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Abstract

We investigate the question of whether security of protocols in the information-theoretic setting
(where the adversary is computationally unbounded) implies the security of these protocols under
concurrent composition. This question is motivated by the folklore that all known protocols that
are secure in the information-theoretic setting are indeed secure under concurrent composition. We
provide answers to this question for a number of different settings (i.e., considering perfect versus
statistical security, and concurrent composition with adaptive versus fixed inputs). Our results
enhance the understanding of what is necessary for obtaining security under composition, as well
as providing tools (i.e., composition theorems) that can be used for proving the security of protocols
under composition while considering only the standard stand-alone definitions of security.
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1 Introduction

1.1 Background

In the setting of secure multiparty computation, a set of parties with private inputs wishes to jointly
compute some function of their inputs. Loosely speaking, the security requirements of such a com-
putation are that nothing is learned from the protocol other than the output (privacy), and that the
output is distributed according to the prescribed functionality (correctness). More exactly, the result
of an execution of a secure protocol must be like the result of an “ideal execution” with a trusted
party who honestly computes the function for the parties (cf. [Can00] or [Gol04, Section 7.1]). These
security requirements must hold in the face of a malicious adversary who controls some subset of
the parties and can arbitrarily deviate from the protocol instructions. We focus on secure function
evaluation here (although we do not know of any difference between this setting and that of reactive
functionalities). Our results hold for both static and adaptive corruptions.

Secure multiparty computation has been studied in a number of different scenarios. One important
distinction relates to the power of the adversary, yielding two main settings:

1. The information-theoretic setting: In this setting, the adversary is computationally un-
bounded. Thus, security here does not rely on any unproven complexity assumptions; rather, it
is “information theoretic”. There are two levels of security that have been considered here:

(a) Perfect security: Very informally, here the result of a real execution of the protocol with a
real adversary must be exactly the same as the result of an ideal execution with a trusted
party and an ideal-world adversary/simulator.

(b) Statistical security: Here, the result of the real protocol execution need “only” be statisti-
cally close to the result of an ideal execution.

It has been shown that, assuming that more than 2/3 of the parties are honest (or assuming
a simple majority if the parties are additionally given a broadcast channel), it is possible to
securely compute any functionality [BGW88, CCD88, RB89, Bea89]. We note that these results
assume that the parties can communicate via perfectly-secure communication channels.

2. The computational setting: In this setting, the adversary is assumed to run in probabilistic
polynomial-time, and the security of protocols typically relies on the assumed hardness of some
problem (like factoring a large composite into its prime factors). Under appropriate crypto-
graphic assumptions, it has been shown that any functionality can be securely computed, even
if an overwhelming majority of the parties are corrupted [Yao86, GMW87].1

Another important distinction relates to the setting in which the protocol is executed. We relate
here to two possible scenarios:

1. The stand-alone model: In this setting, the secure protocol is executed only once, and it is
assumed that this is the only protocol being executed. This was the standard setting for analyzing
protocols initially; e.g., the results of [Yao86, GMW87, BGW88, CCD88, RB89, Bea89], cited
above, were all obtained in this setting.

2. Security under composition: In this setting, a protocol is executed many times, possibly
alongside other (secure and insecure) protocols. Security in such cases is referred to as security
under composition. There are many different types of composition, and we will mention two here:

1When no honest majority is assumed, the definition of security is slightly relaxed so that fairness is not required.
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(a) Concurrent general composition (a.k.a. universal composition): In this setting, a protocol
is run many times in an arbitrary network, possibly alongside other (secure and insecure)
protocols. Concurrent composition implies that the scheduling of the delivery of all mes-
sages sent (even messages sent between honest parties) is fully controlled by the adversary.
See, e.g., [DM00, PW00, Can01].

(b) Concurrent self composition: In this setting, a single protocol is run many times concur-
rently (with itself) in a network. See, e.g., [Fei90, DDN00, DNS04]. Again, the scheduling
of the delivery of all messages sent is under the control of the adversary.

The question of security of protocols under concurrent composition has received a lot of attention
recently (see, e.g. [DNS04, DM00, PW00, Can01, Lin03a, Lin03b, Lin04] and much more).

It was believed that all protocols (or at least, all known protocols) that are secure in the information-
theoretic setting, even when proven secure only in the stand-alone model, are secure under concurrent
composition. In this paper, we study this belief and more generally the interesting connection be-
tween information-theoretic security and security under composition. Our aim in initiating this study
is twofold. First, as our results demonstrate, understanding this connection deepens our understanding
of what is required for obtaining security under composition. Second, due to its complex nature, the
task of proving the security of protocols under composition is a difficult one and we obtain a number
of results that simplify this task.

1.2 Our Results

As we have mentioned, the folklore prior to our work seems to have been that all protocols that
are secure in the information-theoretic stand-alone setting are also secure under concurrent general
composition. The reason for this folklore appears to be based on the fact that all known protocols
in the information-theoretic setting are proven secure using a straight-line black-box simulator,2 and
the existence of such a simulator was believed to suffice for proving the security of a protocol under
concurrent general composition. Indeed it is common to hear the claim that universal composability
(that implies security under concurrent general composition) is essentially the same as stand-alone
security with the exception that the simulator is not allowed to rewind the adversary. We begin by
showing that this folklore belief is false. That is, we obtain the following, informally stated, proposition:

Theorem 1.1 (counter-example – informal): There exist protocols that are statistically secure in the
stand-alone information theoretical model and are proven secure using straight-line black-box simula-
tion, and yet are not secure under concurrent general composition.

The idea behind the proof of Theorem 1.1 is quite simple and is due to the issue of “delayed inputs”.
Namely, in the setting of concurrent general composition, the parties run completely asynchronously
and so some parties may begin a protocol execution before others begin. In fact, some parties may
begin a protocol execution before others have even determined their input to that execution. This
results in a possible scenario whereby the first message that one party sends in a protocol execution
can be set as the input of another party to that execution. If the first message of the parties has high
entropy, then in the stand-alone setting one party’s first message will equal another party’s input with
only negligible probability. Thus, one can construct a protocol that will fail if this happens (and so

2A black-box simulator is one that works while being given only oracle access to the adversary; see [Gol01, Sec. 4.5] for
a detailed definition. Such a simulator is straight-line if it interacts with the adversary in the same way as real parties.
That is, it first sends the adversary all of the messages it expects to receive from the honest parties in the first round. It
then proceeds round by round, without ever going back.
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will not be secure under concurrent general composition), but is otherwise statistically secure with
straight-line simulation.

Although Theorem 1.1 demonstrates that stand-alone information-theoretically secure protocols
are not necessarily secure under concurrent general composition, the fact that the source of the problem
seems to be “delayed inputs” (as described above) implies that there may be a simple way to circumvent
the problem. In addition, the proof of Theorem 1.1 relies inherently on the ability of the stand-alone
protocol to fail (albeit with negligible probability). This raises the question as to whether or not delayed
inputs are problematic in the setting of perfect security. We consider these questions and more.

Perfect security. We prove the following theorem regarding perfectly secure protocols.

Theorem 1.2 (perfect security – informal): Every protocol that is perfectly secure in the stand-alone
model, and has a straight-line black-box simulator, is secure under concurrent general composition.

The intuition behind the proof of Theorem 1.2 is that if a protocol is not secure under concurrent
general composition, then there must be some setting of inputs and random tapes for the honest
parties in the concurrent setting for which the protocol “fails” (i.e., does not behave as it should).
Although such a “fail event” may happen with only negligible probability in the stand-alone setting,
this is enough to contradict perfect security that requires that protocols never fail.

