
Blockcipher-Based Double-Length Hash Functions for
Pseudorandom Oracles

Yusuke Naito

Mitsubishi Electric Corporation

Abstract. PRO (Pseudorandom Oracle) is an important security of hash functions because it ensures
that the hash function inherits all properties of a random oracle up to the PRO bound (e.g., security
against length extension attack, collision resistant security, preimage resistant security and so on). In
this paper, we propose new blockcipher-based double-length hash functions, which are PROs up to
O(2n) query complexity in the ideal cipher model. Our hash functions use a single blockcipher, which
encrypts an n-bit string using a 2n-bit key, and maps an input of arbitrary length to an n-bit output.
Since many blockciphers supports a 2n-bit key (e.g. AES supports a 256-bit key), the assumption to use
the 2n-bit key length blockcipher is acceptable. To our knowledge, this is the first time double-length
hash functions based on a single (practical size) blockcipher with birthday PRO security.
Keywords: Double-length hash function, pseudorandom oracle, ideal cipher model.

1 Introduction

The blockcipher-based design (e.g. [21, 28]) is the most popular method for constructing a cryptographic hash
function. A hash function is designed by the following two steps: (1) designing a blockcipher and (2) designing
a mode of operation. MD-family [29, 30], SHA-family [25] and SHA-3 candidates follow the design method.
Another design method is to utilize a practical blockcipher such as AES. Such hash functions are useful in
size restricted devices such as RFID tags and smart cards: when implementing both a hash function and a
blockcipher, one has only to implement a blockcipher. However, the output length of practical blockciphers
is far too short for a collision resistant hash function, e.g., 128 bits for AES. Thus the design of collision
resistant double length hash functions (CR-DLHFs) is an interesting topic. The core of the design of CR-
DLHFs is to design a collision resistant double-length compression functions (CR-DLCFs) which maps an
input of fixed length (more than 2n-bits) to an output of 2n-bit length when using an n-bit output length
blockcipher. Then a hash function combined a domain extension (e.g. strengthened Merkle-Damg̊ard (SMD)
[6, 23]), which preserves CR security, with a CR-DLCF yield a CR-DLHF. Many DLCFs, e,g,. [2, 24, 13, 16,
26, 18, 20], have been designed and the security is proven in the ideal cipher (IC) model [9, 13, 19, 11, 26, 17,
31].

The indifferentiability framework was introduced by Maurer et al. [22], which considers the reducibility
of one system to another system. Roughly speaking, if a system F is indifferentiable from another system G
up to q query complexity, we can use F instead of G up to q query complexity. So any cryptosystem is at
least as secure under F as under G up to q query complexity. Recent proposed hash functions, e.g. SHA-3
candidates, considered the security of the indifferentiability from a random oracle (RO) (or Pseudorandom
Oracle (PRO)). It ensures that the hash function has no structural design flows in composition and has
security against any generic attacks up to the PRO query complexity (e.g., length extension attack, collision
attack, preimage attack and so on). So it is important to consider PRO security when a DLHF is designed.

Hereafter a blockcipher which encrypts an n-bit string using a k-bit key is denoted by (k,n)-BC. Gong
et al. [12] proved that the prefix-free Merkle-Damg̊ard using the PBGV compression function [27] is PRO
up to O(2n/2) query complexity as long as the (2n,n)-BC is IC. The PRO security is not enough because
the query complexity is O(264) when n = 128. Chang et al. [4] and Hirose et al. [14] proposed 2n-bit output
length DLHFs using a compression function h : {0, 1}d → {0, 1}n where d > 2n. Their proposals are PROs
up to O(2n) query complexity as long as h is a fixed input length RO (FILRO). Since IC where the plain text
element is fixed by a constant is FILRO, these hash functions can be modified to blockcipher-based schemes
which use a (d,n)-BC. However, practical blockciphers (such as AES) don’t support d-bit key where d > 2n.
Many other practical size1 blockcipher-based DLHFs were proposed, e.g., [2, 24, 13, 16, 26, 18, 20], while none
1 “Practical size” is the size supported by practical blockciphers e.g. AES.

Fig. 1. Our DLHF using Hirose’s compression function

of them achieves PRO security.2 There is no hash function with birthday PRO security, and thus, we rise
the following question:

Can we construct a DLHF from a “single practical size blockcipher” with “birthday PRO
security”?

In this paper, we propose DLHFs using a single (2n,n)-BC, which are PROs up to O(2n) query complexity
in the IC model. Since many blockciphers support 2n-bit key length, e.g., AES supports 256-bit key length,
and the existing DLCFs (e.g. Hirose’s compression function [13], Tandem-DM [16], Abreast-DM [16], and
generalized DLCF [26]) use a (2n,n)-BC, the assumption to use a (2n,n)-BC is acceptable. To our knowledge,
our hash functions are the first time DLHFs based on a practical size blockcipher with birthday PRO security.
When n = 128 which is supported by AES, our hash functions have O(2128) security. Since our hash functions
use only a single blockcipher, it is useful on size restricted devices when implementing both a hash function
and a blockcipher. (the hybrid encryption schemes use both a blockcipher and a hash function (used in a
key derivation function), for example.)

Our DLHF. Our DLHFs, which use Hirose’s compression function [13], Tandem-DM [16] or Abreast-DM
[16], iterate the compression function and use a new post-processing function f at the last iteration which
calls a (2n, n)-BC twice. Our DLHFs are slightly lesser for speed than existing CR-DLHFs but have higher
security (birthday PRO security).

Let BC2n,n = (E,D) be a (2n,n)-BC where E is an encryption function and D is a decryption function. Let
DLCFBC2n,n be a DLCF: Hirose’s compression function, Tandem-DM, or Abreast-DM. Let SMDDLCFBC2n,n :
{0, 1}∗ → {0, 1}2n be the SMD hash function using the compression function DLCFBC2n,n . Our DLHF is
defined as follows:

FBC2n,n(M) = fBC2n,n(SMDDLCFBC2n,n (M))

where fBC2n,n(x) = E(x, c1)||E(x, c2) and c1 and c2 are n-bit constant values. Note that the first element
of the encryption function is the key element and the second element is the plain text element. The DLHF
using Hirose’s compression function is illustrated in Fig. 1 where each line is n bits and IV [0], IV [1], C, c1

and c2 are constant values. Note that in this figure we omit the suffix free padding function sfpad. So the
hash function takes as its input a message M , sfpad(M) = M1||M2|| · · · ||Ml with each block of n bits, and
outputs the final value rv1||rv2. We use the DLHF SMDDLCFBC2n,n to compress an arbitrary length input
into an fixed input length value. Since SMD hash functions cannot be used as ROs [5], the post-processing
function fBC2n,n is used to guarantee PRO security.

The use of the constant values c1 and c2 in the post-processing function is inspired by the design technique
of EMD proposed by Bellare and Ristenpart [1]. This realizes the fact that the post-processing function
behaves like RO. So we can treat our hash function as a NMAC-like hash function. Note that the security of
EMD is proven when the compression function is FILRO, while the security of our hash functions is proven
when the compression function is the DLCF in the IC model. So additional analyses are needed due to the
invertible property of IC and the structures of DLCFs.3 We thus prove the PRO security of FBC2n,n by using
2 Since PRO security is stronger security than CR security. CR security does not guarantee PRO security.
3 One may think that there is an attack based on a decryption (inversion) function of the blockcipher. But our hash

functions avoid the attack from the PRO security proof. For confirmation, we consider the attack in Appendix A.

2

three techniques: the PrA (Preimage Aware) design framework of Dodis et al. [7], PRO for a small function
[5], and indifferentiability from a hash function. The first two techniques are existing techniques and the last
technique is a new application of the indifferentiability framework [22].

First, we prove that the DLCFs are PrA up to O(2n) query complexity. The PrA design framework offers
the hash functions which are PROs up to O(2n) query complexity where FILRO is used as the post-processing
function. Second, we convert FILRO into the blockcipher-based post-processing function. We prove that the
post-processing function is PRO up to O(2n) query complexity in the IC model (PRO for a small function).
Then, we prove that the PRO security of the post-processing function and the first PRO result ensure that
the converted hash functions are PROs up to O(2n) query complexity. Note that the hash functions use two
blockciphers.4 Finally, we consider the single-blockcipher-based hash functions FBC2n,n . We prove that the
single blockcipher-based hash functions are indifferentiable from the two-blockciphers-based hash functions
in the IC model up to O(2n) query complexity (indifferentiability from a hash function). Then we show that
the indifferentiable security result and the second PRO result ensure that our hash functions are PROs up
to O(2n) query complexity in the IC model.

2 Preliminaris

Notation. For two values x, y, x||y is the concatenated value of x and y. For some value y, x ← y means
assigning y to x. ⊕ is bitwise exclusive or. |x| is the bit length of x. For a set (list) T and an element W , T ←
W means to insert W into T and T ∪←− W means T ← T ∪{W}. For some 2n-bit value x, x[0] is the first n bit
value and x[1] is the last n-bit value. BCd,n = (E,D) be a blockcipher where E : {0, 1}d × {0, 1}n → {0, 1}n

is an encryption function, D : {0, 1}d × {0, 1}n → {0, 1}n is a decryption function, the key size is d bits and
the cipher text size is n bits. Cd,n = (EI , DI) be a ideal cipher (IC) where EI : {0, 1}d × {0, 1}n → {0, 1}n

is an encryption oracle, DI : {0, 1}d × {0, 1}n → {0, 1}n is a decryption oracle, the key size is d bits and the
cipher text size is n bits. Fa,b : {0, 1}a → {0, 1}b is a random oracle (RO). An arbitrary input length random
oracle is denoted by Fb : {0, 1}∗ → {0, 1}b. For any algorithm A, we write Time(A) to mean the sum of its
description length and the worst-case number of steps.

