
How to Leak on Key Updates

Allison Lewko ∗

University of Texas at Austin
alewko@cs.utexas.edu

Mark Lewko
University of Texas at Austin
mlewko@math.utexas.edu

Brent Waters †

University of Texas at Austin
bwaters@cs.utexas.edu

Abstract

In the continual memory leakage model, security against attackers who can repeatedly
obtain leakage is achieved by periodically updating the secret key. This is an appealing model
which captures a wide class of side-channel attacks, but all previous constructions in this
model provide only a very minimal amount of leakage tolerance during secret key updates.
Since key updates may happen frequently, improving security guarantees against attackers
who obtain leakage during these updates is an important problem. In this work, we present
the first cryptographic primitives which are secure against a super-logarithmic amount of
leakage during secret key updates. We present signature and public key encryption schemes
in the standard model which can tolerate a constant fraction of the secret key to be leaked
between updates as well as a constant fraction of the secret key and update randomness to
be leaked during updates. Our signature scheme also allows us to leak a constant fraction
of the entire secret state during signing. Before this work, it was unknown how to tolerate
super-logarithmic leakage during updates even in the random oracle model. We rely on
subgroup decision assumptions in composite order bilinear groups.

1 Introduction

In defining formal notions of security for cryptographic primitives, cryptographers have tradi-
tionally modeled attackers as having only black-box access to the primitive. Secret keys and
other secret state are assumed to remain completely hidden (except for what can be learned
through this black-box access). These security models fail to capture many real scenarios in
which an attacker can gain additional information about secret state through side-channels.

A wide variety of side-channel attacks have been developed. Some measure physical features
of cryptographic computation like time and power use, etc. (e.g. [5, 6, 7, 8, 26, 34, 35, 42, 45]),
while the cold-boot attack [29] demonstrates that an attacker can learn information about the
memory of a machine even after the machine is turned off. Since the class of known side-channel
attacks is already quite diverse and very likely to grow, it is a risky and unsatisfying approach
to depend upon countermeasures against specific side-channel attacks. It is also potentially
dangerous to make overly limiting assumptions about what kind of information an attacker
obtains through side-channels and what parts of the secret state it depends upon.
∗Supported by a National Defense Science and Engineering Graduate Fellowship.
†Supported by NSF CNS-0716199, CNS-0915361, and CNS-0952692, Air Force Office of Scientific Research

(AFO SR) under the MURI award for “Collaborative policies and assured information sharing” (Project PRE-
SIDIO), Department of Homeland Security Grant 2006-CS-001-000001-02 (subaward 641), and the Alfred P.
Sloan Foundation.

1

Recently, several security models have been proposed which model side-channel attacks by
allowing the attacker to obtain limited amounts of “leakage” through efficiently computable
functions applied to the secret state. More precisely, the traditional security game is modified
to allow the attacker one or more opportunities to choose an efficiently computable function f
with suitably bounded output and learn the value of f applied to the secret key and/or other
parts of the secret state. Under these models, there has been much progress in developing
cryptographic schemes which are resilient to various kinds and amounts of leakage.

In the bounded leakage model, the attacker may choose an arbitrary efficiently computable
leakage function f , but it is assumed that the total leakage occurring throughout the lifetime
of the system is bounded. There are many constructions of leakage-resilient primitives in this
model, including stream ciphers, symmetric key encryption, signatures, public key encryption,
and identity-based encryption [1, 2, 3, 11, 15, 33, 41]. However, assuming that leakage is bounded
throughout the lifetime of the system seems unrealistic, since there is no bound a priori on the
number of computations that will be performed.

To achieve security in a setting where leakage continually occurs and is not bounded in total,
it is clear that one must periodically update the secret key (while keeping the public key fixed).
If the secret key remains fixed and an attacker can repeatedly request more and more leakage,
the attacker can eventually learn the entire secret key. To achieve security in the presence of
continual leakage, many works (e.g. [22, 23, 28, 31, 44]) adopt the assumption introduced by
Micali and Reyzin [40] that “only computation leaks information.” This assumes that parts of
the secret state which are not accessed during a particular computation do not leak during that
computation. This assumption may be unrealistic in some scenarios. In particular, it is violated
by cold-boot attacks [29]. Also, simply maintaining memory may involve some computation,
and memory that is not currently being accessed by a cryptographic computation could still be
accessed by the operating system. We would prefer to have a model which is more robust and
not threatened by such low-level implementation details.

The Continual Memory Leakage Model Ideally, our goal should be to obtain efficient
constructions of cryptographic primitives which are provably secure against the strongest pos-
sible class of attackers. To achieve this, we must work with conservative security definitions
which do not place unnatural and unnecessary restrictions on attackers that may be violated in
practical applications.

The continual memory leakage model, recently introduced by Brakerski et. al. [12] and
Dodis et. al. [17], allows continual leakage without relying on the Micali-Reyzin assumption.
Essentially, this model allows for bounded amounts of leakage to be occurring on all of the
secret state all the time. This is a very appealing model that captures the widest class of
leakage attacks, but its full generality also makes it challenging to construct schemes which
are strongly resilient against all of the types of leakage allowed by the model. All of the
previous constructions in this model, which include one-way relations, identification schemes,
key agreement protocols [17], signatures [10, 12, 17, 39], public key encryption [12], identity
based encryption [12, 37], and attribute-based encryption [37], suffer from the same drawback:
they can only tolerate an amount of leakage during secret key updates which is logarithmic in
terms of the security parameter. Interestingly, this can be viewed as the opposite of the “only
computation leaks” assumption, since it is now assumed that (super-logarithmic) leakage occurs
only when update computations are not taking place.

The Difficulty of Leaking on Updates This very strict limitation on the amount of leakage
during updates arises from the following obstacle. Essentially, tolerating a significant amount
of leakage during updates requires the simulator to partially “justify” its update to the attacker

2

as being performed honestly according to the update algorithm. At certain stages in the proofs
for previous constructions, the simulator is not equipped to do this because it is using part of a
challenge to perform the update instead of performing it honestly. Therefore, it does not know
a value for the randomness that “explains” its update, and this is an obstruction to satisfying
the attacker’s leakage request.

As observed by Brakerski et. al. [12] and Waters1, a logarithmic amount of leakage during
updates and the initial key generation can still be obtained by a generic technique of guessing the
leakage value and checking the attacker’s success rate. The simulator simply tries all potential
values for the small number of leaked bits and measures the attacker’s success for each one by
running the attacker on many random extensions of the game. It then uses the leakage value
which appears to maximize the attacker’s success rate. This technique cannot extend to more
than a logarithmic number of bits, unless one relies on super-polynomial hardness assumptions.

Our Contributions We present a signature scheme and public key encryption scheme in
the continual memory leakage model which tolerate a constant fraction of the secret key to be
leaked between updates as well as a constant fraction of the secret key and update randomness
to be leaked during updates. In other words, when the secret key and update randomness
together have bit length K, we can allow cK bits of leakage per update where c > 0 is a positive
constant, independent of the security parameter. Our schemes are proven secure in the standard
model, and are the first schemes to achieve more than logarithmic leakage during updates (in
the standard or random oracle models). We rely only on polynomial hardness assumptions,
namely subgroup decision assumptions in composite order bilinear groups. For our signature
scheme, updates occur for each signature produced, and there is no additional randomness
used for signing. Thus, our scheme achieves strong resilience against memory leakage between
updates, leakage on the full state during signing, and leakage on the full state during updates.
We do not consider leakage on the initial key generation process, which is only executed once.

Our Techniques In our signature scheme, the secret key consists of group elements in a
composite order bilinear group of order N with four distinct prime order subgroups which are
orthogonal under the bilinear map. The first subgroup is the only subgroup shared between the
secret key and the public parameters, and hence is the only subgroup in which correctness is
enforced by the verification algorithm. The second subgroup plays the central role in our proof
of leakage resilience, while the third and fourth subgroups provide additional randomization for
the secret keys and public key respectively.

The initial secret key will contain group elements which have a structured distribution in the
first subgroup (for correctness) and a random distribution in the second and third subgroups.
Our update algorithm will choose a random matrix over ZN from a certain distribution and
apply this matrix in the exponent to “remix” the elements of the secret key. In this way, the
new secret key is formed by taking the old secret key elements, raising them to chosen powers,
and multiplying together the results to obtain new group elements.

When the updates are chosen from the specified distribution, components from all of the first
three subgroups will remain present in the key throughout the lifetime of the system (with all
but negligible probability). In this case, it is relatively easy to prove that it is computationally
hard for an attacker to produce a forgery that does not include components in the second
subgroup, since all of the signatures it receives and all of the secret keys its leaks on contain
components in this subgroup. It then remains to prove that it is hard for the attacker to produce
a forgery that does include components in the second subgroup.

1This observation is recorded in [17].

3

If we choose a few of our update matrices from a more restricted distribution, we can cause
the components of the secret key in the second subgroup to cancel out at some particular point
in the lifetime of the system. By embedding a subgroup decision challenge term in the initial
secret key and employing a hybrid argument, we can argue that the exact time this cancelation
occurs is computationally hidden. Using our leakage bound, we can also argue that the attacker
cannot significantly change its probability of producing a forgery which includes components in
the second subgroup.

During some of the hybrid transitions, we will need to change the distribution of a particular
update. In these cases, we will need to provide the attacker with leakage from a more restricted
update that looks like it comes from a properly distributed update. We can accomplish this
through Lemma A.1 of [12], which roughly says that “random subspaces are leakage resilient”.
In our case, this means that when the leakage is not too large, leakage from update matrices
chosen under the more restrictive distribution is statistically close to leakage from the proper
update distribution.

Our hybrid argument ends with a game where the secret key elements are initialized to have
no components in the second subgroup. In this setting, it is relatively easy to show that the
attacker cannot produce a forgery which has any components in the second subgroup. Since
the attacker’s probability of producing such a forgery has changed only negligibly through
each transition of the hybrid argument, we can conclude that the attacker cannot produce any
forgeries for our original game with non-negligible probability, and security is proved.

For our PKE scheme, we use essentially the same approach. We start with secret keys and
a ciphertext which have no components in the second subgroup and gradually move to a game
where all of the secret keys as well as the ciphertext have random components in the second
subgroup. Our techniques have some features in common with the dual system encryption
methodology introduced by Waters [46], as well as the dual form framework for signatures
presented in [27].

Independent Work on “Fully Leakage-Resilient Signatures” In [33], Katz and Vaikun-
tanathan introduce the terminology “fully leakage-resilient signatures” to refer to signatures in
the bounded leakage model which are resilient against leakage which can depend on the entire
secret state of the signer (i.e. the secret key as well as any randomness used to sign). They
provide a one-time signature scheme which is fully leakage-resilient (in the standard model). In
this scheme, the signing algorithm is deterministic, so the only secret state of the signer is the
secret key itself. They also construct a scheme which is fully leakage-resilient in the random
oracle model.

In the continual memory leakage model, [12] and [17] previously constructed signatures
which are resilient to continual leakage on the secret key only (in the standard model), as well
as signatures resilient to leakage on the secret key and randomness used during signing in the
random oracle model. Even in the random oracle model, they allow only logarithmic leakage
during updates.

Two concurrent works [10, 39] have presented signature schemes in the standard model
that are resilient to leakage on the secret key and the randomness used during signing. The
techniques used in these works are quite different from ours. The work of Boyle, Segev, and
Wichs introduces the concept of an all-lossy-but-one PKE scheme [10] and combines this with
statistical non-interactive witness-indistinguishable arguments. The work of Malkin, Teranishi,
Vahlis, and Yung [39] introduces independent pre-image resistant hash functions and also em-
ploys Groth-Sahai proofs. The resulting schemes can tolerate leakage up to a 1− o(1) fraction
of the secret key length between updates in the continual leakage setting, and do not require
updates to be performed for every signature. However, these schemes can still only tolerate a

4

logarithmic number of bits leaked during each update.
While there were prior techniques for achieving resilience against full leakage during signing

in the random oracle model, to the best of our knowledge there are no prior techniques for
achieving super-logarithmic leakage during updates in the standard or random oracle models.
A random oracle does not seem to be helpful in allowing leakage during updates, since updates
must preserve some structure and random oracles do not provide this.

1.1 Other Related Work

Exposure-resilient cryptography (e.g. [13, 19, 32]) considered attackers able to learn bounded
subsets of the bits representing the secret key, while [30] considered attackers able to learn
the values of a subset of wires for a circuit implementing a computation, and [24] considered
leakage functions belonging to a low complexity class. The work of [43] constructs pseudorandom
generators resistent to certain kinds of naturally occurring leakage.

The bounded leakage model was introduced in [1] and used in many subsequent works (e.g.
[2, 3, 11, 15, 33, 41]). Several variations on this model have been considered. For example, the
bounded retrieval model was studied in [2, 3, 14, 16, 20, 21]. The work [18] considers the class
of leakage functions which are computationally hard to invert.

Several leakage-resilient constructions have been given under the Micali-Reyzin assumption
that “only computation leaks information”, including stream ciphers [22, 44] and signatures [23].
One can view the work of [22] as updating a seed, but the techniques employed here are tied to
the Micali-Reyzin assumption. More generally, the works [28, 31] provide a method for making
any cryptographic algorithm secure against continual leakage - relying on the Micali-Reyzin
assumption as well as a simple, completely non-leaking hardware device.

A few recent works [15, 37] have employed the dual system encryption methodology intro-
duced by Waters [46] in the leakage setting. Dual system encryption was designed as a tool
for proving adaptive security for advanced functionalities (e.g. IBE, HIBE, ABE [36, 38, 46]),
but it extends quite naturally to provide leakage resilience as well, as shown in [37]. However,
this work does not provide resilience against super-logarithmic leakage during updates in the
continual leakage setting.

1.2 Organization

In Section 2, we give the necessary background, our formal security definitions, and our com-
plexity assumptions. In Section 3, we present our signature scheme. In Section 4, we present
our PKE scheme. In Section 5, we prove security for our signature scheme. In Section 6, we
discuss the leakage parameters we obtain, extensions of our techniques, and remaining open
problems. In Appendix D, we prove security for our PKE scheme.

2 Background

2.1 Signature Schemes

A signature scheme typically consists of three algorithms: KeyGen, Sign, and Verify. In the
continual leakage setting, we require an additional algorithm Update which updates the secret
key. Note that the verification key remains unchanged.

KeyGen(λ) → VK,SK0 The key generation algorithm takes in the security parameter, λ,
and outputs a secret key SK0 and a public verification key VK.

5

Sign(m,SKi) → σ The signing algorithm2 takes in a message m and a secret key SKi, and
outputs a signature σ.

Verify(VK, σ,m) → {True, False} The verification algorithm takes in the verification key
VK, a signature σ, and a message m. It outputs either “True” or “False”.

Update(SKi−1) → SKi The update algorithm takes in a secret key SKi−1 and produces a
new secret key SKi for the same verification key.

Correctness The signature scheme satisfies correctness if Verify(VK, σ,m) outputs “True”
whenever VK, SK0 is produced by KeyGen, and σ is produced by Sign(m,SKi) for some SKi

obtained by calls to Update, starting with SK0. (If the verification algorithm is randomized,
we may relax this requirement to hold with all but negligible probability.)

2.2 Security Definition for Signatures

We define leakage-resilient security for signatures in terms of the following game between a
challenger and an attacker (this extends the usual notion of existential unforgeability to our
leakage setting). The game is parameterized by two values: the security parameter λ, and
the parameter ` which controls the amount of leakage allowed. For the sake of simplicity, we
assume that the signing algorithm calls the update algorithm on each invocation. We note
that [10, 12, 17, 39] give a more general definition for signatures resilient to continual leakage
which does not assume that key updates occur with each signature and allows different leakage
parameters for during and between updates. Since updates in our scheme do occur with each
signature, we find it more convenient to work with the simplified definition given below.

Setup Phase The game begins with a setup phase. The challenger calls KeyGen(λ) to create
the signing key, SK0, and the verification key, VK. It gives VK to the attacker. No leakage is
allowed in this phase.

Query Phase The attacker specifies a message, m1, which it gives to the challenger, along
with an efficiently computable leakage function f1, whose output is at most ` bits. The challenger
chooses some randomness X1, updates the secret key (changing it from SK0 to SK1), and then
signs the message. (The randomness X1 denotes all randomness used for the update and the
signing process.) It gives the attacker the resulting signature, along with f1(X1,SK0). The
attacker then repeats this a polynomial number of times, each time supplying a message mi

and an efficiently computable leakage function fi whose output is at most ` bits3. Each time
the challenger chooses randomness Xi, updates the secret key from SKi−1 to SKi, and gives the
attacker a signature on mi as well as fi(Xi, SKi−1).

Forgery Phase The attacker gives the challenger a message, m∗, and a signature σ∗ such
that m∗ has not been previously queried. The attacker wins the game if (m∗, σ∗) passes the
verification algorithm using VK.

Definition 1. We say a signature scheme is `-leakage resilient against continual leakage on
memory and computation if any probabilistic polynomial time attacker only has a negligible
probability (negligible in λ) of winning the above game.

2In our security definition, we will assume that each invocation of the Sign algorithm calls the Update algo-
rithm.

3We assume the output length of each fi is independent of the input value.

6

2.3 Public Key Encryption

A Public Key Encryption (PKE) scheme typically consists of three algorithms: KeyGen, En-
crypt, and Decrypt. In the continual leakage setting, we require an additional algorithm Update
which updates the secret key. Note that the public key remains unchanged.

KeyGen(λ)→ PK,SK0 The key generation algorithm takes in the security parameter λ and
outputs a public key PK and a secret key SK0.

Encrypt(M,PK) → CT The encryption algorithm takes in a message M and a public key
PK. It outputs a ciphertext CT.

Decrypt(CT, SKi)→M The decryption algorithm takes in a ciphertext CT and a secret key
SKi. It outputs a message M .

Update(SKi−1) → SKi The update algorithm takes in a secret key SKi−1 and produces a
new secret key SKi for the same public key.

Correctness The PKE scheme satisfies correctness if Decrypt(CT,SKi) = M with all but
negligible probability whenever PK, SK0 is produced by KeyGen, SKi is obtained by calls
to Update on previously obtained secret keys (starting with SK0), and CT is produced by
Encrypt(M,PK).

2.4 Security Definition for PKE

We define leakage-resilient security for PKE schemes in terms of the following game between a
challenger and an attacker (this extends the usual notion of semantic security to our leakage
setting). We let λ denote the security parameter, and the parameter ` controls the amount of
leakage allowed.

Setup Phase The game begins with a setup phase. The challenger calls KeyGen(λ) to create
the initial secret key SK0 and public key PK. It gives PK to the attacker. No leakage is allowed
in this phase.

Query Phase The attacker specifies an efficiently computable leakage function f1, whose
output is at most ` bits. The challenger chooses some randomness X1, updates the secret key
(changing it from SK0 to SK1), and then gives the attacker f1(X1,SK0). The attacker then
repeats this a polynomial number of times, each time supplying an efficiently computable leakage
function fi whose output is at most ` bits4. Each time, the challenger chooses randomness Xi,
updates the secret key from SKi−1 to SKi, and gives the attacker fi(Xi,SKi−1).

Challenge Phase The attacker chooses two messages M0, M1 which it gives to the challenger.
The challenger chooses a random bit b ∈ {0, 1}, encrypts Mb, and gives the resulting ciphertext
to the attacker. The attacker then outputs a guess b′ for b. The attacker wins the game if b = b′.
We define the advantage of the attacker in this game as

∣∣1
2 − Pr[b = b′]

∣∣.
Definition 2. We say a Public Key Encryption scheme is `-leakage resilient against continual
leakage on memory and computation if any probabilistic polynomial time attacker only has a
negligible advantage (negligible in λ) in the above game.

4We again assume the output length of each fi is independent of the input value.

7

2.5 Composite Order Bilinear Groups

Our schemes will be constructed in composite order bilinear groups, which were first introduced
in [9]. We let G denote a group generator, i.e. an algorithm which takes a security parameter
λ as input and outputs a description of a bilinear group G. For our purposes, we define G’s
output as (N,G,GT , e), where N = p1p2p3p4 is a product of four distinct primes, G and GT
are cyclic groups of order N , and e : G2 → GT is a map such that:

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

The group operations in G and GT and the map e are computable in polynomial time with
respect to λ, and the group descriptions of G and GT include a generator of each group. We
let Gp1 , Gp2 , Gp3 , and Gp4 denote the subgroups of order p1, p2, p3, and p4 in G respectively.
We note that these subgroups are “orthogonal” to each other under the bilinear map e: i.e. if
hi ∈ Gpi and hj ∈ Gpj for i 6= j, then e(hi, hj) is the identity element in GT . If g1 generates
Gp1 , g2 generates Gp2 , g3 generates Gp3 , and g4 generates Gp4 , then every element h of G can
be expressed as gw1 g

x
2g

y
3g
z
4 for some values w, x, y, z ∈ ZN . We will refer to gw1 as the “Gp1 part

of h”, for example.

2.6 Our Complexity Assumptions

Our complexity assumptions are all instances of the Generalized Subgroup Decision Assumption
described in [4]. In a bilinear group of order N = p1p2 . . . pn, there is a subgroup of order∏
i∈S pi for each subset S ⊆ {1, . . . , n}. We let S0, S1 denote two such subsets/subgroups.

The Generalized Subgroup Decision Assumption says that it is hard to distinguish a random
element from the subgroup S0 from a random element of S1 when one is only given random
elements from subgroups Zi which satisfy either S0 ∩Zi = ∅ = S1 ∩Zi or S0 ∩Zi 6= ∅ 6= S1 ∩Zi
(when viewed as subsets of {1, . . . , n}). We note that these conditions prevent an attacker from
distinguishing elements of S0 from elements of S1 by pairing with the Zi elements using the
bilinear map. These assumptions hold in the generic group model for composite order bilinear
groups.

In the formal descriptions of our assumptions below, we let Gp1p2 (e.g.) denote the subgroup

of order p1p2 in G. We use the notation X R←− Z to express that X is chosen uniformly randomly
from the finite set Z.

Assumption 1 Given a group generator G, we define the following distribution:

G = (N = p1p2p3p4, G,GT , e)
R←− G,

X1, Y1
R←− Gp1 , Y2, Z2

R←− Gp2 , g3, Y3, Z3
R←− Gp3 , g4, X4

R←− Gp4
D = (G, g3, g4, X1X4, Y1Y2Y3, Z2Z3),

T1
R←− Gp2p4 , T2

R←− Gp1p2p4 .

We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv1G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible function of λ for any PPT

algorithm A.

8

Assumption 2 Given a group generator G, we define the following distribution:

G = (N = p1p2p3p4, G,GT , e)
R←− G,

g
R←− Gp1 , g3

R←− Gp3 , g4
R←− Gp4

D = (G, g, g3, g4),

T1
R←− Gp1 , T2

R←− Gp1p2 .

We define the advantage of an algorithm A in breaking Assumption 2 to be:

Adv2G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible function of λ for any PPT

algorithm A.