Contrasting Theorem 1.2 and Theorem 1.1 we uncover a fundamental gap between the statistical
and perfect notions of security; namely, perfectly secure protocols have a real advantage over statis-
tically secure protocols, and so perfect security is not just an issue of aesthetics. To the best of our
knowledge, this is the first example of such a separation.

Beyond its theoretical interest, Theorem 1.2 provides a useful tool for proving the security of
protocols under concurrent composition. Specifically, it suffices to consider the standard stand-alone
definitions and security in the far more complex setting of concurrent composition can be derived as
long as a perfect, black-box straight-line simulator is constructed. Thus, a corollary of Theorem 1.2
is that the protocol of [BGW88] is secure under concurrent general composition.3

We remark that, under strictly more stringent conditions, a theorem similar to Theorem 1.2 was
proven in [DM00], and that the theorem of [DM00] is also sufficient to derive the security of [BGW88]
under concurrent general composition. See Section 1.3, for a more detailed comparison of their work
with ours.

Fixed inputs. As we have seen, statistical security under straight-line black-box simulation is in-
sufficient for obtaining security under concurrent general composition. Furthermore, our proof of this
relies on the fact that one party’s input to be derived from another party’s behavior in the protocol.
This raises the question as to whether straight-line black-box simulation suffices when inputs cannot
be dynamically chosen, and in particular in the setting of fixed inputs where each honest party receives
all of its inputs before any execution begins. That is, at the onset, each party receives a vector of
inputs x = (x1, x2, . . .) and uses xi as its input to the ith protocol execution. (We note that despite
the fact that this looks like a very relaxed notion of security, until now there was no known separa-
tion between security under general composition with fixed or with adaptively-chosen inputs.) We
show that security under straight-line black-box simulation does suffice for obtaining security under
concurrent general composition with “fixed inputs”. That is, we prove:

3The protocol of [BGW88] was designed for the synchronous setting whereas, in the setting of concurrency, the
network is essentially asynchronous [B84, F89, BCG93]. Thus, what we really refer to here is an appropriately modified
version of [BGW88]; see Section 2, for a detailed discussion on the issue of synchronicity.
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Theorem 1.3 (fixed inputs – informal): Every protocol that is secure in the stand-alone model, and
has a straight-line black-box simulator, is secure under concurrent general composition with fixed inputs.

Theorem 1.3 holds for computational, statistical and perfect security. Therefore, as a corollary
to Theorem 1.3, we obtain that the protocols of [CCD88, RB89, CDD+99] – which have straight-
line black-box simulators – are all secure under concurrent general composition with fixed inputs.
Also, by combining Theorem 1.3 with Theorem 1.1, we obtain the first separation between security
under general composition with fixed inputs and with adaptively-chosen inputs. That is, we have the
following corollary:

Corollary 1.4 There exist protocols that are secure under concurrent general composition with fixed
inputs, and are not secure under concurrent general composition with adaptively-chosen inputs.

Since general composition implies self composition, we have that every protocol that is secure
in the stand-alone model, and has a straight-line black-box simulator, is secure under concurrent
self composition with fixed inputs. This is interesting for historical reasons as the classic problem of
concurrent zero-knowledge [DNS04] is exactly in the setting of concurrent self composition with fixed
inputs.

Theorem 1.3 states that any protocol that is proven secure with a straight-line black-box simulator
is secure under concurrent general composition with fixed inputs (and therefore also secure under
concurrent self composition with fixed inputs). Since self composition is a more restricted setting, this
begs the question as to whether straight-line black-box simulation – without fixed inputs – suffices
for achieving concurrent self composition. However, by the equivalence shown in [Lin04] (stating that
concurrent self and general composition are almost equivalent for adaptively chosen inputs), this is
clearly not possible because, as stated in Theorem 1.1, black-box straight-line simulation does not
suffice for concurrent general composition.

Input availability/start synchronization. Finally, we ask if there is a simple property of proto-
cols that can be required, in addition to a protocol having a straight-line black-box simulator, so that
it will be secure under concurrent general composition. We have shown that requiring fixed inputs, i.e.
that all inputs to all invocations of the executed protocols be set prior to the start of any protocol,
yields security under concurrent general composition. However, this is a very restrictive requirement
that applies to the invocations and not to the protocol, and it severely limits the applicability of
the protocols. We therefore ask whether it is possible to achieve concurrent general composition by
imposing a less restrictive (and more realistic) property on the protocol. Our aim is to define a min-
imal property that circumvents the problem of “delayed inputs”, with the hope that this suffices for
achieving security under composition.

We show that it is sufficient to require that the inputs of all parties participating in each specific
invocation of a protocol be fixed before this execution begins. We call this property input availability.
We stress that the inputs need not be fixed before all protocol executions begin (as in the assumption
of fixed inputs); rather, we require that the inputs of all parties to each specific execution be fixed
before that execution begins. Formally, this holds if all honest parties have read (and fixed) their
input to an execution before any of the honest parties sends the first message of the protocol. In
order to see why this seemingly small modification makes a difference, recall Theorem 1.3 that states
that the existence of a straight-line black-box simulator is sufficient to demonstrate security under
composition as long as the parties’ inputs are fixed before any execution begins. Now, if the parties’
inputs are not fixed at the onset, but are fixed before a specific execution begins, then it is still possible
to view everything that happened before the specific execution as auxiliary input that determines the
parties’ inputs to that execution. This enables us to reduce the security of the specific execution to the
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stand-alone setting, while the auxiliary input is used to emulate all the other concurrent executions.
Stated differently, when input availability holds, the setting is essentially the same as that of fixed
inputs (cf. Theorem 1.3) and so security under concurrent general composition holds.

We stress that when input availability does not hold, it is not possible to emulate all concurrent
executions outside of a specific execution using an auxiliary input. This is because, by definition,
auxiliary input is fixed before the protocol execution begins and thus must be independent of the
random tapes of the parties. However, if a party’s input is determined only after other parties have
already begun the execution, then there is no guarantee of independence. Indeed, this is exactly how
we prove the counter-example of Theorem 1.1.

Importantly, it is possible to ensure that the above property holds using a simple protocol preamble
that we call start synchronization. Specifically, when a party has received its input to an execution and
is ready to begin executing, it broadcasts a message to all other parties that it is ready to begin. The
parties then only commence the actual execution after they have heard from all other parties that
they are ready. This has the effect of ensuring that the actual protocol execution only begins after all
parties’ inputs have already been fixed (because no party begins until it hears from all other parties
that they are ready to start, meaning that they already have input). This modification captures the
essence of what is needed for the composition which is that the inputs for each single execution of a
protocol be known prior to the start of the execution. Thus, we have the following theorem:

Theorem 1.5 (black-box straight-line and start synchronization – informal): Every protocol that is
secure in the stand-alone model and has start synchronization and a straight-line black-box simulator
is secure under concurrent general composition.

We remark that Theorem 1.5 holds for computational, statistical and perfect security. Since any
protocol can easily be modified so that it has start synchronization, we achieve the following corollary
(informally stated):

Corollary 1.6 Assuming a broadcast channel and an honest majority, every (standard, non-reactive)
functionality can be computed by a statistically secure protocol under concurrent general composition.

