
Breaking Grain-128 with Dynamic Cube Attacks

Itai Dinur and Adi Shamir

Computer Science department
The Weizmann Institute

Rehovot 76100, Israel

Abstract. We present a new variant of cube attacks called a dynamic
cube attack. Whereas standard cube attacks [4] find the key by solving
a system of linear equations in the key bits, the new attack recovers the
secret key by exploiting distinguishers obtained from cube testers. Dy-
namic cube attacks can create lower degree representations of the given
cipher, which makes it possible to attack schemes that resist all previ-
ously known attacks. In this paper we concentrate on the well-known
stream cipher Grain-128 [6], on which the best known key recovery at-
tack [15] can recover only 2 key bits when the number of initialization
rounds is decreased from 256 to 213. Our first attack runs in practical
time complexity and recovers the full 128-bit key when the number of
initialization rounds in Grain-128 is reduced to 207. Our second attack
breaks a Grain-128 variant with 250 initialization rounds and is faster
than exhaustive search by a factor of about 228. Finally, we present an
attack on the full version of Grain-128 which can recover the full key
but only when it belongs to a large subset of 2−10 of the possible keys.
This attack is faster than exhaustive search over the 2118 possible keys
by a factor of about 215. All of our key recovery attacks are the best
known so far, and their correctness was experimentally verified rather
than extrapolated from smaller variants of the cipher. This is the first
time that a cube attack was shown to be effective against the full version
of a well known cipher which resisted all previous attacks.
Keywords: Cryptanalysis, stream ciphers, Grain-128, cube attacks, cube
testers, dynamic cube attacks.

1 Introduction

A well designed cipher is expected to resist all known cryptanalytic attacks,
including distinguishing attacks and key recovery attacks. These two types of
attacks are closely related since in many cases a distinguisher can be extended
to a key recovery attack. Examples include many of the key-recovery attacks
on iterated block ciphers such as differential cryptanalysis [1] and linear crypt-
analysis [2]: First, the attacker constructs a distinguisher for a certain number
of rounds of the iterated block cipher (usually one round less than the total
number of rounds). Then, the attacker guesses part of the secret key and uses
it to partially decrypt several ciphertexts in the final round. The distinguisher
can be easily exploited to verify the guess: Under the correct guess, the partially



decrypted ciphertexts are expected to exhibit the non-random property of the
distinguisher. On the other hand, an incorrect guess is actually equivalent to
adding another encryption round, and hence ciphertexts decrypted with an in-
correct guess are expected to behave randomly. This is a very general technique
for exploiting a distinguisher to recover the secret key of block ciphers, but it
cannot be typically applied to stream ciphers, where partial decryption is not
possible. Moreover, even when dealing with iterated block ciphers, more efficient
key-recovery techniques often exist. In this paper we focus on the specific case
of distinguishers obtained from cube testers (see [3]) and show how to use them
in key recovery attacks.

Cube testers [3] are a family of generic distinguishers that can be applied to
the black box representation of any cryptosystem. Cube attacks [4] are related
to cube testers since both types of attacks sum the output of a cryptographic
function over a subset of its input values. However, cube testers use the resultant
sums to distinguish the cipher from a random function, whereas cube attacks use
the sums to derive linear equations in the secret key bits. The success of cube
testers and cube attacks on a given cryptosystem depends on subtle properties
of the ANF (algebraic normal form) representation of the output function in the
plaintext and key bits over GF(2). Although the explicit ANF representation
is usually unknown to the attacker, cube testers and cube attacks can exploit
a relatively low degree or sparse ANF representation in terms of some of its
variables to distinguish the cipher from a random function and to recover the
secret key.

Both cube attacks and cube testers are performed in two phases: The prepro-
cessing phase which is not dependent on the key, and the online phase in which
the key has a fixed unknown value. Whereas cube attacks are key recovery at-
tacks and are thus stronger than cube testers, the preprocessing phase of cube
attacks is generally more complex and has a lower chance of succeeding than
the preprocessing phase of cube testers. The reason for this is that cube attacks
require that the sum of the cipher’s output function has a very specific property
- it needs to be of low degree when represented as a polynomial in the key bits.
Cube testers do not require such a specific property, but rather require that the
value of the sum exhibits a property which is easily testable. An example of such
a property is balance (i.e. whether the sum (modulo 2) is 0 and 1 with equal
probabilities). Examples where cube testers succeed, while cube attacks seem to
fail include scaled-down variants of the stream cipher Grain-128 (see [5]). Even
in the case of scaled-down variants of the stream cipher Trivium, where cube
attacks succeed ([4]), the preprocessing phase of cube attacks is much more time
consuming than the one of cube testers. The challenge that we deal with in this
paper is to extend cube testers to key recovery attacks in a new generic way.
This combines the key recovery feature of cube attacks with the relatively low
computational complexity of the preprocessing phase of cube testers.

We present a new attack called a dynamic cube attack that recovers the
secret key of a cryptosystem by exploiting distinguishers given by cube testers.
The main observation that we use for the new attack is that when the inputs



of the cryptosystem are not mixed thoroughly enough, the resistance of such
a marginal cipher to cube testers usually depends on very few (or even one)
non-linear operations that are performed at the latest stages of the encryption
process. These few non-linear operations produce most of the relatively high
degree terms in the ANF representation of the output function. If we manage to
simplify the ANF representation of the intermediate encryption state bits that
are involved in these non-linear operations (e.g. by forcing one of the two inputs
of a multiplication operation to be zero), then the degree of the polynomial will
be much lower, making it much more vulnerable to cube testers. In dynamic
cube attacks, we analyze the cipher, find these crucial state bits and force them
to be zero by using dedicated input bits called dynamic variables. Since the
values of the state bits typically depend also on some key bits, we have to either
guess them, or to assume that they have a particular value in order to apply the
attack. For each guess, we use a different cube tester (that assigns the dynamic
variables according to the guess) to distinguish the cipher from random. For
the correct guess, the ANF representation of the crucial intermediate encryption
state bits is simplified to zero, and the cube tester is likely to detect a strong
non-random property in the output. On the other hand, for a large portion of
wrong guesses, the cube tester is unlikely to detect this property. Thus, we can
efficiently eliminate wrong guesses and thus recover parts of the secret key.

We applied the attack to two reduced variants of the stream cipher Grain-128
[6], and obtained the best known key recovery results for these variants. More
significantly, we present an attack on the full version of Grain-128 which is faster
than exhaustive search by a factor of 215, for a subset of 2−10 of all the possible
keys. The attack can probably be optimized to break a larger set of weak keys
of Grain-128, but even in its current form, it can break a practically significant
fraction of almost one in a thousand keys. This is much better than other weak
key attacks, which can typically break only a negligible fraction of keys.