Merkle-Damg̊ard [6, 23]. Let h : {0, 1}2n×{0, 1}d → {0, 1}2n be a compression function using a primitive
P (more strictly hP) and pad : {0, 1}∗ → ({0, 1}d)∗ be a padding function. The Merkle-Damg̊ard hash
function MDh is described as follows where IV is a 2n-bit initial value.

MDh(M)
z ← IV ;
Break pad(M) into d-bit blocks, pad(N) = M1|| · · · ||Ml;
for i = 1, . . . , l do z ← h(z,Mi);
Ret z;

We denote MDh, when padding pad is a suffix-free padding sfpad, by SMDh, called strengthened Merkle-
Damg̊ard. We assume that it is easy to strip padding, namely that there exists an efficiently computable
function unpad : ({0, 1}d)∗ → {0, 1}∗ ∪ {⊥} such that x = unpad(pad(x)) for all x ∈ {0, 1}∗. Inputs to unpad
that are not valid outputs of pad are mapped to ⊥ by unpad.

Pseudorandom Oracle [22]. Let HP : {0, 1}∗ → {0, 1}n be a hash function that utilizes an ideal primitive
P . We say that HP is PRO if there exists an efficient simulator S that simulates P such that for any
distinguisher A outputting a bit it is the case that

Advpro
HP ,S

(A) = |Pr[AHP ,P ⇒ 1] − Pr[AFn,SFn ⇒ 1]|

is small where the probabilities are taken over the coins used the experiments. S can make queries to Fn.
The S’s task is to simulate P such that relations among responses of (HP , P) hold in responses of (Fn, S)
as well.
4 Two independent ideal cipher can be obtained from a single ideal cipher by victimizing one bit of the key space. So

using a blockcipher with the 2n + 1-bit key space and the n-bit key space, the hash functions which uses a single
blockcipher can be realized. But the size of the blockcipher is not a practical size.

3

Preimage Awareness [7, 8]. The notion of preimage awareness is useful for PRO security proofs of NMAC
hash functions. We only explain the definition of preimage awareness. Please see Section 3 of [8] for the spirit
of the notion. Let FP be a hash function using an ideal primitive P . The preimage awareness of FP is
estimated by the following experiment.

Exppra
F P ,P,E,A

x
$←− AP,Ex;

z ← FP (x);
Ret (x 6= V[z] ∧ Q[z] = 1);

oracle P(m)
c ← P (m);
α

∪←− (m, c);
Ret c;

oracle Ex(z)
Q[z] ← 1;
V[z] ← E(z, α);
Ret V[z];

Here an adversary A is provided two oracles P and Ex. The oracle P provides access to the ideal primitive
P and records a query histry α. The extraction oracle Ex provides an interface to an extractor E , which is a
deterministic algorithm that uses z and the query history α of P , and returns either ⊥ or an element x′ such
that FP (x′) = z. If x′ can be constructed from α, it returns x′ and otherwise returns ⊥. In this experiment,
the (initially everywhere ⊥) array Q and the (initially empty) array V are used. When z is queried to Ex,
Q[z] ← 1 and then the output of E(z, α) is assigned to V[z]. For the hash function FP , the adversary A, and
the extractor E , we define the advantage relation

Advpra
F P ,P,E = Pr[Exppra

F P ,P,E,A
⇒ true]

where the probabilities are over the coins used in running the experiments. When there exists an efficient
extractor E such that for any adversary A the above advantage is small, we say that FP is preimage aware
(PrA).

The pra-advantage can be evaluated from the cr-advantage (collision resistance advantage) and the 1-wpra
(1-weak PrA) advantage [8]. The 1-WPrA experiment is described as follows.

Exp1wpra
F P ,P,E+,A

x
$←− AP,Ex+ ;

z ← FP (x);
Ret (x 6∈ L ∧ Q[z] = 1);

oracle P(m)
c ← P (m);
α

∪←− (m, c);
Ret c;

oracle Ex+(z)
Q[z] ← 1;
L ← E+(z, α);
Ret L;

The difference between the 1-WPrA experiment and the PrA experiment is the extraction oracle. In the
1-WPrA experiment, a multi-point extractor oracle Ex+ is used. Ex+ provides an interface to a multi-point
extractor E+, which is a deterministic algorithm that uses z and α, and returns either ⊥ or a set of an
element in the domain of FP . The output (set) of E+ is stored in list L. Thus, if L 6= {⊥}, for any x′ ∈ L
FP (x′) = z. In this experiment, an adversary A can make only a single query to Ex+. For a hash function
FP , an adversary A, and a multi-point extractor E+, we define the advantage relation

Adv1wpra
F P ,P,E = Pr[Exp1wpra

F P ,P,E+,A
⇒ true]

where the probabilities are over the coins used in running the experiments. When there exists an efficient
multi-point extractor E+ such that the above advantage is small for any adversary A, we say that FP is
1-WPrA.

The definition of the cr-advantage as follows. Let A be an adversary that outputs a pair of values x and
x′. To hash function FP using primitive P and adversary A we associate the advantage relation

Advcr
F P ,P (A) = Pr[(x, x′) $←− AP : FP (x) = FP (x′) ∧ x 6= x′]

where the probability is over the coins used by A and primitive P .
Then the pra-advantage can be evaluated as follows.

Lemma 1 (Lemmas 3.3 and 3.4 of [8]). Let E+ be an arbitrary multi-point extractor. There exists an
extractor E such that for any pra-advarsary Apra making qe extraction queries and qP primitive queries there
exists 1-wpra adversary A1wpra and cr-adversary Acr such that

Advpra
F P ,P,E(Apra) ≤ qe · Adv1wpra

F P ,P,E+(A1wpra) + Advcr
F P ,P (Acr).

A1wpra runs in time at most O(qeTime(E+)) and makes the same number of P queries as Apra. Acr asks qP

queries and run in time O(qe · Time(E+)). E runs in the same time as E+. ¨

4

NMAC Hash Function. Let g : {0, 1}n → {0, 1}n be a function and HP : {0, 1}∗ → {0, 1}n be a hash
function using primitive P such that g is not used in HP . Dodis et al. [8] proved that the PRO security of
the NMAC hash function g ◦ HP can be reduced into the PrA security of HP .

Lemma 2 (Theorem 4.1 of [8]). Let P be an ideal primitive, g be a random oracle and E be any extractor
for HP . Then there exists a simulator S = (SP , Sg) such that for any PRO adversary A making at most
qF , qP , qg queries to its three oracles (OF ,OP ,Og) where (OF ,OP ,Og) = (g ◦ HP , P, g) or (OF ,OP ,Og) =
(Fn, SP , Sg), there exists a PrA adversary B such that

Advpro
g◦HP ,S

(A) ≤ Advpra
HP ,P,E(B).

S runs in time O(qP + qg · Time(E)). Let l be the length of the longest query made by A to OH . B runs in
time O(Time(A)+ qF tH + qP + qg), makes qP + qHqF queries, qg extraction queries, and outputs a preimage
of length at most l where for any input M to HP the output of HP (M) can be calculated within at most tH
times and qH queries to P . ¨
Dodis et al. proved that the SMD construction preserves the PrA security as follows. Therefore, the PRO
security of the NMAC hash function using the SMD hash function can be reduced into the PrA security of
the compression function.

Lemma 3 (Theorem 4.2 of [8]). Let hP be a compression function using an ideal primitive P . Let Eh

be an arbitrary extractor for hP . There exists an extractor EH for SMDhP

such that for any adversary AH

making at most qP primitive queries and qe extraction queries and outputting a message at most l blocks
there exists an adversary Ah such that

Advpra

SMDhP
,P,EH

(AH) ≤ Advpra
hP ,P,Eh

(Ah)

EH runs in time at most l(Time(Eh) + Time(unpad)). Ah runs in time at most O(Time(AH) + qel), makes
at most qH + qP ideal primitive queries, and makes at most qel extraction queries where qH is the maximum
number of P queries to calculate SMDhP

. ¨

3 Blockcipher-Based Double-Length Hash Functions for PROs

Let BC2n,n = (E,D), BC1
2n,n = (E1, D1), BC2

2n,n = (E2, D2), and BC3
2n,n = (E3, D3) be blockciphers.

Let g : {0, 1}2n → {0, 1}2n be a function. In this section, we propose the following DLHFs using a single
blockcipher and prove that our hash functions are PROs up to O(2n) query complexity in the IC model.

FBC2n,n(M) = fBC2n,n(SMDDLCFBC2n,n (M))

where fBC2n,n(x) = E(x, c1)||E(x, c2) such that c1 and c2 are n-bit different constant values and are different
from values which are defined by the compression function (see subsection 3.3). The hash functions use
Hirose’s compression function, Tandem-DM, and Abreast-DM as the underlying DLCF, respectively. We
prove the PRO security by the three steps. Each step uses the PrA design framework, PRO for a small
function and indifferentiability from a hash function, respectively.