Note that Corollary 1.6 is stated in terms of functionalities while our other results are stated as
results about protocols; the corollary is obtained by applying Theorem 1.5 to the protocols of [RB89,
Bea89], once modified by adding start synchronization. We remark that this is the first proof of
the existence of such protocols. The main novelty of this corollary is that it is the first proof that
there exist protocols that achieve fairness in the setting of concurrent general composition, assuming
an honest majority (previously, this was only known for the case that more than two thirds of the
parties are honest). The fact that the protocol of [RB89] is universally composable and thus secure
under concurrent general composition was claimed with a high-level proof sketch in an early version
of [Can01])

Summary. Table 1 below summarizes our results; the security level “all” means that the result
holds for computational, statistical and perfect security. We remark that the proof of Theorem 1.3 is
actually a simple special case of the proof of Theorem 1.5. We therefore first prove Theorem 1.5 (in
Section 6) and only then Theorem 1.3 (in Section 7).

A definitional discussion. A fundamental difference between the definitions of security in the
stand-alone setting and security under composition via universal composability [Can01] is the question
of whether the distinguisher is passive and views the result of the execution after it terminates (as in the
stand-alone setting) or whether it is interactive and views the intermediate stages of the computation
as well (as in universal composability). (Note that although we formally use the definition of concurrent
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Theorem Simulator Security Level Composition
Theorem 1.1 straight-line, statistical or not necessarily secure under

black-box computational concurrent general composition
Theorem 1.2 straight-line, perfect secure under concurrent

black-box general composition
Theorem 1.3 straight-line, all secure under concurrent general

black-box composition with fixed inputs
Theorem 1.5 straight-line, all secure under concurrent

black-box + start synchronization general composition

Table 1: A summary of our results

general composition, and not universal composability, these are known to be equivalent [Lin03b].) In
this light, it is possible to technically interpret our results as a study of the relation between security
under passive and interactive distinguishers, and not as a study of the relation between stand-alone
security and security under composition. Nevertheless, the equivalence of universal composability
(a stand-alone definition with an interactive distinguisher) and concurrent general composition (a
definition that considers composition and a passive distinguisher) demonstrates that these perspectives
are essentially the same.

1.3 Related and Subsequent Work

As we have mentioned, the question of composition of information-theoretic protocols was previously
studied in [DM00]. They showed that any protocol that is secure under their definition (which is a
slight modification of the definition of [MR91]) is secure under concurrent general composition. There
are three main requirements in the definition considered in [DM00]: (a) the protocol must be perfectly
secure, (b) a straight-line black-box simulator must be used, and (c) there must be a fixed “committal
round” at which point all of the parties’ inputs are fully defined by the protocol traffic, but no parties
have yet received output. In contrast, our proof of Theorem 1.2 requires (a) and (b), but not (c).
(We note that the proof of [DM00] relies explicitly on this property, as stated in [DM00, Section 4.3].)
Apart from Theorem 1.2, there is no overlap between our work and the work of [DM00]. Indeed,
they leave the question of statistical security open, and we provide both positive and negative answers
(depending on the setting).

An interesting question that arises from our work relates to the necessity (or lack thereof) of
straight-line simulation in our results. Specifically, both Theorems 1.2 and 1.3 require that the original
black-box simulator be “straight-line”. This raises the question as to whether the requirement that the
simulator be straight-line is inherent or whether similar theorems could be proven also if the simulator
is not straight-line. In the conference version of this paper [KLR06] we claimed that the theorems
could be extended to any black-box simulator by showing a method to convert a rewinding polynomial-
time simulator into a straight-line exponential-time simulator (even though the resulting simulator is
not efficient, this can still be of some interest in the information-theoretic setting). However, our
proof was erroneous and it was shown in [BMU07] that there exist perfectly secure protocols (for the
stand-alone model) for which any black-box simulator must use rewinding and which are not secure
under concurrent composition even with an inefficient simulator.

We remark that the proof of a similar result to Theorem 1.1 was obtained independently and
concurrently in [HU06]. In [HU06] it is also proven that any protocol that is perfectly secure under
bounded concurrent general composition is also secure under (unbounded) concurrent general compo-
sition. We prove a much stronger result here; namely, that it suffices to prove perfect security in the
stand-alone model.
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2 On Concurrent Composition and the Synchronous Model

In this paper, we consider protocols that were proven secure in the stand-alone model, and analyze
their security in the setting of concurrent composition. There are two “standard” modes of message
scheduling in the stand-alone setting: synchronous scheduling and asynchronous scheduling. In the
first, all parties send the messages of a given round at the same time and these messages arrive at their
destination instantaneously.4 In the asynchronous setting [B84, F89, BCG93], the adversary is given
full control over the scheduling of the sending and receiving of messages, with the requirement that
all messages be eventually delivered. Now, in the standard model of concurrent computation [Can01],
the adversary is given full control over the delivery of messages, as in the asynchronous model, but
need not ever deliver messages sent by the honest parties. That is, unlike in the asynchronous setting
where all messages must eventually be delivered, in the standard concurrent setting the adversary
may completely block some of the honest parties and never deliver their messages. As such, it is not
possible to guarantee output delivery or fairness (at least when concurrency is modeled in this way).
Thus, the best that we can hope for in the concurrent setting is security with abort (meaning that the
adversary may receive output while the honest parties do not), as in the stand-alone setting with no
honest majority.5

As we have mentioned, in this paper we analyze the security under concurrent composition of
protocols that were designed for the stand-alone model. In order to maintain compatibility between
these models, we consider the security under concurrent composition of protocols that are secure with
abort in the stand-alone model when the adversary has full control over message delivery. We stress
that this includes the capability of the adversary to completely block messages between honest parties,
unlike the stand-alone asynchronous model where all messages must eventually be delivered. Since this
is not the standard model for stand-alone computation (neither for the synchronous nor asynchronous
model), we need to discuss how to execute these protocols when the adversary has full control including
blocking. For the synchronous model, we show below how to convert any secure protocol designed
as a stand-alone protocol (with or without abort) into a protocol that is secure with abort in the
model where the adversary has full control over message delivery (including blocking). The case of
the asynchronous setting is more straightforward. The adversary’s actions in the concurrent setting
(where message blocking is allowed) is actually a prefix of an adversary’s actions in the asynchronous
setting where all messages must eventually be delivered (this can be seen by viewing a blocked message
simply as a message that was not yet delivered). This immediately implies that the security of any
protocol designed in the asynchronous setting is not violated by the scheduling of an adversary who
can also block messages. We stress, however, that if the adversary does not complete the delivery
of messages as required in the asynchronous setting then output delivery and fairness may not be
achieved. This implies that the level of security obtained is still only security with abort. We conclude
that asynchronous stand-alone protocols can be executed unmodified in the presence of an adversary
who is also allowed to block messages, with the result that security with abort is achieved. We now
proceed to describe the transformation for the synchronous protocols.

4It is typically assumed that the adversary may receive the messages from the honest parties in any given round before
it sends its own. This is called “rushing”.

5In the asynchronous stand-alone model of secure computation, output delivery and fairness are guaranteed to some
extent. Loosely speaking, the definition of [BCG93] allows the adversary to exclude up to t honest parties inputs from the
computation (where t denotes the maximum number of corrupted parties), but guarantees fairness and output delivery for
all others. This can be achieved because the adversary must eventually deliver all messages; see [BCG93] for details. (We
remark that the exclusion of t parties is possible because the honest parties cannot know if those t parties are corrupted
and will never send their messages or they are honest and the adversary has not yet delivered their messages. Thus, they
cannot wait for all messages because they may be from corrupted parties and so may never arrive.) In contrast, when
no parties’ messages need to be eventually delivered, it is not possible to do better in general than security with abort.
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Modifying synchronous protocols for the concurrent setting. Protocols that were designed
for the stand-alone synchronous model are proven secure based on the assumption that the protocol
advances from round to round based on some global clock (or round synchronizer). In particular,
it is assumed that all parties send and receive their round i messages before proceeding to round
i+1. When the adversary has the ability to schedule the messages as it wishes then some parties may
receive all round i messages and therefore proceed to send their round i + 1 messages before others
have concluded the previous round. In such a case, the security properties of the protocol may be
violated.