The idea of assigning dynamic constraints (or conditions) to public variables
and using them to recover key bits already appeared in previous work. In [15], the
dynamic constraints were used to enhance differential and high order differential
attacks by limiting the propagation of differences in the internal state of the
cipher. This technique was applied to reduced variants of a few ciphers, and
in particular was used to recover 2 key bits of Grain-128 when the number
of initialization rounds is reduced from 256 to 213. In dynamic cube attacks,
the dynamic constraints are used in a completely different way: The first and
most crucial step of dynamic cube attacks is the careful analysis of the output
function of the cipher. This analysis allows us to select constraints that weaken
the resistance of the cipher to cube testers. Our carefully selected constrains, in
addition to our novel algebraic key-recovery techniques, allow us to obtain much
improved results on the cipher Grain-128: Our attack on a Grain-128 variant
that uses 207 initialization rounds recovers the complete key (rather than a few
key bits) with feasible complexity. In addition, we break a Grain-128 variant
with 250 initialization rounds and a weak key set (containing a fraction of 2−10

of all the possible keys) of the full version of the cipher.



Next, we briefly describe the standard cube testers and cube attacks (for
more details, refer to [3] and [4]). We then describe the new attack in detail
and present our results on the cipher Grain-128 [6]. Finally, we conclude and list
some open problems.

2 Cube Attacks and Cube Testers

2.1 Cube Attacks

In almost any cryptographic scheme, each output bit can be described by a mul-
tivariate master polynomial p(x1, .., xn, v1, .., vm) over GF (2) of secret variables
xi (key bits), and public variables vj (plaintext bits in block ciphers and MACs,
IV bits in stream ciphers). The cryptanalyst is allowed to tweak the master
polynomial by assigning chosen values for the public variables, which result in
derived polynomials, and his goal is to solve the resultant system of polynomial
equations in terms of their common secret variables. The basic cube attack [4] is
an algorithm for solving such polynomials, which is closely related to previously
known attacks such as high order differential attacks [11] and AIDA [12].

To simplify our notation, we now ignore the distinction between public and
private variables. Given a multivariate master polynomial with n variables
p(x1, .., xn) over GF (2) in algebraic normal form (ANF), and a term tI contain-
ing variables from an index subset I that are multiplied together, the polynomial
can be written as the sum of terms which are supersets of I and terms that miss
at least one variable from I:

p(x1, .., xn) ≡ tI · pS(I) + q(x1, .., xn)

pS(I) is called the superpoly of I in p. Note that the superpoly of I in p is a
polynomial that does not contain any common variable with tI , and each term
in q(x1, .., xn) does not contain at least one variable from I. Moreover, compared
to p, the algebraic degree of the superpoly is reduced by at least the number of
variables in tI .

The basic idea behind cube attacks is that the symbolic sum over GF (2) of
all the derived polynomials obtained from the master polynomial by assigning
all the possible 0/1 values to the subset of variables in the term tI is exactly
pS(I) which is the superpoly of tI in p(x1, .., xn). A maxterm of p is a term tI
such that the superpoly of I in p is a linear polynomial which is not a constant.

The cube attack has two phases: the preprocessing phase, and the online
phase. The preprocessing phase is not key-dependant and is performed once per
cryptosystem. The main challenge of the attacker in the preprocessing phase is
to find sufficiently many maxterms with linearly independent superpolys. Lin-
ear superpolys are not guaranteed to exist, and even when they exist, finding
them can be a challenging preprocessing task. However, once sufficiently many
linearly independent superpolys are found for a particular cryptosystem, we can
repeatedly use them to easily find any secret key during the online phase.



2.2 Cube Testers

Similarly to cube attacks, cube testers [3] work by evaluating superpolys of terms
of public variables. However, while cube attacks aim to recover the secret key,
the goal of cube testers is to distinguish a cryptographic scheme from a random
function, or to detect non-randomness by using algebraic property testing on
the superpoly. One of the natural algebraic properties that can be tested is
balance: A random function is expected to contain as many zeroes as ones in its
truth table. A superpoly that has a strongly unbalanced truth table can thus be
distinguished from a random polynomial by testing whether it evaluates as often
to one as to zero. Other efficiently detectable properties include low degree, the
presence of linear variables, and the presence of neutral variables.

In the preprocessing phase of cube testers, the attacker finds terms whose
superpolys have some efficiently testable property.

3 A Simple Example of Dynamic Cube Attacks

Both standard (static) cube testers and dynamic cube attacks sum the output
of the cipher over a given cube defined by a subset of public variables, which are
called cube variables. In static cube testers, the values of all the public variables
that are not summed over are fixed to a constant (usually zero), and thus they are
called static variables. However, in dynamic cube attacks the values of some of
the public variables that are not part of the cube are not fixed. Instead, each one
of these variables (called dynamic variables) is assigned a function that depends
on some of the cube public variables and some expressions of private variables.
Each such function is carefully chosen, usually in order to zero some state bits in
order to amplify the bias (or the non-randomness in general) of the cube tester.
Dynamic cube attacks are clearly a generalization of standard cube testers, but
also allow us to directly derive information on the secret key without solving
any algebraic equations. Moreover, choosing the dynamic variables carefully may
help to improve the time complexity of distinguishers obtained by using standard
cube testers (we will need fewer cube variables to obtain a distinguisher). We
note that the drawback of the new attack compared to basic cube attacks and
cube testers, is that it requires a more complex analysis of the internal structure
of the cipher.

To demonstrate the idea of the attack, we consider a polynomial P which is
a function of the three polynomials P1, P2, and P3:

P = P1P2 + P3

P1, P2, and P3 are polynomials over five secret variables x1, x2, x3, x4, x5 and
five public variables v1, v2, v3, v4, v5:

P1 = v2v3x1x2x3 + v3v4x1x3 + v2x1 + v5x1 + v1 + v2 + x2 + x3 + x4 + x5 + 1
P2 = arbitrary dense polynomial in the 10 variables



P3 = v1v4x3x4 + v2x2x3 + v3x1x4 + v4x2x4 + v5x3x5 + x1x2x4 + v1 + x2 + x4

Since P2 is unrestricted, P is likely to behave randomly and it seems to be
immune to cube testers (or to cube attacks). However, if we can set P1 to zero,
we get P = P3. Since P3 is a relatively simple function, it can be easily distin-
guished from random. We set v4 = 0 and exploit the linearity of v1 in P1 to set
v1 = v2v3x1x2x3 + v2x1 + v5x1 + v2 + x2 + x3 + x4 + x5 + 1 which forces P1

to zero. During the cube summation, the value of the dynamic variable v1 will
change according to its assigned function. This is in contrast to the static vari-
able v4, whose value will remain 0 during the cube summation. At this point, we
assume that we know the values of all the secret expressions that are necessary
to calculate the value of v1: x1x2x3, x1, and x2 + x3 + x4 + x5 + 1. Plugging in
the values for v1 and v4, we get:

P = v2x2x3 + v3x1x4 + v5x3x5 + x1x2x4 + x2 + x4+
(v2v3x1x2x3 + v2x1 + v5x1 + v2 + x2 + x3 + x4 + x5 + 1) =
v2v3x1x2x3 +v2x2x3 +v3x1x4 +v5x3x5 +x1x2x4 +v2x1 +v5x1 +v2 +x3 +x5 +1

After these substitutions, we can see that the simplified P is of degree 2 in
the public variables, and there is only one term (v2v3x1x2x3) of this degree.
We have 3 free public variables (v2, v3, v5) that are not assigned. We can now
use them as cube variables: The sum over the big cube v2v3v5 and two of its
subcubes v2v5 and v3v5 is always zero. Moreover, the superpoly of v2v3 is x1x2x3,
which is zero for most keys. Thus, we can easily distinguish P from a random
function using cube testers. However, the values of the expressions x1x2x3, x1,
and x2 + x3 + x4 + x5 + 1 are unknown in advance, and it is not possible to
calculate the dynamic values for v1 without them. Thus, we guess the 3 values of
the expressions (modulo 2). For each of the 8 possible guesses (there are actually
6 possible guesses since x1 = 0 implies x1x2x3 = 0, but this optimization is
irrelevant at this point), we run the cube tester, and get 4 0/1 values - a value
for each cube sum. The 7 wrong guesses will not zero P1 throughout the cube
summations. Hence the 4 cube sums for each wrong guess are likely to behave
randomly, and it is unlikely that more than 1 wrong guess will give 4 zero cube
sum values. On the other hand, the 4 cube sums for the correct guess will all
equal to 0 with high probability. Hence, for most keys, we expect to remain with
at most 2 possible guesses for the 3 expressions and we can recover the values
for the expressions that are assigned a common value by these 2 guesses. This
gives us a distinguisher for P and allows us to derive information regarding the
secret key.

In the general decomposition of a polynomial P as P = P1P2 +P3, we call P1

(according to which we assign the dynamic variable) the source polynomial, P2

the target polynomial and P3 the remainder polynomial. There are many ways to
express P is such a way, and the choice of source and target polynomials requires
careful analysis of the given cipher.



4 Dynamic Cube Attacks on Grain-128

4.1 Description on Grain-128

We give a brief description of Grain-128, for more details one can refer to [6].
The state of Grain-128 consists of a 128-bit LFSR and a 128-bit NFSR. The
feedback functions of the LFSR and NFSR are respectively defined to be
si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96

bi+128 = si+bi+bi+26+bi+56+bi+91+bi+96+bi+3bi+67+bi+11bi+13+bi+17bi+18+
bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84

The output function is defined as
zi =

∑
j∈A bi+j + h(x) + si+93 , where A = {2, 15, 36, 45, 64, 73, 89}.

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8

where the variables x0, x1, x2, x3, x4, x5, x6, x7 and x8 correspond to the tap
positions bi+12, si+8, si+13, si+20, bi+95, si+42, si+60, si+79 and si+95 respectively.

Grain-128 is initialized with a 128-bit key that is loaded into the NFSR, and
with a 96-bit IV that is loaded into the LFSR, while the remaining 32 LFSR bits
are filled with the value of 1. The state is then clocked through 256 initialization
rounds without producing an output, feeding the output back into the input of
both registers.

4.2 Previous Attacks

Several attacks have been published on Grain-128 variants: [7] found a distin-
guisher when the number of initialization rounds is reduced from 256 to 192
rounds, [8] described shortcut key-recovery attacks on a variant with 180 initial-
ization rounds, and [9] exploited a sliding property to speedup exhaustive search
by a factor of two. Related-key attacks on the full cipher were presented in [10].
However, the relevance of related-key attacks is disputed and we concentrate on
attacks in the single key model. Stankovski [16] presented a distinguishing attack
on a variant that uses 246 initialization rounds, which works for less than half of
the keys. The most powerful distinguishing attack on most keys of Grain-128 was
given in [5], where cube testers were used in order to distinguish the cipher from
random for up to 237 initialization rounds. Moreover, the authors claim that
by extrapolating their experimentally verified results, one can argue that cube
testers may be used in order to attack the full cipher. However, this conjecture
has not been verified in practice due to the infeasibility of the attack. Note that
[5] only gives a distinguisher, and leaves the problem of exploiting cube testers
(or cube attacks) for key recovery open. More recently [15] used conditional dif-
ferential cryptanalyses to recover 2 key bits of Grain-128 with 213 initialization
rounds, which gives the best known key-recovery attack in the single key model
up to this point.

4.3 Outline of the New Attacks on Grain-128

We present 3 attacks:



1. A feasible full key recovery attack on a Grain-128 variant that uses 207
initialization rounds, while utilizing output bits 208− 218.

2. An experimentally verified full key recovery attack on a Grain-128 variant
with 250 initialization rounds.

3. An experimentally verified attack on the full Grain-128, which can recover
a large subset of weak keys (containing 2−10 of all the possible keys).

We begin by describing the common steps shared by these three attacks. We
then elaborate on each attack in more detail.

The preprocessing phase of the attacks consists of 2 initial steps:

Step 1 We first choose the state bits to nullify, and show how to nullify them
by setting certain dynamic variables to appropriate values.

This is a complex process that cannot be fully automated and involves man-
ual work to analyze the cipher: When applying the attack to Grain-128, we
would like to decompose its output function into a source and target polynomi-
als (representing intermediate state bits multiplied together), and a remainder
polynomial which should be more vulnerable to cube testers than the original
output. In our small example, this was easy since we could explicitly write down
and analyze its ANF in terms of the public and private variables. However, the
output function of Grain-128 is too complex to decompose and analyze in such a
way. Our approach in this paper is to use the recursive description of the cipher’s
output function in order to find a good decomposition.

In the case of Grain-128, specific non-linear terms in the cipher’s output stand
out as being of higher degree than others and are good candidates to be nullified
or simplified. The output function of Grain-128 is a multivariate polynomial of
degree 3 in the state. The only term of degree 3 is bi+12bi+95si+95, and hence we
focus on nullifying it. Since bi+12 is the state bit that is calculated at the earliest
stage of the initialization steps (compared to bi+95 and si+95), it should be the
least complicated to nullify. However, after many initialization steps, the ANF
of bi+12 becomes very complicated and we were not able to nullify it when more
than 230 initialization rounds are used (i.e. for i > 230). The compromise we
make is to simplify (and not nullify) bi+12bi+95si+95: We write the most signifi-
cant term of degree 3 that is used in the calculation of these state bits, which for
bi+12 is bi−128+12+12bi−128+95+12si−128+95+12 = bi−104bi−21si−21. The most sig-
nificant term for both bi+95 and si+95 is bi−128+12+95bi−128+95+95si−128+95+95 =
bi−21bi+62si+62. We can see that bi−21 participates in all terms, and thus nulli-
fying it is likely to simplify the ANF of bi+12bi+95si+95 significantly.