– Step 1. We prove that Hirose’s compression function, Tandem-DM, and Abreast-DM are PrA up to
O(2n) query complexity in the IC model. Lemma 2 and Lemma 3 then ensure that the following NMAC
hash function is PRO up to O(2n) query complexity as long as the blockcipher is IC and g is FILRO.

F
g,BC1

2n,n

1 (M) = g(SMDDLCF
BC1

2n,n (M))

– Step 2. We prove that fBC3
2n,n is PRO up to O(2n) query complexity in the IC model where c1 and c2

are n-bit different values. Then, we prove that the PRO security of F1 and the PRO security of f ensure
that the following hash function is PRO up to O(2n) query complexity in the IC model, namely, it can
be used as RO up to O(2n) query complexity in the IC model.

F
BC2

2n,n,BC3
2n,n

2 (M) = fBC3
2n,n(SMDDLCF

BC2
2n,n (M))

5

– Step 3. This is the final step. We use the indifferentiability from a hash function: we prove that FBC2n,n

is indifferentiable from F
BC2

2n,n,BC3
2n,n

2 up to O(2n) query complexity in the IC model. Then, we prove
that the indifferentiable result and the PRO security of F2 ensure that FBC2n,n is PRO up to O(2n)
query complexity in the IC model.5

3.1 Step 1

We prove that Hirose’s compression function [13] is PrA up to O(2n) query complexity as long as the
blockcipher is an ideal cipher. Similarly, we can prove that Abreast-DM and Tandem-DM [16] are PrA.
These proofs are given in Appendix B and Appendix C, respectively.

Definition 1 (Hirose’s Compression Function). Let BC1
2n,n = (E1, D1) be a blockcipher. Let CFHirose[BC1

2n,n] :
{0, 1}2n×{0, 1}n → {0, 1}2n be a compression function such that (Gi,Hi) = CFHirose[BC1

2n,n](Gi−1||Hi−1,Mi)
where Gi,Hi, Gi−1, Hi−1 ∈ {0, 1}n and Mi ∈ {0, 1}n. (Gi, Hi) is calculated as follows:

Gi = Gi−1 ⊕ E1(Hi−1||Mi, Gi−1) (1)
Hi = C ⊕ Gi−1 ⊕ E1(Hi−1||Mi, Gi−1 ⊕ C,) (2)

We call the procedure 1 “first block” and the procedure 2 “second block”. ¨

Lemma 4 (Hirose’s Compression Function is PrA). Let C1
2n,n = (E1I , D1I) be an ideal cipher. There

exists an extractor E such that for any adversary A making at most qP queries to C2n,n and qe extraction
queries we have

Advpra
CFHirose[C1

2n,n],C1
2n,n,E(A) ≤ 2q2

P

(2n − 2qP)2
+

2qP

2n − 2qP
+

2qP qe

(2n − qP)2

where E runs in time at most O(qeqP). ¨

Proof. We prove that Hirose’s compression function is 1-WPrA, and then Lemma 1 gives the final bound.
We note that Theorem 3 of [11] upperbounds the cr-advantage of A by 2q2

P /(2n − 2qP)2 + 2qP /(2n − 2qP),
yielding the first two terms.

Intuitively, the 1-WPrA game for the compression function is that A declares a value z then an extractor
outputs preimages, stored in L, of z which can be constructed from input-output values of A’s queries to
C1
2n,n. Then A outputs a new preimage of z which is not stored in L. Note that A can adaptively query

to C1
2n,n. We define the multi-point extractor to utilize the preimage resistant bound, proven in [11], of

Hirose’s compression function in Fig. 2. If an input-output triple of the first block is defined, automatically
the input of the second block is defined, and vice versa, from the definition of the compression function. For
a query (z, α) to E+, when there is an input-output triple (k, x, y) such that x ⊕ y = z[0], the multi-point
extractor E+ checks whether the output of the second block is equal to z[1] or not and if this holds the
multi-point extractor stores it in the return list L, and vice versa. Therefore, A must find a new preimage of
z to win the 1-WPrA experiment. Thus one can straightforwardly adapt the preimage resistant advantage
of the compression function (described in Theorem 5 of [11])6 because the proof of Theorem 5 of [11] can
be applied to the case that an adversary selects an image z of the compression function and then finds the
preimage of z. The advantage is at most 2qP /(2n − qP)2. ut

Lemma 4 ensures the following theorem via Lemma 2 and Lemma 3 where F1 is PRO up to O(2n) query
complexity.
5 One may think that since indifferentiability from a hash function considers indifferentiability of two hash functions

based on small primitives, the universal composability (UC) [3] may be extended to this setting. However, this
is not true because indifferentiability from a hash function follows the indifferentiability framework [22] and the
definition of the indifferentiability framework is slightly different from that of the UC framework: indifferentiability
considers “reducibility” of one system to another and UC considers “composability” of several systems.

6 Note that while the 1-WPrA bound is equal to the preimage bound, this is not trivial because one needs to construct
the extractor that converts the preimage bound into the 1-WPrA bound.

6

algorithm E+(z, α)

Let L be an empty list;
Parse (k1, x1, y1), . . . , (ki, xi, yi) ← α; //E1(kj , xj) = yj

For j = 1 to i do
If z[0] = xj ⊕ yj then

y ← E1I(kj , xj ⊕ C);

If z[1] = C ⊕ xj ⊕ y then L
∪←− (xj ||k[0], k[1]);

If z[1] = xj ⊕ yj then
y ← E1I(kj , xj ⊕ C);

If z[0] = C ⊕ xj ⊕ y then L
∪←− ((xj ⊕ C)||k[0], k[1]);

If L is not an empty list then return L otherwise return ⊥;

Fig. 2. Multi-Point Extractor

Theorem 1. There exists a simulator S1 = (S1g, S1C) where S1C = (S1E , S1D) such that for any distin-
guisher A1 making at most (qH , qg, qE , qD) queries to four oracles which are (F1, g, E1, D1) or (F2n, S1g, S1E , S1D),
we have

Advpro

F
g,C1

2n,n
1 ,S1

(A1) ≤
2Q2

1

(2n − 2Q1)2
+

2Q1

2n − 2Q1
+

2lqgQ1

(2n − Q1)2

where S1 works in time O(qE + qD + lqgQ1) + lqg × Time(unpad) and S1g makes qg queries to F2n where
Q1 = 2l(qH + 1) + qE + qD. S1g simulates g, which makes one query to F2n for one S1g query, and S1C,
which makes no query, simulates the ideal cipher. ¨

3.2 Step 2

Lemma 5 (fC3
2n,n is PRO). Let C3

2n,n = (E3I , D3I) be an ideal cipher. Let g = F2n,2n. There exists a
simulator S = (SE , SD) such that for any distinguisher A2 making at most qf , qE and qD queries to oracles
(Of ,OE ,OD) where (Of ,OE ,OD) = (fC3

2n,n , E3I , D3I) or (Of ,OE ,OD) = (g, SE ,SD), we have

Advpro

f
C3
2n,n ,S

(A2) ≤
qf + qE + qD

2n

where S works in time O(Time(A2) + qE + qD) and makes at most queries qE + qD. S simulates the ideal
cipher. ¨

Proof. We define S = (SE , SD) such that it simulates C3
2n,n = (E3I , D3I) and the relation among responses of

(fC3
2n,n , E3I , D3I) holds in responses of (g, SE , SD) as well. Since the relation fC3

2n,n(k) = E3I(k, c1)||E3I(k, c2)
holds, we define S so that SE(k, c1)||SE(k, c2) = g(k). That is, SE(k, c1) = y[0], SE(k, c2) = y[1], SD(k, y[0]) =
c1, and SD(k, y[1]) = c2 where y = g(k).

simulator SE(k, x)
01 If E[k, x] 6=⊥, ret E[k, x];
02 If E[k, c1] =⊥,
03 y∗ ← g(k);

04 E[k, c1]
$←− y∗[0];

05 D[k, E[c1, x]] ← c1;

06 E[k, c2]
$←− y∗[1];

07 D[k, E[c2, x]] ← c2;
08 If x 6= c1 and x 6= c2,

09 E[k, x] $←− {0, 1}n\TE [k];
10 D[k, E[k, x]] ← x;
11 Ret E[k, x];

simulator SD(k, y)
11 If D[k, y] 6=⊥, ret D[k, y];
12 If E[k, c1] =⊥,
13 y∗ ← g(k);

14 E[k, c1]
$←− y∗[0];

15 D[k,E[c1, x]] ← c1;

16 E[k, c2]
$←− y∗[1];

17 D[k,E[c2, x]] ← c2;
18 If D[k, y] 6=⊥,

19 D[k, y] $←− {0, 1}n\{TD[k]};
20 E[k, D[k, y]] ← y;
21 Ret D[k, y];

7

S has (initially everywhere ⊥) arrays E,D and (initially empty) tables TE , TD. When y = SE(k, x), y is stored
in E[k, x] and x is stored in D[k, y]. For any (k, x) such that E[k, x] 6=⊥, E[k, x] is stored in TE [k], and for
any (k, y) such that D[k, y] 6=⊥, D[k, y] is stored in TD[k].