In order to solve this problem, we modify the stand-alone synchronous protocol so that no party
will proceed to round i + 1 before all parties conclude round i, irrespective of when and if messages
are delivered. We achieve this by adding a “synchronization step” between each round of the protocol.
Specifically, after an honest party has sent its round i messages, it is instructed to wait for all of
its incoming round i messages. Then, upon receiving all round i messages, the party broadcasts a
notification to all other parties that it has completed round i. It then continues to wait to receive
notifications that all parties have completed round i. Once all notifications are received, the parties
proceed to round i + 1. (We can also assume that honest parties concatenate the round index to
every message they send so that the adversary cannot replay messages from previous rounds.) Such
modifications can be trivially made to every protocol that is secure with or without abort in the
synchronous setting, and the result is a protocol that remains secure with abort when the adversary
has full control over message delivery. (We stress that when applying the transformation to a protocol
that is secure without abort, meaning that fairness and output delivery are guaranteed, the result is
still a protocol that is only secure with abort. Thus, in all cases fairness and output delivery are no
longer guaranteed since the adversary can mount a simple denial-of-service attack by not forwarding
a parties’ messages.)

3 Definitions and Notation

In this paper we study the connection between a number of different notions of security for multiparty
computation. Specifically, we refer to information-theoretic security (perfect and statistical) and to
computational security. In addition, we consider stand-alone computation (where only a single protocol
execution takes place) versus concurrent general composition. Finally, we consider the restriction to
the case that all inputs are fixed ahead of time.

In this section, we present the definitions and terminology that we use in this paper. We provide
only brief outlines of the definitions and refer the reader to [Gol04, Chapter 7] for definitions of secure
multiparty computation in the stand-alone setting, and [Lin03b] for the definition of security under
concurrent general composition.

Preliminaries. A function µ is negligible if for every polynomial p there exists an integer N such
that for every k > N it holds that µ(k) < 1/p(k). Two distribution ensembles {X(k, a)}k∈N,a∈{0,1}∗
and {Y (k, a)}k∈N,a∈{0,1}∗ are computationally indistinguishable, denoted {X(k, a)} c≡ {Y (k, a)}, if for
every non-uniform polynomial-time distinguisher D there exists a negligible function µ such that for
all a ∈ {0, 1}∗ and k ∈ N

|Pr[D(X(k, a)) = 1]− Pr[D(Y (k, a)) = 1]| ≤ µ(k)

Two distribution ensembles as above are statistically close, denoted {X(k, a)} s≡ {Y (k, a)}, if for every
non-uniform distinguisher (not necessarily polynomial-time) there exists a negligible function µ such
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that for all a and k,
|Pr[D(X(k, a)) = 1]− Pr[D(Y (k, a)) = 1]| ≤ µ(k)

We write {X(k, a)} ≡ {Y (k, a)} if the distributions are identical.

Secure multiparty computation. In the setting of secure multiparty computation, n parties,
denoted P1, . . . , Pn, wish to jointly compute some function f of their inputs in a secure fashion. The
standard way of defining security in this scenario is to require that a real protocol “behaves” just like
an ideal execution involving a trusted third party who computes the function for the parties [GL90,
Bea91, MR91, Can00]. More specifically, an ideal execution is defined in which the parties simply
hand their inputs to a trusted third party, who then computes the function and returns the designated
outputs to each party. When considering security with abort, the trusted party first hands the output
to the adversary, who may then decide whether or not the honest parties also receive output [Gol04,
Chapter 7]. A protocol is said to be secure with abort if for every adversary attacking a real execution of
the protocol, there exists an ideal-world adversary (running in an ideal execution) such that the output
of the honest parties and the ideal-world adversary in the ideal execution is “close” to the output of
the honest parties and the real adversary in the real protocol execution. As we have mentioned, the
real model that we consider in this paper is one where the adversary has full control over the delivery
of messages between parties, including the ability to never deliver messages.

There are a number of different settings for this definition. In the information-theoretic setting, the
real-world adversary and ideal-world adversary are computationally unbounded. Here, there are two
notions of security: perfect security, where the outputs of the ideal model are required to be identically
distributed to the outputs of the real model, and statistical security, where the outputs of the ideal
model are required to be statistically close to the outputs of the real model. We say that a protocol
computes a function f with perfect security (respectively, statistical security) if it meets the requirements
in the information-theoretic setting (with the appropriate notion of “closeness”; identical distribution
for perfect security and statistical closeness for statistical security). In the computational setting, the
real-world and ideal-world adversaries run in probabilistic polynomial-time and the outputs of the
ideal model are required to be computationally indistinguishable from the outputs of the real model.
In this setting, we say that a protocol computes a function f with computational security.

Security is defined as follows. Let k be the security parameter. We denote a real execution of
a protocol ρ with adversary A by realρ,A(z)(k,x), where z is the auxiliary input of A and x is the
vector of the parties’ inputs. Likewise, we denote by idealf

S(z)(k,x) an execution in the ideal model
where the trusted party computes the function f , S is the ideal-world adversary (or simulator) and k,
z and x are as above. For a full specification of the ideal and real executions, see [Can00] and [Gol04,
Chapter 7]. We are now ready to present the definitions.

Definition 1 (secure computation):

1. Information-theoretic security: A protocol ρ computes f with statistical security and abort if
for every real-model adversary A there exists an ideal-model adversary S running in time that
is polynomial in the running-time of A such that,

{
idealf

S(z)(k,x)
}

k∈N;z,x∈{0,1}∗
s≡

{
realρ,A(z)(k,x)

}
k∈N;z,x∈{0,1}∗

Protocol ρ computes f with perfect security and abort if {idealf
S(z)(k,x)} ≡ {realρ,A(z)(k,x)}.
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2. Computational security: A protocol ρ computes f with computational security and abort if
for every non-uniform probabilistic polynomial-time real-model adversary A there exists a non-
uniform probabilistic polynomial-time ideal-model adversary S such that,

{
idealf

S(z)(k,x)
}

k∈N;z,x∈{0,1}∗
c≡

{
realρ,A(z)(k,x)

}
k∈N;z,x∈{0,1}∗

All of our results in this paper hold for both static and adaptive adversaries. An adaptive adversary
can “adaptively” choose which honest parties to corrupt throughout the execution, based on its view
so far. In the case of a static adversary, the set of corrupted parties is fixed at the onset.

Black-box straight-line simulation. In our presentation, we will refer to black-box straight-line
simulation. Informally speaking, a black-box simulator is a universal ideal-world adversary (i.e., it
is a single simulator that works for all real adversaries) that interacts with the real adversary in a
black-box way only (i.e., it uses only oracle access to the real adversary). Furthermore, a black-box
simulator is straight-line if the real adversary maintains state between oracle calls, in the same way
as in a real protocol execution. Stated differently, a black-box straight-line simulator interacts with
the real adversary in essentially the same way as real parties in a real protocol interaction (the only
difference is that the simulator may simultaneously play the role of many parties). When S is a
black-box simulator, we denote the output of an ideal-model execution by idealf

SA(z)(k,x); note that
S is given oracle access only to A and in particular is not given the auxiliary input z.6 This is the
standard way of defining black-box simulation; see [Gol01, Sec. 4.5].