The ANF of the earlier bi−21 is much easier to analyze compared to the one
of bi+12, but it is still very complex. Thus, we perform more iterations in which
we simplify bi−21 further by using its recursive description to nullify previous
state bits. When the ANF representation of bi−21 is simple enough, we select
a linear public variable in its ANF and assign to it an expression which will
make the whole expression identically zero. We elaborate on this multistage
process for output bit 215 of Grain-128 (used in attack 1): We would like to zero
b215−21 = b194. However, we do not zero it directly. We first zero 4 other state



bits in order to simplify its ANF representation. The details of how these bits
were chosen are given in Appendix A.

Step 2 We choose a big cube and a set of subcubes to sum over during the online
phase. We then determine the secret expressions that need to be guessed in order
to calculate the values of the dynamic variables during the cube summations.

Some choices of the big cube give better results than other, and choosing
a cube that gives good results is a crucial part of the preprocessing. One can
use heuristics in order to find cubes that give better results (an example of a
heuristic is given in [5]). However, it is difficult to predict in advance which cubes
will give good results without actually executing the attack and calculating the
results for many cubes.

The secret expressions that need to be guessed are calculated according to
the symbolic expressions of the dynamic variables and the chosen big cube. This
is a simple process that can be easily automated:

1. Given the symbolic form of a dynamic variable, look for all the terms which
are combinations of variables from the big cube. In our simple example, the
symbolic form of the single dynamic variable is v2v3x1x2x3 + v2x1 + v5x1 +
v2 + x2 + x3 + x4 + x5 + 1. Our big cube is v2v3v5. The terms which are
combinations of variables from the big cube in the symbolic form are v2v3,
v2, v5 and the empty combination.

2. Rewrite the symbolic form as a sum of these terms, each one multiplied by
an expression of secret variables. In our example, we write v2v3x1x2x3 +
v2x1 + v5x1 + v2 + x2 + x3 + x4 + x5 + 1 = v2v3(x1x2x3) + v2(x1 + 1) +
v5(x1) + (x2 + x3 + x4 + x5 + 1),

3. Add the expressions of secret variables to the set of expressions that need to
be guessed. In the example, we add x1x2x3, x1 and x2 + x3 + x4 + 1 (note
that guessing the value of x1 is the same as guessing the value of x1 + 1,
and we do not add it twice). In addition, we do not add expressions whose
value can be deduced from the values of the expressions already in the set.
For example, if x1 and x2 are is the set, we do not add x1x2 or x1 + x2.

In steps 3−4, the attacker uses the parameters obtained in the first two steps
in order to derive information regarding the secret key. These steps constitute
the online phase of the attack that is executed by the attacker after the secret
key has been set. In addition, steps 3 − 4 are simulated by the attacker in the
preprocessing phase for several pseudo random keys, in order to verify his choices
in steps 1− 2.

Step 3

1. For each possible value (guess) of the secret expressions, sum over the sub-
cubes chosen in the previous step with the dynamic variables set accordingly,
and obtain a list of sums (one sum per subcube).



2. Given the list of sums, calculate the guess score (which measures the non-
randomness in the subcube summations). The output of this step is a sorted
guess score list in which guesses are sorted from the lowest score to the
highest.

Given that the dimension of our big cube is d, the complexity of summing
over all its subcubes is bounded by d2d (this can be done using the Moebius
transform [13]). Given that we need to guess the values of e expressions, the
complexity of this step is bounded by d2d+e. However, the data complexity of
this step can by significantly lower than the time complexity: Assuming that
we have only y ≤ e dynamic variables, the data complexity is bounded by 2d+y

(an output bit for every possible value of the cube and dynamic variables is
sufficient).

After we obtain the summation values for each of the subcubes for a specific
guess, we determine its score. The simple score function that we use in this
paper measures the percentage of 1 values in the summations. The reason that
we consider summation values which are biased towards 0 as non-random (but
not summation values which are biased towards 1) is that the superpolys of the
cubes in our attacks tend to be extremely sparse, and their ANF contains the
constant 1 (or any other term) with very low probability. Such sparse polynomials
evaluate to zero for almost all keys.

Step 4 Given the sorted guess score list, we determine the most likely values for
the secret expressions, for a subset of the secret expressions, or for the entire key.
The straightforward approach to calculate the values for the secret expressions
is to simply take the values for the expressions from the guess that has the
lowest score (or the least percentage of 1 values in its summations values), in
the sorted guess list. However, this approach does not always work. Depending
on the setting of the attack, there could be guesses that have a score that is at
least as low as the correct guess score: In our small example, the correct guess
score is expected to be 0, however there is a reasonable probability that there
is another arbitrary guess with the score of 0. Therefore, the details of this step
vary according to the attack and are specified separately for each attack.

4.4 Details of the First Attack

The first attack is a full key recovery attack on a Grain-128 variant that uses
207 initialization rounds, while utilizing output bits 208− 218. The key bits are
recovered in small groups of size 1 − 3, where each group is recovered using a
different set of parameters that was obtained in the preprocessing phase.

One set of parameters for the attack is given in Table 1 in Appendix B. We
now specify how the attack is carried out given the parameters of this table:
First, we assign to each one of the dynamic variables in the table its symbolic
value. Appendix B shows how to do this given the parameters of Table 1, and
the assignment algorithm for the other tables in this paper is similar.



After all the dynamic variables are assigned, we determine the secret ex-
pressions that need to be guessed in order to fully calculate the values of the
dynamic variables during the cube summations (step 2). Altogether, there are 7
expressions that need to be guessed, and since the big cube is of dimension 19,
the total complexity of the step 3 of the attack with this specific set of param-
eters is about 19 × 219+7 < 231. We will use only linear expressions for the full
key recovery (step 4), hence we concentrate on retrieving their value from the
sorted guess list. The two linear expressions actually contain only a single key
bit and are listed in the ”Expressions Retrieved” row. We sum on all subcubes
of dimension at least 19−3 = 16 of the big cube (of dimension 19), and the score
for each guess is simply the fraction of 1 values among all the subcube sums. In
step 4, we retrieve the value of the 2 expressions by taking the corresponding
values from the best guess. We simulated the attack with the above parameters
with hundreds of random keys. The attack failed to retrieve the correct values
for the expressions x127, x122 + 1 for about 10% of the keys. However for all the
failed keys, the score of the best guess was at least 0.44 (i.e. the dynamic cube
tester did not give a strong distinguisher), and thus we know when we fail by
declaring the expressions as ”undetermined” whenever we encounter a key for
which the best guess score is at least 0.44 (this occurs for about 15% of the
keys). This is important for the full key recovery attack that is described next.