Assumption 3 Given a group generator G, we define the following distribution:

G = (N = p1p2p3p4, G,GT , e)
R←− G,

g,X1
R←− Gp1 , X2, Y2

R←− Gp2 , g3, Y3
R←− Gp3 , g4

R←− Gp4
D = (G, g, g3, g4, X1X2, Y2Y3),

T1
R←− Gp1p3 , T2

R←− Gp1p2p3 .

We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible function of λ for any PPT

algorithm A.

2.7 Notation

In our constructions, we will often represent tuples of group elements as a base element raised
to a vector. For ~r ∈ ZnN , we use the notation g~r, for example, to denote the n-tuple of group
elements

g~r := (gr1 , . . . , grn).

We use g~rg~c2 (e.g.) to denote the n-tuple of group elements formed by componentwise multipli-
cation:

g~rg~c2 := (gr1gc12 , . . . , g
rngcn2).

2.8 Min-Entropy, Statistical Distance, and Mod N Arithmetic

We let X denote a random variable which takes values in a finite set. We define the min-entropy
of X, denoted H∞(X), as follows:

H∞(X) := − log(max
x

Pr[X = x]).

We similarly define the min-entropy of X conditioned on an event E as follows:

H∞(X|E) := − log(max
x

Pr[X = x|E]).

We will require the following standard lemma about min-entropy (e.g. [33]):

9

Lemma 3. Let X be a random variable with min-entropy h and let f be an arbitrary function
with range {0, 1}`. For any τ ∈ [0, h− `], we define the set

Vτ = {v ∈ {0, 1}`|H∞(X|v = f(X)) ≤ h− `− τ}.

Then:
Pr[f(X) ∈ Vτ] ≤ 2−τ .

For two random variables X1, X2 taking values in the same finite set, we define the statistical
distance between them to be:

dist(X1, X2) :=
1
2

∑
x

|Pr[X1 = x]− Pr[X2 = x]|.

Throughout our security proofs, we will be implicitly using the Chinese Remainder Theorem.
In particular, this theorem implies that choosing a random value modulo N is equivalent to
choosing random values modulo p1, p2, p3 and p4 independently. This means that if we have a
generator of a subgroup of G and we know N , we can sample a new, uniformly random element
of the subgroup by raising our generator to a random exponent modulo N . In working over
ZN , we will routinely ignore the negligible probability that we ever encounter a nonzero, non-
invertible element of ZN while doing computations on randomly chosen elements. We will also
ignore the negligible probability that ≤ d vectors over ZN chosen uniformly at random from a
space of dimension d are linearly dependent.

3 Our Signature Scheme

We now present our leakage-resilient signature scheme. The message space for our scheme is
ZN . Our secret key will consist of several elements in a composite order bilinear group of order
N , and we will update it by “mixing” these elements in a structured way. In particular, new
elements will be obtained by raising the current elements to exponents specified by a matrix and
multiplying the results. This matrix will be chosen freshly at random from a certain distribution
for each update. To maintain correctness, we must preserve the relevant relationships between
secret key element exponents in the Gp1 subgroup. This is the only subgroup shared between
the secret key and the verification key: the Gp2 and Gp3 subgroups provide randomization for
the secret key, while the Gp4 subgroup is used to blind the Gp1 elements of the verification
key. Correctness in the Gp1 subgroup is maintained by applying the same update matrix
independently to several “columns” of elements, which preserves the required relationships
across columns. One can alternatively view the secret key as a single (larger) vector of group
elements where correctness with the fixed verification key is maintained as long as the exponent
vector belongs to a fixed subspace over Zp1 . Our update matrices will be applied in a way that
ensures each new secret key will have an exponent vector also in this subspace.

3.1 Construction

Our signature scheme consists of four algorithms, KeyGen, Update, Sign, and Verify. Note that
Sign calls Update on each invocation. The parameter n represents a natural number that is
≥ 9.

10

KeyGen(λ) → SK0,VK The key generation algorithm chooses an appropriate composite
order bilinear group G, whose order N = p1p2p3p4 is a product of four distinct primes. It
chooses g, u, h randomly from Gp1 and R,R′, R′′, R′′′ randomly from Gp4 . It sets:

VK = {N,G,R, gR′, uR′′, hR′′′}.

It also chooses g2 randomly fromGp2 , g3 randomly fromGp3 , and random vectors ~r = (r1, . . . , rn),
~c = (c1, . . . , cn), ~d = (d1, . . . , dn), ~f = (f1, . . . , fn), ~x = (x1, . . . , xn), ~y = (y1, . . . , yn), ~z =
(z1, . . . , zn) ∈ ZnN . We recall that the notation g~r denotes the n-tuple of group elements
(gr1 , . . . , grn) and g~rg~c2 denotes the n-tuple of group elements formed by componentwise mul-
tiplication: (gr1gc12 , . . . , g

rngcn2). We let ~S0 = (S1,0, . . . , Sn,0), ~U0 = (U1,0, . . . , Un,0), and ~H0 =
(H1,0, . . . ,Hn,0) be n-tuples of group elements defined as follows:

~S0 := g~rg~c2g
~x
3 ,

~U0 := u~rg
~d
2g
~y
3 ,

~H0 := h~rg
~f
2 g

~z
3 .

The secret key is SK0 := {~S0, ~U0, ~H0} (this contains 3n group elements).

Update(SKi−1) → SKi The secret key update algorithm picks two random vectors ~a =
(a1, . . . , an−1) and ~b = (b1, . . . , bn−1) from Zn−1

N and computes the new secret key SKi =
{~Si, ~Ui, ~Hi} from the old secret key as follows:

S1,i := S1,i−1 · Sb1n,i−1, U1,i := U1,i−1 · U b1n,i−1, H1,i := H1,i−1 ·Hb1
n,i−1,

S2,i := S2,i−1 · Sb2n,i−1, U2,i := U2,i−1 · U b2n,i−1, H2,i := H2,i−2 ·Hb2
n,i−1,

...

Sn−1,i := Sn−1,i−1 · Sbn−1

n,i−1, Un−1,i−1 · U bn−1

n,i−1, Hn−1,i := Hn−1,i−1 ·Hbn−1

n,i−1,

Sn,i := Sa1
1,i−1 · S

a2
2,i−1 · · ·S

an−1

n−1,i−1 · S
~a·~b
n,i−1,

Un,i := Ua1
1,i−1 · U

a2
2,i−1 · · ·U

an−1

n−1,i−1 · U
~a·~b
n,i−1,

Hn,i := Ha1
1,i−1 ·H

a2
2,i−1 · · ·H

an−1

n−1,i−1 ·H
~a·~b
n,i−1.

This should be thought of as multiplying on the left by the following matrix in the exponent
(separately for ~S, ~U, ~H):

A =


1 0 0 . . . 0 b1
0 1 0 . . . 0 b2
...

...
...

. . .
...

...
0 0 0 . . . 1 bn−1

a1 a2 a3 · · · an−1 ~a ·~b


In other words, when we begin with ~S0 := g~rg~c2g

~x
3 , ~U0 := u~rg

~d
2g
~y
3 , and ~H0 = h~rg

~f
2 g

~z
3 , then

after applying a single update with matrix A, we will have

~S1 = gA~rgA~c2 gA~x3 ,

~U1 = uA~rgA
~d

2 gA~y3 ,

~H1 = hA~rgA
~f

2 gA~z3 .

11

We note that A is an n×n matrix of rank n−1 (since the last row is a linear combination of
the previous rows). With all but negligible probability, a product of many such matrices chosen
independently will also be rank n − 1 (so we are not losing rank with the application of each
new update, we will remain at rank n− 1)5. We also note that after applying each update, the
secret key remains the same size.

In our proofs, we will be choosing many update matrices which we will denote by A1, A2, . . .
(where Ai is the matrix used for the ith update). We will let ~ai = (ai1, . . . , a

i
n−1) denote the first

n − 1 entries of the last row of Ai and ~bi = (bi1, . . . , b
i
n−1) denote the first n − 1 entries of the

last column of Ai.

Sign(m,SKi−1) → σ The signing algorithm first calls Update(SKi−1) to obtain SKi. It pro-
duces the signature σ as:

σ := (σ1, σ2) = (Um1,iH1,i, S1,i).

We note that the only randomness used here during signing is the random choice of the update
matrix.

Verify(VK, σ,m)→ {True, False} The verification algorithm checks that

e(σ1, gR
′) = e(σ2, (uR′′)m(hR′′′)) 6= 1,

and that
e(σ1, R) = e(σ2, R) = 1.

If both checks pass, the algorithm outputs “True”. Otherwise, it outputs “False.” (This second
check ensures that there are no elements of Gp4 appearing in σ1, σ2.)

Correctness To verify correctness for our scheme, we note that the update algorithm pre-
serves the relevant relationships between the Gp1 parts of the secret key. This means that for
any secret key SKi obtained by applying the update algorithm an arbitrary number of times,
the Gp1 parts of ~Si, ~Ui, and ~Hi will remain of the form g

~r′ , u
~r′ , h

~r′ for some ~r′ ∈ ZnN . Thus, if
(σ1, σ2) is a signature produced from Sign(m,SKi), we will have:

σ1 = (umh)r
′
gs22 g

s3
3 , σ2 = gr

′
gt22 g

t3
3

for some values r′, s2, s3, t2, t3 ∈ ZN . Then:

e(σ1, gR
′) = e(umh, g)r

′
= e(σ2, (uR′′)m(hR′′′)),

and both of σ1, σ2 are orthogonal to Gp4 under the bilinear map e, so this signature verifies
correctly.

3.2 Security

In Section 5, we prove the following security theorem for our signature scheme:

Theorem 4. Under Assumptions 1, 2, and 3, when ` is at most the minimum of 1
3(log(p2)−2δ)

and (n−8) log(pj)−2δ for all primes pj dividing N (where δ is set so that 2−δ is negligible), our
signature scheme is `-leakage resilient against continual leakage on memory and computation,
as defined by Definition 1.

5See Corollary 14 for a proof of this.

12

4 Our PKE Scheme

We now present our leakage-resilient public key encryption scheme. As in our signature scheme,
the secret key will consist of group elements in a composite order group. We will again update
the secret key by applying a matrix, chosen from the same distribution as before. Our message
space will now be {0, 1} (i.e. we will encrypt one bit at a time). We will maintain correctness
with the public key by applying the same matrix to each of three columns of group elements,
which preserves the ratio of exponents across columns.

4.1 Construction

Our PKE scheme consists of four algorithms, KeyGen, Update, Encrypt, and Decrypt. The
parameter n represents a natural number that is ≥ 9.

KeyGen(λ) → PK,SK0 The key generation algorithm chooses an appropriate composite
order bilinear group G, whose order N = p1p2p3p4 is a product of four distinct primes. It
then chooses a random element g ∈ Gp1 , random exponents α1, α2, α3 ∈ ZN , a random element
g3 ∈ Gp3 , and random elements R,R′, R′′, R′′′ ∈ Gp4 . It sets the public key as:

PK := {N,G,R, gα1R′, gα2R′′, gα3R′′′}.

It then chooses random vectors ~r, ~x, ~y, ~z ∈ ZnN , as well as a random vector ~η = (η1, η2, η3) ∈
Z3
N subject to the constraint that ~η·~α = 0 (where ~α = (α1, α2, α3)). It forms ~S0 = (S1,0, . . . , Sn,0)

as gη1~rg~x3 , forms ~U0 = (U1,0, . . . , Un,0) as gη2~rg~y3 , and forms ~H0 = (H1,0, . . . ,Hn,0) as gη3~rg~z3 . It
sets the initial secret key as:

SK0 := {~S0, ~U0, ~H0}.
We note that the secret key contains 3n group elements.

Update(SKi−1)→ SKi The secret key update algorithm is the same as the update algorithm
for our signature scheme. It picks two random vectors ~a = (a1, . . . , an−1) and ~b = (b1, . . . , bn−1)
from Zn−1

N and computes the new secret key SKi = {~Si, ~Ui, ~Hi} from the old secret key as
follows:

S1,i := S1,i−1 · Sb1n,i−1, U1,i := U1,i−1 · U b1n,i−1,

S2,i := S2,i−1 · Sb2n,i−1, U2,i := U2,i−1 · U b2n,i−1,

...

Sn−1,i := Sn−1,i−1 · Sbn−1

n,i−1, Un−1,i−1 · U bn−1

n,i−1,

Sn,i := Sa1
1,i−1 · S

a2
2,i−1 · · ·S

an−1

n−1,i−1 · S
~a·~b
n,i−1,

Un,i := Ua1
1,i−1 · U

a2
2,i−1 · · ·U

an−1

n−1,i−1 · U
~a·~b
n,i−1,

This should be thought of as multiplying on the left by the following matrix in the exponent:

A =


1 0 0 . . . 0 b1
0 1 0 . . . 0 b2
...

...
...

. . .
...

...
0 0 0 . . . 1 bn−1

a1 a2 a3 · · · an−1 ~a ·~b


We note that this is an n × n matrix of rank n − 1 (since the last row is a linear combination
of the previous rows).

13

Encrypt(M,PK) → CT The encryption algorithm takes in a message M which is a single
bit (i.e. M ∈ {0, 1}). The algorithm chooses three random exponents s, t, v ∈ ZN . When
M = 0, it sets C1 := (gα1R′)s, C2 := (gα2R′′)sRt, C3 := (gα3R′′′)sRv. When M = 1, it sets
C1 := (gα1R′)s, C2 := (gα1R′)t, C3 := (gα1R′)v. The ciphertext is CT := {C1, C2, C3}.

WhenM = 0, the components of the three ciphertext elements inGp1 will be (gα1s, gα2s, gα3s),
and the components in Gp4 will be uniformly random. When M = 1, the components in Gp1
and Gp4 will both be uniformly random.

Decrypt(CT, SKi) The decryption algorithm checks if

e(C1, S1,i)e(C2, U1,i)e(C3, H1,i) = 1,

where 1 denotes the identity element in GT . If this equality holds, it outputs M = 0. If it does
not hold, it outputs M = 1.

Correctness If SKi is obtained from SK0 by applying our update algorithm an arbitrary
number of times, the Gp1 parts of ~Si, ~Ui, and ~Hi will be of the form gη1

~r′ , gη2
~r′ , gη3

~r′ for some
vector ~r′ ∈ ZN (this form is preserved by the update algorithm). Hence, the Gp1 parts of
S1,i, U1,i, and H1,i are equal to gη1r

′
, gη2r

′
, and gη3r

′
for some r′ ∈ ZN . If C1 := (gR′)s,

C2 := (gαR′′)sRt, C3 := (gβR′′′)sRv is an encryption of 0 formed by calling Encrypt(0,PK),
then

e(C1, S1,i)e(C2, U1,i)e(C3, H1,i) = e(g, g)sr
′α1η1e(g, g)sr

′α2η2e(g, g)sr
′α3η3 = 1,

since ~α · ~η = 0. In this case, the decryption algorithm will correctly output M = 0.
If C1 := (gα1R′)s, C2 := (gα1R′)t, C3 := (gα1R′)v is an encryption of 1 formed by calling

Encrypt(1,PK), then

e(C1, S1,i)e(C2, U1,i)e(C3, H1,i) = e(g, g)sr
′α1η1e(g, g)tr

′α1η2e(g, g)vr
′α1η3 .

With all but negligible probability over the choice of r′, t, s, v, ~α, ~η, we will have

r′α1(sη1 + tη2 + vη3) 6= 0

modulo p1, and the decryption algorithm will correctly output M = 1. We do incur a negligible
correctness error when r′α1(sη1 + tη2 + vη3) happens to equal 0 modulo p1.

4.2 Security

In Appendix D, we prove the following security theorem for our PKE scheme:

Theorem 5. Under Assumptions 1, 2, and 3, when ` is at most the minimum of 1
3(log(p2)−2δ)

and (n − 8) log(pj) − 2δ for all primes pj dividing N (where δ is set so that 2−δ is negligible),
our PKE scheme is `-leakage resilient against continual leakage on memory and computation,
as defined by Definition 2.

5 Security Proof for Our Signature Scheme

We now prove security for our signature scheme. In the real security game, all of the secret keys
and signatures will have components in Gp2 . We show that in this setting, an attacker has only
a negligible chance of producing a forgery that does not have any Gp2 parts. The main idea
of our security proof is to use a hybrid argument to gradually move to a game where none of

14

the secret keys and signatures have any components in Gp2 . Essentially, we will employ update
matrices which cancel out the Gp2 terms in the secret key at progressively earlier stages in the
game.

The core technique of our proof is to embed a challenge term T from a subgroup decision
problem into the initial secret key. T will be a group element which definitely has Gp1 and Gp3
parts, and it is the simulator’s task to decide if it also has a Gp2 part or not. The simulator will
choose update matrices which first cancel out the terms in the secret key which definitely have
Gp2 components, and then will cancel out the instances of T . If this cancelation of T happens
during the i+ 1 update, we can use this to move from a game where the Gp2 components of the
secret key are canceled out at step i+ 1 to a game where they are canceled out at step i.

There are two important subtleties in executing this approach: first, the distribution of the
Gp2 parts of the initial secret key will depend upon the nature of the challenge term T , and
second, update matrices capable of canceling terms in the keys must be chosen from a more
restricted distribution. We address these subtleties by expanding our sequence of games to
include these changes in the initial key distribution and in the timing of the canceling updates
in the game definitions.

As we move from game to game, we must argue that the attacker’s chance of producing a
forgery that does have Gp2 parts changes only negligibly: in some cases, we will show this by
relying on a computational assumption and a min-entropy argument. In other cases, we will
show that the two games are (information-theoretically) indistinguishable in the attacker’s view
because of the bound on the leakage parameter `. For these parts of the proof, we will rely on
a useful lemma from [12], which roughly says that random subspaces are leakage resilient. This
lemma will essentially allow us to hide whether we are choosing our update matrix from the
proper distribution or from a more restrictive distribution that potentially causes a cancelation.
This lemma holds modulo a prime p, so for these parts of the proof, we will (locally) apply a
hybrid argument over the four primes dividing our group order, N . Ultimately, this leads us to
a rather elaborate sequence of games, but each individual transition follows somewhat naturally
either from a subgroup decision assumption or from an application of the lemma.

Once we arrive at a game with no Gp2 components on any of the secret keys and signatures,
we show that an attacker has only a negligible chance of producing a forgery that does have
Gp2 parts. Hence we have shown that an attacker has only a negligible chance of producing any
forgeries at all.

We now formally define our main sequence of games. We begin with the real security game
from Definition 1, which we denote by GameReal (the leakage bound ` is implicit here). We
next define GameReal′ , which is like GameReal, except that the attacker must produce a forgery
for a message m∗ which is unequal to any queried m modulo p2. We maintain this additional
restriction throughout the rest of the games. To define the additional games, we first define two
distributions of n-tuples of elements of Gp2 .

Distribution DReal We define distribution DReal as follows. We choose a random element
g2 ∈ Gp2 and three random vectors ~c = (c1, . . . , cn), ~d = (d1, . . . , dn), ~f = (f1, . . . , fn) ∈ ZnN . We
output the following three n-tuples of elements in Gp2 :

g~c2, g
~d
2 , g

~f
2 .

Note that this is exactly the distribution of the Gp2 parts of the secret key SK0 produced by
the key generation algorithm in our signature scheme.

Distribution DAlt We define distribution DAlt as follows. We choose a random element
g2 ∈ Gp2 and three random vectors ~c, ~d, ~f ∈ ZnN subject to the constraint that these are from a

15

two dimensional subspace. Equivalently, we choose ~c, ~d uniformly at random, and then choose
~f to be a random linear combination of ~c and ~d. We output the following three n-tuples of
elements in Gp2 :

g~c2, g
~d
2 , g

~f
2 .

We let q denote the number of signing queries made by the attacker. We now define the
following games:

Gamei In Gamei (for i ∈ {3, . . . , q+3}), the key generation phase happens as in GameReal (in
particular, the Gp2 parts of SK0 have distribution DReal). The challenger follows the prescribed
signing/update algorithms for the first i − 3 requested signatures. On the i − 2 requested
signature, the challenger chooses a random update matrix subject to an additional condition.
To describe this condition, we let A1, . . . , Ai−3 denote the matrices used in the first i−3 updates.
We let A = Ai−3 · · ·A1 denote the product of these update matrices (if i = 3, then A denotes

the identity matrix). Then, since the Gp2 parts of the secret key begin as g~c2, g~d2 , and g
~f
2 , the

Gp2 parts of the secret key after these i − 3 updates are gA~c2 , gA~d2 , and gA
~f

2 . The new update
matrix Ai−2 is chosen randomly up to the constraint that the kernel of Ai−2A now includes a
random vector from the three dimensional subspace spanned by ~c, ~d, and ~f . This means that
the challenger will choose a random vector ~w from the span of ~c, ~d, ~f and compute A~w. We let
~w′ = (w′1, . . . , w

′
n) denote the vector A~w. With all but negligible probability, w′n is invertible

modulo N . The challenger will set the vector ~bi−2 = (bi−2
1 , . . . , bi−2

n−1) for the last column of Ai−2

as follows:

bi−2
j := −

w′j
w′n

for each j from 1 to n− 1. The challenger will choose the vector ~ai−2 for the last row of Ai−2

randomly. After this update is applied, the Gp2 parts of the new key will have three exponent

vectors in the same 2-dimensional space, i.e. they will be gAi−2·A·~c
2 , gAi−2A~d

2 , and g
Ai−2A~f
2 . (To

see that the vectors Ai−2A~c,Ai−2A~d, and Ai−2A~f now span a 2-dimensional space, note that
one basis for this space is Ai−2A~v,Ai−2A~t, where ~w,~v,~t are an alternate basis for the span of
~c, ~d, ~f .)

For the i − 1 requested signature, the challenger chooses the new update matrix Ai−1 ran-
domly subject to the constraint that the kernel of Ai−1 now includes a random vector from
the two dimensional subspace spanned by Ai−2A~c, Ai−2A~d, and Ai−2A~f . After this update is
applied, the Gp2 parts of the new key have exponent vectors Ai−1Ai−2A~c, Ai−1Ai−2A~d, and
Ai−1Ai−2A~f which all lie in the same 1-dimensional subspace.

For the ith update, Ai is chosen randomly up to the constraint that the kernel of Ai now
includes this 1-dimensional space (in our notation, AiAi−1Ai−2A~c is equal to the vector of all
0’s, and the same holds for ~d and ~f). This cancels out the Gp2 parts of the secret key, and all
subsequently produced signatures will not contain Gp2 parts. The remaining update matrices
are chosen from the usual distribution specified in the update algorithm.

GameAlti In GameAlti (for i ∈ {2, . . . , q+2}), the key generation phase differs from GameReal
in that the Gp2 components of SK0 have distribution DAlt instead of DReal. In other words, the

Gp2 parts are set as g~c2, g
~d
2 , and g

~f
2 , where ~c, ~d are chosen randomly and ~f is chosen randomly

from the span of ~c and ~d. All other aspects of the key generation are the same. The challenger
follows the prescribed signing/update algorithms for the first i− 2 requested signatures. We let
A = Ai−2 . . . A1 denote the product of the first i− 2 update matrices (if i = 2, we let A denote
the identity matrix).