Concurrent general composition. In the setting of concurrent general composition, a secure
protocol ρ that computes a function f is run concurrently to an arbitrary other protocol π (where π
represents many arbitrary protocols running concurrently in the network). In order to define security,
a real execution of π with secure protocol ρ is compared to an idealized setting where protocol π is run,
but the parties also have access to a trusted party that computes f . Furthermore, instead of running
ρ, the parties send their inputs to the trusted party (like in the regular ideal model). This setting is
called the hybrid model, because a trusted party is used for computing f , but real messages are also
sent for computing π. The security requirement here is that for every real adversary A and every
arbitrary protocol π, there exists an ideal-world adversary S such that for every set of inputs to π,
the output of the ideal-world adversary and the honest parties in an ideal/hybrid execution of π with
a trusted party computing f is “close” to the output of the real adversary and the honest parties in a
real execution of π with ρ. We stress that the inputs to ρ (or equivalently to f) are determined by π.
This models the setting that ρ is run in an arbitrary network (modeled by π) and the inputs to ρ are
influenced by other protocol executions that take place in this network. We denote by realπρ,A(z)(x)
a real execution of ρ with π, with adversary A, inputs x and auxiliary input z for A. Furthermore,
we denote by hybridf

π,SA(z)(x) a hybrid execution of protocol π with ideal calls to f , and inputs x
and z as above. Detailed definitions of security under concurrent general composition can be found
in [Lin03b]. (We remark that although the above refers to a single execution of a protocol ρ, security
in this case is actually equivalent to security in the case where a polynomial number of protocols
ρ1, ρ2, . . . are concurrently with each other and with π.)

Concurrent general composition with fixed inputs. The only difference between this case and
the above definition is that the input to ρ is fixed before the execution of π begins. Formally, this

6Observe that if S is given the auxiliary input, then it is no longer really a black-box simulator. In particular, one
can define a ”universal” adversary A that receives for auxiliary input the description of an adversary and then runs that
adversary. If S is given the auxiliary input, then it has the strategy of A.
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is modeled by handing each party a pair of inputs (xi, yi) where xi is party Pi’s input to π and yi is
its input to ρ. (Likewise, when considering the more general setting that π is run concurrently with
protocols ρ1, ρ2, . . . then the inputs to all execution of ρ1, . . . are fixed before π begins. In this case,
each party receives a vector of inputs (xi, y

1
i , y

2
i , . . .) such that xi is party Pi’s input to π and yj

i is its
input to ρj .) Security is required to hold for all possible vectors of inputs of all possible lengths (that
is, we quantify over all adversaries, all polynomials p(·), and all possible vectors of inputs of length
p(n)). As above, we will use the simpler formulation where a single execution of a protocol ρ is run
together with an arbitrary protocol π.

Universal composability [Can01]. Universal composability is a definition of security that consid-
ers a stand-alone execution of a protocol in a special setting involving an environment machine Z, in
addition to the honest parties and adversary. As with the standard definition, ideal and real models
are considered where a trusted party carries out the computation in the ideal model and the real pro-
tocol is run in the real model. The environment adaptively chooses the inputs for the honest parties,
interacts with the adversary throughout the computation, and receives the honest parties’ outputs.
Security is formulated by requiring the existence of an ideal-model simulator S so that no environment
Z can distinguish between the case that it runs with the real adversary A in the real model and the
case that it runs with the ideal-model simulator S in the ideal model. The importance of this defini-
tion is a composition theorem that states that any protocol that is universally composable is secure
under concurrent general composition [Can01]. It has also been shown that full equivalence holds;
that is, any protocol that is secure under concurrent general composition (as formulated above) is also
universally composable [Lin03b]. Thus, all of our results here for concurrent general composition hold
equivalently for universal composability.

4 A Counter-Example to the Folklore

It seems to be well-accepted folklore that any protocol that is secure with a straight-line black-box
simulator is secure under concurrent composition. This folklore probably stems from the fact that all
known protocols for the information-theoretic setting have black-box straight-line simulators and are
assumed (though most of them do not have proofs) to be secure under concurrent composition. In this
section we show that this folklore is false. Specifically, we present a protocol that is statistically secure
and has a straight-line black-box simulator, yet is not secure under concurrent general composition.
(Recall that in the setting of concurrent general composition, a secure protocol runs concurrently to
arbitrary other protocols.) We note that the simulator that we present for this protocol also runs in
polynomial-time. Thus, the counter-example holds also for the computational setting.

The main idea behind our counter-example is as follows. In the stand-alone model, the parties’
inputs are all fixed before the execution begins. In contrast, in the setting of concurrent general
composition, a party’s input to the secure protocol may depend on messages that it receives in another
protocol. Furthermore, since the scheduling is concurrent (and controlled by the adversary), it is
possible that a party’s input to a secure protocol ρ is defined after other parties have already begun
running ρ. Such an event cannot happen in the stand-alone model, where all the parties’ inputs are
fixed before the execution begins.

Universal composability – discussion. We note that our example highlights an important issue
regarding the definition of universal composability [Can01]. Namely, this definition has two stringencies
over other definitions. First, it requires that the simulator be straight-line and black-box. Second, it
requires that the inputs may be chosen adaptively (by an external environment). It seems to have been
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generally believed (although not stated in [Can01]) that the first stringency is the main one needed
for achieving composition. Our example shows that both are actually necessary.

The counter-example. Our counter-example consists of a certain protocol that computes the three-
party constant function f defined by f(x1, x2, x3) = (0, 0, 0), where |x1| = |x2| = |x3| = k. (I.e.,
all parties receive 0, irrespective of the values of their inputs; obviously, this function can also be
computed by other protocols that do guarantee any type of security.) Specifically, we prove the
following proposition:

Theorem 2 Assuming an honest majority of participants, there exists a function f and a protocol
that computes f with statistical/computational security in the stand-alone model and with black-box
straight-line simulation, that is not secure under concurrent general composition. This holds for both
static and adaptive corruptions.

Proof: We begin by presenting a three-party protocol that computes the function f(x1, x2, x3) =
(0, 0, 0) with statistical security in the stand-alone model and with black-box straight-line simulation,
in the case of an honest majority.

Protocol 1

1. Party P2 chooses a random string r2 of length k/2 and sends it to P1.

2. Party P1 chooses a random string r1 of length k/2 and sends it to P2.

3. Parties P1 and P2 define r = (r1, r2), where (a, b) denotes the concatenation of a and b. If one
of the parties does not receive the ri value from the other, then it just waits. If one of the parties
receives an invalid value (i.e., one not of length k/2), then it sets r to a uniformly distributed
string of length k.

4. Parties P1 and P2 both send r to P3.

5. If P3 received the same string from both P1 and P2, and the string equals its input x3, then it
outputs 1. Otherwise, it outputs 0.

6. P1 and P2 always output 0.

We begin by showing that Protocol 1 is secure in the stand-alone model. Intuitively, the protocol
is secure because P3 only outputs 1 in the case that r equals its input. However, since at least one of
P1 or P2 is honest, and thus chooses ri at random (i ∈ {1, 2}), the probability that r equals P3’s input
is at most 2−k/2.

Claim 4.1 Protocol 1 computes f with statistical/computational security in the stand-alone model
with black-box straight-line simulation and an honest majority.

Proof: In order to prove Claim 4.1, we construct a simulator S as follows.

1. If no parties are corrupted, then S internally runs the code of all parties for the adversary A
and outputs whatever A outputs.