We showed how to retrieve 2 key bits with high probability with one carefully
chosen set of parameters. It is not difficult to find more sets of parameters that
allow us to retrieve more key bits. Another example of such a set of parameters
that uses the same output bit is given in table 2 in Appendix B. Note that we only
changed the chosen big cube, which in turn changed the retrieved expressions.
A different set of parameters that uses output bit 218 is given in table 3 in
Appendix B. Altogether, we have 55 sets of parameters that ideally allow us to
recover 86 of the 128 key bits. For each set of parameters, the score calculation
method is identical to the one described above, i.e. we compute the percentage
of 1 values in the cube sums for all cubes of dimension at least d − 3. The key
recovery method is identical as well, i.e. we recover the values of the secret linear
expressions from the guess with the best score, but only if its score is at least
0.44. We simulated the full attack on hundreds of random keys. On average, we
could retrieve about 80 secret key bits per key. The remaining 48 key bits can
be recovered with feasible complexity by exhaustive search.

We note that it is possible to retrieve more key bits in a similar way by using
more output bits (e.g. output bits 219, 220, etc.), or using the same output
bits with different sets of parameters. A more efficient key recovery method can
try to determine values of non-linear secret expressions, some of which can be
made linear by plugging in values for secret key bits which we already recovered.
However, our main goal is to attack much stronger variants of Grain-128, as
described next.



4.5 A Partial Simulation Phase

When attacking Grain-128, we perform the preprocessing steps (1, 2) and then
simulate the online steps of the attack (3, 4) for several random keys. In this
case, steps 3 and 4 are performed in order to estimate the success of the attack
and are called the simulation phase. If we are not satisfied with the results,
we can repeat steps 1 and 2 by choosing different parameters and performing
another simulation phase. This process can be very expensive and its complexity
is generally dominated by step 3. We can significantly reduce the complexity of
the simulation phase by calculating the cube summations only for the correct
guess and observing whether the correct guess exhibits a significant non-random
property for most keys. This is unnecessary for the first attack in which we can
run the full simulation phase and recover the secret key. However, in the second
and third attacks, we try to attack variants of Grain-128 which are significantly
stronger and the simulation phase becomes infeasible even for a single random
key. In these cases, the observed non-randomness for the correct guess provides
strong evidence that the stronger variants of Grain-128 can also be broken by
the full key recovery version of the attack.

Given that we choose a big cube of size d and guess e expressions, the com-
plexity of the cube summations when running the full simulation phase on one
key is about d2d+e bit operations. However, the complexity of the simulation
phase is actually dominated by the 2d+e executions of the cipher: Assuming that
each execution requires about b bit operations, the total complexity is about
b2d+e (for Grain-128 b > 210 >> d). Similarly, the partial simulation phase on
one key requires b2d bit operations. Since the complexity does not depend on
e, we can feasible verify the behavior of dynamic cube attacks even when their
total complexity is infeasible when the dimension of the cube d is not too large.
This ability to experimentally verify the performance of dynamic cube attacks
is a major advantage over static cube attacks and cube testers.

4.6 A Generic Key Recovery Method

In the first attack, we run the full simulation phase and obtain the sorted guess
list in step 3. Since we can do this many times and calculate the complexity of
the attack, we tailored the key derivation algorithm used in step 4 such that it
is very efficient for our chosen parameter sets. On the other hand, in the second
and third attacks, we must perform the partial simulation phase as described
above and we obtain only the score for the correct guess. Since we do not have
the sorted guess list, we cannot calculate the exact complexity of the attack
and we cannot customize the algorithm used in step 4 as in the first attack (for
example, we cannot verify that the first guess in the sorted guess list assigns
correct values for some expressions, as in the first attack). As a result, we use
a key recovery method which is more generic in a sense that it is not tailored
to a specific cipher, or to a specific set of parameters. The only property of
the parameter sets for the attacks that it exploits, is that many guessed key



expressions are linear. We now describe the details of this method as performed
in real time (not in the simulation phase) and then estimate its complexity.

Assume that we have executed steps 1− 3 for Grain-128 with n = 128 secret
key bits. Our big cube is of dimension d and we have e expressions to guess,
out of which l are linear. Our sorted guess score list is of size 2e and the correct
guess is located at index g in the sorted list.

1. Consider the guesses from the lowest score to the highest: For each guess
(that assigns values to all the expressions), perform Gaussian Elimination
on the l linear expressions and express l variables as linear combinations of
the other n− l variables.

2. Exhaustively search the possible 2n−l values for those n − l variables: For
each value, get the remaining part of the key from the linear expressions,
execute the cipher with the key, and compare the result to the given data.
If there is equality, return the full key.

Overall, we have 2n−l iterations per guess. The evaluation of the linear ex-
pressions can be performed efficiently if we iterate over the 2n−l values using
Gray Codes. Hence, we assume that the evaluation of the linear expressions
takes negligible time compared to the execution of the cipher. The total running
time per guess is thus about 2n−l cipher executions and the overall running time
of step 4 is g×2n−l. We can also to try improve the running time by using some
of the e− l non linear expressions which can be efficiently evaluated (compared
to a single cipher execution): For each key we first check if the key satisfies these
non linear equations before executing the cipher.

The complexity of the generic key recovery method is dependent on g which
denotes the index of the correct guess in the sorted guess list. The expected
value of g can be estimated for a random key by running several simulations
of the attack on random keys. However, when the simulation phase is infeasible
and we are forced to perform a partial simulation phase, we cannot estimate g
this way since we do not have the guess list. A possible solution to this problem
is to assume that all the incorrect guesses behave randomly (i.e. the subcube
sums are independent uniformly distributed boolean random variables). Under
this assumption, we run the partial simulation on an arbitrary key. If the cube
sums for the correct guess detect a property that is satisfied by a random cipher
with probability p, then we can estimate g ≈ max{p× 2e, 1}.

The assumption that incorrect guesses behave randomly is clearly an oversim-
plification. In the first attack, we retrieve the value of a carefully chosen subset
of the expressions by taking the corresponding values from the best guess. How-
ever for about half of the keys the best guess is not the correct guess, i.e. it does
not assign the correct values for all the expressions, but rather to our chosen
set of expressions. In other words, there are specific (non arbitrary) incorrect
guesses that are likely to have a low score that can be at least as low as the score
of the correct guess. These incorrect guesses usually assign a correct value to a
fixed subset of the guessed expressions. In order to understand this, consider the
following example: assume that P = P1P2 + P3, the source and target polyno-
mials P1 and P2 are of degree 3, and the remainder polynomial is of degree 5



(all degrees are in terms of the public variables). We choose a dynamic variable
to nullify P1, and assume for the sake of simplicity that the degrees of P2 and
P3 do not change after assigning this variable. We choose a cube of dimension
7, and sum on all its subcubes of dimension 6 and 7. Clearly, the correct guess
will have a score of 0. However, any other which reduces the degree of P1 to 1
or 0 will also have a score of 0.