16

For the i− 1 requested signature, the challenger chooses the update matrix Ai−1 randomly
subject to the constraint that the kernel of Ai−1A now includes a random vector from the two
dimensional subspace spanned by ~c and ~d. After this update is applied, the Gp2 parts of the new
key have exponent vectors Ai−1A~c, Ai−1A~d, and Ai−1A~f which all lie in the same 1-dimensional
subspace.

For the ith update, Ai is chosen randomly up to the constraint that the kernel of Ai now
includes this 1-dimensional space (in our notation, AiAi−1A~c is equal to the vector of all 0’s,
and the same holds for ~d and ~f). This cancels out the Gp2 parts of the secret key, and all
subsequently produced signatures will not contain Gp2 parts.

For the i+ 1 update, Ai+1 is chosen so that the kernel of Ai+1AiAi−1A now includes a new
uniformly random vector. In other words, a random vector ~t is chosen, and Ai+1 is chosen
randomly in the form prescribed by the update algorithm up to the additional constraint that
Ai+1AiAi−1A~t is the all zeros vector. The remaining update matrices are chosen from the usual
distribution specified in the update algorithm.

GameAlt1 In GameAlt1, the secret key is initialized to have Gp2 components of the form g~c2,

g
~d
2 , g

~f
2 , where ~c, ~d, ~f are all in the same 1-dimension subspace. The first update matrix, A1, is

chosen so that ~c is in its kernel (and hence ~d, ~f are as well). The next two update matrices,
A2, A3 are each chosen so that a new random vector is added to the kernel of the product
(so A3A2A1 will have rank n − 3). The remaining update matrices are chosen from the usual
distribution specified in the update algorithm.

GameAlt0 In GameAlt0, the secret key is initialized to have no Gp2 components. All other
aspects of the key generation are the same as GameReal. The first three update matrices,
A1, A2, A3 are each chosen so that a new random vector is added to the kernel of the product
each time. All of the remaining update matrices are chosen according to the usual distribution
specified in the update algorithm. Note that none of the produced signatures will have any Gp2
parts.

We will prove our scheme is `-leakage resilient in the sense of Definition 1 via a hybrid argu-
ment over these games. We first show that an attacker’s advantage can change only negligibly
when we switch from GameReal to GameReal′ . We then divide forgeries into two classes: Type I
and Type II. We say the attacker has produced a Type I forgery if the group elements (σ1, σ2)
of the (correctly verifying) signature contain no Gp2 parts. We define Type II forgeries in a
complimentary way: i.e. a verifying signature (σ1, σ2) is a Type II forgery if at least one of
σ1, σ2 has a Gp2 part. We show that in GameReal′ , the attacker’s chance of producing a Type I
forgery is negligible.

We note that GameReal′ is exactly the same as Gameq+3 (the first q updates are normal,
and the attacker only asks for q signatures). For i from 2 to q + 2, we show that the attacker’s
chance of producing a Type II forgery changes only negligibly when we change from Gamei+1 to
GameAlti (the leakage parameter ` will play a role here). We will also prove that the attacker’s
chance of producing a Type II forgery changes only negligibly when we change from GameAlti
to Gamei (the leakage parameter ` will also play a role in these transitions). This allows us
traverse the games from GameReal′ to GameAltq+2, then to Gameq+2, then to GameAltq+1, then
to Gameq+1, and so on, until we arrive at GameAlt2. We finally show that the attacker’s chance
of producing a Type II forgery differs only negligibly between GameAlt2 and GameAlt1 and
between GameAlt1 and GameAlt0, and also that the attacker can only produce a Type II forgery
with negligible probability in GameAlt0. Since we have taken a polynomial number of steps,

17

this means that the attacker can only produce a Type II forgery with negligible probability in
GameReal′ . Since any forgery must be either a Type I or a Type II forgery, we have then proven
security. We execute this proof strategy in the following subsections. The proofs of many of
the lemmas will be very similar to each other, but we include them all in full for completeness.

5.1 Transition from GameReal to GameReal′

We first show:

Lemma 6. Under Assumptions 1 and 3, any polynomial time attacker A has only a negligibly
different probability of winning in GameReal versus GameReal′.

Proof. We suppose there exists a PPT attacker A which attains a non-negligible difference in
probability of winning between GameReal and GameReal′ . We will create a PPT algorithm
B that breaks either Assumption 1 or Assumption 3 with non-negligible advantage. We first
note that the terms given to B in Assumption 1 (namely g3, g4, X1X4, Y1Y2Y3, Z2Z3, T) can be
used to properly simulate GameReal with A, and this also holds for the terms given to B in
Assumption 3 (namely g, g3, g4, X1X2, Y2Y3, T).

To attain its non-negligible difference in success probability, A must with non-negligible
probability produce m,m∗ ∈ ZN during this simulation such that m 6= m∗ as elements of ZN ,
but m = m∗ modulo p2. For each m,m∗ produced by A, B will compute the greatest common
divisor of m −m∗ and N . If these values are always equal to 1, then B guesses randomly for
the nature of T . However, with non-negligible probability, at least one of the g.c.d.’s will be
strictly between 1 and N .
B then proceeds as follows. It sets a = gcd(m −m∗, N) and b = N/a. First, we consider

the case where one of a, b is equal to p4, and the other is equal to p1p2p3. Without loss of
generality, we can say that a = p4 and b = p1p2p3. In this case, B will break Assumption 1. It
first tests that a = p4 and b = p1p2p3 by checking that ga4 = 1, and (Y1Y2Y3)b = 1. It computes
(X1X4)a ∈ Gp1 , and pairs this with T . If T ∈ Gp2p4 , this will yield the identity. If T ∈ Gp1p2p4 ,
it will not. Thus, B can break Assumption 1 with non-negligible advantage.

In all other cases, B will break Assumption 3. We consider 2 cases. For case 1), we suppose
that p1 divides one of a, b and p2 divides the other. Without loss of generality, we can say that
p1 divides a and p2 divides b. B can confirm this by checking that ga = 1 and (X1X2)a 6= 1.
B can then test whether T has a Gp2 component by pairing T with (X1X2)a and seeing if the
result is 1 or not.

For case 2), we suppose that p3 divides one of a, b and p2 divides the other. Without loss of
generality, we can say that p3 divides a and p2 divides b. B can confirm this by checking that
ga3 = 1 and (Y2Y3)a 6= 1. It can then pair T with (Y2Y3)a to see whether T has a Gp2 component
or not.

Now, since A must produce m,m∗ such that gcd(m − m∗, N) 6= 1, N with non-negligible
probability, at least one of these cases must occur with non-negligible probability. Hence, we
obtain either a B which breaks Assumption 1 with non-negligible advantage, or a B which breaks
Assumption 3 with non-negligible advantage.

5.2 Security Against Type I Forgeries in GameReal′

We now show:

Lemma 7. Under Assumption 1, any polynomial time attacker A has only a negligible chance
of producing a Type I forgery in GameReal′.

18

Proof. We suppose that there exists a polynomial time attacker A who can produce a Type I
forgery with non-negligible probability in GameReal′ . We will use A to create a polynomial time
algorithm B to break Assumption 1. B is given g3, g4, X1X4, Y1Y2Y3, Z2Z3, T . B chooses α, β
randomly from ZN and sets the public parameters as:

R = g4, gR
′ = X1X4, uR

′′ = (X1X4)α, hR′′′ = (X1X4)β.

It gives these to A. We note that these are properly distributed because the values of α, β
modulo p4 are uncorrelated from their values modulo p1 by the Chinese Remainder Theorem.

To initialize the secret key, B chooses vectors ~r,~c, ~d, ~f, ~x, ~y, ~z randomly from ZnN . It sets:

~S0 = (Y1Y2Y3)~r(Z2Z3)~cg~x3 ,

~U0 = (Y1Y2Y3)α~r(Z2Z3)~dg~y3 ,

~H0 = (Y1Y2Y3)β~r(Z2Z3)~fg~z3 .

We note that this is properly distributed. The simulator can now answer all signing and leakage
queries by choosing random updates to this secret key and computing the requested leakage as
a function of the secret key and update matrix. It can easily produce the requested signatures
because it knows the secret keys.

With non-negligible probability, A produces a forgery (m∗, σ1, σ2) which passes the verifi-
cation algorithm. When this happens, B tests whether e(T, σ1) = 1. If this is true, B guesses
that T ∈ Gp2p4 . Otherwise, B guesses randomly. When A has produced a Type I forgery and
T ∈ Gp2p4 , e(T, σ1) = 1 will always hold (since a forgery that verifies correctly cannot have
any Gp4 components). If T ∈ Gp1p2p4 , then e(T, σ1) = 1 will only hold when σ1 has no Gp1
part. This is impossible for a signature that verifies correctly, since the verification algorithm
checks that σ1 has no Gp4 parts and also that e(σ1, gR

′) 6= 1. This means that B achieves a
non-negligible advantage, hence breaking Assumption 1.

5.3 Security Against Type II Forgeries in GameAlt0

We now show:

Lemma 8. Under Assumption 2, any polynomial time attacker A has only a negligible chance
of producing a Type II forgery in GameAlt0.

Proof. We suppose there exists a polynomial time attacker A who can produce a Type II
forgery with non-negligible probability in GameAlt0. We will use A to create a polynomial time
algorithm B to break Assumption 2. B is given g, g3, g4, T . B chooses α, β, δ, γ, ψ randomly
from ZN and sets the public parameters as:

R = g4, gR
′ = ggδ4, uR

′′ = gαgγ4 , hR
′′′ = gβgψ4 .

It gives these to A.
To initialize the secret key, B chooses vectors ~r, ~x, ~y, ~z randomly from ZnN and sets:

~S0 = g~rg~x3 , ~U0 = gα~rg~y3 ,
~H0 = gβ~rg~z3 .

This is properly distributed for GameAlt0. The simulator can now answer all signing and
leakage queries by choosing updates to this secret key distributed as specified for GameAlt0
and computing the requested leakage as a function of the secret key and update matrix. It can
produce the requested signatures because it always knows the secret key.

19

With non-negligible probability, A produces a forgery (m∗, σ1, σ2) that passes the verification
algorithm. When this happens, B tests whether e(σ1, T) = e(σ2, T

αm∗+β). When this test fails,
B guesses that T ∈ Gp1p2 . Otherwise, B guesses randomly. Observe that if this test fails, T
must have a Gp2 part. When T ∈ Gp1 , e(σ1, T) = e(σ2, T

αm∗+β) will hold for any signature
that verifies correctly. We note that the values of α, β modulo p2 are information theoretically
hidden from A, so when A produces a Type II forgery and T ∈ Gp1p2 , there is only a negligible
chance of this test passing. Hence B has a non-negligible advantage in breaking Assumption
2.

5.4 Transition from Gamei+1 to GameAlti

We now prove:

Lemma 9. Under Assumption 3, for any polynomial time attacker A, the difference in A’s
probability of producing a Type II forgery between Gamei+1 and GameAlti is negligible as long
as ` ≤ 1

3(log(p2) − 2δ), for each i from 2 to q + 2. Here, δ > 0 is a parameter chosen so that
2−δ is negligible.

Proof. We suppose A is a PPT attacker which achieves a non-negligible difference in probability
of producing a Type II forgery between Gamei+1 and GameAlti (for some fixed i). We will create
a PPT algorithm B which achieves non-negligible advantage against Assumption 3.
B is given g, g3, g4, X1X2, Y2Y3, T . It will simulate either Gamei+1 or GameAlti with A,

depending on the value of T . We will then show that with all but negligible probability, B
can determine when A is producing a Type II forgery. Thus, the non-negligible difference in
A’s probability of producing a Type II forgery will allow B to achieve non-negligible advantage
against Assumption 3.
B chooses random vectors ~r,~t,~c, ~d, ~x, ~y, ~z ∈ ZnN and random values α, β, f1, f2, δ, γ, ψ ∈ ZN .

It sets the public parameters as:

R := g4, gR
′ := ggδ4, uR

′′ := gαgγ4 , hR
′′′ := gβgψ4 .

It initializes the secret key as:
~S0 = g~rT

~t(Y2Y3)~cg~x3 ,

~U0 = gα~rTα
~t(Y2Y3)~dg~y3 ,

~H0 = gβ~rT β
~t(Y2Y3)f1~c+f2 ~dg~z3 .

We note that the Gp1 parts here are properly distributed. To see this, note that if we let
gτ denote the Gp1 part of T , then the exponents vectors for the Gp1 parts are ~r+ τ~t, α(~r+ τ~t)
and β(~r+ τ~t). This is properly distributed because ~r+ τ~t is a uniformly random vector in ZnN .
The Gp3 parts are also properly distributed because the vectors ~x, ~y, ~z are uniformly random.

Now, if T ∈ Gp1p3 , then the Gp2 parts here are distributed according to distribution DAlt.
If T ∈ Gp1p2p3 , then the Gp2 parts are distributed according to distribution DReal.

For the first i − 2 requested signatures, the simulator chooses random update matrices
A1, . . . , Ai−2 according to the distribution prescribed in the update algorithm. It provides A
with the requested signatures and leakage values. We let A = Ai−2 · · ·A1 denote the product
of all the update matrices applied so far.

For the i−1 requested signature, B chooses an update matrix Ai−1 whose rows are orthogonal
to A~w, where ~w is randomly chosen from the span of ~c and ~d. With respect to the entries

20

bi−1
1 , . . . , bi−1

n−1, a
i−1
1 , . . . , ai−1

n−1 of Ai−1, this means the following. We let ~w′ = (w′1, . . . , w
′
n) denote

the vector A~w. We will choose

bi−1
j = −

(
w′j
w′n

)
for each j from 1 to n− 1 (with all but negligible probability, w′n is invertible modulo N), and
we will choose the ai−1

j values randomly. This precisely ensures that ~w is in the kernel of Ai−1A.
We let ~v denote a random vector such that the span of ~v, ~w is equal to the span of ~c, ~d.

For the ith requested signature, B chooses an update matrix Ai whose rows are orthogonal to
Ai−1A~v: this will cancel out the Y2Y3 terms. With respect to the entries bi1, . . . , b

i
n−1, a

i
1, . . . , a

i
n−1

of Ai, this means the following. We let ~v′ = (v′1, . . . , v
′
n) denote the vector Ai−1A~v. We will

choose

bij = −
(
v′j
v′n

)
for each j from 1 to n − 1, and we will choose the aij values randomly. This precisely ensures
that ~v is in the kernel of AiAi−1A.

For the i + 1 requested signature, B chooses an update matrix whose Ai+1 whose rows
are orthogonal to AiAi−1A~t: this will cancel out the T terms. With respect to the entries
bi+1
1 , . . . , bi+1

n−1, ai+1
1 , . . . , ai+1

n−1 of Ai+1, this means the following. We let ~t′ = (t′1, . . . , t
′
n) denote

the vector AiAi−1A~t. We will choose

bj = −
(
t′j
t′n

)
for each j from 1 to n− 1, and we will choose the ai+1

j values randomly. This precisely ensures
that ~t is in the kernel of Ai+1AiAi−1A.
B responds to the remaining signature requests by choosing random update matrices ac-

cording to the distribution specified in the update algorithm. We note that B knows all of
the update matrices and secret keys throughout the simulation, and so can easily provide the
requested leakage and signatures to A. When T ∈ Gp1p3 , B has properly simulated GameAlti.
To see this, first observe that the Y2 terms are the only Gp2 parts of the secret key, and these are
canceled out in the ith update, as required in the specification of GameAlti. The i+ 1 update
is chosen to include a new vector ~t in the kernel, and this vector is uniformly random because
~r+τ~t reveals no information about ~t modulo p1 since ~r is uniformly random, and no information
about ~t modulo p3 is previously revealed because ~x, ~y, ~z are uniformly random. Thus, this is a
proper simulation of GameAlti.

When T ∈ Gp1p2p3 , B has properly simulated Gamei+1. To see this, note that the Gp2
parts of the key originally have exponent vectors which are randomly distributed in the three
dimensional subspace spanned by ~c, ~d, and ~t. Here, we have chosen the i−1 update to cancel out
one random dimension of this subspace, the ith update to cancel out another random dimension,
and the i+ 1 update to cancel the final dimension. This precisely matches the specification of
Gamei+1.

When A produces a forgery (σ1, σ2) on m∗ (that verifies correctly), B must determine
whether it is a Type I or Type II forgery. It tests whether:

e(σ1, X1X2) ?= e(σ2, (X1X2)αm
∗+β).

If this equality holds, B will guess that A has produced a Type I forgery. If the equality fails,
then B knows that A has produced a Type II forgery (note that this equality can only fail for
a forgery that properly verifies when there is some Gp2 part present in σ1 and/or σ2).

21

Finally, we must argue that A can only produce a Type II forgery which satisfies the equal-
ity above with negligible probability. This means that B will have only negligible error in
determining the forgery type produced by A, and hence it can use the output of A to achieve
non-negligible advantage against Assumption 3. In order to produce a Type II forgery that
B misclassifies as a Type I forgery, A must produce Gp2 parts for σ1 and σ2 of the form gs2,
g
s(αm∗+β)
2 , where g2 is a generator of Gp2 and s is arbitrary. In other words, A must be able to

implicitly determine the value αm∗ + β modulo p2.
Now, if T ∈ Gp1p3 , then the initial secret key reveals no information about the values of

α and β modulo p2: so these remain information-theoretically hidden from A throughout the
entire game. Thus, A has only a negligible chance of determining αm∗+β modulo p2 correctly.
When T ∈ Gp1p2p3 , we will first argue that the values of α and β modulo p2 are information-
theoretically hidden from A until Ai−1 is chosen (i.e. for the first i− 2 updates).

We let gτ2 denote the Gp2 part of T , and define y modulo p2 by gy2 = Y2. Then the initial Gp2
parts of the secret key are gτ

~t+y~c
2 , gατ

~t+y~d
2 , and gβτ

~t+f1y~c+f2y~d
2 . These three exponent vectors

are distributed as uniformly random vectors modulo p2, and reveal no information about β, α.
More specifically, we note that with all but negligible probability, the three exponent vectors
will be linearly independent and almost all choices of α, β, f1, f2 will lead to the same number
of (equally likely) solutions for y~c, y~d, and τ~t. Thus, with all but negligible probability, no
information about the values of α, β modulo p2 is revealed by these exponent vectors. This
remains true (with all but negligible probability) as we choose update matrices A1, . . . , Ai−2

randomly from the distribution specified by the update algorithm.
Now, when we choose Ai−1, Ai, and Ai+1 to progressively cancel out the span of ~c, ~d,~t, we

will leak information about α, β modulo p2. However, after Ai+1 is applied, the values of α and
β modulo p2 no longer appear, since there are no Gp2 terms in the secret key from this point
on. Also, all of the update matrices are independent of α, β. Thus, the attacker gets only three
chances to obtain leakage on the values of α, β modulo p2. After update Ai−1 is applied, the
attacker will also receive a signature on mi−1 (the i − 1 requested message) whose Gp2 parts
still do not reveal any information about the values of α, β modulo p2. This holds because the
signature only involves the first row of Ai−1, and this row alone is still properly distributed (its
first entry is 1 and its last entry is uniformly random). To see this, note that the first and last
entries of ~w′ = A~w are random with all but negligible probability when ~w is chosen randomly
from the span of ~c, ~d. This is because the first and last rows of A are nonzero and independent
of ~c, ~d. However, when the ith signature is produced for mi, the attacker will receive a signature
with Gp2 parts of the form g

s(αmi+β)
2 , gs2 for some s modulo p2. This information-theoretically

reveals αmi + β modulo p2. Since αm+ β is a pairwise independent function of m modulo p2,
this means that the attacker still has no information about αm+ β for any m 6= mi modulo p2.

We let X denote the random variable α||β modulo p2 (the || symbol here denotes concate-
nation). This is a random variable with min-entropy 2 log(p2). The information the attacker
learns about X (information-theoretically) can be expressed as F (X) for a single function F
which produces 3` + log(p2) bits (3` bits learned from three leakage queries and log(p2) bits
learned from αmi +β modulo p2). Thus, for ` ≤ 1

3(log(p2)− 2δ), by Lemma 3, the min-entropy
of X conditioned on F (X) will be at least δ with probability 1− 2−δ (which is all but negligi-
ble probability). In this case, the probability of an attacker determining αm∗ + β modulo p2

correctly for some m∗ 6= mi modulo p2 is at most 2−δ, which is negligible (note that αm∗ + β
and αmi + β together would fully determine α, β since m∗,mi are known). Recall that we have
restricted the attacker to producing forgeries for m∗ which are not equal to the queried messages
modulo p2. This completes the proof that B will incur only negligible error in determining the
forgery type of A, and hence will achieve non-negligible advantage against Assumption 3.

22

5.5 Transition from GameAlti to Gamei

To prove that A’s chance of producing a Type II forgery changes only negligibly between
GameAlti and Gamei, we need to introduce a few additional games.

GameAlt′i This game is like GameAlti, except the update matrix for the i+ 1 update is now
chosen from the distribution specified in the update algorithm. (Recall that in GameAlti, the
i+ 1 update matrix was chosen to include a new vector in the kernel of the matrix product.)

GameAlt′′i This game is like GameAlt′i, except that the matrix for the i − 2 update is now
chosen to include a new random vector in the kernel of the matrix product (i.e. the product
Ai−2A, where A is the product of all the previous update matrices). We note that for i = 3,
this is the same as GameAlt′i, since the first update matrix is rank n− 1.

We will first show that A’s chance of producing a Type II forgery changes only negligibly
between Gamei and GameAlt′′i . We will then show that GameAlt′′i is indistinguishable from
GameAlt′i in A’s view, and finally that GameAlt′i and GameAlti are indistinguishable in A’s
view.

Lemma 10. Under Assumption 3, for any polynomial time attacker A, the difference in A’s
probability of producing a Type II forgery between Gamei and GameAlt′′i is negligible as long as
` ≤ log(p2) − 2δ, for each i from 3 to q + 2. Here, δ > 0 is a parameter chosen so that 2−δ is
negligible.

Proof. We suppose there exists a PPT algorithm A which achieves a non-negligible difference
in probability of producing a Type II forgery between Gamei and GameAlt′′i (for some fixed i).
We will create a PPT algorithm B which achieves non-negligible advantage against Assumption
3.
B is given g, g3, g4, X1X2, Y2Y3, T . It will simulate either Gamei or GameAlt′′i with A,

depending on the value of T . We will then show that with all but negligible probability, B
can determine when A is producing a Type II forgery. Thus, the non-negligible difference in
A’s probability of producing a Type II forgery will allow B to achieve non-negligible advantage
against Assumption 3.

As in the proof of Lemma 9, B chooses random vectors ~r,~t,~c, ~d, ~x, ~y, ~z ∈ ZnN and random
values α, β, f1, f2, δ, γ, ψ ∈ ZN . It sets the public parameters as:

R := g4, gR
′ := ggδ4, uR

′′ := gαgγ4 , hR
′′′ := gβgψ4 .