2. If P3 is corrupted, then S internally runs the code of the honest parties and hands the adversary
A controlling P3 the messages that it expects to receive from the honest parties. At the end, S
outputs whatever A outputs.
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3. If P1 is corrupted, then S interacts with the adversary A controlling P1 just as the honest P2

would (sending it a random r2 and receiving back r1). Upon receiving r1 from A, simulator S
simulates sending r = (r1, r2) to P3. At the end, S outputs whatever A outputs.

4. If P2 is corrupted, then S behaves in a symmetrical way to the case that P1 is corrupted.

Since we assume an honest majority, these are all the possible corruption scenarios. We claim that
the above simulation results in outputs that are statistically close to a real execution. Notice that the
only possible difference between a real execution with an adversary A and an ideal execution with S
is in the case that the messages that P3 receives from P1 and P2 equal its input x3 (because in this
case P3 outputs 1, whereas in an ideal execution it always outputs 0). However, we claim that this
can only happen with negligible probability. In the case that one of P1 or P2 receive an invalid string
ri, this is clear (because the aborted party sends a truly random string of length k to P3). In all other
cases, this follows from the fact that at least one of P1 or P2 are honest (recall that we assume an
honest majority here). Therefore, the entropy of the string received by P3 is at least k/2. Since x3 is
fixed before the execution began, the probability that an honest P3 outputs 1 is at most 2−k/2. We
conclude that Protocol 1 computes f with statistical (and hence computational) security,7 completing
the proof of Claim 4.1.

We now prove that Protocol 1 is not secure under concurrent general composition.

Claim 4.2 Protocol 1 does not compute f with statistical or computational security, in the setting of
concurrent general composition.

Proof: The idea behind the proof of this claim is that the input of P3 is not necessarily fixed before
P1 and P2 start running their protocol. Since we are working in a concurrent setting, this is inevitable.
We begin by describing a protocol π that contains an ideal call to f . (The protocol π is the “arbitrary
protocol” that runs concurrent to the secure Protocol 1.)

Arbitrary protocol π:

1. Party P1 sends a random string s ∈R {0, 1}n to P3.

2. Parties P1 and P2 send the trusted party computing f the input 0n.

3. Party P3 sends the trusted party computing f the input s (as received from P1) and outputs
whatever output it receives back from the trusted party.

4. Parties P1 and P2 record their outputs whenever they receive them from the trusted party and
they output these recorded values.

Consider now a real execution of π with Protocol 1 replacing the trusted computation of f (Steps
2-4), and an adversary A who controls a corrupted P1. In such an execution, parties P1 and P2 begin
running Protocol 1. (Note that P3 does not start running Protocol 1 until it receives its input s from
P1 in π.) P1 receives a string r2 from the honest P2 and chooses its own random r1. The adversarial
strategy of A controlling P1 here is to send s = r = (r1, r2) to P3 as part of the protocol π (i.e., Step 1
in Protocol π), and to send r1 to P2 as part of Protocol 1 (i.e., Step 2 in Protocol 1). A then proceeds

7One minor issue here relates to the fact that by our description, it is possible that P3 does not receive output. This
occurs if it waits forever for P1 and P2 to send their messages. The simplest way of dealing with this is just to state that
our definition of security does not require the parties to generate output. This makes sense when we move to the full
concurrent setting, where the adversary controls all scheduling. If we want to assume some synchrony or timing, this is
also fine. Then, P3 will just wait the appropriate amount of time and will output 0 if it didn’t receive both messages.
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with Protocol 1 following the instructions of P1 honestly. (In particular, it sends r = (r1, r2) to P3

and outputs 0.)
Notice that in a real execution of π with Protocol 1 and adversary A, in Protocol 1 party P3 always

receives messages from P1 and P2 that equal its input x3. This is because P3 sets its input x3 to equal
s, and P1 is able to make s = r. Therefore, P3 always outputs 1 from such an execution of Protocol 1
with π and A. By the definition of π, this means that P3 also always outputs 1 from π in such an
execution with A. (Recall that in a real execution of π with Protocol 1, the output of f is replaced
with the output of Protocol 1.)

It remains to note that for all simulators working in a hybrid/ideal model where π is run together
with an ideal call to a trusted party computing f , the output of the honest parties P2 and P3 from π
is always 0, because this is the output always sent by the trusted party. Therefore, the outputs of the
real and ideal (hybrid) executions are easily distinguishable. This completes the proof of Claim 4.2.

Theorem 2 follows by combining Claims 4.1 and 4.2.

5 Perfect Security and Concurrent General Composition

Theorem 2 states that black-box straight-line simulation and statistical security do not suffice for
achieving security under concurrent general composition. In this section, we show that if the protocol
has a black-box straight-line simulator and is perfectly secure, then it is secure under concurrent
general composition.

Theorem 3 Let f be a function and let ρ be a protocol that computes f with perfect security and
abort in the stand-alone model, with a black-box straight-line simulator. Then, ρ computes f with
perfect security under concurrent general composition. Furthermore, if the black-box simulator for ρ
in the stand-alone model runs in polynomial-time, then so does the simulator for ρ in the setting of
concurrent general composition. This holds for both static and adaptive adversaries.

Proof: The idea behind the proof of this theorem is as follows. Assume, by contradiction, that ρ
is not secure under concurrent general composition. Loosely speaking, this means that there exists
a protocol π and an adversary A such that a real execution of π and ρ with A cannot be simulated
in the hybrid world where π is run together with a trusted party who computes f .8 In particular,
it must be that the output distribution of the adversary and honest parties in ρ, when running it
together with π, is not the same as their output distribution when they just send their inputs to a
trusted party computing f . The main idea here is to use this fact to attack a stand-alone execution
of ρ. Specifically, we construct a stand-alone adversary Aρ who attacks ρ by internally simulating
the entire π execution for A, while running the protocol ρ externally with the honest parties. If Aρ’s
simulation of π is “good”, then it follows that the stand-alone execution of ρ will be the same as
when it is run together with π. Thus, the output of ρ in this stand-alone execution will not be the
same as the output of an ideal execution with a trusted party computing f . The problem with this
approach is that in order for Aρ’s simulation of π to be “good”, it must somehow guess the honest
party’s inputs and random coins in a way that will make the combination of the internal π simulation
and the external ρ execution look the same as a full external execution of π with ρ. This is especially
problematic because in the setting of concurrent composition, the honest parties’ inputs to ρ may be
determined by π (whereas in the stand-alone model, the inputs of the honest parties are fixed ahead

8We remark that we prove the theorem directly for security under concurrent general composition, without going
through the definition of universal composability [Can01]. Those who feel more comfortable using universal composability
can just think of the protocol π as the environment Z and everything remains the same.
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of time). Nevertheless, in the case of perfect security, this is not a problem because we only need
Aρ’s attack on ρ to “succeed” with nonzero probability. In particular, even a statistical distance of
2−nO(1)

between the real and ideal executions is not allowed. Now, with very small probability, Aρ’s
guesses are “correct”, and in this case, the output distribution and execution of ρ with Aρ is the same
as after an execution of π and ρ with A. By the contradicting assumption, this output distribution
is not simulatable in the ideal model, and so we have that the real and ideal distributions are not
identical, in contradiction to the perfect security of ρ in the stand-alone model. We note that the
above contains the main idea behind the proof. However, the structure of the actual proof is a little
different. We now proceed to the formal proof. For the sake of simplicity, we provide the proof for
the case of static adversaries. In the case of adaptive corruptions, the only difference is that the Aρ

needs to corrupt a party whenever A does and then provide A with the entire state of that party.
This is not a problem because the state of all parties in π is known completely by A (who runs the
entire π execution internally) and the state of a newly corrupted party in ρ is learned by Aρ when it
carries out the corruption. (The simulation strategy in the case of adaptive corruptions is derived in
the same way.)