To sum up, our estimation of g (and hence our estimation for the complexity
of the attack) may not be completely accurate since incorrect guesses do not
behave randomly. However, our simulations on Grain-128 variants on which the
simulation phase is feasible, show that the effect of the incorrect guesses biased
towards 0 is usually insignificant, and our estimation of g is reasonable. In ad-
dition, even incorrect non-uniform guesses are still likely to be highly correlated
with the correct guess, and thus they can actually speed up the attack (this
was experimentally verified in our first attack, which has a feasible complexity).
Hence, our estimation of the complexity of step 4 of the attack is a reasonable
upper bound.

4.7 Details of the Second Attack

In order to attack the almost full version of Grain-128 with 250 initialization
rounds (out of 256), we nullify b251−21 = b230. The parameters of the attack
are specified in Table 4 in Appendix B. As in the first attack, most of the
dynamic variables are used in order to simplify b230. Note that we need many
more dynamic variables compared to the previous attack. This is because it is
much more difficult to nullify b230 than to nullify b194 or b197 (for example). In
addition, we set v82 to the constant value of 1 so that v89 can function as a
dynamic variable that nullifies b197. Since the big cube is of dimension 37 and
we have 24 dynamic variables, the data and memory complexity is 237+24 = 261.
The number of expressions that need to be guessed seems to be 84. However,
after removing many linearly dependent expressions, this number can be reduced
to 59. Thus, the total complexity of the cube summations is about 37×237+59 <
2101, implying that we have to use the partial simulation phase. Out of the 59
expressions that need to be guessed, 29 contain only a single key bit on which
we concentrate for generic key recovery.

During the partial simulation phase, we summed on all subcubes of dimension
at least 35 of the big cube, calculating the percentage of 1 values separately for
all the subcubes of each dimension (35, 36, or 37). We performed the partial
simulation phase on dozens of random keys. For the sake of completeness, we
also sampled a few random incorrect guesses for several keys and verified that
they do not have a significant bias. For about 60% of the keys, the subcube sums
for the correct guess contained only 0 values for the subcube of sizes 36 and 37,
and less than 200 ’1’ values among the 666 subcubes of size 35. Assuming that
incorrect guesses behave randomly, we expect the correct guess to be among
the first guesses in the sorted guess list. The complexity of the unoptimized
version of the attack (that ignores the non-linear expressions) is dominated by
the exhaustive search for the remaining 128−29 = 99 key bits per guess. Overall



the complexity for about 60% of the keys is about 2100 cipher evaluations, and
can almost surely be optimized further. For another 30% of the keys we tested,
the non-randomness in the subcube sums was not as significant as in the first
60%, but still significant enough for the attack to be much faster than exhaustive
search. For the remaining 10% of the keys, the non-randomness observed was
not significant enough and the attack failed. However, we are certain that most
of these problematic keys can still be broken by selecting different parameters
for the attack.

4.8 Details of the Third Attack

In order to attack the full version of Grain-128 with 256 initialization rounds,
we have to nullify b257−21 = b236. However, the ANF of b236 is too complicated
to zero using our techniques, and we had to make assumptions on 10 secret key
bits in order nullify it. As a result, we could verify the correctness of our attack
on the full version of Grain-128 only for a subset of about 2−10 of the possible
keys in which 10 key bits are set to zero. Our current attack can thus be viewed
as an attack on an unusually large subset of weak keys, but it is reasonable to
assume that it can be extended to most keys with further improvements.

The parameters of the attack are specified in Table 5 in Appendix B. Since
the big cube is of dimension 46 and we have 13 dynamic variables, the data and
memory complexity is 246+13 = 259. After removing many linearly dependent
expressions, the number of guessed expression is 61. Thus, the total complexity
of the cube summations is about 46×246+61 < 2113 bit operations. Out of the 61
expressions that need to be guessed, 30 contain only a single key bit. Moreover,
we can fix the values of 35 more variables such that 30 out of the remaining
61− 30 = 31 expression become linear. In order to recover the key efficiently, we
use an extension of the generic key recovery method: Let the key be n, and denote
the dimension of the big cube by d. Assume that given the values of c variables
we can plug them into l (linear or non-linear) expressions such that they become
linear, and perform Gaussian Elimination which makes it possible to express l
variables as linear combinations of the remaining (unspecified) n−l−c variables.

1. Consider the guesses from the lowest score to the highest: For each guess,
iterate the n−l variables using Gray Coding such that the c variables function
as most significant bits (i.e their value changes every 2n−l−c iterations of the
remaining n− l − c variables).

2. For each value of the c variables, perform Gaussian Elimination and express
l variables as linear combinations of the remaining n− l − c variables.

3. For each value of the remaining n − l − c variables, compute the values of
the l linear variables, execute the cipher with this derived key and compare
the result to the given data. If there is equality, return the full key.

In our case, we have n = 118 (after fixing 10 key bits), c = 35, and l = 60.
We call the second sub-step in which we perform Gaussian Elimination a big
iteration and the third sub-step in which we do not change any value among



the c = 35 variables, a small iteration. Note that big iterations are performed
only every 2n−l−c = 223 small iterations. It is clear that computing the linear
equations and performing Gaussian Elimination with a small number of variables
in a big iteration takes negligible time compared to executing the cipher 223 times
in small iterations. Hence the complexity of the exhaustive search per guess is
dominated by the small iterations and is about 2n−l = 258 cipher evaluations (as
in the original generic key recovery method) . In order to complete the analysis
of the attack, we need to describe the score calculation method and the estimate
the index g of the correct guess.

During the partial simulation phase, we summed on all subcubes of dimension
at least 44 of the big cube, calculating the percentage of 1 values separately for
all the subcubes of each dimension. We performed simulations for 5 random
keys (note that each simulation requires 246 cipher executions, which stretched
our computational resources): For 3 out of the 5 keys, we observed a significant
bias towards 0 (which is expected to occur with probability less than 2−20 for
a random cipher) in the subcubes of dimension 45 and 46. This implies that
g ≈ 261× 2−20 = 241 and the total complexity of step 4 is about 241× 2118−60 =
299 cipher evaluations. Assuming that each cipher evaluation requires about 210

bit operations, the total complexity of the attack remains dominated by step
3, and is about 2113 bit operations. This is better than exhaustive search by
a factor of about 215 even when we take into account the fact that our set of
weak keys contains only 2−10 of the 2128 possible keys. For another key, the bias
towards 0 in the subcubes of dimension 45 and 46 was not as strong and we
also need to use the bias towards 0 in the subcubes of dimension 44. For this
key, we were able to improve exhaustive search by a factor of about 210. For
the fifth key, we also observed a bias towards 0, but it was not strong enough
for a significant improvement compared to exhaustive search. As in the previous
attack, we stress that it should be possible to choose parameters such that the
attack will be significantly better than exhaustive search for almost all keys in
the weak key set.

