 30. Black: ∆ = 1, gray: ∆ = 0.
Y-Axis is number of variables n, x-axis the number of equations m.



26 Enrico Thomae, Christopher Wolf

The complexity of MutantXL is determined by the Gaussian elimination step
on all m

(
n+D
D

)
equations produced by XL and the number of mutants�if any.

The latter is captured by max
{
0,
(
n+D+2
D+2

)
− I −D − 2

}
. Thus if m = n and

we guess r variables over Fq beforehand, the complexity of MutantXL given in
table 13 is calculated by(

m

(
n− r +D

D

)
+max

{
0,

(
n− r +D + 2

D + 2

)
− I −D − 2

})ω
· qr.

As Bettale et al. we use ω = 2 for the linear algebra constant, to make their
hybrid approach algorithm comparable to our analysis of MutantXL. Table 12
gives the complexity of the HybridF5 algorithm, which is computed through

O
((

m
(
n+dreg−1

dreg

))2)
. Note for m = 20 and guessing one or two variables over

F28 we obtain the same results as in [6, table 4]. The values in the tables are
rounded Log2 complexities. The exact value for m = 20, r = 1 and F28 is 66.73
respectively 67.79 for r = 2.

Comparing values of table 12 and 13 suggest that MutantXL is faster than F5

in many cases. Due to [2] that should be impossible. We think the reason for
that phenomena is the complexity given in [6], which should be a upper bound

that is not tight. If we use O
((
n+dreg
dreg

)2)
instead (cf. [5]), F5 indeed is faster

than MutantXL as long as the degree of regularity is smaller or equal to the
saturation degree (see table 14).

7 Comparison of Memory Consumption

Using XL, MutantXL or F4/5 in practice brings new challenges. In particular,
the memory consumption of these algorithms seriously hinders practical appli-
cations. Therefore, we outline the overall memory consumption of F4 (upper and
lower bound), of the rather memory friendly WiedemannXL, and MutantXL. In
all cases, we assume that we need dlog2 qe bit to store one �eld element.
Note that all memory bounds can be improved by spending an extra workload
of qr for some small r ∈ N>0. In particular for r = 1, 2 this is usually feasible.

m\r 0 1 2 3 5

5 6 3 3 2 2
10 11 6 5 4 3
15 16 8 7 6 4
20 21 11 9 8 6
25 26 13 11 10 8
30 31 16 14 12 10

Table 8. Degree of Regularity dreg.

m\r 0 1 2 3 5

5 32 4 3 2 2
10 - 6 5 4 3
15 - 9 7 6 4
20 - 11 9 8 6
25 - 14 11 10 8
30 - 16 14 12 10

Table 9. Saturation Degree (D+2) of
MutantXL.
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m\r 0 1 2 3 5

5 26 1 0 0 0
10 - 0 0 0 0
15 - 1 0 0 0
20 - 0 0 0 0
25 - 1 0 0 0
30 - 0 0 0 0

Table 10. Di�erence of D + 2 of Mu-
tantXL and dreg.

m\r 0 1 2 3 5

5 0 1 0 0 0
10 - 4 1 1 0
15 - 6 1 1 1
20 - 9 2 1 1
25 - 11 2 1 1
30 - 14 2 2 1

Table 11. Di�erence of D + 2 of XL
and MutantXL

m\r 0 1 2 3 5

5 20 21 27 32 40
10 41 38 42 46 57
15 62 51 55 59 67
20 83 67 68 72 79
25 103 79 80 84 91
30 123 95 96 96 104

Table 12. Complexity of F5 over F28

using [6].

m\r 0 1 2 3 5

5 - 21 25 32 40
10 - 34 37 41 52
15 - 50 50 54 60
20 - 62 62 66 73
25 - 78 75 78 85
30 - 90 91 91 97

Table 13. Complexity of MutantXL
over F28 .

For some parameter sets, this can also improve the overall attack (e.g. FXL or
HybridF5).