In this proof, without loss of generality, we only consider the case that the arbitrary protocol π has
a single ideal call to f . We note that in the case that a single universal simulator is provided for all
protocols π (as will be the case here), this is equivalent to the case that π has any polynomial number
of ideal calls to f (see the full version of [Lin03b] for a proof). Recall that we denote by realπρ,A(z)(x)
the distribution of the outputs of the adversary A with auxiliary input z and the honest parties in a
real execution of π with ρ when given input vector x. Likewise, we denote by hybridf

π,SA(z)(x) the
distribution of the outputs of the adversary S and the honest parties in a hybrid execution of π with
a trusted party computing f when given input vector x. (We don’t use a security parameter k here
in the notation because it is not needed when considering perfect security.)

Let f be a function, let ρ be a protocol that computes f with perfect security, and let Sρ be
the black-box straight-line ideal-model simulator for ρ that is assumed to exist. Then, we construct
a simulator S for the setting of concurrent general composition as follows. Let A be a real-model
adversary and let π be an arbitrary protocol that contains a single ideal call to f . Then, S invokes
the real adversary A and forwards all π-messages untouched between A and the honest parties (recall
that S runs a real execution of π with external parties). In contrast, when A begins the ρ execution,
S invokes a copy of Sρ and forwards all ρ-messages between A and Sρ (in contrast to the π-messages
that are sent externally, ρ is internally simulated by S using Sρ). More specifically, when A outputs a
ρ-message to be sent to an honest party, S hands this message to Sρ. Likewise, Sρ’s reply is handed
back to A as if coming from an honest party. In addition, whenever Sρ sends an input to the trusted
party computing f , simulator S sends the same input. Likewise, outputs sent to S from the trusted
party are forwarded to Sρ. (We note that the π execution continues by just forwarding π-messages
between A and the honest parties, even while the simulation of ρ takes place. Notice that the real
execution of π can continue concurrently with the simulation of ρ because Sρ is straight-line, and so
it never needs to rewind.9) Whenever A halts, simulator S copies A’s output to its own output tape
and halts.

We now prove that for every arbitrary protocol π (with a single ideal call to f) and every real
adversary A, {

hybridf

π,SA(z)(x)
}

z,x∈{0,1}∗ ≡
{
realπρ,A(z)(x)

}
z,x∈{0,1}∗ . (1)

9If Sρ were to rewind A, then a problem would arise in the case that a π-message that A sent before rewinding is
changed by A after rewinding. In particular, since these messages are sent externally to honest parties, they cannot be
changed at a later stage.
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Assume, by contradiction, that this is not the case. This implies that there exists a protocol π, an
adversary A and a vector of inputs x such that Eq. (1) does not hold.

First, assume that the output of each honest party in π includes its local input to and output from
the ideal call to f (or likewise, its local input to and output from the execution of ρ). Clearly Eq. (1)
does not hold here as well, because we only provided more output. Next, modify the protocol π to
π′ so that the honest parties output their local input to and output from f (or ρ) only, and not their
original π-output. This is the only difference between π and π′. In particular, the honest parties run
π to the end as before, following the same instructions. We now claim that Eq. (1) also does not hold
with respect to π′. That is,

{
hybridf

π′,SA(z)(x)
}
6≡

{
realπ′ρ,A(z)(x)

}
. (2)

This requires justification because in π′ the output distribution is different (and contains less “infor-
mation”). In order to see that Eq. (2) holds, we show that if this were not the case, then Eq. (1) would
hold. This follows from the fact that the only difference between hybridf

π,S(x) and realπρ,A(x) for
the honest parties is that the output from f is obtained from the trusted party in hybrid and from
the execution of ρ in real. Furthermore, protocol π only refers to the input to ρ and output from ρ
and thus only the input to and output from ρ influence the honest parties’ output in π. This implies
that if the joint input/output distribution to ρ are identically distributed in hybrid and real, then
the honest parties’ outputs from π are identically distributed in hybrid and real.10 One subtle point
that needs to be clarified is that the output of the honest parties in π is also influenced by the messages
that they receive from the adversary. However, by the definition of S, the messages received by the
honest parties within the execution of π are identical in the hybrid and real executions; indeed, S
merely forwards these messages unmodified between A and the honest parties. This contradicts the
assumption that Eq. (1) does not hold, and so we conclude that Eq. (2) holds.

Now, let xρ be a vector of inputs to ρ such that in the event that the inputs determined by π′ to
f (or equivalently to ρ) equal xρ, the hybridf

π′,S(x) and realπ′ρ,A(x) distributions are not identical.
Such a vector of inputs xρ to ρ must exist, because otherwise the hybrid and real distributions would
be identical. (More formally, we can break up the distributions of hybridf

π′,S(x) and realπ′ρ,A(x)
according to all possible sets of inputs to f and ρ in an execution of π′ with x. Then, it must be that
for at least one of these “sub-distributions”, the hybrid and real distributions are not identical.)

We are now ready to construct an adversary Aρ that attacks a stand-alone execution of ρ, and suc-
ceeds when the input vector to ρ equals xρ. Adversary Aρ works by internally emulating all the honest
parties in the execution of π′, and externally running the ρ execution. Specifically, Aρ sets the inputs
of the (internally-emulated) parties running π′ to x, and also chooses uniformly distributed random-
tapes for these parties. Then, Aρ invokes A and perfectly emulates an execution of realπ′ρ,A(x),
by passing all π′-messages between A and the internally-emulated honest parties. In contrast, when
the execution of ρ is reached, Aρ sends A’s ρ-messages externally to the real honest parties running
ρ. Likewise, ρ-messages received externally by Aρ are internally handed back to A. We note that
the internal emulation of π continues concurrently to the external execution of ρ (according to the
scheduling determined by A). At the end of the external execution of ρ, adversary Aρ guesses the
outputs of the honest parties (from the set of all possible outputs) and uses them in the continuation
of the internal emulation of π.11 Aρ continues this internal emulation of π′ until A halts. At this point

10This is not necessarily true for the adversary’s output. However, the adversary’s output is unchanged in π and π′.
11This guess can be made efficient by guessing the honest parties’ inputs and random tapes. In the case that the

messages sent by the real honest parties are consistent with the guessed inputs and random tapes, Aρ sets their outputs
according to these values and the messages sent by A to the honest parties (if the guess of Aρ is correct here, it follows
that Aρ holds the view of the honest parties and so can compute their exact outputs). Otherwise, Aρ sets their outputs
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Aρ outputs A’s output, as well as its guesses for the honest parties’ inputs to ρ and their outputs. Aρ

then halts.
First, observe that with nonzero probability, the inputs of the internally-emulated honest parties

to ρ equal xρ (and therefore match the real inputs of the external parties). This must hold because
otherwise xρ would not have been chosen above (an xρ which appears with zero probability cannot
contribute to a statistical difference between the real and hybrid distributions). Furthermore, the
guess of Aρ with respect to the honest parties’ outputs from ρ is also correct with nonzero prob-
ability. Now, conditioned on these guesses being correct, the output of the honest parties from ρ
along with the portion of Aρ’s output that is copied from A’s output is distributed exactly according
to realπ′ρ,A(z)(x). Furthermore, in an ideal-model simulation by Sρ, once again conditioned on the
guesses being correct, the output of the (ideal) honest parties along with the appropriate portion of
Sρ’s output is distributed exactly according to hybridf

π′,SA(z)(x).
Notice finally that because Aρ outputs its guesses for the inputs and outputs of the honest parties

(and whether or not they are correct can be derived from comparing Aρ’s output to the real inputs
and outputs of the honest parties), the “sub-distribution” of the guesses of Aρ being correct is disjoint
from the case that the guesses of Aρ are incorrect. Since it follows from the contradicting assumption
that this sub-distribution is not identically distributed in the real and ideal executions, we conclude
that {

idealf

SAρ(z)
ρ

(xρ)
}
6≡

{
realρ,Aρ(z)(xρ)

}

in contradiction to the perfect security of ρ with the black-box simulator Sρ.
The “furthermore” in the theorem statement follows from the fact that the simulator S that we

constructed merely invokes A and the simulator Sρ for ρ. Thus, if Sρ runs in time that is polynomial
in the running-time of A, so does S. This completes the proof.