4.9 Discussion

Any attack which can break a fraction of 2−10 of the keys is sufficiently sig-
nificant, but in addition we believe that our third attack can be improved to
work on a larger set of weak keys of Grain-128. This can be done by making
fewer assumptions on the key and optimizing the process of nullification of b236.
However, we do not believe that nullifying b236 will suffice to attack most keys of
Grain-128. For such an attack, the most reasonable approach would be to choose
a larger big cube to sum over, while nullifying fewer state bits at earlier stages
of the cipher initialization process. The question whether a key recovery attack
on most keys of Grain-128 can be feasibly simulated to yield an experimentally
verified attack remains open.



5 Generalizing the Attack

In the previous section, we described in detail the dynamic cube attack on
Grain-128. However, most of our techniques can naturally extend to other cryp-
tosytems. In this section, we describe the attack in a more generic setting, em-
phasizing some important observations.

Step 1 As specified in the attack on Grain-128, choosing appropriate state
bits to nullify and actually nullifying them is a complex process. In the case of
Grain-128, specific non-linear terms in the cipher’s output stand out as being of
higher degree and enable us to decompose the output function to a source and
target polynomials relatively easily. It is also possible to find good decomposi-
tions experimentally: We can tweak the cipher by removing terms in the output
function. We then select various cubes and observe whether the tweaked cipher
is more vulnerable to cube testers than the original cipher. If the tweaked cipher
is indeed more vulnerable, then the removed terms are good candidates to nullify
or simplify.

As in the case of Grain-128, there are several complications that may arise
during the execution of this step and hence it needs to be executed carefully
and repeatedly through a process of trial and error. One complication is that
zeroing a certain group of state bits may be impossible due to their complex
interdependencies. On the other hand, there may be several options to select
dynamic variables and to zero a group of state bits. Some of these options may
give better results than others. Another complication is that using numerous
dynamic variables may overdeplete the public variables that we can use for the
cube summations.

Step 2 The choice of a big cube, can have a major impact on the complexity
of the attack. Unfortunately, as specified in the attack on Grain-128, in order
to find a cube that gives good results we usually have to execute the attack
and calculate the results for many cubes. After the big cube is chosen, the secret
expressions that need to be guessed are calculated according to the simple generic
process that is used for Grain-128.

Step 3 The only part of this step that is not automated is the score calcula-
tion technique for each guess from the subcube sums. We can use the simple
method of assigning the guess its percentage of 1 values, or more complicated
algorithms that give certain subcubes more weight in the score calculation (e.g.
the sum of high dimensional subcubes can get more weight than the sum of lower
dimensional ones, which tend to be less biased towards 0).

Step 4 Techniques for recovering information about the key differ according
to the attack. It is always best to adapt the technique in order to optimize the
attack as in the first attack on Grain-128. In this attack, we determined the



values of some carefully chosen key expression from the guess with the best
score. It is possible to generalize this technique by determining the value of a
key expression (or several key expressions) according to a majority vote taken
over several guesses with the highest score. We can also try to run the attack
with different sets of parameters, but with some common guessed expressions.
The values for those common guessed expressions can then be deduced using
more data from several guess score lists.

When the simulation phase (steps 3 and 4) is not feasible we must use the
partial simulation phase. The generic key recovery method and its extension
in the third attack on Grain-128 can be used in case many of the guessed key
expressions are linear, or can be made linear by fixing the values of some key
bits.

6 Conclusions and Open Issues

Dynamic cube attacks provide new key recovery techniques that exploit in a
novel way distinguishers obtained from cube testers. Our results on Grain-128
demonstrate that dynamic cube attacks can break schemes which seem to resist
all the previously known attacks. Unlike cube attacks and cube testers, the
success of dynamic cube attacks can be convincingly demonstrated beyond the
feasible region by trying sufficiently many random values for the expressions we
have to guess during the attack.

An important future work item that was discussed in section 4.9 is how to
break most keys of Grain-128. In addition, the new techniques should be applied
to other schemes. Preliminary analysis of the stream cipher Trivium [14] suggests
that dynamic cube attacks can improve the best known attack on this cipher,
but the improvement factor we got so far is not very significant.

References

1. Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. In
CRYPTO ’90: Proceedings of the 10th Annual International Cryptology Conference
on Advances in Cryptology, pages 2–21, London, UK, 1991. Springer-Verlag.

2. Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In EUROCRYPT
’93: Workshop on the theory and application of cryptographic techniques on Ad-
vances in cryptology, pages 386–397, Secaucus, NJ, USA, 1994. Springer-Verlag
New York, Inc.

3. Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube Testers
and Key Recovery Attacks On Reduced-Round MD6 and Trivium In In Fast
Software Encryption. Springer-Verlag, 2009.

4. Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In
EUROCRYPT ’09: Proceedings of the International Conference on the Theory and
Application of Cryptographic Techniques. Springer-Verlag, 2009.

5. Jean-Philippe Aumasson, Itai Dinur, Luca Henzen, Willi Meier, and Adi Shamir.
Efficient FPGA Implementations of High-Dimensional Cube Testers on the Stream
Cipher Grain-128 In SHARCS - Special-purpose Hardware for Attacking Crypto-
graphic Systems. 2009.



6. Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A stream
cipher proposal: Grain-128. In IEEE International Symposium on Information
Theory (ISIT 2006), 2006.

7. H̊akan Englund, Thomas Johansson, and Meltem Sönmez Turan. A framework
for chosen IV statistical analysis of stream ciphers. In K. Srinathan, C. Pandu
Rangan, and Moti Yung, editors, INDOCRYPT, volume 4859 of LNCS, pages
268–281. Springer, 2007.

8. Simon Fischer, Shahram Khazaei, and Willi Meier. Chosen IV statistical anal-
ysis for key recovery attacks on stream ciphers. In Serge Vaudenay, editor,
AFRICACRYPT, volume 5023 of LNCS, pages 236–245. Springer, 2008.

9. Christophe De Cannière, Özgül Kücük, and Bart Preneel. Analysis of Grain’s
initialization algorithm. In SASC 2008, 2008.

10. Yuseop Lee, Kitae Jeong, Jaechul Sung, and Seokhie Hong. Related-key chosen IV
attacks on Grain-v1 and Grain-128. In Yi Mu, Willy Susilo, and Jennifer Seberry,
editors, ACISP, volume 5107 of LNCS, pages 321–335. Springer, 2008.

11. X Lai. Higher order derivatives and differential cryptanalysis. In ”Symposium on
Communication, Coding and Cryptography”, in honor of James L. Massey on the
occasion of his 60’th birthday, pages 227–233, 1994.

12. Michael Vielhaber. Breaking ONE.FIVIUM by AIDA an algebraic IV differential
attack. Cryptology ePrint Archive, Report 2007/413, 2007.

13. Antoine Joux. Algorithmic Cryptanalysis. Chapman & Hall, pages 285-286.

14. Christophe De Cannière and Bart Preneel. Trivium - a stream cipher construction
inspired by block cipher design principles. estream, ecrypt stream cipher. Technical
report, of Lecture Notes in Computer Science.

15. Simon Knellwolf and Willi Meier and Maria Naya-Plasencia. Conditional Differ-
ential Cryptanalysis of NLFSR-based Cryptosystems. In ASIACRYPT, 2010.