Lemma 5 (Memory Bounds for F4/5). The memory requirements (in bits)
for F4/5 are bounded from above by

MemUpperF4/5(q, n, dreg) = dlog2 qe
(
n+ dreg − 1

dreg

)2

The lower bound is given by

MemLowerF4/5(q, n, dreg) = dlog2 qe
(
n+ dreg − 1

dreg

)
n(n+ 1)

2

Proof. MemUpperF4/5 is given by the number of monomials. As the number of
monomials equals the number of rows, this is the size of the corresponding ma-
trix. Without assuming sparsity, we need as many elements to store this matrix.
In contrast, MemLowerF4/5 assumes the same number of rows/columns, but only
the minimal number of coe�cients, i.e. n(n+ 1)/2.

From a practical point of view, both bounds are too vague: Neither are the rows
of the coe�cient matrix Π in F4/5 dense, nor fully sparse. Unfortunately, we are
not aware of a treatment of this question in the open literature.
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m\r 0 1 2 3 5

5 18 18 25 29 40
10 37 33 37 41 52
15 56 45 48 52 60
20 76 59 60 64 71
25 96 71 72 76 83
30 115 86 87 88 95

Table 14. Complexity of F5 over F28 using [5].

Lemma 6 (Memory Bounds for XL). XL needs at least a total of

MemLowerXL(q, n,D) = dlog2 qe
(
n+D + 1

D + 2

)
n(n+ 1)

2

bits for saving the coe�cient matrix, and at most

MemUpperXL(q, n,D) = dlog2 qe
(
n+D + 1

D + 2

)2

Proof. As for lemma 5, we consider the case of extremely sparse matrices (lower
bound) and dense matrices.

Corollary 6. WiedemannXL needs a total of

MemWiedXL(q, n,D) = MemLowerXL(q, n,D)

memory for its coe�cient matrix.

Motivation for this corollary: As we do not need to perform row or column
operations on the coe�cient matrix, we can preserve the sparsity. Consequently,
we achieve the lower memory bound of XL.

Lemma 7 (WiedemannMutantXL). Combining the ideas of Wiedemann and
MutantXL, we achieve the following upper bound on the memory consumption:

MemWiedMutantXL(q, n,D) =

MemWiedXL(q, n,D) +
log2 q

n

(
n+D + 1

D + 1

)((
n+D + 2

D + 2

)
− IXLinhD

)
Proof. To produce the mutants, we need to store the whole matrix in Wiedemann
fashion. This explains the �rst part of the sum. Secondly, we obtain mutants. For
these, we know that their �rst

(
n+D+1
D+2

)
columns must be all-zero. Accordingly,

we only need to save the following
(
n+D+1
D+1

)
coe�cients for each degree. We have

to produce at most T − I new equations by multiplying mutants by monomials.
We need at most (T − I)/n mutants to achieve this goal.
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Note that we need to call Wiedemann's algorithm for our current coe�cient ma-
trix around (T −I)/n times (assuming to optimizations like Block-Wiedemann).
Hence, our implementation will be slowed down by this factor. On the other
hand, we can usually solve with a much smaller value D and hence gain over
plain XL.

All lemmata are summarized in Figure 6. We see that XL consumes far less
memory than F4/5�regardless if we assume the higher or lower memory con-
sumption. WiedemannXL is a step in between: Here, we have less memory than
for F4/5 (upper case), but more memory for F4/5 (lower case). Reason: Wiede-
mannXL needs a higher saturation degree D + 2, so it is outperformed by F4/5

under ideal conditions (all rows are sparse). At �rst sight, the memory consump-
tion of WiedemannMutantXL looks surprising. However, we are kind of cheating
here as we only need to store the mutants and then compute the intermediate
rows on the �y.
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1021

1030

Variables

M
em

o
ry

up F4/5

XL

WiedXL

WiedMutXL

low F4/5

Fig. 6. Memory consumption of di�erent algorithms for m = n+ 2 and q = 256.
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