It initializes the secret key as:
~S0 = g~rT

~t(Y2Y3)~cg~x3 ,

~U0 = gα~rTα
~t(Y2Y3)~dg~y3 ,

~H0 = gβ~rT β
~t(Y2Y3)f1~c+f2 ~dg~z3 .

As noted in the proof of Lemma 9, the Gp1 and Gp3 parts here are properly distributed.
If T ∈ Gp1p3 , then the Gp2 parts here are distributed according to distribution DAlt. If

T ∈ Gp1p2p3 , then the Gp2 parts are distributed according to distribution DReal.
For the first i − 3 requested signatures, the simulator chooses random update matrices

A1, . . . , Ai−3 according to the distribution prescribed in the update algorithm. It provides A
with the requested signatures and leakage values. We let A = Ai−3 · · ·A1 denote the product
of all the update matrices applied so far (if i = 3, then A is the identity matrix).

23

For the i−2 requested signature, B chooses an update matrix Ai−2 whose rows are orthogonal
to A~t. With respect to the entries bi−2

1 , . . . , bi−2
n−1, a

i−2
1 , . . . , ai−2

n−1 of Ai−2, this means the following.
We let ~t′ = (t′1, . . . , t

′
n) denote the vector A~t. We will choose

bi−2
j = −

(
t′j
t′n

)
for each j from 1 to n − 1 (with all but negligible probability, tn is invertible modulo N), and
we will choose the ai−2

j values randomly. This precisely ensures that ~t is in the kernel of Ai−2A.
We note that when T ∈ Gp1p2p3 , this is a proper simulation of the i− 2 update in Gamei, and
when T ∈ Gp1p3 , this is a proper simulation of the i− 2 update in Game′′i , since ~t is a uniformly
random vector (note that no information about ~t modulo p1 is revealed by ~r+~t, since ~r is also
random, and no information about ~t is revealed modulo p3 because ~x, ~y, ~z are random).

For the i−1 requested signature, B chooses an update matrix Ai−1 whose rows are orthogonal
to Ai−2A~w, where ~w is randomly chosen from the span of ~c and ~d. With respect to the entries
bi−1
1 , . . . , bi−1

n−1, a
i−1
1 , . . . , ai−1

n−1 of Ai−1, this means the following. We let ~w′ = (w′1, . . . , w
′
n) denote

the vector Ai−2A~w. We will choose

bi−1
j = −

(
w′j
w′n

)
for each j from 1 to n − 1 (with all but negligible probability, wn is invertible modulo N),
and we will choose the ai−1

j values randomly. This precisely ensures that ~w is in the kernel of
Ai−1Ai−2A. We let ~v denote a random vector such that the span of ~v, ~w is equal to the span of
~c, ~d.

For the ith requested signature, B chooses an update matrix Ai whose rows are orthogonal
to Ai−1Ai−2A~v: this will cancel out the Y2Y3 terms (and there will be no Gp2 remaining).
With respect to the entries bi1, . . . , b

i
n−1, a

i
1, . . . , a

i
n−1 of Ai, this means the following. We let

~v′ = (v′1, . . . , v
′
n) denote the vector Ai−1Ai−2A~v. We will choose

bij = −
(
v′j
v′n

)
for each j from 1 to n − 1, and we will choose the aij values randomly. This precisely ensures
that ~v is in the kernel of AiAi−1Ai−2A. The remaining updates are chosen from the distribution
prescribed by the update algorithm. Since B knows all of the update matrices and secret keys,
it can easily produce the signatures and leakage requested by A.

We note that the i−1 and i updates are proper simulations of Gamei and GameAlt′′i . Hence,
when T ∈ Gp1p2p3 , B has properly simulated Gamei. When T ∈ Gp1p3 , B has properly simulated
GameAlt′′i . We must now argue that B can accurately detect the forgery type produced by A,
with only negligible error. We proceed similarly to the proof of Lemma 9.

When A produces a (correctly verifying) forgery (σ1, σ2) on m∗, B determines whether it is
a Type I or Type II forgery by testing:

e(σ1, X1X2) ?= e(σ2, (X1X2)αm
∗+β).

If this equality holds, B will guess that A has produced a Type I forgery. If this equality fails,
then B knows that A has produced a Type II forgery (note that this equality can only fail for
a forgery that properly verifies when there is some Gp2 part present in σ1 and/or σ2).

We again argue that A can only produce a Type II forgery which satisfies the equality above
with negligible probability. In order to produce a Type II forgery that B misclassifies as a Type

24

I forgery, A must produce Gp2 parts for σ1 and σ2 of the form gs2, gs(αm
∗+β)

2 , where g2 is a
generator of Gp2 and s is arbitrary. In other words, A must be able to implicitly determine the
value αm∗ + β modulo p2.

If T ∈ Gp1p3 , the initial secret key reveals no information about the values of α and β modulo
p2: so these remain information-theoretically hidden from A throughout the entire game. Thus,
A has only a negligible chance of determining αm∗+β modulo p2 correctly. When T ∈ Gp1p2p3 ,
we first note that the values of α and β modulo p2 are information-theoretically hidden from A
until Ai−2 is chosen (i.e. for the first i− 3 updates). This holds for the same reasons noted in
the proof of Lemma 9.

Now, for the i − 2 update, the choice of Ai−2 involves the vector ~t, giving the attacker an
opportunity to obtain some limited information about the values of α, β modulo p2 from the
leakage on Ai−2 and the current secret key. (We note that Ai−2 by itself is independent of
α, β, but when this is considered in combination with the current secret key, some information
about α, β modulo p2 is revealed.) This is in fact the attacker’s only opportunity to learn any
information about α, β modulo p2, since they will be canceled out of the secret key once the
update Ai−2 is applied (in particular, none of the given signatures reveal any information about
α, β modulo p2). We also note that all of the update matrices are chosen independently of α, β.

We again let X denote the random variable α||β modulo p2. This has min-entropy 2 log(p2).
The information the attacker learns about X can be expressed as F (X) for a single function F
which produces ` bits (` bits learned from a single leakage query). Thus, for ` ≤ log(p2) − 2δ,
by Lemma 3, the min-entropy of X conditioned on F (X) will be at least log(p2) + δ with
probability 1 − 2−δ (which is all but negligible probability). In this case, the probability of
an attacker determining αm∗ + β modulo p2 correctly for some m∗ is at most 2−δ, which is
negligible. To see this, note that the min-entropy of X conditioned on m∗, αm∗ + β is log(p2).
Thus, if an attacker seeing only F (X) could produce αm∗ + β,m∗ with probability > 2−δ, it
could predict the value of X with probability > 2−δ−log(p2), contradicting that X conditioned
on F (X) has min-entropy at least log(p2) + δ. This completes the proof that B will incur only
negligible error in determining the forgery type of A, and hence will achieve non-negligible
advantage against Assumption 3.

To show that GameAlt′′i is indistinguishable from GameAlt′i in A’s view, we will use the
following lemma from [12]:

Lemma 11. Let m, k, d ∈ N, m ≥ k ≥ 2d, and let p be a prime. Let X be a uniformly random
matrix in Zm×kp , let T be a uniformly random matrix of rank d in Zk×dp , and let Y be a uniformly
random matrix Zm×dp . Let F : Zm×dp →W be some function. Then,

dist ((X,F (X · T)), (X,F (Y))) ≤ ε,

as long as
|W | ≤ 4 · (1− 1/p) · pk−(2d−1) · ε2,

where dist(Z1, Z2) denotes the statistical distance between random variables Z1 and Z2.

For convenience, we also state the following immediate corollary [37]:

Corollary 12. Let m ∈ N, m ≥ 3, and let p be a prime. Let ~δ, ~τ be uniformly random vectors
in Zmp , and let ~τ ′ be chosen uniformly at random from the set of vectors which are orthogonal
to ~δ under the dot product modulo p. Let F : Zmp →W be some function. Then:

dist
(

(~δ, F (~τ)), (~δ, F (~τ ′))
)
≤ ε,

25

as long as
|W | ≤ 4 · (1− 1/p) · pm−2 · ε2

holds.

Proof. We apply Lemma 11 with d = 1 and k = m− 1. Y corresponds to ~τ , and X corresponds
to a basis for the orthogonal space of ~δ. Then ~τ ′ is distributed as X · T , where T is a uniformly
random vector in Zk×1

p . We note that X is determined by ~δ, and is properly distributed for use
in Lemma 11. We have:

dist
(

(~δ, F (~τ)), (~δ, F (~τ ′))
)
≤ dist ((X,F (X · T)), (X,F (Y))) ≤ ε.

We will also need the following linear algebraic lemma:

Lemma 13. Let p be a prime, and let C be a matrix of rank n− c over Zp, for c < n. We let
{~γ1, . . . , ~γc ∈ Znp} denote a basis for its left nullspace (i.e. the space of vectors orthogonal to the
columns of C). We let C1, . . . , Cn denote the rows of C, and we suppose that Cn has at least one

non-zero entry. Then, choosing a random vector ~t and setting b1, . . . , bn−1 as bj = −Cj ·~t
Cn·~t

yields
the same distribution (up to a negligible difference) as choosing a random values for b1, . . . , bn−1

modulo p up to the constraint that the vector (b1, . . . , bn−1,−1) is orthogonal to all of ~γ1, . . . , ~γc
(i.e. is in the left nullspace of C). (We ignore the negligible event that Cn · ~t = 0.)

Proof. We note that the vector (b1, . . . , bn−1,−1) is orthogonal to all of ~γ1, . . . , ~γc if and only if
it is in the column space of C. C~t = (C1 ·~t, . . . , Cn ·~t) is distributed as a random vector in the
column space of C. When Cn · ~t 6= 0 (which happens with all but negligible probability when ~t
is randomly chosen and Cn is non-zero), we can rescale this vector as(

−C1 · ~t
Cn · ~t

, . . . ,−Cn−1~t

Cn · ~t
,−1

)
.

Thus, choosing b1, . . . , bn−1 such that bj = −Cj ·~t
Cn·~t

yields the same distribution (excepting the

negligible event that Cn~t = 0) as choosing (b1, . . . , bn−1,−1) randomly up to the constraint that
it is orthogonal to all of ~γ1, . . . , ~γc.

Applying this lemma, we obtain the following properties of our update matrices modulo pi
for each prime pi dividing N :

Corollary 14. Let k ∈ N be polynomial in the security parameter λ and let p be a prime.
Suppose that A1, . . . , Ak are randomly chosen n × n update matrices (according to the dis-
tribution prescribed by the update algorithm). We consider these matrices modulo p. Let
~ak = (ak1, . . . , a

k
n−1) denote the values (mod p) used in the last row of Ak. Let ~ak+1,~bk+1 ∈ Zn−1

N

denote the entries (mod p) used to form Ak+1. Then, with all but negligible probability over the
choice of A1, . . . , Ak, we have that choosing Ak+1 modulo p so that Ak+1 · · ·A1 includes a new
random vector ~t in its kernel modulo p is equivalent (up to a negligible difference) to choosing
~ak+1 uniformly at random and ~bk+1 at random up to the constraint that ~bk+1 · ~ak = −1 modulo
p.

Proof. We define the matrix A by A = Ak · · ·A1. With all but negligible probability, A is a
rank n− 1 matrix. To see this, note that rank Ai · · ·A1 is less than rank Ai−1 · · ·A1 for each i
if an only if the (1-dimensional) kernel of Ai is contained in the column space of Ai−1 · · ·A1. If

26

we let ~ai, ~bi ∈ Zn−1
p denote the values used in the last row and column of Ai respectively, then

the kernel of Ai is spanned by the length n vector formed by concatenating ~bi with a −1 as the
nth entry. This is a random 1-dimensional space when ~bi is chosen uniformly at random, and so
the probability that it will be contained in the column space of Ai−1 · · ·A1 is negligible. Since
this holds for each i and we assume that k is polynomial, we may conclude that A is a rank
n− 1 matrix with all but negligible probability.

Because the rank of A is n− 1, the column space of A is equal to the column space of Ak.
This is an (n−1)-dimensional space, consisting of all vectors which are orthogonal to the vector
~γ :=

(
ak1, . . . , a

k
n−1,−1

)
. Now, we consider choosing Ak+1 so that its rows are all orthogonal

to A~t for a random vector ~t. We let ~t′ = (t′1, . . . , t
′
n) denote the vector A~t. Then, (ignoring

the negligible probability event that t′n = 0), choosing Ak+1 so that Ak+1
~t′ is the all zeros

vector is equivalent to choosing ~ak+1 uniformly at random and setting the entries of ~bk+1 as

bk+1
j = − t′j

t′n
. By Lemma 13, this is equivalent to choosing ~bk+1 randomly up to the constraint

that ~bk+1 · ~ak = −1 modulo p.

Corollary 15. Let k ∈ N be polynomial in the security parameter λ, and let p be a prime.
Suppose that A1, . . . , Ak−2 are randomly chosen n × n update matrices (according to the dis-
tribution prescribed by the update algorithm). We consider these matrices modulo p. Let
~ai = (ai1, . . . , a

i
n−1) denote the values modulo p used in the last row of Ai for each i, and

let ~bi denote the values modulo p used in the last column. We let A = Ak−2 · · ·A1. We suppose
that Ak−1 is chosen modulo p so that Ak−1A~t is the all zeros vector for a randomly chosen vec-
tor ~t modulo p, and Ak is chosen so that AkAk−1A~v is the all zeros vector for a new randomly
chosen vector ~v modulo p. Then, with all but negligible probability, we have that choosing Ak+1

modulo p so that Ak+1AkAk−1A~w is the all zeros vector for a new randomly chosen vector ~w
modulo p is equivalent (up to a negligible difference) to choosing ~ak+1 uniformly at random and
choosing ~bk+1 randomly up to following constraints:

1. ~bk+1 · ~ak−2 = 0 modulo p,

2. ~bk+1 · ~ak−1 = 0 modulo p,

3. ~bk+1 · ~ak = −1 modulo p.

Proof. With all but negligible probability, A is a rank n − 1 matrix with left nullspace equal
to the span of the vector

(
ak−2

1 , . . . , ak−2
n−1,−1

)
. Now, Ak−1A is a rank n − 2 matrix with a

2-dimensional left nullspace. We can alternatively think of the left nullspace as the kernel of
(Ak−1A)T = ATATk−1, where AT denotes the transpose of A. It is clear that this kernel contains

the kernel of ATk−1, which is equal to the span of the vector
(
ak−1

1 , . . . , ak−1
n−1,−1

)
. It also

contains the vector
(
ak−2, . . . , ak−2

n−1, 0
)

. To see this, note that ~bk−1 · ~ak = −1 modulo p, so

ATk−1 ·
(
ak−2, . . . , ak−2

n−1, 0
)T

=
(
ak−2

1 , . . . , ak−2
n−1,−1

)
,

which is in the kernel ofAT . With all but negligible probability, these vectors
(
ak−1

1 , . . . , ak−1
n−1,−1

)
and

(
ak−2, . . . , ak−2

n−1, 0
)

are linearly independent and form a basis for the kernel of (Ak−1A)T .

Now, by applying Lemma 13 to C := Ak−1A and~bk, we know that~bk is distributed randomly
up to the constraints that ~bk · ~ak−1 = −1 modulo p and ~bk · ~ak−2 = 0 modulo p.

27

We now consider the kernel of (AkAk−1A)T = ATATk−1A
T
k , which is a 3-dimensional space.

It contains the kernel of ATk , which is equal to the span of
(
ak1, . . . , a

k
n−1,−1

)
. We next observe

that the vector
(
ak−2

1 , . . . , ak−2
n−1, 0

)
is in the kernel of ATATk−1A

T
k . This holds because:

ATk ·
(
ak−1

1 , . . . , ak−1
n−1, 0

)T
=
(
ak−1

1 , . . . , ak−1
n−1, 0

)
,

which belongs to the kernel of ATATk−1. (Recall that ~ak−1 ·~bk = 0 modulo p.) We also observe

that the vector
(
ak−1

1 , . . . , ak−1
n−1, 0

)
is in the kernel of ATATk−1A

T
k . This holds because:

ATk ·
(
ak−1

1 , . . . , ak−1
n−1, 0

)T
=
(
ak−1

1 , . . . , ak−1
n−1,−1

)
,

since ~bk · ~ak−1 = −1 modulo p, and this is in the kernel of ATATk−1.
We now apply Lemma 13 again, this time with C := AkAk−1A. We conclude that choosing

Ak+1 so that the kernel of Ak+1AkAk−1A includes a new random vector is equivalent (up
to negligible difference) to choosing ~ak+1 uniformly at random and choosing ~bk+1 up to the
constraints ~bk+1 · ~ak = −1, ~bk+1 · ~ak−1 = 0, and ~bk+1 · ~ak−2 = 0 modulo p.

To prove that GameAlt′′i and GameAlt′i are indistinguishable, we will use a hybrid argument
over the four primes dividing N , applying Corollary 12 and Corollary 14 for each prime. To do
this, we must define three additional games:

GameAlt′i,1 This game is like GameAlt′i, except that the i−2 update matrix is chosen so that
there is a new random vector in the kernel of the matrix product modulo p1. Essentially, this
means that the i− 2 update matrix is distributed as in GameAlt′′i modulo p1 and is distributed
as in GameAlt′i modulo the other primes.

GameAlt′i,2 This game is like GameAlt′i,1, except that the i− 2 update matrix is now chosen
so that there is a new random vector in the kernel of the matrix product modulo p2 as well.
This means that the i − 2 update matrix is distributed as in GameAlt′′i modulo p1, p2 and is
distributed as in GameAlt′i modulo p3, p4.

GameAlt′i,3 This game is like GameAlt′i,2, except that the i− 2 update matrix is now chosen
so that there is a new random vector in the kernel of the matrix product modulo p3 as well.
This means that the i− 2 update matrix is distributed as in GameAlt′′i modulo p1, p2, p3 and is
distributed as in GameAlt′i modulo p4.

For convenience of notation, we can also let GameAlt′i,0 be another name for GameAlt′i and
let GameAlt′i,4 be another name for GameAlt′′i . We then prove that GameAlt′i and GameAlt′′i
are indistinguishable by proving the following lemma:

Lemma 16. For ` ≤ (n− 8) log(pj+1)− 2δ for δ such that 2−δ is negligible, no PPT attacker
A can distinguish between GameAlt′i,j and GameAlt′i,j+1 with non-negligible advantage, for each
i from 3 to q + 2 and each j from 0 to 3.

Proof. For i = 3, this statement holds trivially because GameAlt′′3 and GameAlt′3 are exactly the
same. We thus assume i ≥ 4. We suppose there exists a PPT attacker A which can distinguish
between GameAlt′i,j and GameAlt′i,j+1 with non-negligible advantage. We will create a PPT al-
gorithm B which distinguishes between the distributions (~δ, F (~τ)) and (~δ, F (~τ ′)) from Corollary
12 with non-negligible probability. This will be a contradiction, since ε will be negligible.

28

B first chooses a bilinear group G of order N = p1p2p3p4, creates VK as specified by the
KeyGen algorithm, and creates SK0 as specified except that the Gp2 parts are distributed
according to DAlt. More precisely, the key is set as:

~S0 = g~rg~c2g
~x
3 , ~U0 = u~rg

~d
2g
~y
3 ,

~H0 = h~rgf1~c+f2
~d

2 g~z3 ,

where g, u, h are random elements of Gp1 , g2 is a random element of Gp2 , g3 is a random element
of Gp3 , ~r is a random vector in Znp1 , ~c, ~d are random vectors in Znp2 , f1, f2 are random values in
Zp2 , and ~x, ~y, ~z are random vectors in Zp3 . We note that the factors p1, p2, p3, p4 are known to
B, as are all of the exponents (~r, f1, f2,~c, ~d, ~x, ~y, ~z).
B gives the verification key VK to A. For the first i − 4 signature requests made by A, B

responds by running the signing algorithm and choosing the update matrix according to the
prescribed distribution. We let A denote the product Ai−4 · · ·A1 (if i = 4, then A is the identity
matrix).

Now, B receives the i−3 signature request from A, along with its associated leakage function
fi−3. The current secret key is SKi−4. It chooses the values bi−3

1 , . . . , bi−3
n−1 for Ai−3 uniformly at

random and chooses the values ai−3
1 , . . . , ai−3

n−1 uniformly at random modulo pk for each k 6= j+1.
(At this point, the only remaining variables are the values of ai−3

1 , . . . , ai−3
n−1 modulo pj+1.) We

let f̃i−3 denote the function of the values ai−3
1 , . . . , ai−3

n−1 modulo pj+1 for Ai−3 obtained by
considering fi−3(Ai−3,SKi−4) for these fixed values of bi−3

1 , . . . , bi−3
n−1 modulo N , ai−3

1 , . . . , ai−3
n−1

modulo pk’s for k 6= j + 1, and SKi−4.
B then receives a sample

(
~δ, F (~γ)

)
as in the corollary, where p = pj+1, m := n − 1, and

F is defined as follows. First, B chooses ~t1,~t2,~t3 to be three nonzero vectors which include the
nonzero exponent vectors of the current secret key modulo p in the Gp subgroup (For example,
if p = p3, the exponent vectors are A~x, A~y, and A~z. If p = p4, the exponent vectors are all
zeros, so ~t1, ~t2, ~t3 are chosen to be arbitrary nonzero vectors.) F : Zn−1

p → {0, 1}` × Z5
p is

defined by:
F (~γ) :=

(
f̃i−3(~γ), ~γ · ~t1, ~γ · ~t2, ~γ · ~t3, ~γ · (A~c), ~γ · (A~d)

)
.

(Note that when p = p3, the three vectors ~t1,~t2,~t3, A~c,A~d are all linearly independent, so it
is necessary to give out all of these dot products with ~γ to enable B to compute SKi−3 and
complete the subsequent steps. For the other primes, linear dependencies would allow us to
give out fewer dot products, but we ignore this simplification.) In the notation of the corollary,
this means that |W | = 2` · p5. B’s task is to distinguish whether ~γ satisfies ~γ · ~δ = 0 modulo p
or not.
B will implicitly set the values ai−3

1 , . . . , ai−3
n−1 modulo pj+1 of the matrix Ai−3 to be equal

to γ1, . . . , γn−1. It provides A with fi−3(Ai−3,SKi−4) = f̃i−3(~γ). It can compute SKi−3 (and
hence also the requested signature) by using its knowledge of SKi−4, the values bi−3

1 , . . . , bi−3
n−1

for Ai−3, the value ai−3
1 , . . . , ai−3

n−1 modulo pk for k 6= j + 1, and the values ~γ · ~t1, ~γ · ~t2, ~γ · ~t3
modulo pj+1. It is important here to note that this is all the information about ~γ that is needed
to compute SKi−3, because of how the ai−3

1 , . . . , ai−3
n−1 values appear in the matrix Ai−3. For this

reason, B will not fully know Ai−3, but it will know SKi−3 (allowing it to continue producing
signatures for the rest of the simulation because it will fully know all of the subsequent update
matrices).