We give the proof via a game-playing argument on the game sequences Game 0, Game 1, Game 2.
Game 0 is the fC3

2n,n scenario and Game 2 is the g scenario. In each game, A2 can make queries to three
oracles (Of ,OE ,OD). Let Gj be the event that in Game j the distinguisher A2 outputs 1. Therefore,

Pr[Af
C3
2n,n ,E3I ,D3I ⇒ 1] = Pr[G0] and Pr[Ag,SE ,SD ⇒ 1] = Pr[G2]. Thus

Advpro

f
C3
2n,n ,S

(A2) = |Pr[G0] − Pr[G2]| ≤ |Pr[G1] − Pr[G0]| + |Pr[G2] − Pr[G1]|

Game 0: Game 0 is the fC3
2n,n scenario. So (Of ,OE ,OD) = (fC3

2n,n , E3I , D3I).

Game 1: We change the underlying ideal cipher from C3
2n,n to S. So (Of ,OE ,OD) = (fS, SE , SD) where

fS(k) = SE(k, c1)||SE(k, c2). Note that only S has oracle access to g.
We must show that the A2’s view has statistically close distribution in Game 0 and Game 1. Since

the difference between the games is the underlying function, we show that the output of the functions is
statistically close; this in turn shows that the A2’s view has statistically close distribution in Game 0 and
Game 1.

In the following, we use the following lazily-sample method of the ideal cipher.

Encryption Oracle EI(k, x)
01 If E[k, x] 6=⊥, ret E[k, x];
02 If E[k, c1] =⊥,

03 E[k, c1]
$←− {0, 1}n;

04 D[k,E[c1, x]] ← c1;

05 E[k, c2]
$←− {0, 1}n\{E[k, c1]};

06 D[k,E[c2, x]] ← c2;
07 If x 6= c1 and x 6= c2,

08 E[k, x] $←− {0, 1}n\TE [k];
09 D[k,E[k, x]] ← x;
10 Ret E[k, x];

Decryption Oracle DI(k, y)
11 If D[k, y] 6=⊥, ret D[k, y];
12 If E[k, c1] =⊥,

13 E[k, c1]
$←− {0, 1}n;

14 D[k,E[c1, x]] ← c1;

15 E[k, c2]
$←− {0, 1}n\{E[k, c1]};

16 D[k,E[c2, x]] ← c2;
17 If D[k, y] 6=⊥,

18 D[k, y] $←− {0, 1}n\{TD[k]};
19 E[k, D[k, y]] ← y;
20 Ret D[k, y];

E and D are (initially everywhere ⊥) arrays and TE and TD (initially empty) tables. For any (k, x) such
that E[k, x] 6=⊥, E[k, x] is stored in TE [k], and for any (k, y) such that D[k, y] 6=⊥, D[k, y] is stored in TD[k].
On a query which the key element is k, first the output of EI(k, c1) is determined (Steps 03-04 or Steps
13-14) and second the output of EI(k, c2) is determined (Steps 05-06 or Steps 15-16). Then the outputs of
EI(k, x) such that x 6= c1 and x 6= c2 are determined. Since no adversary (distinguisher) learns EI(k, c1) and
EI(k, c2) until querying the corresponding value, the procedures of Steps 03-06 and 13-16 do not affect the
lazily-sample ideal cipher simulation.

We consider the difference of the ideal cipher and S. On a query in which the key element is k, the output
of SE(c2, k) is randomly chosen from {0, 1}n because g is RO while the output of EI(c2, k) is randomly
chosen from {0, 1}n\{E[k, c1]}. Thus the statistical distance between the uniform distribution in {0, 1}n and
the uniform distribution in {0, 1}n\{E[k, c1]} is 1/2n. Since the number of queries to S is at most qf +qE +qD

times,

|Pr[G1] − Pr[G0]| ≤ qf + qE + qD

2n
.

Game 2: We change Of from fS(k) to g. So (Of ,OE ,OD) = (g, SE , SD) and this is the g scenario.
We show that the A2’s view in Game G1 and Game G2 is equivalent. Of is different in both games. To

prove the equivalence, we use the proof method in [5, 15]. Specifically, we prove the following two points. If
those hold, then we can conclude that Pr[G1] = Pr[G2].

8

1. In Game 1, for any query k Of (k) is defined by g(k). If this holds, the output distribution of Of of Game
1 and Game 2 is the same.

2. In Game 2, OE and OD are consistent with Of as well as in Game 1. Of uses OE in Game 1, while does
not in Game 2 (note that in both games (OE ,OD) = (SE , SD)). Thus, if this holds, the difference does
not affect the output distribution of OE and OD. Namely, the output distribution of OE and OD is the
same.

Proof of Point 1. In Game 1, for any query k Of (k) = SE(k, c1)||SE(k, c2). Since SE(k, c1) = y∗[0] and
SE(k, c2) = y∗[1] where y∗ = g(k), Of (k) = SE(k, c1)||SE(k, c2) = g(k).

Proof of Point 2. In Game 1, Of uses OE , namely, if the outputs of SE(k, c1) and SE(k, c2) are defined,
Of (k) = SE(k, c1)||SE(k, c2). So we must show that the same holds in Game 2. Since SE(k, c1) = y∗[0]
and SE(k, c2) = y∗[1] where y∗ = g(k), if the outputs of SE(k, c1) and SE(k, c2) are defined, g(k) =
SE(k, c1)||SE(k, c2). Namely, in Game 2, OE and OD consistent with Of as in Game 1.

We thus have that Pr[G1] = Pr[G2].

From above discussions, we have that

Advpro

f
C3
2n,n ,S

(A2) ≤
qf + qE + qD

2n
.

ut

Using Theorem 1 and Lemma 5, we show that F2 using Hirose’s compression function is PRO up to
O(2n) query complexity in the IC model. Similarly, we can prove the hash functions using Tandem-DM and
Abreast-DM.

Theorem 2 (F2 is PRO). There exists a simulator S2 = (S2, S3) where S2 = (S2E , S2D) and S3 =
(S3E , S3D) such that for any distinguisher A3 making at most (qH , qE2, qD2, qE3, qD3) queries to five oracles
which are (F2, E2, D2, E3, D3) or (F2n, S2E , S2D, S3E , S3D), we have

Advpro

F
C2
2n,n,C3

2n,n
2 ,S2

(A3) ≤
2Q2

2

(2n − 2Q2)2
+

2Q2

2n − 2Q2
+

2lq3Q2

(2n − Q2)2
+

qH + q3

2n

where S2 works in time O(q2 + lq3Q2) + lq3 × Time(unpad) and S3 makes q3 queries to F2n where Q2 =
2l(qH + 1) + qE2 + qD2, q2 = qE2 + qD2 and q3 = qE3 + qD3. ¨

Proof. We use Theorem 1 and Lemma 5. We define the simulator S2 = (S2, S3) by S2 = S1C and S3 = SS1g

where (S1g, S1C) are defined in Theorem 1 and S is defined in Lemma 5. Namely, S2E = S1E , S2D = S1D,
S3E = S

S1g

E and S3D = S
S1g

D where on a query to S3E , SE accepts the query, calculates the output value
by using S1g and returns it, and similarly S3D is defined. In the following, we evaluate the PRO bound of

F
C2
2n,n,C3

2n,n

2 . We assume that A2 is a distinguisher such that the PRO bound of fC3
2n,n is maximum, and A1

9

is a distinguisher such that the PRO bound of F
g,C2

2n,n

1 is maximum. For any distinguisher A3,

Advpro

F
C2
2n,n,C3

2n,n
2 ,S2

(A3) =|Pr[A
F

C2
2n,n,C3

2n,n
2 ,C2

2n,n,C3
2n,n

3 ⇒ 1] − Pr[AF2n,S2F2n ,S3F2n

3 ⇒ 1]|

=|Pr[A
F

f
C3
2n,n ,C2

2n,n
1 ,C2

2n,n,C3
2n,n

3 ⇒ 1] − Pr[AF2n,S2F2n ,S3F2n

3 ⇒ 1]|

≤|Pr[A
F

f
C3
2n,n ,C2

2n,n
1 ,C2

2n,n,C3
2n,n

3 ⇒ 1] − Pr[A
F

g,C2
2n,n

1 ,C2
2n,n,Sg

3 ⇒ 1]|+

|Pr[A
F

g,C2
2n,n

1 ,C2
2n,n,Sg

3 ⇒ 1]| − Pr[AF2n,S1
F2n
C ,SS1

F2n
g

3 ⇒ 1]|

≤|Pr[A
f
C3
2n,n ,C3

2n,n

2 ⇒ 1] − Pr[Ag,Sg

2 ⇒ 1]|+

|Pr[A
F

g,C2
2n,n

1 ,C2
2n,n,g

1 ⇒ 1]| − Pr[A
F2n,S1

F2n
C ,S1F2n

g

1 ⇒ 1]|
=Advpro

f
C3
2n,n ,S

(A2) + Advpro

F
g,C2

2n,n
1 ,S1

(A1).

The second equation holds because F
f
C3
2n,n ,C2

2n,n

1 = F
C2
2n,n,C3

2n,n

2 . From the third equation to the forth equation,

we change A
F

Oa,C2
2n,n

1 ,C2
2n,n,Ob

3 to AOa,Ob

1 and AOc,Od,SOe

3 to AOc,Od,Oe

2 . The second last equation holds because
A1 and A2 are distinguishers where the PRO bounds are maximum.