16. Paul Stankovski. Greedy Distinguishers and Nonrandomness Detectors. In IN-
DOCRYPT, volume 6498 of LNCS, pages 210–226. Springer, 2010.

A Appendix: Zeroing State Bits of Grain-128

To demonstrate the process that we use to zero state bits of Grain-128, consider
the problem of zeroing b194. The ANF representation of b194 is a relatively small
polynomial of degree 9 in the 128 secret variables and 96 public variables which
contains 9813 terms. It is calculated by assigning all the key and IV bits a
distinct symbolic variable, and calculating the symbolic value of the feedback
to the NFSR after 67 rounds. It may be possible to choose a dynamic public
variable and zero b194 directly. However, since the ANF representation of b194

is difficult to visualize, this has a few disadvantages: After we choose a cube
to sum over, we need to guess all the secret expressions that are multiplied by
terms of cube variables, and the complex ANF representation of b194 will force
us to guess many expressions, which will unnecessarily increase the complexity
of the attack. Moreover, since the ANF representation of b194 is of degree 9,
many of the guessed expressions are expected to be non-linear, while ideally we
would like to collect linear equations in order to be able to solve for the key bits
efficiently. The process that we use to zero b194 is given below.



1. Use the description of Grain-128 to simplify the ANF representation of b194

by writing b194 = b161(b78s161) +Pr1. In this form, b161 is the source polyno-
mial, b78s161 is the target polynomial, and Pr1 is some remainder polynomial
with a simpler ANF representation compared to b194.

2. The ANF representation of b161 is a simpler polynomial of degree 6 which
contains 333 terms. Again, do not zero it directly, but write:
b161 = b128(b45s128) + Pr2, with b128 as the source polynomial with degree 3
and 26 terms. Choose v0 as the dynamic variable and set it accordingly.

3. Now, the ANF representation of b161, with v0 set to its dynamic value is
a polynomial of degree 2 which contains 47 terms. b161 can be zeroed by
choosing v33 as a dynamic variable.

4. Recalculate the ANF of b194 with v0 and v33 set to their dynamic values.
It is now a polynomial of degree 5 which contains 1093 terms. Write b194 =
b134b150 + Pr3, and choose v6 as the dynamic variable to zero b134.

5. Write b194 = b162 + Pr4 = b129(b46s129) + Pr5 and choose v1 as the dynamic
variable to zero b129.

6. Now, the symbolic form of b194 with v0, v33, v6 and v1 all set to their dynamic
values, is a polynomial of degree 3 with 167 terms. Finally we choose v29 as
the dynamic variable which can zero b194.

B Appendix: Parameters for Our Attacks on Grain-128

The parameter sets for the different attacks are given in the tables below. As an
example, we demonstrate the process of assigning values to the dynamic variables
in Table 1. The process for the other tables is similar.

The first index of the ”Dynamic Variables” list in Table 1 is 0 (i.e v0). It
is used to nullify the first state bit in the ”State Bits Nullified” list (b128). The
symbolic form of v0 is calculated as follows:

1. Initialize the state of Grain-128 with all the key bits assigned a distinct
symbolic variable and all the IV bits set to 0, except the IV bits in the
”Cube Indexes” row and v0 which are assigned a distinct symbolic variable.

2. Clock the state once and obtain the symbolic value of the bit fed back into
the NFSR (note that v0 is a linear variable of the polynomial).

3. Delete the term v0 from the symbolic form of this polynomial and assign
v0 the symbolic sum of the remaining terms, i.e. set v0 = x3x67 + x11x13 +
x17x18 + x27x59 + x40x48 + x61x65 + x68x84 + x0 + x2 + x15 + x26 + x36 +
x45 + x56 + x64 + x73 + x89 + x91 + x96.

Next, we determine the symbolic value of v1 (second in the ”Dynamic Vari-
ables” list), according to the second state bit in the ”State Bits Nullified” list
(b129). It is calculated in a similar way to v0, except that we set v0 to the dy-
namic value calculated in the previous step and set v1 to a distinct symbolic
variable. Finally we assign v1 the symbolic value that is fed back to the NFSR
after 2 initialization rounds (again, removing the linear term of v1 from the
symbolic form). We iteratively continue assigning v6, v33 and v29 according to



the symbolic values fed back to the NFSR after 7, 34 and 67 clocks respectively,
each time setting the previously determined dynamic variables to their dynamic
values.

Table 1. Parameter set No.1 for the attack on Grain-128, given output bit 215.

Cube Indexes {3,28,31,34,40,50,51,52,54,62,63,64,65,66,67,68,69,80,92}
Dynamic Variables {0,1,6,33,29}
State Bits Nullified {b128, b129, b134, b161, b194}

Expressions Retrieved {x127, x122 + 1}

Table 2. Parameter set No.2 for the attack on Grain-128, given output bit 215.

Cube Indexes {5,19,28,31,34,40,50,51,52,54,62,63,64,65,66,67,68,80,92}
Dynamic Variables {0,1,6,33,29}
State Bits Nullified {b128, b129, b134, b161, b194}

Expressions Retrieved {x69, x23}

Table 3. A Parameter set for the attack on Grain-128, given output bit 218.

Cube Indexes {19,20,28,29,30,31,41,45,53,54,55,63,64,65,66,67,68,69,89,92}
Dynamic Variables {2,3,4,9,1,36,7,32}
State Bits Nullified {b130, b131, b132, b137, s129, b164, b170, b197}

Expressions Retrieved {x98, x49}

Table 4. Parameter set for the attack on Grain-128, given output bit 251.

Cube Indexes {11,12,13,15,17,21,24,26,27,29,32,35,38,40,43,46,49,51,52,
53,55,57,58,63,64,65,66,74,75,77,78,79,81,84, 86,87,95}

Dynamic Variables {8,9,10,14,0,1,39,2,72,3,4,5,80,25,90,92,41,7,36,37,88,23,89,54}
Public Variables Set to 1 {82}

State Bits Nullified {b136, b137, b138, b142, b128, b129, s129, b130, s130, b131, b132, b133,
b148, b153, b158, b160, s162, b163, b164, b165, b174, b186, b197, b230}

Table 5. Parameter set for the attack on a weak key subset of the full Grain-128, given
output bit 257.

Cube Indexes {0,3,5,10,11,13,14,15,17,19,21,23,26,31,34,35,37,39,40,43,45,48,49,51,
53,54,55,56,57,59,63,65,66,67,68,71,77,78,79,81,85,91,92,93,94,95}

Dynamic Variables {9,1,12,4,7,6,8,89,2,29,83,25,69}
State Bits Nullified {b137, b129, s133, b132, b135, b134, b136, s168, b169, s150, b176, b192, b236}
Key Bits Set to 0 {x48, x55, x60, x76, x81, x83, x88, x111, x112, x122}