Next, B receives the i−2 signature request from A, along with its associated leakage function
fi−2. B will choose the update matrix Ai−2 as follows. With all but negligible probability,
~γ ·~t1 6= 0 modulo p (recall that ~t1 was chosen to be nonzero), and since B knows ~t1 and this dot
product, it can multiply ~t1 by a suitable constant modulo p to obtain a vector ~b′ ∈ Zn−1

p such

29

that ~γ · ~b′ = −1 modulo p. It will then set the entries bi−2
1 , . . . , bi−2

n−1 for Ai−2 as bi−2
j = δj + b′j

modulo p, where δj denotes the jth entry of ~δ and b′j denotes the jth entry of ~b′. Now, if ~δ,~γ
are both uniformly random modulo p, this means that ~bi−2 := (bi−2

1 , . . . , bi−2
n−1) is also uniformly

random. If ~δ,~γ are random up to the constraint that ~δ · ~γ = 0, then ~bi−2 is distributed as a
random vector up to the constraint that ~bi−2 · ~γ = −1 modulo p. By Corollary 14, this means
that the i − 2 update will be properly distributed as in GameAlt′′i modulo p = pj+1 when
~δ · ~γ = 0, and will be properly distributed as in GameAlt′i modulo p when ~δ,~γ are uniformly
random. For pk’s where k < j + 1, B will set the values of bi−2

1 , . . . , bi−2
n−1 modulo pk to satisfy

~bi−2 · ~ai−3 = −1 modulo pk, where ~ai−3 denotes the entries in the final row of Ai−3 modulo pk.
For k > j + 1, it will choose the values of bi−2

1 , . . . , bi−2
n−1 randomly modulo pk. It chooses the

entries for the final row of Ai−2 randomly.
For the i − 1 signature request, B will choose a random vector ~w from the span of ~c, ~d.

Since B knows the values ~γ · (A~c) and ~γ · (A~d) modulo p, it can compute Ai−3A~w modulo p.
Since it knows Ai−2, it can then compute Ai−2Ai−3A~w modulo p. (It can also compute this
modulo the other primes, since it knows all the entries of Ai−3 modulo the primes not equal
to pj+1.) It chooses the values ai−1

1 , . . . , ai−1
n−1 modulo N for Ai−1 randomly, and chooses the

values bi−1
1 , . . . , bi−1

n−1 modulo N so that Ai−2Ai−3A~w is in the kernel of Ai−1 modulo N .
We let ~v denote a random vector such that the span of ~v, ~w is equal to the span of ~c, ~d. B

chooses the ith update matrix Ai randomly up to the constraint that Ai−1Ai−2Ai−3A~v is in the
kernel of Ai modulo N . This cancels out all of the Gp2 parts from the secret key.

For the remaining updates, B chooses the update matrix according to the distribution speci-
fied in the update algorithm. If ~δ ·~γ = 0 modulo p, then B has properly simulated GameAlt′i,j+1.
If ~δ ·~γ 6= 0, then B has properly simulated GameAlt′i,j . Hence, B can use the output of A to dis-
tinguish these two distributions with non-negligible probability. This will contradict Corollary
12 as long as ε is negligible.

To apply the corollary, we need:

|W | = 2`p5 ≤ 4(1− 1/p)pn−3ε2,

so it suffices to have ` such that

` ≤ (n− 8) log(pj+1) + 2 log(ε)

for some negligible ε. For simplicity, we define δ = − log(ε). We then obtain the desired result
as long as

` ≤ (n− 8) log(pj+1)− 2δ,

for any δ such that 2−δ is negligible.

As an immediate consequence of Lemma 16, we conclude:

Lemma 17. When ` ≤ (n − 8) log(pj) − 2δ for all pj dividing N and for δ such that 2−δ

is negligible, no PPT attacker A can distinguish between GameAlt′′i and GameAlt′i with non-
negligible advantage, for each i from 3 to q + 2.

We are now left with the task of showing that a PPT attacker A cannot distinguish between
GameAlt′i and GameAlti. We prove:

Lemma 18. When ` ≤ (n − 8) log(pj) − 2δ for all pj dividing N and for δ such that 2−δ

is negligible, no PPT attacker A can distinguish between GameAlti and GameAlt′i with non-
negligible advantage, for each i from 3 to q + 2.

30

The proof of this lemma is bit long and intricate, but it essentially uses the same techniques
as the proof of Lemma 17, combined with Lemma 11 and Corollary 15. The proof can be found
in Appendix A.

5.6 Transitions from GameAlt2 to GameAlt1 and to GameAlt0

We also prove:

Lemma 19. Under Assumption 3, for any polynomial time attacker A, the difference in A’s
probability of producing a Type II forgery between GameAlt2 and GameAlt1 is negligible, as long
as ` ≤ 1

2(log(p2)− 2δ), where δ > 0 is a parameter chosen so that 2−δ is negligible.

Lemma 20. Under Assumption 3, for any polynomial time attacker A, the difference in A’s
probability of producing a Type II forgery between GameAlt1 and GameAlt0 is negligible, as long
as ` ≤ log(p2)− 2δ, where δ > 0 is a parameter chosen so that 2−δ is negligible.

The proofs of these lemmas are similar to the proof of Lemma 9, and can be found in
Appendices B and C.

Putting together the results of the previous subsections, we obtain Theorem 4.

6 Discussion

6.1 Our Leakage Parameter

As stated in our security theorems, the leakage ` we can allow is equal to the minimum of
1
3(log(p2) − 2δ) and (n − 8) log(pj) − 2δ for all pj dividing N , where δ is chosen so that 2−δ

is negligible. The bound 1
3(log(p2) − 2δ) arises from our need to hide information about the

secret key itself, while the bound (n− 8) log(pj)− 2δ arises from our need to hide information
about the update matrices. If we choose our primes p1, . . . , p4 so that log(p1), log(p3), log(p4)
are approximately equal to some parameter κ, log(p2) is approximately equal to 3κ, n = 9,
and δ is much smaller than κ (say equal to εκ for a small constant ε), then our parameter
` is approximately equal to κ. If the number of bits representing a group element of G is
approximately log(N) = 6κ, then our secret key has length 3n log(N) = 162κ bits, and the
variables in our update matrices can be represented with 2(n − 1) log(N) = 96κ bits. Thus,
the amount of leakage allowed per update/signature is roughly a 1

162 fraction of the secret key
length, a 1

96 fraction of the update randomness, and a 1
258 fraction of the total length of the

secret key and update randomness. This is a small constant, but it is still a positive constant
independent of the security parameter, and we view this as an important qualitative (as well as
a quantitative) step forward on the path to optimally leakage-resilient schemes. One might try
to modestly improve this constant by finding a more optimized instantiation of our techniques.

6.2 Generalizing Our Approach

Our signature scheme can be viewed as a particular instantiation of a more general approach.
In essence, the key generation algorithm samples some random bits R which are used to define
a vector space V p

R ⊆ Zmp for each prime p dividing N . A secret key which is compatible with the
fixed public key corresponds to a collection of m group elements in G viewed as a base element
raised to a vector, where the vector belongs to V p

R for each prime p dividing N . The update
matrices which are applied in the exponent are chosen from a class of linear transformations that
map V p

R into itself for each p. The proof of security generally proceeds by canceling one of these
subspaces in the key at progressively earlier stages in the security game until it can be purged all

31

together. We then must argue three things: 1) in the original game, the attacker cannot produce
a forgery without this subspace, 2) in the final game, the attacker cannot produce a forgery with
this subspace, and 3) the attacker cannot change its forgery type with non-negligible probability
as we go through the sequence of games.

In the specific scheme we present, m = 3n, and the spaces V p
R can be described as follows.

We let ei denote the vector in Zmp with a 1 in the ith coordinate and 0’s elsewhere. We consider
the secret key as vector of 3n group elements where the elements of ~S0 are the first n entries,
the elements of ~U0 are the second n entries, and the elements of ~H0 are the last n entries. Then,
V p1
R is the n dimensional subspace spanned by the vectors ei + αei+n + βei+2n for 1 ≤ i ≤ n.
V p2
R and V p3

R are both 3n dimensional spaces (i.e. equal to Zmp2 and Zmp3 respectively), and V p4
R

contains only the all zeros vector.
One might try to execute our general approach with fewer prime factors for N . Previous

results employing the dual system encryption methodology with three prime factors or in prime
order groups ([36, 38, 46] for example) suggest that fewer primes would be sufficient. We chose
to work with four prime factors for ease of exposition. In particular, one could imagine using
a prime order group and specifying several subspaces VR which are orthogonal to each other.
(This is similar to the approach used by Freeman [25] for obtaining analogs in prime order
bilinear groups of some previously proposed constructions in composite order bilinear groups.)
However, we do not expect that natural analogs of our system obtained in such ways would
produce a substantially improved constant for the leakage fraction.

6.3 Identity-Based Encryption and Other Advanced Functionalities

We might expect our techniques to extend naturally to the settings of Identity-Based Encryp-
tion, Hierarchical Identity-Based Encryption, Attribute-Based Encryption, and other advanced
functionalities. One can view the work of [37] as heuristic evidence for this, since they provide
leakage-resilient IBE/HIBE and ABE systems from dual system encryption techniques for the
setting where updates are assumed to be leak-free.

6.4 Open Problems

There are two very interesting problems for signatures in the continual memory leakage model
which remain open. First, while our scheme allows a constant fraction of the secret state to leak
between and during updates, this fraction is extremely low (as noted above). Leaking a much
better fraction (ideally 1 − o(1)) is a worthy goal, and will most likely require significant new
ideas. We note that a fraction of 1−o(1) for leakage between updates has been obtained in several
previous works (e.g. [10, 12, 39] in the continual memory leakage model). Secondly, allowing
any super-logarithmic amount of leakage during the initial key generation process remains an
open problem.

7 Acknowledgement

We thank Yannis Rouselakis for helpful comments.

References

[1] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryp-
tography against memory attacks. In TCC, pages 474–495, 2009.

32

[2] J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish, and D. Wichs. Public-key encryption
in the bounded-retrieval model. In EUROCRYPT, pages 113–134, 2010.

[3] J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in the
bounded-retrieval model. In CRYPTO, pages 36–54, 2009.

[4] M. Bellare, B. Waters, and S. Yilek. Identity-based encryption secure under selective
opening attack. Cryptology ePrint Archive, Report 2010/159, 2010. http://eprint.
iacr.org/.

[5] E. Biham, Y. Carmeli, and A. Shamir. Bug attacks. In CRYPTO, pages 221–240, 2008.

[6] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems. In
CRYPTO, pages 513–525, 1997.

[7] D. Boneh and D. Brumley. Remote timing attacks are practical. Computer Networks,
48(5):701–716, 2005.

[8] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking cryptographic
protocols for faults. In EUROCRYPT, pages 37–51, 1997.

[9] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. In TCC,
pages 325–341, 2005.

[10] E. Boyle, G. Segev, and D. Wichs. Fully leakage-resilient signatures. Cryptology ePrint
Archive, Report 2010/488, 2010.

[11] Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryption under
subgroup indistinguishability (or: Quadratic residuosity strikes back). In CRYPTO, 2010.

[12] Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Cryptography resilient to
continual memory leakage. In FOCS, 2010.

[13] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-resilient functions
and all-or-nothing transforms. In EUROCRYPT, pages 453–469, 2000.

[14] D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. J. Lipton, and S. Walfish. Intrusion-resilient
key exchange in the bounded retrieval model. In TCC, pages 479–498, 2007.

[15] S. Chow, Y. Dodis, Y. Rouselakis, and B. Waters. Practical leakage-resilient identity-based
encryption from simple assumptions. In ACM Conference on Computer and Communica-
tions Security, 2010.

[16] D. Di Crescenzo, R. J. Lipton, and S. Walfish. Perfectly secure password protocols in the
bounded retrieval model. In TCC, pages 225–244, 2006.

[17] Y. Dodis, K. Haralambiev, A. Lopez-Alt, and D. Wichs. Cryptography against continuous
memory attacks. In FOCS, 2010.

[18] Y. Dodis, Y. Kalai, and S. Lovett. On cryptography with auxiliary input. In STOC, pages
621–630, 2009.

[19] Y. Dodis, A. Sahai, and A. Smith. On perfect and adaptive security in exposure-resilient
cryptography. In EUROCRYPT, pages 301–324, 2001.

33

[20] S. Dziembowski. Intrusion-resilience via the bounded-storage model. In TCC, pages 207–
224, 2006.

[21] S. Dziembowski and K. Pietrzak. Intrusion-resilient secret sharing. In FOCS, pages 227–
237, 2007.

[22] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In FOCS, pages 293–302,
2008.

[23] S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum. Leakage-resilient signatures. In TCC,
pages 343–360, 2010.

[24] S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting circuits from
leakage: the computationally-bounded and noisy cases. In EUROCRYPT, pages 135–156,
2010.

[25] D. M. Freeman. Converting pairing-based cryptosystems from composite-order groups to
prime-order groups. In EUROCRYPT, pages 44–61, 2010.

[26] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results. In
CHES, pages 251–261, 2001.

[27] M. Gerbush, A. Lewko, and B. Waters. Dual form signatures. Manuscript, 2010. Available
at http://www.cs.utexas.edu/~alewko/DualForm.pdf.

[28] S. Goldwasser and G. Rothblum. How to play mental solitaire under continuous side-
channels: A completeness theorem using secure hardware. In CRYPTO, 2010.

[29] A. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul, J. Calandrino, A. Feldman,
J. Applebaum, and E. Felten. Lest we remember: Cold boot attacks on encryption keys.
In USENIX Security Symposium, pages 45–60, 2008.

[30] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing
attacks. In CRYPTO, pages 463–481, 2003.

[31] A. Juma and Y. Vahlis. On protecting cryptographic keys against side-channel attacks. In
CRYPTO, 2010.

[32] J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing sources and exposure-
resilient cryptography. In FOCS, pages 92–101, 2003.

[33] J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage resilience. In
ASIACRYPT, pages 703–720, 2009.

[34] P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In CRYPTO, pages 104–113, 1996.

[35] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In CRYPTO, pages 388–397,
1999.

[36] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional
encryption: Attribute-based encryption and (hierarchical) inner product encryption. In
EUROCRYPT, pages 62–91, 2010.

[37] A. Lewko, Y. Rouselakis, and B. Waters. Achieving leakage resilience through dual system
encryption. Cryptology ePrint Archive, Report 2010/438, 2010.

34

[38] A. Lewko and B. Waters. New techniques for dual system encryption and fully secure hibe
with short ciphertexts. In TCC, pages 455–479, 2010.

[39] T. Malkin, I. Teranishiy, Y. Vahlis, and M. Yung. Signatures resilient to continual leakage
on memory and computation. Cryptology ePrint Archive, Report 2010/522, 2010.

[40] S. Micali and L. Reyzin. Physically observable cryptography. In TCC, pages 278–296,
2004.

[41] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO,
pages 18–35, 2009.

[42] P. Q. Nguyen and I. Shparlinski. The insecurity of the digital signature algorithm with
partially known nonces. J. Cryptology, 15(3):151–176, 2002.

[43] C. Petit, F.X. Standaert, O. Pereira, T. Malkin, and M. Yung. A block cipher based pseudo
random number generator secure against side-channel key recovery. In ASIACCS, pages
56–65, 2008.

[44] K. Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT, pages 462–482, 2009.

[45] J. Quisquater and D. Samyde. Electromagnetic analysis (ema): Measures and counter-
measures for smart cards. In E-smart, pages 200–210, 2001.

[46] B. Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple
assumptions. In CRYPTO, pages 619–636, 2009.

A Proof of Lemma 18

Again, we will use a hybrid argument over the primes dividing N , so we begin by defining the
following additional games.

GameAlti,1 This game is like GameAlt′i, except that the i+1 update matrix is chosen so that
there is a new random vector in the kernel of the matrix product modulo p1. Essentially, this
means that the i+ 1 update matrix is distributed as in GameAlti modulo p1 and is distributed
as in GameAlt′i modulo the other primes.

GameAlti,2 This game is like GameAlti,1, except that the i+ 1 update matrix is now chosen
so that there is a new random vector in the kernel of the matrix product modulo p2 as well.
This means that the i + 2 update matrix is distributed as in GameAlti modulo p1, p2 and is
distributed as in GameAlt′i modulo p3, p4.

GameAlti,3 This game is like GameAlti,2, except that the i+ 1 update matrix is now chosen
so that there is a new random vector in the kernel of the matrix product modulo p3 as well.
This means that the i+ 1 update matrix is distributed as in GameAlti modulo p1, p2, p3 and is
distributed as in GameAlt′i modulo p4.

For convenience of notation, we can also let GameAlti,0 be another name for GameAlt′i and
let GameAlti,4 be another name for GameAlti. We will prove that GameAlt′i and GameAlti are
indistinguishable by proving the following lemma:

35

Lemma 21. For ` ≤ (n− 8) log(pj+1)− 2δ for δ such that 2−δ is negligible, no PPT attacker
A can distinguish between GameAlti,j and GameAlti,j+1 with non-negligible advantage, for each
i from 3 to q + 2 and each j from 0 to 3.

As a consequence of Corollary 15, we know that choosing the i + 1 update matrix so that
there is a new random vector in the kernel of the matrix product modulo a prime p is equivalent
to choosing the vector ~bi+1 satisfying three dot product conditions modulo p. Namely,

1. ~bi+1 · ~ai−2 = 0 modulo p,

2. ~bi+1 · ~ai−1 = 0 modulo p

3. ~bi+1 · ~ai = −1 modulo p.

We could prove Lemma 21 directly by an application of Lemma 11 with d = 3, but setting
such a high value of d would make our leakage parameter considerably worse (note the depen-
dence of the exponent on d in the lemma). Instead, we will obtain a better leakage parameter
by proving this lemma in a few steps. Essentially, we will employ a hybrid argument over the
three conditions enumerated above. We are able to do this because the attacker can only obtain
leakage on each of ~ai−2, ~ai−1, and ~ai separately and in the proper order. We introduce two
additional games between each GameAlti,j and GameAlti,j+1:

GameAlti,j,1 This game is like GameAlti,j , except that the i + 1 update matrix is chosen
modulo pj+1 so that its vector ~bi+1 is a random vector satisfying condition 1. above.

GameAlti,j,2 This game is like GameAlti,j,1, except that the i + 1 update matrix is chosen
modulo pj+1 so that its vector~bi+1 is now a random vector satisfying conditions 1. and 2. above.

We now prove:

Lemma 22. For ` ≤ (n− 8) log(pj+1)− 2δ for δ such that 2−δ is negligible, no PPT attacker
A can distinguish between GameAlti,j and GameAlti,j,1 with non-negligible advantage, for each
i from 3 to q + 2 and each j from 0 to 3.

Proof. We suppose there exists a PPT attacker A which can distinguish between GameAlti,j
and GameAlti,j,1 with non-negligible advantage. We will create a PPT algorithm B which
distinguishes between the distributions (~δ, F (~τ)) and (~δ, F (~τ ′)) from Corollary 12 with non-
negligible probability. This will contradict the corollary, since ε will be negligible.
B first chooses a bilinear group G of order N = p1p2p3p4, creates VK as specified by the

KeyGen algorithm, and creates SK0 as specified except that the Gp2 parts are distributed
according to DAlt. More precisely, the key is set as:

~S0 = g~rg~c2g
~x
3 ,

~U0 = u~rg
~d
2g
~y
3 ,

~H0 = h~rgf1~c+f2
~d

2 g~z3 ,

where g, u, h are random elements of Gp1 , g2 is a random element of Gp2 , g3 is a random element
of Gp3 , ~r is a random vector in Znp1 , ~c, ~d are random vectors in Znp2 , f1, f2 are random values in
Zp2 , and ~x, ~y, ~z are random vectors in Zp3 . We note that the factors p1, p2, p3, p4 are known to
B, as are all of the exponents (~r, f1, f2,~c, ~d, ~x, ~y, ~z).
B gives the verification key VK to A. For the first i − 3 signature requests made by A, B

responds by running the signing algorithm and choosing the update matrix according to the
prescribed distribution. We let A denote the product Ai−3 · · ·A1 (if i = 3, then A is the identity
matrix). The current secret key is SKi−3.

36

Next, B receives the i − 2 signature request from A, along with the associated leakage
function fi−2 to be applied to Ai−2 and SKi−3. B chooses the values bi−2

1 , . . . , bi−2
n−1 randomly

modulo N , and chooses the values ai−2
1 , . . . , ai−2

n−1 randomly modulo the prime factors of N not
equal to pj+1. The only remaining variables in Ai−2 are the values of ai−2

1 , . . . , ai−2
n−1 modulo

pj+1. We let f̃i−2 be the function of these variables obtained by considering fi−2(SKi−3, Ai−2)
with all the other values fixed.
B then receives a sample

(
~δ, F (~γ)

)
as in Corollary 12, where p = pj+1, m := n−1, and F is

defined as follows. We let ~t1,~t2,~t3 denote the exponent vectors of the current secret key modulo p
in the Gp subgroup (For example, if p = p3, these are A~x, A~y, and A~z.) F : Zn−1

p → {0, 1}`×Z5
p

is defined by:
F (~γ) :=

(
f̃i−2(~γ), ~γ · ~t1, ~γ · ~t2, ~γ · ~t3, ~γ · (A · ~c), ~γ · (A · ~d)

)
.

(Again, some of these may be redundant for particular values of j + 1, but we ignore this.) In
the notation of the corollary, this means that |W | = 2` · p5. B’s task is to distinguish whether
~γ is a random vector from the orthogonal space to ~δ or a uniformly random vector modulo p.
B will implicitly set the values ai−2

1 , . . . , ai−2
n−1 modulo pj+1 of the matrix Ai−2 to be equal

to γ1, . . . , γn−1. It then provides A with fi−2(Ai−2, SKi−3) = f̃i−2(~γ). It can compute SKi−2

by using its knowledge of SKi−3, the values bi−2
1 , . . . , bi−2

n−1 for Ai−2, the values ai−2
1 , . . . , ai−2

n−1

modulo pk for k 6= j+1, and the values ~γ ·~t1, ~γ ·~t2, ~γ ·~t3 modulo pj+1. It is important here to note
that this is all the information about ~γ that is needed to compute SKi−2, because of how the
ai−2

1 , . . . , ai−2
n−1 values appear in the matrix Ai−2. We note that B will not fully know Ai−2, but it

will know SKi−2 (allowing it to produce the requested signature here and to continue producing
signatures for the rest of the simulation because it will fully know all of the subsequent update
matrices).

Next, B receives the i−1 signature request fromA, along with the associated leakage function
fi−1. B chooses the values ai−1

1 , . . . , ai−1
n−1 uniformly at random modulo N . B then chooses a

random vector ~w from the span of ~c, ~d. Since B knows the values ~γ · (A~c) and ~γ · (A~d) modulo
p, it can compute Ai−2A~w modulo p. (It can also compute this modulo the other primes, since
it knows all the entries of Ai−2 modulo the primes not equal to pj+1.) It chooses the values
bi−1
1 , . . . , bi−1

n−1 modulo N so that Ai−2A~w is in the kernel of Ai−1 modulo N . In other words, it
sets:

bi−1
j = −

w′j
w′n

,

where ~w′ denotes the vector Ai−2A~w. (Note that w′n is invertible modulo N with all but
negligible probability.) Since B knows the matrix Ai−1 and the secret key SKi−2, it can easily
provide A with the leakage fi−1(Ai−1, SKi−2) as well as the requested signature.