Thus, when using the bounds of Theorem 1 and Lemma 5, the PRO bound of F2 can be obtained where
A2 can make at most (qH , qE3, qD3) queries to its three oracles (see Lemma 5) and A1 can make at most
(qH , q3, qE2, qD2) queries to its four oracles (see Theorem 1). ut

3.3 Step 3

In the following proof, we consider the hash function using Hirose’s compression function. Using the same
proof, we can prove the cases of Tandem-DM and Abreast-DM. So we omit these proofs. When using Hirose’s
compression function, we use the constant values c1 and c2 of the post-processing function f such that c1

and c2 are not equal to C ⊕ IV [0] and IV [0] where IV is the initial value of SMDDLCFBC2n,n and C is the
constant value used in Hirose’s compression function. If c1 and c2 which are equal to C ⊕ IV [0] or IV [0]
are used, we cannot prove the security of the hash function. In this case, we fail to construct a simulator.
When using Tandem-DM, c1 and c2 are such that the values are not equal to IV [0] and IV [1]. When using
Abreast-DM, c1 and c2 are such that the values are not equal to IV [0] and IV [1].

First, we define the indifferentiability from a hash function as follows.

Definition 2. Let HP1
1 : {0, 1}∗ → {0, 1}2n and HP2

2 : {0, 1}∗ → {0, 1}2n be hash functions using ideal
primitives P1 and P2, respectively. HP1

1 is indifferentiable from HP2
2 if there exists a simulator S such that

for any distinguisher A4 outputting a bit it is the case that

Advindif

H
P1
1 ,H

P2
2 ,S(A4) ≤ |Pr[AH

P1
1 ,P1

4 ⇒ 1] − Pr[AH
P2
2 ,SP2

4 ⇒ 1]|

is small where the probabilities are taken over the coins used the experiments. ¨
The following lemma is that F is indifferentiable from F2 up to O(2n) query complexity in the IC model.

Lemma 6. Let C2n,n = (EI , DI) be an ideal cipher. Let C2
2n,n = (E2I , D2I) and C3

2n,n = (E3I , D3I) be
different ideal ciphers. There exists a simulator S = (SE ,SD) such that for any distinguisher A4 making at

most qF , qE and qD queries to its oracles (OF ,OE ,OD) which are (F C2n,n , EI , DI) or (F
C2
2n,n,C3

2n,n

2 ,SE ,SD),
we have

Advindif

FC2n,n ,F
C2
2n,n,C3

2n,n
2 ,S

(A4) ≤
14 × (2(lqF + 1) + qE + qD)
2n − (2(lqF + 1) + qE + qD)

where S works in time O(Time(A) + 3(qE + qD)) and makes at most ideal cipher queries qE + qD. l is the
maximum number of n-bit blocks of a query to OF . ¨

10

simulator SE(k, x)

E01 If E[k, x] 6=⊥ then ret E[k, x];
E02 If E[k, c1] =⊥,
E03 y ← E3I(k, c1);
E04 E[k, c1] ← y; D[k, y] ← c1;
E05 y ← E3I(k, c2);
E06 E[k, c2] ← y; D[k, y] ← c2;
E07 If x 6= c1 and x 6= c2,
E08 y ← E2I(k, x);
E09 E[k, x] ← y; D[k, y] ← x;
E10 Ret E[k, x];

simulator SD(k, y)

D01 If D[k, y] 6=⊥ then ret D[k, y];
D02 If E[k, c1] =⊥,
D03 y ← E3I(k, c1);
D04 E[k, c1] ← y; D[k, y] ← c1;
D05 y ← E3I(k, c2);
D06 E[k, c2] ← y; D[k, y] ← c2;
D07 If D[k, y] =⊥,
D08 x ← D2I(k, y);
D09 E[k, x] ← y; D[k, y] ← x;
D10 Ret x;

Fig. 3. Simulator

Proof. Without loss of generality, we omit the padding function of our hash function which is more general
case than including the padding function. In Fig. 3, we define a simulator S = (SE ,SD) such that it simulates
the ideal cipher C2n,n = (EI , DI) and the relation among responses of (F C2n,n , EI , DI) holds in responses of

(F
C2
2n,n,C3

2n,n

2 ,SE ,SD) as well, namely, FS(M) = F
C2
2n,n,C3

2n,n

2 (M). Since E2I is used in inner calculations and
E3I is used in the post-processing calculations, if for a query (k, x) to SE (k, x) is used in the post-processing
calculations, it returns the output of E3I(k, x), and otherwise it returns the output of E2I(k, x). Since in
post-processing calculation the second value x of a E query is c1 or c2, we define S such that SE(k, x) is
defined by E3I(k, x), if x = c1 or x = c2, and is defined by E2I(k, x) otherwise.7 E and D are (initially
everywhere ⊥) arrays.

We give the proof via a game-playing argument on the game sequences Game 0, Game 1, and Game
2. Game 0 is the F scenario and Game 2 is the F2 scenario. In each game, A4 can make queries to three
oracles (OF ,OE ,OD). Let Gj be the event that in Game j the distinguisher A4 outputs 1. Therefore,

Pr[AFC2n,n ,EI ,DI

4 ⇒ 1] = Pr[G0] and Pr[AF
C2
2n,n,C3

2n,n
2 ,SE ,SD

4 ⇒ 1] = Pr[G2]. Thus

Advindif

FC2n,n ,F
C2
2n,n,C3

2n,n
2 ,S

(A4) = |Pr[G0] − Pr[G1]| ≤ |Pr[G1] − Pr[G0]| + |Pr[G2] − Pr[G1]|

Game 0: Game 0 is the F scenario. So (OF ,OE ,OD) = (F C2n,n , EI , DI).

Game 1: We modify the underlying functions (OE ,OD) from (EI , DI) to (SE ,SD). So (OF ,OE ,OD) =
(FS ,SE ,SD) where only S has oracle access to (C2

2n,n, C3
2n,n).

We must show that the A4’s view has statistically close distribution in Game 0 and Game 1. Since
the difference between the games is the underlying function, we show that the output of the functions is
statistically close; this in turn shows that the A4’s view has statistically close distribution in Game 0 and
Game 1. First we rewrite S in Fig. 4. C3

2n,n is hard-coded in the steps e03-e05, e06-e08, d03-05 and d06-08
where E2 and D2 are (initially everywhere ⊥) arrays to store the output of the ideal cipher and TE2 and TD2

are (initially everywhere empty) tables. Similarly, C3
2n,n is hard-coded in Steps e10-e11 and d10-d11 where E3

and D3 are (initially everywhere ⊥) arrays to store the output of the ideal cipher. For any k, if E2[k, x] 6=⊥,
E2[k, x] ∈ TE2[k], and if D2[k, y] 6=⊥, D2[k, y] ∈ TD2[k].

In the following, we use the lazily-sample ideal cipher in Fig. 5. E and D are (initially everywhere ⊥)
arrays and TE and TD (initially empty) tables. For any (k, x) such that E[k, x] 6=⊥, E[k, x] is stored in TE [k],
and for any (k, y) such that D[k, y] 6=⊥, D[k, y] is stored in TD[k]. On a query which the key element is k,
first the output of EI(k, c1) is determined (steps 03-04 or steps 13-14) and second the output of EI(k, c2)
is determined (Steps 05-06 or Steps 15-16). Then the outputs of EI(k, x) such that x 6= c1 and x 6= c2 are
determined. Since no adversary (distinguisher) learns EI(k, c1) and EI(k, c2) until querying the corresponding
value, the procedures of the steps 03-06 and 13-16 do not affect the lazily-sample ideal cipher simulation.

We compare the simulator with the lazily-sample ideal cipher. In the simulator and the ideal cipher,
E[k, c1] and E[k, c2] (and also D[k, E[k, c1]] and D[k, E[k, c2]]) are chosen from the same distribution, while
7 If c1 and c2 which are equal to C ⊕ IV [0] or IV [0] are used, S cannot decide whether using E2I or E3I .

11

simulator SE(k, x)

e01 If E[k, x] 6=⊥ then ret E[k, x];
e02 If E[k, c1] =⊥,

e03 y1
$←− {0, 1}n;

e04 E3[k, c1] ← y1; D3[k, y1] ← c1;
e05 E[k, c1] ← E3[k, c1]; D[k, y1] ← c1;

e06 y2
$←− {0, 1}n\{y1};

e07 E3[k, c2]
$←− y2; D3[k, y2] ← c2;

e08 E[k, c1] ← E3[k, c1]; D[k, y2] ← c1;
e09 If x 6= c1 and x 6= c2,

e10 y
$←− {0, 1}n\TE2[k];

e11 E2[k, x] ← y; D2[k, y] ← x;
e12 E[k, x] ← y; D[k, y] ← x;
e13 Ret E[k, x];

simulator SD(k, y)

d01 If D[k, y] 6=⊥ then ret D[k, y];
d02 If E[k, c1] =⊥,

d03 y1
$←− {0, 1}n;

d04 E3[k, c1] ← y1; D3[k, y1] ← c1;
d05 E[k, c1] ← E3[k, c1]; D[k, y1] ← c1;

d06 y2
$←− {0, 1}n\{y1};

d07 E3[k, c2]
$←− y2; D3[k, y2] ← c2;

d08 E[k, c1] ← E3[k, c1]; D[k, y2] ← c1;
d09 If D[k, y] =⊥,

d10 x
$←− {0, 1}n\TD2[k];

d11 E2[k, x] ← y; D2[k, y] ← x;
d12 E[k, x] ← y; D[k, y] ← x;
d13 Ret x;

Fig. 4. Revised Simulator

Encryption Oracle EI(k, x)

01 If E[k, x] 6=⊥, ret E[k, x];
02 If E[k, c1] =⊥,

03 E[k, c1]
$←− {0, 1}n;

04 D[k, E[c1, x]] ← c1;

05 E[k, c2]
$←− {0, 1}n\{E[k, c1]};

06 D[k, E[c2, x]] ← c2;
07 If x 6= c1 and x 6= c2,

08 E[k, x]
$←− {0, 1}n\TE [k];

09 D[k, E[k, x]] ← x;
10 Ret E[k, x];

Decryption Oracle DI(k, y)

11 If D[k, y] 6=⊥, ret D[k, y];
12 If E[k, c1] =⊥,

13 E[k, c1]
$←− {0, 1}n;

14 D[k, E[c1, x]] ← c1;

15 E[k, c2]
$←− {0, 1}n\{E[k, c1]};

16 D[k, E[c2, x]] ← c2;
17 If D[k, y] 6=⊥,

18 D[k, y]
$←− {0, 1}n\{TD[k]};

19 E[k, D[k, y]] ← y;
20 Ret D[k, y];

Fig. 5. Lazily-Sample Ideal Cipher

E[k, x] (and D[k, E[k, x]]) where x 6= c1 and x 6= c2 is chosen different distribution. If in the step e10 y is
randomly chosen from TE2[k] ∪ {E[k, c1], E[k, c2]} and in the step d10 x is randomly chosen from TD2[k] ∪
{c1, c2}, then the output distribution of the simulator and the ideal cipher is the same. That is, if any value y
randomly chosen from {0, 1}n\TE2[k] does not collide E[k, c1] and E[k, c2] and any value x randomly chosen
from {0, 1}n\TD2[k] does not collide c1 and c2, then the output distribution between them is the same. Since
for any k, the number of values in TE2[k] and TD2[k] is at most 2lqF + qE + qD, the statistical distance of
E[k, x] (and D[k, E[k, x]]) where x 6= c1 and x 6= c2 is at most 2/(2n − (2lqF + qE + qD)). So the statistical
distance of the simulator and the ideal cipher is at most (2lqF + qE + qD) × 2/(2n − (2lqF + qE + qD)). We
thus have that

|Pr[G1] − Pr[G0]| ≤ 2 × (2lqF + qE + qD)
2n − (2lqF + qE + qD)

.

Game 2: We modify OF from FS to F
C2
2n,n,C3

2n,n

2 . So (OF ,OE ,OD) = (F
C2
2n,n,C3

2n,n

2 ,SE ,SD) and this is the
F2 scenario.

We show that unless the following bad events occur, the A4’s view of Game 1 and Game 2 is the same.

– Event B1: On some query (k, x) to SE , the output y is such that y ⊕ x is equal to c1 or c2.
– Event B2: On some query (k, x) to SE , the output y is such that y ⊕ x ⊕ C is equal to c1 or c2.
– Event B3: On some query (k, y) to SD, the output x is equal to c1 or c2 such that x is defined in the

step D08.

To prove this, we use the proof method in [5, 15]. Specifically, we prove the following two points.

1. In Game 1, unless the bad events occur, for any query M the output of OF (M) is equal to that of

F
C2
2n,n,C3

2n,n

2 (M). If this holds, the output distribution of OF in Game 1 and Game 2 is equivalent.

12

2. In Game 2, unless the bad events occur, OE and OD are consistent with OF as in Game 1. OF uses OE

in Game 1 while does not in Game 2 (note that in both games (OE ,OD) = (SE ,SD)). So if this holds,
the difference does not affect the output distribution of OE and OD, namely, the output distribution of
OE and OD in Game 1 and Game 2 is the same.

In the following, for input-output triple (k, x, y) of S we denote x ⊕ y by w, namely, w = x ⊕ y. Before
proving the above two points, we define chain triples and give a useful lemma.

Definition 3. (k1, x1, y1), . . . , (ki, xi, yi), (k′
1, x

′
1, y

′
1), . . . , (k

′
i, x

′
i, y

′
i), (k, x, y), (k′, x′, y′) stored in the simula-

tor’s tables E, D are chain triples if for some M the output of FS(M) can be obtained from the triples. That is,
x1 = IV [0], k1[0] = IV [1], kj = k′

j (j = 1, . . . , i), wj = xj+1 (j = 1, . . . , i−1), wj⊕C = x′
j+1 (j = 1, . . . , i−1),

w′
j = kj+1[0] (j = 1, . . . , i − 1), x = c1, x′ = c2, k = k′, k[0] = wi, k[1] = w′

i, M = k1[1]|| · · · ||ki[1], and
y||y′ = FS(M).

Lemma 7. For any chain triple (k1, x1, y1), . . . , (ki, xi, yi), (k′
1, x

′
1, y

′
1), . . . , (k

′
i, x

′
i, y

′
i), (k, x, y), (k′, x′, y′), un-

less the bad events occur, FS(M) = F
C2
2n,n,C3

2n,n

2 (M) where M = k1[1]|| · · · ||ki[1].

Proof. To contrary, assume that there exist chain triples (k1, x1, y1), . . . , (ki, xi, yi), (k′
1, x

′
1, y

′
1), . . . , (k′

i, x
′
i, y

′
i),

(k, x, y), (k′, x′, y′) such that FS(M) 6= F
C2
2n,n,C3

2n,n

2 (M) where M = k1[1]|| · · · ||ki[1]. Then, since the output
of S is defined by E2I or E3I , one of the following events occur.

– Event 1: In the inner calculation of FS(M), some triple is defined by E3I . That is, some of (k1, x1, y1),
. . . , (ki, xi, yi), (k′

1, x
′
1, y

′
1), . . . , (k′

i, x
′
i, y

′
i), is defined by E3I .

– Event 2: In the post-processing function calculation of FS(M), some triple is defined by E2I . That is,
(k, x, y) or (k′, x′, y′) is defined by E2I .

Consider Event 1. First consider the case that (kj , xj , yj) is defined by E3I . Since x1 = IV [0], j 6= 1.
When the output of SE(kj , xj) is defined by E3I , xj = c1 or xj = c2. Which means that wj−1 = c1 or
wj−1 = c2. So the bad event 1 occurs. Second consider the case that (k′

j , x
′
j , y

′
j) is defined by E3I . Similarly,

since x1 = IV [0] ⊕ C, j 6= 1. When the output of SE(kj , xj) is defined by E3I , xj = c1 or xj = c2. Which
means that w′

j−1 ⊕ C = c1 or w′
j−1 ⊕ C = c2. So the bad event 2 occurs.

Next consider Event 2. First consider the case that (k, x, y) is defined by E2I . Then the triple is defined
in SD because x = c1 (if the triple is defined in SE , it is defined by E2I due to the condition of the step E07).
So the triple is defined in the step D08. The bad event 3 occurs. Finally, consider the case that (k′, x′, y′) is
defined by E2I . Then the triple is defined in SD because x = c2. So the triple is defined in the step D08.
The bad event 3 occurs. ut

Proof of Point 1. From the above lemma, unless the bad event occurs, the output of OF (M) = FS(M) =

F
C2
2n,n,C3

2n,n

2 (M).

Proof of Point 2. Since in Game 1 for any M the output of OF (M) is calculated by FS(M), we must
show that in Game 2 the relation also holds, that is, unless the bad events occur, for any chain triples
(k1, x1, y1), . . . , (ki, xi, yi), (k′

1, x
′
1, y

′
1), . . . , (k

′
i, x

′
i, y

′
i), (k, x, y), (k′, x′, y′) the output of FS(M) is equal to

OF (M) (= F
C2
2n,n,C3

2n,n

2 (M)) where M = k1[1]|| · · · ||ki[1]. From the above lemma, unless the bad event
occurs, this holds.

The Bound of |Pr[G2] − Pr[G1]|. The above two points imply that unless the bad events occur, the A4’s
view of Game 1 and Game 2 is the same, and so we have that

|Pr[G2] − Pr[G1]| ≤ 2 × max{Pr[B11] + Pr[B21] + Pr[B31], Pr[B12] + Pr[B22] + Pr[B32]}

where Bij is the event Bi in Game j. Since the number of queries to S in Game 1 is more than that in Game
2,

|Pr[G2] − Pr[G1]| ≤ 2 × (Pr[B11] + Pr[B21] + Pr[B31]).

13

First, we evaluate the probability Pr[B11]. In Game 1, the number of queries to S is at most 2(lqF +1)+
qE + qD. So the output is randomly chosen from at least 2n − (2(lqF + 1) + qE + qD) values. We thus have
that

Pr[B11] ≤
2 × (2(lqF + 1) + qE + qD)
2n − (2(lqF + 1) + qE + qD)

.

Second, we evaluate the probability Pr[B21]. From the same discussion as Pr[B11],

Pr[B21] ≤
2 × (2(lqF + 1) + qE + qD)
2n − (2(lqF + 1) + qE + qD)

.