We let ~v denote a random vector such that the span of ~v, ~w is equal to the span of ~c, ~d. B
chooses the ith update matrix Ai so that Ai−1Ai−2A~v is in the kernel of Ai modulo N . This
cancels out all of the Gp2 parts from the secret key. B can compute Ai−1Ai−2A~v modulo N

because it knows the values ~γ · (A~c) and ~γ · (A~d) modulo p as well as the matrix Ai−1. Now,
Ai is fully known to B, so it can easily answer the leakage query here.

To choose the update matrix Ai+1, B chooses ai+1
1 , . . . , ai+1

n−1 uniformly at random modulo
N , and chooses the values bi+1

1 , . . . , bi+1
n−1 modulo prime factors of N not equal to pj+1 such

that ~bi+1 satisfies the dot product conditions 1., 2., and 3. modulo primes pk for k ≤ j, and is
random for primes pk for k > j + 1. Modulo pj+1, B sets ~bi+1 equal to ~δ.

For the remaining updates, B chooses the update matrices according to the distribution
specified in the update algorithm. If ~γ · ~δ = 0 modulo p, then B has properly simulated
GameAlti,j,1. If ~γ and ~δ are independently random, then B has properly simulated GameAlti,j .

37

Hence, B can use the output of A to distinguish these two distributions with non-negligible
probability. This will contradict Corollary 12 as long as ε is negligible.

To apply the corollary, we need:

|W | = 2`p5 ≤ 4(1− 1/p)pn−3ε2,

so it suffices to have ` such that

` ≤ (n− 8) log(pj+1) + 2 log(ε)

for some negligible ε. For simplicity, we define δ = − log(ε). We then obtain the desired result
as long as

` ≤ (n− 8) log(pj+1)− 2δ,

for any δ such that 2−δ is negligible.

Lemma 23. For ` ≤ (n−8) log(pj+1)−2δ for δ such that 2−δ is negligible, no PPT attacker A
can distinguish between GameAlti,j,1 and GameAlti,j,2 with non-negligible advantage, for each i
from 3 to q + 2 and each j from 0 to 3.

Proof. We suppose there exists a PPT attacker A which can distinguish between GameAlti,j,1
and GameAlti,j,2 with non-negligible advantage. We will create a PPT algorithm B which
distinguishes between the distributions (X,F (X ·T)) and (X,F (Y)) from Lemma 11 with non-
negligible probability. We will set the parameters of the lemma as: m := n− 1, k := n− 3, and
d := 1. This will contradict the lemma, since ε will be negligible.
B first chooses a bilinear group G of order N = p1p2p3p4, creates VK as specified by the

KeyGen algorithm, and creates SK0 as specified except that the Gp2 parts are distributed
according to DAlt. More precisely, the key is set as:

~S0 = g~rg~c2g
~x
3 , ~U0 = u~rg

~d
2g
~y
3 ,

~H0 = h~rgf1~c+f2
~d

2 g~z3 ,

where g, u, h are random elements of Gp1 , g2 is a random element of Gp2 , g3 is a random element
of Gp3 , ~r is a random vector in Znp1 , ~c, ~d are random vectors in Znp2 , f1, f2 are random values in
Zp2 , and ~x, ~y, ~z are random vectors in Zp3 . We note that the factors p1, p2, p3, p4 are known to
B, as are all of the exponents (~r, f1, f2,~c, ~d, ~x, ~y, ~z).
B gives the verification key VK to A. For the first i − 2 signature requests made by A, B

responds by running the signing algorithm and choosing the update matrix according to the
prescribed distribution. We let A denote the product Ai−2 · · ·A1. The current secret key is
SKi−2.

Next, B receives the i − 1 signature request from A, along with the associated leakage
function fi−1 to be applied to Ai−1 and SKi−2. B chooses a random vector ~w from the span
of ~c, ~d. It then chooses the values bi−1

1 , . . . , bi−1
n−1 so that A~w is in the kernel of Ai−1. We let ~v

denote a random vector such that the span of ~v and ~w is equal to the span of ~c and ~d.
B then chooses the values ai−1

1 , . . . , ai−1
n−1 randomly modulo the prime factors of N not equal

to pj+1. The only remaining variables in Ai−1 are the values of ai−1
1 , . . . , ai−1

n−1 modulo pj+1.
We let f̃i−1 be the function of these variables obtained by considering fi−1(SKi−2, Ai−1) with
all the other values fixed.
B then receives a sample (X,F (~γ)) as in Lemma 11, where p = pj+1, m := n−1, k := n−3,

d = 1, and F is defined as follows. We let ~t1,~t2,~t3 denote the exponent vectors of the current

38

secret key modulo p in the Gp subgroup (For example, if p = p3, these are A~x, A~y, and A~z.)
F : Zn−1

p → {0, 1}` × Z4
p is defined by:

F (~γ) :=
(
f̃i−1(~γ), ~γ · ~t1, ~γ · ~t2, ~γ · ~t3, ~γ · (A~v)

)
.

In the notation of the lemma, this means that |W | = 2` · p4. B’s task is to distinguish whether
~γ is a random vector from the column space of X or a uniformly random vector modulo p.
B will implicitly set the values ai−1

1 , . . . , ai−1
n−1 modulo pj+1 of the matrix Ai−1 to be equal

to γ1, . . . , γn−1. It then provides A with fi−1(Ai−1, SKi−2) = f̃i−1(~γ). It can compute SKi−1

by using its knowledge of SKi−2, the values bi−1
1 , . . . , bi−1

n−1 for Ai−1, the values ai−1
1 , . . . , ai−1

n−1

modulo pk for k 6= j + 1, and the values ~γ ·~t1, ~γ ·~t2, ~γ ·~t3 modulo pj+1. We note that B will not
fully know Ai−1, but it will know SKi−1 (allowing it to produce the requested signature here
and to continue producing signatures for the rest of the simulation because it will fully know
all of the subsequent update matrices).

Next, B receives the i signature request from A, along with the associated leakage function
fi. B chooses the values ai1, . . . , a

i
n−1 uniformly at random and chooses the values bi1, . . . , b

i
n−1

so that ~v is in the kernel of AiAi−1A. Since B knows the matrix Ai and the secret key SKi−1,
it can easily provide A with the leakage fi(Ai,SKi−1) as well as the requested signature.

To choose the update matrix Ai+1, B chooses ai+1
1 , . . . , ai+1

n−1 uniformly at random modulo
N , and chooses the values bi+1

1 , . . . , bi+1
n−1 modulo prime factors of N not equal to pj+1 such

that ~bi+1 satisfies the dot product conditions 1., 2., and 3. modulo primes pk for k ≤ j, and
is random for primes pk for k > j + 1. Modulo pj+1, B sets ~bi+1 as follows. We note that the
space of vectors ∈ Zn−1

p which are orthogonal to the column space of X is a (uniformly random)
space of dimension 2. B samples the vector ~bi+1 modulo p randomly from the intersection of
this with the n− 2 dimensional space of vectors which are orthogonal to ~ai−2 (this intersection
is non-trivial because we are working in the n− 1 dimensional space Zn−1

p). This ensures that
~bi+1 satisfies condition 1. modulo p.

For the remaining updates, B chooses the update matrix according to the distribution spec-
ified in the update algorithm. If ~γ is a uniformly random vector modulo p, then B has properly
simulated GameAlti,j,1. To see this, note that ~bi+1 is distributed as a random vector up to
satisfying condition 1. modulo p, since the space X is chosen randomly.

If ~γ is a random vector from the column space of X, then B has properly simulated
GameAlti,j,2. To see this, note that ~bi+1 is orthogonal to both ~ai−2 and ~ai−1 = ~γ modulo
p, and so satisfies conditions 1. and 2.. We further have that ~bi+1 is distributed randomly up to
these conditions, because X is distributed randomly up to the constraints that it is orthogonal
to ~bi+1 and contains ~γ.

Hence, B can use the output of A to distinguish these two distributions with non-negligible
probability. This will contradict Lemma 11 as long as ε is negligible.

To apply the lemma, we need:

|W | = 2`p4 ≤ 4(1− 1/p)pn−4ε2,

so it suffices to have ` such that

` ≤ (n− 8) log(pj+1) + 2 log(ε)

for some negligible ε. For simplicity, we define δ = − log(ε). We then obtain the desired result
as long as

` ≤ (n− 8) log(pj+1)− 2δ,

for any δ such that 2−δ is negligible.

39

Lemma 24. For ` ≤ (n−8) log(pj+1)−2δ for δ such that 2−δ is negligible, no PPT attacker A
can distinguish between GameAlti,j,2 and GameAlti,j+1 with non-negligible advantage, for each
i from 3 to q + 2 and each j from 0 to 3.

Proof. We suppose there exists a PPT attacker A which can distinguish between GameAlti,j,2
and GameAlti,j+1 with non-negligible advantage. We will create a PPT algorithm B which
distinguishes between the distributions (X,F (X ·T)) and (X,F (Y)) from Lemma 11 with non-
negligible probability. We will set the parameters of the lemma as: m := n− 1, k := n− 4, and
d := 1. This will contradict the lemma, since ε will be negligible.
B first chooses a bilinear group G of order N = p1p2p3p4, creates VK as specified by the

KeyGen algorithm, and creates SK0 as specified except that the Gp2 parts are distributed
according to DAlt. More precisely, the key is set as:

~S0 = g~rg~c2g
~x
3 , ~U0 = u~rg

~d
2g
~y
3 ,

~H0 = h~rgf1~c+f2
~d

2 g~z3 ,

where g, u, h are random elements of Gp1 , g2 is a random element of Gp2 , g3 is a random element
of Gp3 , ~r is a random vector in Znp1 , ~c, ~d are random vectors in Znp2 , f1, f2 are random values in
Zp2 , and ~x, ~y, ~z are random vectors in Zp3 . We note that the factors p1, p2, p3, p4 are known to
B, as are all of the exponents (~r, f1, f2,~c, ~d, ~x, ~y, ~z).
B gives the verification key VK to A. For the first i − 2 signature requests made by A, B

responds by running the signing algorithm and choosing the update matrix according to the
prescribed distribution. We let A denote the product Ai−2 · · ·A1. The current secret key is
SKi−2.

Next, B receives the i − 1 signature request from A, along with the associated leakage
function fi−1 to be applied to Ai−1 and SKi−2. B chooses a random vector ~w from the span
of ~c, ~d. It then chooses the values bi−1

1 , . . . , bi−1
n−1 so that A~w is in the kernel of Ai−1. We let

~v denote a random vector such that the span of ~v and ~w is equal to the span of ~c and ~d. B
chooses the values ai−1

1 , . . . , ai−1
n−1 uniformly at random modulo N . It knows SKi−2 and Ai−1,

so it can easily compute fi−1(SKi−2, Ai−1) as well as the requested signature and gives these to
A. Next, B receives the i signature request from A, along with the associated leakage function
fi. B chooses the values bi1, . . . , b

i
n−1 so that ~v is in the kernel of AiAi−1A.

B then chooses the values ai1, . . . , a
i
n−1 randomly modulo the prime factors of N not equal

to pj+1. The only remaining variables in Ai are the values of ai1, . . . , a
i
n−1 modulo pj+1. We let

f̃i be the function of these variables obtained by considering fi(SKi−1, Ai) with all the other
values fixed.
B then receives a sample (X,F (~γ)) as in Lemma 11, where p = pj+1, m := n−1, k := n−4,

d = 1, and F is defined as follows. B chooses ~t1,~t2,~t3 to be three linearly independent vectors
whose span includes the exponent vectors of the current secret key modulo p in the Gp subgroup
(we note the coefficients needed to express the exponent vectors in terms of ~t1,~t2,~t3 will be known
to B). (For example, if p = p3, the span includes A~x, A~y, and A~z.) F : Zn−1

p → {0, 1}` × Z3
p is

defined by:
F (~γ) :=

(
f̃i(~γ), ~γ · ~t1, ~γ · ~t2, ~γ · ~t3

)
.

In the notation of the lemma, this means that |W | = 2` · p3. B’s task is to distinguish whether
~γ is a random vector from the column space of X or a uniformly random vector modulo p.
B will implicitly set the values ai1, . . . , a

i
n−1 modulo pj+1 of the matrix Ai to be equal to

γ1, . . . , γn−1. It then provides A with fi(Ai,SKi−1) = f̃i(~γ). It can compute SKi by using
its knowledge of SKi−1, the values bi1, . . . , b

i
n−1 for Ai, the values ai1, . . . , a

i
n−1 modulo pk for

k 6= j + 1, and the values ~γ · ~t1, ~γ · ~t2, ~γ · ~t3 modulo pj+1. We note that B will not fully know

40

Ai, but it will know SKi (allowing it to produce the signature here and to continue producing
signatures for the rest of the simulation because it will fully know all of the subsequent update
matrices).

To choose the update matrix Ai+1, B chooses ai+1
1 , . . . , ai+1

n−1 uniformly at random modulo N ,
and chooses the values bi+1

1 , . . . , bi+1
n−1 modulo prime factors of N not equal to pj+1 such that~bi+1

satisfies the dot product conditions 1., 2., and 3. modulo primes pk for k ≤ j, and is random for
primes pk for k > j+1. Modulo pj+1, B sets ~bi+1 as follows. Now, ~t1, ~t2, ~t3 span a 3-dimensional
space in Zn−1

p (recall they were chosen to be linearly independent), while the space of vectors
orthogonal to both ~ai−2 and ~ai−1 has dimension n−3. Thus, with all but negligible probability,
there exists some vector in the intersection of these spaces which is not orthogonal to γ, and
since B knows the values ~γ · ~t1, ~γ · ~t2, ~γ · ~t3, B can compute a vector ~b′ which is orthogonal to
both ~ai−2 and ~ai−1 and has ~γ · ~b′ = −1. Now, the space of vectors ∈ Zn−1

p which are orthogonal
to the column space of X is a (uniformly random) space of dimension 3. B samples the vector
~δ modulo p randomly from the intersection of this with the n− 3 dimensional space of vectors
which are orthogonal to ~ai−2 and ~ai−1 (note that we are working in the (n − 1)-dimensional
space Zn−1

p , so this intersection will be non-trivial). It sets ~bi+1 = ~b′+~δ. This ensures that ~bi+1

satisfies conditions 1. and 2. modulo p.
For the remaining updates, B chooses the update matrix according to the distribution spec-

ified in the update algorithm. If ~γ is a uniformly random vector modulo p, then B has properly
simulated GameAlti,j,2. To see this, note that ~bi+1 is distributed as a random vector up to
satisfying conditions 1. and 2. modulo p, since the space X is chosen randomly.

If ~γ is a random vector from the column space of X, then B has properly simulated
GameAlti,j+1. To see this, note that ~bi+1 is orthogonal to both ~ai−2 and ~ai−1 = ~γ modulo
p, and ~bi+1 · ~ai = ~bi+1 · ~γ = −1 modulo p, and so satisfies conditions 1., 2., and 3.. We further
have that ~bi+1 is distributed randomly up to these conditions, because ~δ is distributed as a
random vector which is orthogonal to ~ai, ~ai−1 and ~ai−2. To see this, note that X is distributed
randomly up to the constraints that it is orthogonal to ~δ and contains ~γ.

Hence, B can use the output of A to distinguish these two distributions with non-negligible
probability. This will contradict Lemma 11 as long as ε is negligible.

To apply the lemma, we need:

|W | = 2`p3 ≤ 4(1− 1/p)pn−5ε2,

so it suffices to have ` such that

` ≤ (n− 8) log(pj+1) + 2 log(ε)

for some negligible ε. For simplicity, we define δ = − log(ε). We then obtain the desired result
as long as

` ≤ (n− 8) log(pj+1)− 2δ,

for any δ such that 2−δ is negligible.

Combining the results of Lemmas 22, 23, and 24, we obtain Lemma 21. As an immediate
consequence of Lemma 21, we obtain Lemma 18.

B Proof of Lemma 19

Proof. We suppose there exists a PPT algorithm A which achieves a non-negligible difference
in probability of producing a Type II forgery between GameAlt2 and GameAlt1. We will create
a PPT algorithm B which achieves non-negligible advantage against Assumption 3.

41

B is given g, g3, g4, X1X2, Y2Y3, T . It will simulate either GameAlt2 or GameAlt1 with A,
depending on the value of T . We will then show that with all but negligible probability, B
can determine when A is producing a Type II forgery. Thus, the non-negligible difference in
A’s probability of producing a Type II forgery will allow B to achieve non-negligible advantage
against Assumption 3.
B chooses random vectors ~r,~t,~c, ~x, ~y, ~z ∈ ZnN and random values α, β, f1, f2, δ, γ, ψ ∈ ZN . It

sets the public parameters as:

R := g4, gR
′ := ggδ4, uR

′′ := gαgγ4 , hR
′′′ := gβgψ4 .

It initializes the secret key as:
~S0 = g~rT

~t(Y2Y3)~cg~x3 ,

~U0 = gα~rTα
~t(Y2Y3)f1~cg~y3 ,

~H0 = gβ~rT β
~t(Y2Y3)f2~cg~z3 .

If T has a nonzero component in Gp2 , then the exponent vectors of the Gp2 parts here are
distributed as random vectors from the two-dimensional subspace spanned by ~c and ~t (which
matches the distribution specified in GameAlt2). If T does not have a Gp2 component, then
these exponent vectors are distributed as random vectors from the one-dimensional subspace
spanned by ~c (which matches the distribution specified in GameAlt1).

When A makes the first signature request, B will choose an update matrix A1 whose rows
are orthogonal to ~c. It will choose the values a1

1, . . . , a
1
n−1 for A1 uniformly at random modulo

N . We note that this first update will be properly distributed as in GameAlt2 if T ∈ Gp1p2p3 ,
and will be properly distributed as in GameAlt1 when T ∈ Gp1p3 (in this case, the Gp2 elements
will be completely canceled out).

When A makes the second signature request, B will choose an update matrix A2 whose rows
are orthogonal to A1~t. It will choose the values a2

1, . . . , a
2
n−1 for A2 uniformly at random modulo

N . If T ∈ Gp1p2p3 , this is a properly distributed second update for GameAlt2, which cancels out
the remaining Gp2 parts of the secret key. If T ∈ Gp1p3 , this is a properly distributed second
update for GameAlt1, since ~t is random (note that no information about ~t is revealed by the
secret key before this point, since ~r is uniformly random modulo p1 and ~x, ~y, ~z are uniformly
random modulo p3).

When A makes the third signature request, B will choose a uniformly random vector ~v
and will choose an update matrix A3 whose rows are orthogonal to A2A1~v. It will choose the
values a3

1, . . . , a
3
n−1 for A3 uniformly at random modulo N . This is a properly distributed third

update for either GameAlt2 or GameAlt1. B chooses the remaining update matrices according
the distribution prescribed by the update algorithm. We note that B knows all of the secret
keys and update matrices used throughout the simulation, so it can easily provide A with the
requested leakage and signatures. If T ∈ Gp1p2p3 , then B has properly simulated GameAlt2. If
T ∈ Gp1p3 , then B has properly simulated GameAlt1.

When A produces a forgery (σ1, σ2) on m∗ (that verifies correctly), B tests whether it is a
Type I or Type II forgery by checking if the following holds:

e(σ1, X1X2) ?= e(σ2, (X1X2)αm
∗+β).

If this equality holds, B will guess that A has produced a Type I forgery. If the equality fails,
then B knows that A has produced a Type II forgery (note that this equality can only fail for
a forgery that properly verifies when there is some Gp2 part present in σ1 and/or σ2).

We now argue that A can only produce a Type II forgery that B misclassifies as a Type I
forgery with negligible probability. To fool B, A must produce Gp2 parts for σ1 and σ2 of the

42

form gs2, gs(αm
∗+β)

2 , where g2 is a generator of Gp2 and s is arbitrary. This implies that A must
be able to implicitly determine the value αm∗ + β modulo p2.

If T ∈ Gp1p3 , the initial secret key reveals no information about the values of α and β modulo
p2: so these remain information-theoretically hidden from A throughout the entire game. Thus,
A has only a negligible chance of determining αm∗+β modulo p2 correctly. When T ∈ Gp1p2p3 ,
the first signature involves αm1 + β modulo p2 in the exponent, where m1 is the first message
that A asks to be signed. We note that αm+β modulo p2 is a pairwise independent function of
m, and that A must forge for a message m∗ 6= m1 modulo p2. After the second update matrix
is applied, the Gp2 parts of the key are canceled, so the values of α, β modulo p2 no longer
appear. Hence no other signatures will contain any information about α, β modulo p2. A can
obtain additional information about α, β modulo p2 only from its first two leakage queries.

We again let X denote the random variable α||β modulo p2. This has min-entropy 2 log(p2).
The information the attacker learns about X can be expressed as F (X) for a single function F
which produces 2`+log(p2) bits (2` bits learned from two leakage queries and log(p2) bits learned
from αm1 + β). Thus, for ` ≤ 1

2(log(p2)− 2δ), by Lemma 3, the min-entropy of X conditioned
on F (X) will be at least δ with probability 1 − 2−δ (which is all but negligible probability).
In this case, the probability of an attacker determining αm∗ + β modulo p2 correctly for some
m∗ 6= mi modulo p2 is at most 2−δ, which is negligible (note that αm∗+β and αm1 +β together
would fully determine α, β modulo p2 since m∗,mi are known). This completes the proof that
B will incur only negligible error in determining the forgery type of A, and hence will achieve
non-negligible advantage against Assumption 3.

C Proof of Lemma 20

Proof. We suppose there exists a PPT algorithm A which achieves a non-negligible difference
in probability of producing a Type II forgery between GameAlt1 and GameAlt0. We will create
a PPT algorithm B which achieves non-negligible advantage against Assumption 3.
B is given g, g3, g4, X1X2, Y2Y3, T . It will simulate either GameAlt1 or GameAlt0 with A,

depending on the value of T . We will then show that with all but negligible probability, B
can determine when A is producing a Type II forgery. Thus, the non-negligible difference in
A’s probability of producing a Type II forgery will allow B to achieve non-negligible advantage
against Assumption 3.
B chooses random vectors ~r,~t, ~x, ~y, ~z ∈ ZnN and random values α, β, δ, γ, ψ ∈ ZN . It sets the

public parameters as:

R := g4, gR
′ := ggδ4, uR

′′ := gαgγ4 , hR
′′′ := gβgψ4 .

It initializes the secret key as:
~S0 = g~rT

~tg~x3 ,

~U0 = gα~rTα
~tg~y3 ,

~H0 = gβ~rT β
~tg~z3 .