Finally, we evaluate the probability Pr[B31]. A value in the step D08 is defined by D2I . That is, in this
case, the output of D2I is equal to c1 or c2. Since the number of queries to C2

2n,n is at most 2(lqF +1)+qE+qD,
So the output of D2I is randomly chosen from at least 2n − (2(lqF +1)+ qE + qD) values. We thus have that

Pr[B11] ≤ (2(lqF + 1) + qE + qD) × 2
2n − (2(lqF + 1) + qE + qD)

.

We thus have that

|Pr[G2] − Pr[G1]| ≤ 2 × 6 × (2(lqF + 1) + qE + qD)
2n − (2(lqF + 1) + qE + qD)

Consequently, we can obtain the following bound.

Advindif

FC2n,n ,F
C2
2n,n,C3

2n,n
2 ,S

(A4) ≤
14 × (2(lqF + 1) + qE + qD)
2n − (2(lqF + 1) + qE + qD)

.

ut

Using Theorem 2 and Lemma 6, we show that F is PRO up to O(2n) query complexity in the IC model.

Theorem 3 (F is PRO). There exists a simulator S = (SE , SD) such that for any distinguisher A making
at most (qH , qE , qD) queries to three oracles which are (F,EI , DI) or (F2n, SE , SD), we have

Advpro

F
C2
2n,n,C3

2n,n
2 ,S2

(A) ≤ 2Q2

(2n − 2Q)2
+

2Q

2n − 2Q
+

2l(2q)Q
(2n − Q)2

+
qH + 2q

2n
+

14Q

2n − Q
.

where S2 works in time O(q + 2lqQ) + 2lq × Time(unpad) and makes 2q queries to F2n where Q = 2l(qH +
1) + qE + qD and q = qE + qD. ¨

Proof. We use Theorem 2 and Lemma 6. We define a simulator by S = SS2 where S is defined in Lemma
6 and S2 is defined in Theorem 2. Specifically, SE = SS2,S3

E and SD = SS2,S3
D . In the following, we evaluate

the PRO bound of F
C2
2n,n,C3

2n,n

2 . We assume that A4 is a distinguisher such that the indifferentiable bound
of F from F2 is maximum, and A3 is a distinguisher such that the PRO bound of F2 is maximum. For any
distinguisher A,

Advindif
FC2n,n ,S

(A) =|Pr[AFC2n,n ,C2n,n ⇒ 1] − Pr[AF2n,SF2n ⇒ 1]|

≤|Pr[AFC2n,n ,C2n,n ⇒ 1] − Pr[AF
C2
2n,n,C3

2n,n
2 ,SC2

2n,n,C3
2n,n ⇒ 1]|

+ |Pr[AF
C2
2n,n,C3

2n,n
2 ,SC2

2n,n,C3
2n,n ⇒ 1] − Pr[AF2n,SS

F2n
2 ⇒ 1]|

≤|Pr[AFC2n,n ,C2n,n

4 ⇒ 1] − Pr[AF
C2
2n,n,C3

2n,n
2 ,SC2

2n,n,C3
2n,n

4 ⇒ 1]|

+ |Pr[A
F

C2
2n,n,C3

2n,n
2 ,C2

2n,n,C3
2n,n

3 ⇒ 1] − Pr[AF2n,S
F2n
2

3 ⇒ 1]|
=Advindif

FC2n,n ,F
C2
2n,n,C3

2n,n
2 ,S

(A4) + Advpro

F
C2
2n,n,C3

2n,n
2 ,S2

(A3).

14

From the second equation to the third equation, we change A to A4 and AOa,SOb,Oc to AOa,Ob,Oc

3 . Note that
S2 = (S2, S3) which simulate ideal ciphers C2

2n,n and C3
2n,n. The third equation holds because A4 and A3 are

distinguishers where the indifferentiability bound and the PRO bound are maximum.
Thus, when using the bounds of Theorem 2 and Lemma 6, the PRO bound of F can be obtained where

A4 can make at most (qH , qE , qD) queries to its three oracles (see Lemma 6) and A3 can make at most
(qH , qE , qD, 2(qE + qD), 0) queries to its five oracles (see Theorem 2). ut

References

1. Mihir Bellare and Thomas Ristenpart. Multi-Property-Preserving Hash Domain Extension and the EMD Trans-
form. In ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages 299–314. Springer, 2006.

2. Bruno O. Brachtl, Don Coppersmith, Myrna M. Hyden, Stephen M. Matyas Jr, Carl H. W. Meyer, Jonathan
Oseas, Shaiy Pilpel, and Michael Schilling. Data authentication using modification detection codes based on a
public one way encryption function. US Patent No. 4,908,861, 1990 (filed August 28, 1987).

3. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS 2001,
volume 2001, pages 136–145, 2001.

4. Donghoon Chang, Sangjin Lee, Mridul Nandi, and Moti Yung. Indifferentiable Security Analysis of Popular Hash
Functions with Prefix-Free Padding. In ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages
283–298. Springer, 2006.

5. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damg̊ard Revisited: How
to Construct a Hash Function. In CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 430–448.
Springer, 2005.

6. Ivan Damg̊ard. A Design Principle for Hash Functions. In CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 416–427. Springer, 1989.

7. Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging Merkle-Damg̊ard for Practical Applica-
tions. In EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 371–388. Springer, 2009.

8. Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging Merkle-Damg̊ard for Practical Applica-
tions. In ePrint 2009/177, 2009.

9. Ewan Fleischmann, Christian Forler, Michael Gorski, and Stefan Lucks. Collision Resistant Double-Length
Hashing. In ProvSec, volume 6402 of Lecture Notes in Computer Science, pages 102–118. Springer, 2010.

10. Ewan Fleischmann, Michael Gorski, and Stefan Lucksl. On the Security of Tandem-DM. In FSE, volume 5665
of Lecture Notes in Computer Science, pages 84–103. Springer, 2009.

11. Ewan Fleischmann, Michael Gorski, and Stefan Lucksl. Security of Cyclic Double Block Length Hash Functions.
In IMA Int. Conf, volume 5921 of Lecture Notes in Computer Science, pages 153–175. Springer, 2009.

12. Zheng Gong, Xuejia Lai, and Kefei Chen. A synthetic indifferentiability analysis of some block-cipher-based hash
functions. In Des. Codes Cryptography 48, pages 293–305, 2008.

13. Shoichi Hirose. Some Plausible Constructions of Double-Block-Length Hash Functions. In FSE, volume 4047 of
Lecture Notes in Computer Science, pages 210–225. Springer, 2006.

14. Shoichi Hirose, Je Hong Park, and Aaram Yun. A Simple Variant of the Merkle-Damg̊ard Scheme with a
Permutation. In ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 113–129. Springer,
2007.

15. Jonathan J. Hoch and Adi Shamir. On the Strength of the Concatenated Hash Combiner When All the Hash
Functions Are Weak. In ICALP, Lecture Notes in Computer Science, pages 616–630. Springer, 2008.

16. Xuejia Lai and James L. Massey. Hash Function Based on Block Ciphers. In EUROCRYPT, volume 658 of
Lecture Notes in Computer Science, pages 55–70. Springer, 1992.

17. Jooyoung Lee and Daesung Kwon. The Security of Abreast-DM in the Ideal Cipher Model. IEICE Transactions
94-A(1), pages 104–109. IEICE, 2011.

18. Jooyoung Lee and Martijn Stam. Mjh: A faster alternative to mdc-2. In CT-RSA, volume 6558 of Lecture Notes
in Computer Science, pages 213–236. Springer, 2011.

19. Jooyoung Lee, Martijn Stam, and John Steinberger. The collision security of Tandem-DM in the ideal cipher
model. ePrint 2010/409, 2010.

20. Stefan Lucks. A collision-resistant rate-1 double-block-length hash function. In Symmetric Cryptography, Sym-
metric Cryptography, Dagstuhl Seminar Proceedings 07021, 2007.

21. S. Matyas, C. Meyer, and J. Oseas. Generating strong one-way functions with cryptographic algorithms. In IBM
Technical Disclosure Bulletin 27(10a), pages 5658–5659, 1985.

22. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Impossibility Results on Reductions,
and Applications to the Random Oracle Methodology. In TCC, volume 2951 of Lecture Notes in Computer
Science, pages 21–39. Springer, 2004.

15

23. Ralph C. Merkle. One Way Hash Functions and DES. In CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 428–446. Springer, 1989.

24. Carl H. W. Meyer and Michael Schilling. Chargement securise d’un programma avec code de detection. 1987.
25. National Institute of Standards and Technoloty. FIPS PUB 180-3 Secure Hash Standard. In FIPS PUB, 2008.
26. Onur Özen and Martijn Stam. Another Glance at Double-Length Hashing. In IMA Int. Conf, volume 5921 of

Lecture Notes in Computer Science, pages 176–201. Springer, 2009.
27. Bart Preneel, Antoon Bosselaers, Rene Govaerts, and Joos Vandewalle. Collision-free Hashfunctions Based on

Blockcipher Algorithmsl. In Proceedings of 1989 International Carnahan Conference on Security Technology,
pages 203–210, 1989.

28. Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based on Block Ciphers: A Synthetic
Approach. In CRYPTO, volume 773 of Lecture Notes in Computer Science, pages 368–378. Springer, 1993.

29. Ronald L. Rivest. The MD4 Message Digest Algorithm. In CRYPTO, volume 537 of Lecture Notes in Computer
Science, pages 303–311. Springer, 1990.

30. Ronald L. Rivest. The MD5 Message Digest Algorithm. In RFC 1321, 1992.
31. John P. Steinberger. The Collision Intractability of MDC-2 in the Ideal-Cipher Model. In EUROCRYPT, volume

4515 of Lecture Notes in Computer Science, pages 34–51. Springer, 2007.

A Confirmation of the Security against an Inversion Attack

Several schemes using a blockcipher, e.g., the Davies-Meyer mode are not indifferentiable from random
oracles. For example, the differentiable attack of the Davies-Meyer mode uses the property of the decryption
oracle [5]. So readers may think that the following attack, which is the same as the attack for the Davies-
Meyer mode, can be applied to our hash functions. However we note that the attack clearly does not work.

First consider the PRO security of the post-processing function fC2n.n(x) = EI(c1, x)||EI(c2, x). Let
(Of ,OE ,OD) be (fC2n,n , EI , DI) or (g, SE , SD) where (SE , SD) is a simulator for the ideal cipher C2n,n. For
a 2n-bit value w we denote the first n-bit value by w[0] and the last n-bit value by w[1]. Then an attack
based on the decryption oracle is as follows. q is the loop number which is depend on the total number of
queries made by A.

Adversary AOf ,OE ,OD

01 for j = 1, . . . , q

02 i
$←− {0, 1};

03 x
$←− {0, 1}2n; w ← Of (x);

04 If i = 0, w
$←− {0, 1}2n;

05 x1 ← OD(k,w[0]); x2 ← OD(k,w[1]);
06 If i = 1, and x1 6= c1 or x2 6= c2, ret 0;
07 Ret 1;

When (Of ,OE ,OD) = (fC2n,n , EI , DI), clearly A outputs 1. When (Of ,OE ,OD) = (g, SE , SD), we can
construct a simulator S such that A outputs 1 with probability almost 1, since on query (k,w′) to SD, SD

can know the output of g(k), if w′ = z[0] or w′ = z[1] where z = g(k), she outputs c1 or c2, respectively,
otherwise outputs a random value by the ideal cipher simulation. Thus the PRO advantage for A is negligible
and the post-processing function resists the differentiable attack. Please see the PRO security analysis of the
function in Subsection 3.2.

Next consider the PRO security of our hash function. Let (OF ,OE ,OD) be (F C2n,n , EI , DI) or (F2n, SE , SD)
where SE is the simulator of EI and SD is the simulator of DI . q is the loop number which is depend on the
total number of queries made by A.

Adversary AOF ,OE ,OD

01 for j = 1, . . . , q

02 i
$←− {0, 1};

03 M
$←− {0, 1}2n; w ← OF (M);

04 If i = 0, w
$←− {0, 1}2n;

05 x1 ← OD(k,w[0]); x2 ← OD(k,w[1]);
06 If i = 0, x1 6= c1 or x2 6= c2, ret 0;
07 Ret 1;

16

The value k used in line 05 is the first input of the post-processing function of OF (M). Note that we don’t
write the procedure to know k. So there are the two cases: (case 1) A makes queries to OE or OD to know
k and (case 2) A does not make the queries. In the case 2 the above attack explicitly does not work. So
consider the case 1. One may think that since i is a random value, no simulator can know the line wherein w
is defined, and by using this fact, A can distinguish (F C2n,n , EI , DI) from (F2n, SE , SD). However, since the
compression functions used in the inner calculation is PrA, in the case 1 the simulator can know M from k,
and thus, the simulator can know the value i. That is the simulator can know the line. So the attack does
not work.

B Abreast-DM Is PrA

Abreast-DM [16] incorporates two Davies-Meyer (DM) single block length compression functions which are
used side-by-side. The compression function is formally given in Definition 4.

Definition 4. Let BC2n,n = (E,D) be a blockcipher. Let CFADM[BC2n,n] : {0, 1}2n ×{0, 1}n → {0, 1}2n be a
compression function such that (Gi,Hi) = CFADM[BC2n,n](Gi−1||Hi−1, Mi) where Gi,Hi,Mi, Gi−1,Hi−1 ∈
{0, 1}n. (Gi,Hi) is calculated as follows:

Gi = Gi−1 ⊕ E(Hi−1||Mi, Gi−1)
Hi = Hi−1 ⊕ E(Mi||Gi−1, Hi−1)

where H denotes the bit-by-bit complement of H. We call the first procedure “first block” and the second
procedure “second block”.

We show that the Abreast-DM compression function is PrA with O(2n) security.

Theorem 4 (Abreast-DM is PrA). Let C2n,n = (EI , DI) be an ideal cipher. There exists an extractor E
such that for any adversary A making at most qP queries to C2n,n and qe extraction queries we have

Advpra
CFADM[C2n,n],C2n,n,E(A) ≤ 18

(qP

2n−1

)2

+
2qP qe

(2n − qP)2

where E runs in time at most O(qeqP).

Proof. We will prove that any such compression function is 1-WPrA, and then Lemma 1 gives the final
bound. We note that Theorem 1 of [11] upperbounds the cr-advantage by 18(qP /2n−1)2, yielding the first
term above. Note that the cr-advantage is also bounded by the result of [17]. Let us define the multi-point
extractor E+ as follows.

algorithm E+(z, α)
Let L be an empty list;
Parse (k1, x1, y1), . . . , (ki, xi, yi) ← α;
For j = 1 to i do

If z[0] = xj ⊕ yj then
y ← EI(kj [1]||xj , kj [0]);
If z[1] = kj [0] ⊕ y then L

∪←− (xj ||kj [0], kj [1]);
If z[1] = xj ⊕ yj then

y ← EI(xj ||kj [0], kj [1]);
If z[0] = kj [1] ⊕ y then L

∪←− (kj [1]||xj , kj [0]);
If L is not an empty list then return L and otherwise return ⊥;

If an input-output triple of the first block is defined, automatically the input of the second block is defined,
and vice versa, from the definition of the compression function. For a query (z, α) to E+, when there is an
input-output triple (k, x, y) such that x ⊕ y = z[0], the multi-point extractor E+ checks whether the output
of the second block is equal to z[1] or not and if this holds the multi-point extractor stores it in the return
list L, and vice versa. Therefore, A must find a preimage (k, x) of z to win the 1-WPrA experiment. Thus
one can straightforwardly adapt the preimage resistant advantage of the compression function (Theorem 2
in [11]). The advantage is at most 2qP /(2n − qP)2. ut

17

C Tandem-DM Is PrA

Tandem-DM [16] incorporates two Davies-Meyer (DM) single block length compression functions which are
used side-by-side. The compression function is formally given in Definition 5.

Definition 5. Let BC2n,n = (E,D) be a blockcipher. Let CFTDM[BC2n,n] : {0, 1}2n ×{0, 1}n → {0, 1}2n be a
compression function such that (Gi,Hi) = CFTDM[BC2n,n](Gi−1||Hi−1,Mi) where
Gi,Hi,Mi, Gi−1,Hi−1 ∈ {0, 1}n. (Gi,Hi) is calculated as follows:

Wi = E(Hi−1||Mi, Gi−1) (3)
Gi = Gi−1 ⊕ Wi (4)
Hi = Hi−1 ⊕ E(Mi||Wi,Hi−1) (5)

We call the procedures of 3 and 4 “first block” and the procedures of 5 “second block”.

We show that the Tandem-DM compression function is PrA with O(2n) security.

Theorem 5 (Tandem-DM is PrA). Let C2n,n = (EI , DI) be an ideal cipher. There exists an extractor E
such that for any adversary A making at most qP queries to C2n,n and qe extraction queries we have

Advpra
CFTDM,Cd,n,E(A) ≤ p +

2qP qe

(2n − qP)2

where E runs in time at most O(qeqP) and p is the cr-advantage of Tandem-DM described in Theorem 1 of
[19].

Proof. We will prove that any such compression function is 1-WPrA, and then Lemma 1 to give the final
bound. We note that Theorem 1 of [10] upperbounds the cr-advantage by p, yielding the terms excluding
the last term. Let us define the multi-point extractor E+ as follows:

algorithm E+(z, α)
L be an empty list;
Parse (k1, x1, y1), . . . , (ki, xi, yi) ← α;
For j = 1 to i do

If z[0] = xj ⊕ yj then
y ← EI(kj [1]||yj , kj [0]);
If z[1] = kj [0] ⊕ y then L

∪←− (xj ||kj [0], kj [1]);
If z[1] = xj ⊕ yj then

x ← DI(xj ||kj [0], kj [1]);
If z[0] = kj [1] ⊕ x then L

∪←− (x||xj , kj [0]);
If L is an empty list then return L otherwise return ⊥;

If an input-output triple of the first block is defined, automatically the input triple of the second block is
defined, and vice versa, from the definition of the compression function. For a query (z, α) to E+, when there
is an input-output triple (k, x, y) such that x ⊕ y = z[0], the multi-point extractor E+ checks whether the
output of the second block is equal to z[1] or not and if this holds the multi-point extractor stores it in the
return list L, and vice versa. Therefore, A must find a preimage (k, x) of z to win the 1-WPrA experiment.
Then one can straightforwardly adapt the preimage resistant advantage of Tandem-DM (Theorem 2 in [10]).
This advantage is at most 2qP /(2n − qP)2. ut

18