If T ∈ Gp1p3 , then this initial secret key has no Gp2 components, and is distributed as in
GameAlt0. If T ∈ Gp1p2p3 , then the Gp2 components here are distributed as in GameAlt1: the
exponent vectors of the Gp2 parts are random vectors chosen from the same one-dimensional
subspace spanned by ~t.
B chooses the first update matrix A1 randomly up to the constraint that ~t = (t1, . . . , tn) is

orthogonal to all of the rows of A1. If T ∈ Gp1p2p3 , this first update cancels out the Gp2 parts
of the initial secret key, matching the specification of GameAlt1. If T ∈ Gp1p3 , then this first

43

update matches the specification of GameAlt0, since ~t is uniformly random (note that before
this, the value of ~t modulo p1 is hidden by the random vector ~r, and the value of ~t modulo p3

is hidden by the random vectors ~x, ~y, ~z).
For the second update, B chooses a random vector ~w and chooses A2 so that A2A1 ~w is the

all zeros vector. For the third update, B chooses a random vector ~v and chooses A3 so that
A3A2A1~v is the all zeros vector. It chooses the remaining updates according the distribution
prescribed in the update algorithm. Since B knows all of the secret keys and update matrices,
it can easily provide A with the requested leakage and signatures.

If T ∈ Gp1p2p3 , then B has properly simulated GameAlt1. If T ∈ Gp1p3 , then B has properly
simulated GameAlt0. When A produces a forgery (σ1, σ2) on m∗ (that verifies correctly), B
tests whether it is a Type I or Type II forgery by checking if the following holds:

e(σ1, X1X2) ?= e(σ2, (X1X2)αm
∗+β).

If this equality holds, B will guess that A has produced a Type I forgery. If the equality fails,
then B knows that A has produced a Type II forgery (note that this equality can only fail for
a forgery that properly verifies when there is some Gp2 part present in σ1 and/or σ2).

To fool B into misclassifying its forgery type, A must produce Gp2 parts for σ1 and σ2 of
the form gs2, gs(αm

∗+β)
2 , where g2 is a generator of Gp2 and s is arbitrary. This implies that A

must be able to implicitly determine the value αm∗ + β modulo p2.
If T ∈ Gp1p3 , the initial secret key reveals no information about the values of α and β modulo

p2: so these remain information-theoretically hidden from A throughout the entire game. Thus,
A has only a negligible chance of determining αm∗+β modulo p2 correctly. When T ∈ Gp1p2p3 ,
the first update matrix A1 will cancel out the Gp2 parts of the secret key, and this applied before
any signatures are computed. Thus, none of the signatures given out reveal any information
about α, β modulo p2. Hence, A’s only opportunity to learn anything about the values of α, β
modulo p2 is in its first leakage query.

As before, we let X denote the random variable α||β modulo p2. This has min-entropy
2 log(p2). The information the attacker learns about X can be expressed as F (X) for a single
function F which produces ` bits (` bits learned from a single leakage query). Thus, for ` ≤
log(p2)−2δ, by Lemma 3, the min-entropy of X conditioned on F (X) will be at least log(p2)+δ
with probability 1−2−δ (which is all but negligible probability). In this case, the probability of
an attacker determining αm∗ + β modulo p2 correctly for some m∗ 6= mi modulo p2 is at most
2−δ, which is negligible (note that the entropy of X conditioned on αm∗ + β for a known m∗

is log(p2)). This completes the proof that B will incur only negligible error in determining the
forgery type of A, and hence will achieve non-negligible advantage against Assumption 3.

D Proof of Security for our PKE Scheme

We now prove security for our PKE scheme. Our strategy here closely follows the proof strategy
for our signature scheme. There is really only one significant difference. At a few points in our
signature proof, we used that the variable X := α||β modulo p2 had sufficient min-entropy
in the attacker’s view to prevent the attacker from producing a forgery on a new message m∗

modulo p2 involving the value αm∗ + β. Since a PKE attacker’s task is to distinguish rather
than produce, we must replace this min-entropy argument with an argument based on statistical
distance. Essentially, we will start by changing all of our ciphertexts to have uniformly random
Gp2 components, and we will need to maintain that these components look uniformly random in
the attacker’s view throughout the rest of our game sequence. This is a non-trivial task, since we

44

will sometimes be producing these components in a way which is correlated with parameters that
are ephemerally present in the secret key. We will argue our ciphertexts remain statistically
close to uniformly random in the Gp2 subgroup via yet another application of Corollary 12
(derived from the lemma of [12]).

In the real security game, which we will call GameReal, the ciphertext and secret keys do
not include any Gp2 components. We will gradually move to a game where the ciphertext and
all secret keys include random Gp2 components. In the terminology of dual system encryption,
this is to say that the ciphertext and all keys have become “semi-functional”. (Semi-functional
ciphertexts can be decrypted by normal keys and semi-functional keys can decrypt normal
ciphertexts, but semi-functional keys cannot decrypt semi-functional ciphertexts.) Once we have
arrived at a game where the ciphertext and all the secret keys have random Gp2 components, the
secret keys have become useless for decrypting the challenge ciphertext, and proving security is
relatively straightforward.

Before we define our sequence of games, we must first define three possible distributions for
the Gp2 parts of the initial secret key. We let g2 denote a generator for Gp2 .

Distribution DFull We define distribution DFull as follows. We choose three random vectors
~c, ~d, ~f ∈ ZnN . We output the following three n-tuples of elements in Gp2 : g~c2, g~d2 , and g

~f
2 .

Distribution DAlt We define distribution DAlt as follows. We choose two random vectors
~c, ~d ∈ ZnN . We choose ~f to be a random vector in the span of ~c, ~d. We output: g~c2, g~d2 , and g

~f
2 .

Distribution DMin We define distribution DMin as follows. We choose a random vector
~c ∈ ZnN , and we choose ~d, ~f randomly from the one-dimensional span of ~c. We output: g~c2, g~d2 ,

and g
~f
2 .

We now define the games we will use in our hybrid argument.

Game0 This game is like GameReal, except that the challenge ciphertext given to the attacker
has random Gp2 components on C1, C2, C3 (this is true for both encryptions of 0 and 1).

Game′0 This game is like Game0, except that the second update matrix is chosen so that a new
random vector is in the kernel of the product of the first two update matrices. More precisely,
we let A1 denote the first update matrix, and ~t denote a randomly chosen vector. Then, A2 is
chosen randomly up to the constraint that A2A1~t is the all zeros vector. The remaining updates
are chosen from the distribution specified in the update algorithm.

Game′′0 This game is like Game′0, except that the third update matrix is now also chosen so
that a new random vector is in the kernel of the product of the first two update matrices. More
precisely, we let A1, A2 denote the first two update matrices, and ~w denote a randomly chosen
vector. Then, A3 is chosen randomly up to the constraint that A3A2A1 ~w is the all zeros vector.
The remaining updates are chosen from the distribution specified in the update algorithm.

GameMin This game is like Game′′0, except that the initial key has Gp2 components distributed
according to distribution DMin, and these components are canceled out by the first update
matrix (so SK1 has no Gp2 components). The second and third update matrices are chosen
so that new random vectors are included in the matrix product, as in Game′′0. The remaining
update matrices are chosen from the distribution specified in the update algorithm.

45

Gamei For each i from 3 to q+3, we define Gamei as follows. The key generation is performed
as described in the key generation algorithm, except that the secret key is initialized to have
Gp2 parts which are distributed according to distribution DFull. We let g~c2, g~d2 , and g

~f
2 denote

the Gp2 parts of the initial secret key (for ~S0, ~U0, ~H0 respectively). The first i − 3 update
matrices are chosen according to the distributed specified in the update algorithm, and we let
A = Ai−3 · · ·A1 denote the product of these update matrices (if i = 3, A is the identity matrix).
For the i − 2 update, the challenger will choose a random vector ~t in the span of ~c, ~d, ~f and
will choose the update matrix Ai−2 randomly up to the constraint that Ai−2A~t is the all zeros
vector. We let ~w,~v denote random vectors such that the span of ~w,~v,~t is equal to the span
of ~c, ~d, ~f . For the i − 1 update, the challenger will choose the update matrix Ai−1 randomly
up to the constraint that Ai−1Ai−2A~w is the all zeros vector. It will then choose the update
matrix Ai for the ith update randomly up to the constraint that AiAi−1Ai−2A~v is the all zeros
vector. This will cancel out the Gp2 parts of the secret key. The rest of the updates are chosen
according to the distribution specified in the update algorithm. The challenge ciphertext given
to the attacker has random Gp2 components on C1, C2, and C3 (regardless of which bit is being
encrypted). We note that in Gameq+3, the challenge ciphertext and all of the secret keys the
attacker receives leakage for have Gp2 components, and all of the update matrices are chosen
according to the prescribed distribution.

GameAlti For each i from 2 to q + 2, we define GameAlti as follows. The key generation is
performed as described in the key generation algorithm, except that the secret key is initialized
to have Gp2 parts which are distributed according to distribution DAlt. We let g~c2, g~d2 , and g

~f
2

denote the Gp2 parts of the initial secret key (we note that these three vectors span a two-
dimensional space). The first i − 2 update matrices are chosen properly from the distribution
specified in the update algorithm. We let A denote the product of these update matrices. We
let ~w,~v denote a random basis for the two-dimensional space spanned by ~c, ~d, ~f . The update
matrix Ai−1 is chosen randomly up to the constraint that Ai−1A~w is the all zeros vector. The
update matrix Ai is chosen randomly up to the constraint that AiAi−1A~v is the all zeros vector.
This will cancel out the Gp2 parts of the secret key. For the i+ 1 update, the challenger chooses
a random vector ~t and chooses the update matrix Ai+1 randomly up to the constraint that
Ai+1AiAi−1A~t is the all zeros vector. The rest of the updates are chosen according to the
distribution specified in the update algorithm. The challenge ciphertext given to the attacker
has random Gp2 components on C1, C2, and C3.

GameFinal This game is like Gameq+3 in that all of the secret keys and the ciphertext ele-
ments have Gp2 components, and all updates are chosen according to the proper distribution.
The difference is that in this game, the distribution of the ciphertext elements in the Gp1 sub-
groups is always random as well - independently of the message bit. The makes the attacker’s
view independent of the message bit, and so the attacker has advantage equal to zero in this
game.

Using our computational assumptions as well as the lemmas developed in Subsection 5.5, we
will prove that a PPT attacker’s advantage changes only negligible as we move from GameReal
to Game0, then to Game′0, then to Game′′0, then to GameMin, then to GameAlt2, then to Game3,
then to GameAlt3, and so on, finally ending with a transition from Gameq+3 to GameFinal.

Remark 25. We could avoid the need for Game′0 and Game′′0 by defining our construction to
choose its first three update matrices so that a new random vector is added to the kernel of the

46

product of the update matrices each time. However, from the perspective of construction design,
this requirement is quite unnatural, and we prefer to handle it as part of our proof.

D.1 Transition from GameReal to Game0

We first show:

Lemma 26. Under Assumption 2, no PPT attacker achieves a non-negligible difference in
advantage between GameReal and Game0.

Proof. We suppose there exists a PPT attacker A which achieves a non-negligible difference in
advantage between GameReal and Game0. We will create a PPT algorithm B which achieves a
non-negligible advantage in breaking Assumption 2. B receives g, g3, g4, T , where T is either in
Gp1 or in Gp1p2 . B will simulate either GameReal or Game0 with A, depending on the value of
T .
B chooses R,R′, R′′, R′′′ ∈ Gp4 randomly (which it can obtain by raising g4 to randomly

chosen exponents modulo N), and chooses ~α ∈ Z3
N randomly. It gives the public key PK =

{N,G,R, gα1R′, gα2R′′, gα3R′′′} to A. It chooses a random vector ~η ∈ Z3
N such that ~η · ~α = 0

modulo N , and chooses random vectors ~r, ~x, ~y, ~z ∈ ZnN . It initializes the secret key as SK0 =
{gη1~rg~x3 , gη2~rg

~y
3 , g

η2~rg~z3}. This public key and secret key are properly distributed. B chooses all
of its update matrices from the distribution specified in the update algorithm. B can easily
respond to all leakage queries because it knows the initial secret key and all of the update
matrices.
B produces the challenge ciphertext as follows. B chooses three random exponents s, t, v ∈

ZN . If the bit to be encrypted is 1, B sets C1 = T sgs4, C2 = T tgt4, C3 = T vgv4 . If T ∈ Gp1 , these
will be three uniformly random elements of Gp1p4 (as required for GameReal). If T ∈ Gp1p2 ,
these will be three uniformly random elements of Gp1p2p4 (as required for Game0). If the bit to
be encrypted is 0, B sets C1 = Tα1sgs4, C2 = Tα2sgt4, C3 = Tα3sgv4 . If T ∈ Gp1 , this is distributed
as in GameReal. If T ∈ Gp1p2 , then the Gp2 parts here are random (since α1, α2, α3 are random
modulo p2 and uncorrelated from their values modulo p1 which appear in the public key), so
this is distributed as in Game0. Hence, when T ∈ Gp1 , B has properly simulated GameReal,
and when T ∈ Gp1p2 , B has properly simulated Game0. B can therefore use the output of A to
obtain a non-negligible advantage against Assumption 2.

D.2 Transition from Game0 to Game′0

For this game transition, we will rely on Corollaries 12 and 14. As in our security proof for
signatures, we will use a hybrid here over the primes dividing N . To do this, we define the
following additional games:

Game0,1 This game is like Game0, except that the second update matrix is chosen as in
Game′0 modulo p1 and chosen as in Game0 for the other primes.

Game0,2 This game is like Game0,1, except that the second update matrix is chosen as in
Game′0 modulo p2 as well as modulo p1.

Game0,3 This game is like Game0,2, except that the second update matrix is chosen as in
Game′0 modulo p3 as well as modulo p1, p2.

We let Game0,0 be another name for Game0 and Game0,4 be another name for Game′0 (this
is for convenience of notation in the following lemma). We now show:

47

Lemma 27. For ` ≤ (n− 6) log(pj+1)− 2δ for δ such that 2−δ is negligible, no PPT attacker
can distinguish between Game0,j and Game0,j+1 with non-negligible advantage for each j from
0 to 3.

Proof. We suppose that for some such j, A is a PPT attacker who can distinguish between
these games with non-negligible advantage. We will then create a algorithm B which distin-
guishes between the distributions

(
~δ, F (~τ)

)
and

(
~δ, F (~τ ′)

)
of Corollary 12 with non-negligible

advantage. Since our value of ε will be negligible, we will obtain a contradiction.
B chooses a bilinear group of order N = p1p2p3p4 and follows the KeyGen algorithm to

produce PK and SK0. (We note that B knows the primes p1, . . . , p4 as well as generators for
each prime order subgroup.) It gives PK to A. A then defines the leakage function f1 to be
applied to SK0 and the first update matrix A1. B chooses A1 as follows. It sets the vector ~b1
for the last column of A1 randomly modulo N , and chooses the values for the entries of the
vector ~a1 for the last row of A1 randomly modulo primes not equal to pj+1. The only remaining
variables are the values for ~a1 modulo pj+1.

We let f̃1 denote the function of these variables modulo pj+1 obtained from f1 now that
all other values in SK0, A1 are fixed. We let ~t1,~t2,~t3 denote nonzero vectors which include the
nonzero exponent vectors of the current secret key modulo pj+1 in the Gpj+1 subgroup. We
define F : Zn−1

pj+1
→ {0, 1}` × Z3

pj+1
as follows:

F (~γ) :=
(
f̃1(~γ), ~γ · ~t1, ~γ · ~t2, ~γ · ~t3

)
.

B obtains a sample
(
~δ, F (~γ)

)
from one of the distributions in Corollary 12 (applied with m =

n− 1 and p = pj+1). The task of B is to distinguish whether ~δ · ~γ is 0 modulo pj+1.
B implicitly sets the values of ~a1 equal to ~γ modulo pj+1. It can then provide f1(SK0, A1) =

f̃1(~γ) to A, and compute SK1 (note that B will fully know SK1, since it is given ~γ · ~t1, ~γ · ~t2,
and ~γ · ~t3).

Next, A submits a second leakage function f2. B chooses the update matrix A2 as follows.
With all but negligible probability, ~γ ·~t1 is nonzero modulo pj+1 (since ~t1 is nonzero). Thus, by
multiplying ~t1 by a an appropriate constant, B can produce a vector ~b′ which satisfies ~γ ·~b′ = −1
modulo pj+1. It chooses the vector ~a2 for the last row randomly, and chooses ~b2 for the last
column to be random modulo primes pk for k > j + 1, to satisfy ~b2 ·~a1 = −1 modulo primes pk
for k < j + 1, and equal to ~δ + ~b′ modulo pj+1. We note that B knows A2 and SK1, so it can
easily compute f2(SK1, A2). For the rest of the leakage requests, B chooses the update matrices
according to the distribution prescribed in the update algorithm. B can easily form a properly
distributed ciphertext (with random components in Gp2) because it knows generators for each
prime order subgroup of G.

We note by Corollary 14 that A2 is distributed modulo each prime pk as in Game′0 when
~b2 is distributed as a random vector satisfying ~b2 · ~a1 = −1 modulo pk. So if ~δ and ~γ are
distributed as uniformly random vectors, then B has properly simulated Game0,j . If ~γ and ~δ

are distributed as random vectors up to the constraint that ~γ · ~δ = 0 modulo pj+1, then ~b2 is
distributed randomly modulo pj+1 up to the constraint that ~b2 ·~a1 = −1, and so B has properly
simulated Game0,j+1.

To apply the corollary, we need (setting p = pj+1):

|W | = 2`p3 ≤ 4(1− 1/p)pn−3ε2,

so we must have: ` ≤ (n − 6) log(p) + 2 log(ε) for some negligible ε. We define δ = − log(ε).
Then, as long as ` ≤ (n− 6) log(p)− 2δ, we have obtained a contradiction.

48

As an immediate consequence, we conclude:

Lemma 28. For ` ≤ (n− 6) log(pj+1)− 2δ for δ such that 2−δ is negligible, no PPT attacker
can distinguish between Game0 and Game′0 with non-negligible advantage.

D.3 Transition from Game′0 to Game′′0

As in the proof for our signature scheme, we will employ a hybrid argument here over the primes
dividing N . To do this, we define the following additional games:

Game′0,1 This game is like Game′0, except that the third update matrix is chosen so that there
is a new random vector in the kernel of the matrix product modulo p1. In other words, the
third update matrix is chosen as in Game′′0 modulo p1 and chosen as in Game′0 modulo the other
primes.

Game′0,2 This game is like Game′0,1, except that the third update matrix is now chosen as in
Game′′0 modulo p1 and p2, and chosen as in Game′0 modulo p3, p4.

Game′0,3 This game is like Game′0,2, except that the third update matrix is now chosen as in
Game′′0 modulo p1, p2, p3, and chosen as in Game′0 modulo p4.

For notational convenience, we let Game′0,0 be another name for Game′0 and let Game′0,4
be another name for Game′′0. We will prove that no PPT attacker can achieve a non-negligibly
different advantage between Game′0 and Game′′0 by proving the following lemma:

Lemma 29. When ` ≤ (n−7) log(pj+1)−2δ for δ such that 2−δ is negligible, no PPT attacker
can distinguish between Game′0,j and Game′0,j+1 with non-negligible advantage for each j from
0 to 3.

As in our signature proof, a direct application of Lemma 11 here would result in a worse
leakage than we can obtain by breaking this into a few more steps. We know from the proof of
Corollary 15 that choosing A3 as in Game′′0 modulo p is equivalent to choosing ~b3 randomly up
to the constraints

1. ~b3 · ~a1 = 0 modulo p and

2. ~b3 · ~a2 = −1 modulo p.

We thus introduce the following intermediary game between each Game′0,j and Game′0,j+1:

Game′0,j,1 This game is like Game′0,j , except that the third update matrix is chosen randomly
modulo pj+1 up to satisfying condition 1. above.

We now prove:

Lemma 30. When ` ≤ (n−7) log(pj+1)−2δ for δ such that 2−δ is negligible, no PPT attacker
can distinguish between Game′0,j and Game′0,j,1 with non-negligible advantage for each j from 0
to 3.

Proof. We suppose there exists a PPT attacker A which distinguishes between Game′0,j and
Game′0,j,1 with non-negligible advantage for some j. We will create a PPT algorithm B which

49

distinguishes between the distributions
(
~δ, F (~τ)

)
and

(
~δ, F (~τ ′)

)
from Corollary 12 with non-

negligible advantage. This will be a contradiction because we will set our parameters so that ε
is negligible.
B will choose the primes p1, p2, p3, p4 as well as the bilinear group G. It will form the public

key and secret key properly and will give the public key to A. We let ~t1, ~t2, and ~t3 denote
the current exponent vectors of the Gpj+1 parts of the secret key in B’s view. B also chooses
a random vector ~v ∈ ZnN . B receives the first leakage function f1 from A and will choose the
first update matrix A1 as follows. It picks ~b1 uniformly at random modulo N , and picks ~a1

uniformly at random modulo the primes not equal to pj+1. The only remaining variables are
the values of ~a1 modulo pj+1. We let f̃1 be the function of these values defined by f1 with all
of the other values fixed. We let p := pj+1 and define the function F : Zn−1

p → {0, 1}` × Z4
p as:

F (~γ) =
(
f̃1(~γ), ~γ · ~t1, ~γ · ~t2, ~γ · ~t3, ~γ · ~v

)
,

where all dot products are taken modulo p.
B now receives a sample

(
~δ, F (~γ)

)
as in Corollary 12, where m := n−1. B implicitly sets ~a1

modulo pj+1 equal to ~γ. It provides A with the leakage f1(SK0, A1) = f̃1(~γ) and it can compute
SK1 because it knows ~γ · ~t1, ~γ · ~t2, ~γ · ~t3 modulo pj+1.

Now, B receives the second leakage function f2 from A. It will choose the second update
matrix A2 randomly up to the constraint that A2A1~v is the all zeros vector. It can do this
because it knows ~γ · ~v modulo p, and hence knows A1~v modulo pj+1. Since B fully knows A2

and SK1, it can compute f2(SK1, A2) and give this to A.
B receives the third leakage function f3 from A. It chooses A3 as follows. It picks ~a3

randomly modulo N , and chooses ~b3 randomly modulo primes pk for k > j + 1. For primes
pk for k < j + 1, it chooses ~b3 modulo pk randomly up to conditions 1. and 2. above modulo
pk. It sets ~b3 modulo pj+1 equal to ~δ. B fully knows A3 and SK2, so it can easily answer the
leakage query. For the remaining updates, B chooses the matrices properly from the prescribed
distribution. B can easily form a properly distributed ciphertext (with random components in
Gp2) because it knows generators for each prime order subgroup of G.

If ~δ,~γ are distributed as uniformly random vectors modulo pj+1, then B has properly simu-
lated Game′0,j . If ~δ,~γ are distributed as random vectors satisfying ~δ · ~γ = 0 modulo pj+1, then
B has properly simulated Game′0,j,1. In applying the corollary, we need:

` ≤ (n− 7) log(pj+1) + 2 log(ε),

for some negligible ε. Substituting δ := − log(ε), we can express this as:

` ≤ (n− 7) log(pj+1)− 2δ

for δ such that 2−δ is negligible.

Lemma 31. When ` ≤ (n−7) log(pj+1)−2δ for δ such that 2−δ is negligible, no PPT attacker
can distinguish between Game′0,j,1 and Game′0,j+1 with non-negligible advantage for each j from
0 to 3.

Proof. We suppose there exists a PPT attacker A which distinguishes between Game′0,j,1 and
Game′0,j+1 with non-negligible advantage for some j. We will create a PPT algorithm B which
distinguishes between the distributions (X,F (X · T)) and (X,F (Y)) from Lemma 11 with non-
negligible advantage. This will be a contradiction because we will set our parameters so that ε
is negligible.

50

B will choose the primes p1, p2, p3, p4 as well as the bilinear group G. It will form the public
key and secret key properly and will give the public key to A. B chooses ~t1, ~t2, and ~t3 to
be three linearly independent vectors whose span includes the current exponent vectors of the
Gpj+1 parts of the secret key in B’s view. B receives the first leakage function f1 from A and
chooses ~a1 and ~b1 for A1 uniformly at random modulo N . B knows SK0 and A1, so it can easily
compute f1(SK0, A1) and it provides this to A.
A sends B the second leakage function, f2. B chooses A2 as follows. It chooses a new random

vector ~v ∈ ZnN and chooses ~b2 modulo N so that A2A1~v is the all zeros vector (note that this
does not constrain the values of ~a2 in any way). It chooses the values of ~a2 randomly modulo
the primes not equal to pj+1. This leaves the values of ~a2 modulo pj+1 as the only variables.
We let f̃2 denote the function of these variables obtained by considering f2 with all the other
values fixed. We let p := pj+1 and we define F : Zn−1

p → {0, 1}` × Z3
p as:

F (~γ) =
(
f̃2(~γ), ~γ · ~t1, ~γ · ~t2, ~γ · ~t3

)
,

where all dot products are taken modulo p.
B now receives a sample (X,F (~γ)) as in Lemma 11, where m := n − 1, k := n − 3, and

d := 1. It implicitly sets ~a2 = ~γ modulo pj+1. It can provide A with f2(SK1, A2) = f̃2(~γ) and
it can also compute SK2 from its knowledge of ~γ · ~t1, ~γ · ~t2, and ~γ · ~t3 modulo pj+1.

Upon receiving the next leakage function f3 from A, B chooses A3 as follows. It sets ~a3

randomly modulo N . It chooses ~b3 randomly modulo primes pk where k > j+ 1, and randomly
up to conditions 1. and 2. modulo primes pk for k < j + 1. With all but negligible probability,
~γ ·~t1, ~γ ·~t2, ~γ ·~t3 are all nonzero modulo pj+1, and the 3-dimensional span of ~t1,~t2,~t3 non-trivially
intersects the n− 2-dimensional space of vectors in Zn−1

p that are orthogonal to ~a1. This allows
B to compute a vector ~b′ which is orthogonal to ~a1 and also satisfies ~b′ ·~γ = −1. B now chooses
a random vector δ ∈ Zn−1

p from the intersection of vectors orthogonal to X and also to ~a1.
(With all but negligible probability, the space of vectors orthogonal to X is a 2-dimensional
space in Zn−1

p which non-trivially intersects the space of vectors orthogonal to ~a1 in Zn−1
p .) B

sets ~b3 = ~δ + ~b′. This ensures that ~b3 satisfies condition 1. modulo pj+1. B knows A3 and
SK2, so it can easily satisfy the leakage request. B chooses the remaining updates according to
the prescribed distribution. B can easily form a properly distributed ciphertext (with random
components in Gp2) because it knows generators for each prime order subgroup of G.

If ~γ is uniformly random, then ~δ is distributed as a random vector up to the constraint
that ~δ · ~a1 = 0 modulo p. Thus, B has properly simulated Game′0,j,1. If ~γ is distributed as a
random vector from the column space of X, then ~δ is distributed as a random vector up to the
constraints that ~δ ·~γ = 0 and ~δ ·~a1 = 0 modulo p (note that the space X is randomly distributed
up to the constraints that it contains γ and is orthogonal to δ). Thus, B has properly simulated
Game′0,j+1.

In applying the lemma, we need:

` ≤ (n− 7) log(pj+1) + 2 log(ε)

for some negligible ε. Substituting δ := − log(ε), we can write this as:

` ≤ (n− 7) log(pj+1)− 2δ

for δ such that 2−δ is negligible.

From the combination of the previous two lemmas, we obtain Lemma 29. As an immediate
consequence, we have:

51

Lemma 32. When ` ≤ (n − 7) log(pj) − 2δ for all pj dividing N and δ such that 2−δ is
negligible, no PPT attacker can achieve a non-negligible difference in advantage between Game′0
and Game′′0.

D.4 Transition from Game′′0 to GameMin

Lemma 33. Under Assumption 3, no PPT attacker can achieve a non-negligible difference in
advantage between Game′′0 and GameMin, for ` ≤ log(p2) − 2δ, where δ is a parameter chosen
so that 2−δ is negligible.

Proof. We suppose there exists a PPT attacker A which achieves a non-negligible difference
in advantage between Game′′0 and GameMin. We will create a PPT algorithm B which breaks
Assumption 3. B receives g, g3, g4, X1X2, Y2Y3, T . It chooses random elements R,R′, R′′, R′′′ ∈
Gp4 , and random vectors ~α, ~η ∈ Z3

N such that ~α · ~η = 0 modulo N . It sets the public key
as: PK = {N,G,R, gα1R′, gα2R′′, gα3R′′′}. To initialize the secret key, it also chooses random
vectors ~r,~t, ~x, ~y, ~z ∈ ZnN and sets:

~S0 = gη1~rT η1
~tg~x3 ,

~U0 = gη2~rT η2
~tg~y3 ,

~H0 = gη3~rT η3
~tg~z3 .

If T ∈ Gp1p3 , this secret key has no Gp2 parts, and is distributed properly for Game′′0. If
T ∈ Gp1p2p3 , this secret key has Gp2 parts distributed according to distribution DMin, and thus
is distributed properly for GameMin.

Now, B chooses the first update matrix A1 so that A1~t is the all zeros vector. This cancels out
the T terms from the secret key. If T has a Gp2 component, this cancels the Gp2 components
from the key, as required in GameMin. If T does not have a Gp2 component, then A1 is a
properly distributed update, since no information about ~t is previously revealed (note that its
value modulo p1 is hidden by the random vector ~r, and its value modulo p3 is hidden by the
random vectors ~x, ~y, ~z). B chooses the next two update matrices so that a new random vector
is in the kernel of the matrix product each time. It chooses all remaining update matrices from
the distribution prescribed by the update algorithm.
B forms the challenge ciphertext as follows. It chooses random exponents s, t, v ∈ ZN . If it

is encrypting 0, it produces three random elements of Gp1p2p4 by raising X1X2g4 to the random
exponents. If it is encrypting 1, it sets:

C1 = (X1X2)sα1gs4, C2 = (X1X2)sα2gt4, C3 = (X1X2)sα3gv4 .

To argue that this appears to be a properly distributed encryption of 0 in the attacker’s view,
we must argue that ~α modulo p2 is statistically close to a uniformly random vector modulo
p2 in A’s view. We note that the public parameters reveal no information about ~α modulo
p2, nor do any of the update matrices. The only parameters correlated to ~α modulo p2 are
the values η1, η2, η3 modulo p2. If T ∈ Gp1p3 , these never appear in the secret key at all and
remain completely hidden from the attacker. If T ∈ Gp1p2p3 , the attacker gets one opportunity
to obtain leakage involving ~η modulo p2 before these values are canceled out of the secret key by
the first update matrix. This leakage function must be determined before the attacker receives
the challenge ciphertext.

The information that the attacker learns about ~η modulo p2 can be expressed as a single
function F (~η) outputting ` bits. Thus, by Corollary 12, as long as

` ≤ log(p2) + 2 log(ε)

52

for some negligible ε, the distribution of ~η, ~α modulo p2 in A’s view is statistically close to the
distribution producing two uniformly random vectors. For convenience, we let δ := − log(ε).
We can then state the leakage bound required here as ` ≤ log(p2)− 2δ.

Hence, when T ∈ Gp1p2p3 , the ciphertext produced by B is statistically close (within negli-
gible distance) to the distribution required in GameMin, so B can use the output of A to attain
non-negligible advantage against Assumption 3.

D.5 Transition from GameMin to GameAlt2

Lemma 34. Under Assumption 3, no PPT attacker can achieve a non-negligible difference
in advantage between Game′′0 and GameMin, for ` ≤ 1

2 (log(p2)− 2δ), where δ is a parameter
chosen so that 2−δ is negligible.

Proof. We suppose there exists a PPT attacker A with a non-negligible difference in advantage
between Game′′0 and GameMin. We will create a PPT algorithm which breaks Assumption 3.
B receives g, g3, g4, X1X2, Y2Y3, T . It chooses random elements R,R′, R′′, R′′′ from Gp4 , and
random vectors ~α, ~η ∈ Z3

N subject to the constraint that ~α · ~η = 0 modulo N . It sets the public
key as PK = {N,G,R, gα1R′, gα2R′′, gα3R′′′}. It then chooses random vectors ~r,~t,~c, ~x, ~y, ~z, and
two random exponents f1, f2 ∈ ZN . It initializes the secret key as:

~S0 = gη1~rT η1
~t(Y2Y3)~cg~x3 ,

~U0 = gη2~rT η2
~t(Y2Y3)f1~cg~y3 ,

~H0 = gη3~rT η3
~t(Y2Y3)f2~cg~z3 .

We note that the Gp1 and Gp3 parts here are properly distributed. If T has no Gp2 component,
then the Gp2 parts here are distributed according to distribution DMin (as in GameMin), and
if T has a Gp2 component, the Gp2 parts here are distributed according to distribution DAlt (as
in GameAlt2).

The first update matrix A1 is chosen so that A1~c is the all zeros vector. This cancels out all
of the Y2Y3 terms. If T has no Gp2 component, then this cancels all of the Gp2 terms from the
secret key. If T has a Gp2 component, we let gτ2 denote the Gp2 part of T , and gy2 denote Y2.
Then ~t is distributed as a random vector in the 2-dimensional span of η1τ~t + y~c, η2τ~t + f1y~c,
and η3τ~t+ f2y~c. This means the first update will be distributed as in GameAlt2 in this case.

The second update matrix A2 is chosen so that A2A1~t is the all zeros vector. If T has no
Gp2 component, then ~t is a uniformly random vector here, since its value before this has been
hidden modulo p1 by the random vector ~r and hidden modulo p3 by the random vectors ~x, ~y, ~z.
In this case, the second update is distributed as in GameMin. If T has a Gp2 component, this
update cancels out the remaining Gp2 parts of the secret key, and is distributed as in GameAlt2.

The third update matrix A3 is chosen so that a new random vector is in the kernel of
A3A2A1. The remaining updates are chosen from the distribution prescribed by the update
algorithm. These are properly distributed for both GameMin and GameAlt2.

The challenge ciphertext is made exactly as in Lemma 33. Again we must argue that ~α
modulo p2 is statistically close a uniformly random vector modulo p2. The public key reveals
no information about ~α modulo p2, nor do any of the update matrices. The attacker’s only
opportunity to learn information about ~α modulo p2 is through leakage on the correlated vector
~η modulo p2, which appears in the secret key when T ∈ Gp1p2p3 until it is canceled out by the
second update matrix. Thus, the attacker learns only 2` bits of information about ~α.

Thus, by Corollary 12, as long as

2` ≤ log(p2) + 2 log(ε)

53

for some negligible ε, the distribution of ~η, ~α modulo p2 in A’s view is statistically close to the
distribution producing two uniformly random vectors. For convenience, we let δ := − log(ε).
We can then state the leakage bound required here as ` ≤ 1

2 (log(p2)− 2δ).
Hence, when T ∈ Gp1p2p3 , the ciphertext produced by B is statistically close (within neg-

ligible distance) to the distribution required in GameAlt2. When T ∈ Gp1p3 , ~α modulo p2 is
uniformly random in the attacker’s view, and so the challenge ciphertext is properly distributed
as in GameMin. Therefore, B can use the output of A to attain non-negligible advantage against
Assumption 3.

D.6 Transition from GameAlti to Gamei+1

Lemma 35. Under Assumption 3, no PPT attacker can achieve a non-negligible difference in
advantage between GameAlti and Gamei+1, for each i from 2 to q + 2 for ` ≤ 1

3(log(p2)− 2δ),
where the parameter δ is chosen so that 2−δ is negligible.

Proof. This is very similar to the proof of Lemma 9. We suppose there exists a PPT attacker
A which achieves a non-negligible difference in advantage between GameAlti and Gamei+1,
for some fixed i. We will create a PPT algorithm B which breaks Assumption 3. B receives
g, g3, g4, X1X2, Y2Y3, T . It simulates either GameAlti or Gamei+1 with A, depending on the
value of T .
B chooses random elements R,R′, R′′, R′′′ ∈ Gp4 , and random vectors ~α, ~η ∈ Z3

N such that
~α · ~η = 0 modulo N . It also chooses random vectors ~r,~t,~c, ~d, ~x, ~y, ~z ∈ ZnN and random values
f1, f2,∈ ZN . It sets the public key as PK = {N,G,R, gα1R′, gα2R′′, gα3R′′′} and gives this to
A. It initializes the secret key as:

~S0 := gη1~rT η1
~t(Y2Y3)~cg~x3 ,

~U0 := gη2~rT η2
~t(Y2Y3)~dg~y3 ,

~H0 := gη3~rT η3
~t(Y2Y3)f1~c+f2 ~dg~z3 .

We note that the Gp1 and Gp3 parts here are properly distributed, and if T ∈ Gp1p3 , then
the Gp2 parts are distributed according to distribution DAlt, and if T ∈ Gp1p2p3 , the Gp2 parts
are distributed according to distribution DFull.

The update matrices are chosen exactly as in the proof of Lemma 9. The challenge ciphertext
is constructed as follows. If B is encrypting a 1, it can produce three uniformly random elements
of Gp1p2p4 by raising (X1X2)g4 to three random exponents modulo N . This will be a properly
distributed encryption of 1 in either GameAlti or Gamei+1. If B is encrypting a 0, it will choose
three random elements W,W ′,W ′′ from Gp4 and a random exponent s ∈ ZN and produce the
ciphertext:

C1 = (X1X2)α1sW, C2 = (X1X2)α2sW ′, C3 = (X1X2)α3sW ′′.

Now, we must argue that in the attacker’s view, the distribution of the Gp2 parts of this
ciphertext is statistically close to the uniform distribution over G3

p2 . Equivalently, we must show
that the vector (α1, α2, α3) modulo p2 is statistically close to a uniformly random vector in Z3

p2 .
We will rely on Corollary 12 applied with p := p2 and m := 3. We note that the public key
reveals no information about the values α1, α2, α3 modulo p2. If T ∈ Gp1p3 , then the values of
η1, η2, η3 modulo p2 are never involved in the secret keys at all, and these are the only values
related to α1, α2, α3 in any way. Hence ~α is distributed as a random vector modulo p2 in this
case.

If T ∈ Gp1p2p3 , then we let gτ2 denote the Gp2 part of T , and define y by gy2 = Y2. Now,
the initial exponent vectors of the Gp2 parts of the key, namely τη1~t + y~c, τη2~t + y~d, and

54

τη3~t+ f1~c+ f2
~d and distributed as three uniformly random vectors, and reveal no information

about η1, η2, η3 modulo p2. Since the first i− 2 update matrices are chosen randomly according
to the proper distribution, no information about η1, η2, η3 modulo p2 can be learned until the
i − 1 update. This gives A a limited window of three leakage queries (and hence 3` bits) to
learn information about ~η modulo p2 before these values are completely canceled out of the
secret key. We note that these leakage functions must be specified before A sees the challenge
ciphertext. Now, by Corollary 12, as long as

3` ≤ log(p2) + 2 log(ε)

for some negligible ε, the distribution of ~η, ~α modulo p2 in A’s view is statistically close to the
distribution producing two uniformly random vectors. For convenience, we let δ := − log(ε).
We can then state the leakage bound required here as ` ≤ 1

3(log(p2)− 2δ).
In summary, when T ∈ Gp1p3 , B has properly simulated GameAlti. When T ∈ Gp1p2p3 , B

has produced a simulation which is statistically close (within negligible distance) of a proper
simulation of Gamei+1. Hence, B can use the output of A to break Assumption 3 with non-
negligible advantage.

D.7 Transition from Gamei to GameAlti

The proof for this transition is very similar to the proof of the analogous transition for our
signature scheme. We begin by defining two additional games (these are directly analogous to
our game definitions in the signature proof):

GameAlt′i This game is like GameAlti except that the update matrix for the i+ 1 update is
now chosen according to the distribution specified in the update algorithm.

GameAlt′′i This game is like GameAlt′i except that the update matrix for the i− 2 update is
now chosen so that a new random vector is in the kernel of the product of the update matrices
applied (up to and including the i − 2 update). We note that for i = 3, this is the same as
GameAlt′3, since the first matrix is also chosen to be rank n− 1.

We will prove that any PPT attacker’s advantage changes only negligibly between Gamei and
GameAlti by showing that it changes only negligibly between Gamei and GameAlt′′i , between
GameAlt′′i and GameAlt′i, and finally between GameAlt′i and GameAlti.

We now prove:

Lemma 36. Under Assumption 3, for any polynomial time attacker A, the difference in A’s
advantage between Gamei and GameAlt′′i is negligible as long as ` ≤ log(p2) − 2δ, for each i
from 3 to q + 2. Here, δ > 0 is a parameter chosen so that 2−δ is negligible.

Proof. This is very similar to the proof of Lemma 10. We suppose there exists a PPT attacker
A with a non-negligible difference in advantage between Gamei and GameAlt′′i for some i. We
will create a PPT algorithm B which breaks Assumption 3. B is given g, g3, g4, X1X2, Y2Y3, T .
B forms the public key and initial secret key exactly as in the proof of Lemma 35. It chooses
the update matrices exactly as in the proof of Lemma 10. It produces the challenge ciphertext
as in the proof of Lemma 35.

Again, we must argue that encryptions of 0 have Gp2 components which are statistically close
to uniform in A’s view - i.e. that ~α modulo p2 is statistically close to a uniformly random vector
modulo p2. When T has no Gp2 component, ~α is uniformly random modulo p2 in A’s view, as
required. When T has a Gp2 component, the attacker’s only opportunity to learn about ~α comes

55

from the i − 2 update, where the T terms are canceled out of the secret key. Before this, the
initial exponent vectors for the Gp2 components of the secret key and the independently random
update matrices reveal no information about ~η modulo p2. After this, the terms involving ~η
modulo p2 have been canceled out. Thus, the attacker learns only ` bits of information which
are related to ~η modulo p2, and this leakage function is specified before the challenge ciphertext
is given to the attacker. Thus, by Corollary 12, as long as

` ≤ log(p2) + 2 log(ε)

for some negligible ε, the distribution of the Gp2 parts of the challenge ciphertext will be within
negligible statistical distance of the uniform distribution on G3

p2 . We let δ := − log(ε) and
express our leakage bound as ` ≤ log(p2)− 2δ.

In summary, when T ∈ Gp1p3 , B has properly simulated GameAlt′′i . When T ∈ Gp1p2p3 , B
has produced a simulation which is statistically close (within negligible distance) of a proper
simulation of Gamei. Hence, B can use the output of A to break Assumption 3 with non-
negligible advantage.

Lemma 37. Under Assumption 3, for any polynomial time attacker A, the difference in A’s
advantage between GameAlt′′i and GameAlt′i for each i from 3 to q + 2 is negligible as long as
` ≤ (n− 8) log(pj)− 2δ for all primes pj dividing N , where δ > 0 is a parameter such that 2−δ

is negligible.

Proof. This follows from the same proof as the proof of Lemma 17, except that the setup for the
Gp1 elements now follows the PKE setup and B will produce a challenge ciphertext instead of
signatures. Note that it can easily produce a properly distributed challenge ciphertext because it
knows all of the primes p1, p2, p3, p4 and generators for each corresponding prime order subgroup
of G.

Lemma 38. Under Assumption 3, for any polynomial time attacker A, the difference in A’s
advantage between GameAlt′i and GameAlti for each i from 3 to q + 2 is negligible as long as
` ≤ (n− 8) log(pj)− 2δ for all pj dividing N and for δ such that 2−δ is negligible.

Proof. This follows from the same proof as the proof of Lemma 18, except that the setup for the
Gp1 elements now follows the PKE setup and B will produce a challenge ciphertext instead of
signatures. Note that it can easily produce a properly distributed challenge ciphertext because
it knows all of the primes dividing N as well as generators for each prime order subgroup of
G.

D.8 Transition from Gameq+3 to GameFinal

We finally show:

Lemma 39. Under Assumption 1, for any polynomial time attacker A, the difference in A’s
advantage between Gameq+3 and GameFinal is negligible.

Proof. We suppose that A is a PPT attacker which attains a non-negligible difference in ad-
vantage between Gameq+3 and GameFinal. We will create a PPT algorithm B which breaks
Assumption 1. B is given g3, g4, X1X4, Y1Y2Y3, Z2Z3, T . B chooses ~α, ~η randomly in Z3

N up to
the constraint that ~α · ~η = 0 modulo N . It chooses random elements R,R′, R′′, R′′′ ∈ Gp4 and
sets the public key as: PK = {N,G,R, (X1X4)α1R′, (X1X4)α2R′′, (X1X4)α3R′′′}. It chooses
random vectors ~r, ~x, ~y, ~z and initializes the secret key as:

~S0 = (Y1Y2Y3)η1~r(Z2Z3)~x,

56

~U0 = (Y1Y2Y3)η2~r(Z2Z3)~y,

~H0 = (Y1Y2Y3)η3~r(Z2Z3)~z.

We note that the Gp1 parts here are properly distributed, and the Gp2 and Gp3 parts are
uniformly random. B will choose all of the update matrices from the distribution specified in
the update algorithm. It knows the initial secret key and all of the update matrices, so it can
easily fulfill all of A’s leakage requests.
B produces the challenge ciphertext as follows. If it is encrypting 1, it produces three

uniformly random elements of Gp1p2p4 by raising X1X4T to uniformly random powers modulo
N (this will produce uniformly random elements of Gp1p2p4 for either distribution of T). If it is
encrypting 0, it chooses random exponents s, t, v ∈ ZN and sets:

C1 = (X1X4)sα1T s, C2 = (X1X4)sα2T t, C3 = (X1X4)sα3T v.

If T ∈ Gp2p4 , this will have uniformly random components in Gp2 and Gp4 , but the Gp1 compo-
nents will be properly distributed for an encryption of 0 in Gameq+3. If T ∈ Gp1p2p4 , then the
Gp1 components will be uniformly random as well.

Thus, when T ∈ Gp2p4 , B has properly simulated Gameq+3, and when T ∈ Gp1p2p4 , B has
properly simulated GameFinal. B can then use the output of A to break Assumption 1 with
non-negligible advantage.

Combining this with the results of the preceding subsections, we obtain Theorem 5.

57