The computational setting. In the information-theoretic setting, ideal secure channels are as-
sumed to exist. However, in the computational model only authenticated channels are used. Thus,
information-theoretic protocols cannot be used directly in the computational setting. Fortunately, this
is easy to fix; it suffices to use computationally secure channels as formulated in [CK02] (these can
be constructed from any CCA2-secure public-key encryption scheme, or any public-key encryption
scheme when assuming authenticated channels. We denote by ρ′ the protocol which is identical to ρ
except that all messages are sent encrypted, according to the scheme shown in [CK02]. This yields
the following corollary:

Corollary 4 Assume the existence of public-key encryption schemes. Let f be a function and let ρ be
a protocol that computes f with perfect security and abort in the stand-alone model and has a black-box
straight-line simulator. Then, protocol ρ′ defined above securely computes f under concurrent general
composition in the computational setting.

6 Straight-Line Black-Box Simulation and Start Synchronization

Theorem 2 states that statistical security and black-box straight-line simulation do not suffice for
achieving security under concurrent general composition. In this section, we show that a mild addi-
tional requirement can be made on the protocol so that it does suffice. Namely, we prove that if a
secure protocol has a black-box straight-line simulator, and no party sends any message that depends

to some default values. Notice, that if Aρ’s input and random-tape guesses are correct, then so are the output guesses.
Furthermore, the input and random-tape guesses are correct with nonzero probability.
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on its input or random-tape until all parties have announced that they have started, then the proto-
col is secure under concurrent general composition. This result holds for all levels of security, even
computational security.

Start synchronization. We say that a protocol ρ has start synchronization if it begins with the
following steps for all parties:

1. Send “begin ρ” to all parties

2. Wait until “begin ρ” messages are received from all parties. Then, continue the execution of ρ.

We stress that the inputs to the protocol are read by each party before it sends its begin ρ message,
and are therefore fixed before the actual execution of ρ begins (or, more exactly, before any honest
party sends a message that depends on its input or random tape). We prove the following theorem.

Theorem 5 Let f be a function and let ρ be a protocol that computes f with computational (resp.
statistical or perfect) security and abort in the stand-alone model, and with a black-box straight-line
simulator. Furthermore, assume that ρ has start synchronization. Then, ρ computes f with computa-
tional (resp. statistical or perfect) security under concurrent general composition. This holds for both
static and adaptive adversaries.

Proof: The case of perfect security follows from Theorem 3, even without start synchronization. It
therefore remains to prove the theorem for the computational and statistical cases. We present the
proof for the computational setting; only minor modifications are needed for the statistical case. Also,
as in the proof of Theorem 3, we provide the proof only for the case of static adversaries; dealing
with adaptive corruptions here is straightforward. The intuition behind this theorem comes from the
counter-example of Section 4. Specifically, notice that the security of the protocol there is compromised
by having one party’s input depend on messages sent by the other parties in ρ itself. When there is
start synchronization, this cannot happen. Technically, the proof utilizes start synchronization by the
following observation. Assume that all of the parties’ inputs to ρ in a concurrent execution with some
protocol π, depend only on π (as is indeed the case when there is start synchronization). Then, all of
the computation of π can be thrown into an auxiliary input for an adversary attacking a stand-alone
execution of ρ. Thus, we can use the stand-alone security of ρ to derive security under concurrent
general composition. (Note that an auxiliary input can be correlated to the parties’ inputs to ρ but
not to their random tapes in ρ. Thus, this strategy cannot work if there is no start synchronization,
as is demonstrated in the counter-example of Section 4.)

We begin the proof in a very similar fashion to the proof of Theorem 3. That is, we use the simulator
Sρ that exists for ρ (by the assumption that it is secure in the stand-alone model) in order to construct
a simulator S for the setting of concurrent general composition. As in the proof of Theorem 3, the
simulator S works by forwarding all of the π-messages untouched (where π is an arbitrary protocol
that contains an ideal call to f), and using Sρ to deal with all of the ρ-messages. More specifically,
let f be a function, let ρ be a protocol that computes f with computational security, and let Sρ be
the black-box straight-line ideal-model simulator for ρ that is assumed to exist. Then, we construct
a simulator S for the setting of concurrent general composition as follows. Let A be a real-model
adversary and let π be an arbitrary protocol that contains a single ideal call to f (as discussed in
the proof of Theorem 3 considering a single call to f suffices). Then, S invokes the real adversary A
and forwards all π-messages untouched between A and the honest parties (recall that S runs a real
execution of π with external parties). In contrast, when A begins the ρ execution, S invokes a copy
of Sρ and forwards all ρ-messages between A and Sρ (in contrast to the π-messages that are sent
externally, ρ is internally simulated by S using Sρ). More specifically, when A outputs a ρ-message
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to be sent to an honest party, S hands this message to Sρ. Likewise, Sρ’s reply is handed back to
A as if coming from an honest party. In addition, whenever Sρ sends an input to the trusted party
computing f , simulator S sends the same input. Likewise, outputs sent to S from the trusted party
are forwarded to Sρ. We note that the π execution continues by just forwarding π-messages between
A and the honest parties, even while the simulation of ρ takes place. Notice that the real execution of
π can continue concurrently with the simulation of ρ because Sρ is straight-line, and so never needs to
rewind (this is where the straight-line property of Sρ is used). Whenever A halts, simulator S copies
A’s output to its own output tape and halts.

Let k be the security parameter (i.e., all parties are assumed to run in time that is polynomial in
k). Recall that we denote by realπρ,A(z)(k,x) a real execution of the protocol π with real protocol
ρ, where A has auxiliary input z and the vector of the parties’ inputs equals x. Likewise, we denote
by hybridf

π,SA(z)(k,x) the hybrid execution of π with ideal calls to f , where the parties’ inputs are x
and the ideal-world adversary/simulator is given oracle (i.e., black-box) access to A(z).

We now prove that for every arbitrary protocol π (with a single ideal call to f) and every real
adversary A,

{
hybridf

π,SA(z)(k,x)
}
x,z∈{0,1}∗;k∈N

c≡
{
realπρ,A(z)(k,x)

}
x,z∈{0,1}∗;k∈N

(3)

Assume, by contradiction, that this is not the case. This implies that there exists a protocol π, a
distinguisher D, an adversary A, a polynomial p and a vector of inputs x and auxiliary input z such
that for infinitely many k’s,

∣∣∣Pr
[
D(hybridf

π,SA(z)(k,x)) = 1
]
− Pr

[
D(realπρ,A(z)(k,x))

]∣∣∣ >
1

p(k)

We use this to contradict the security of ρ. That is, we show that there exists a distinguisher Dρ,
real-world adversary Aρ, polynomial q and an auxiliary input zρ and vector of inputs xρ such that for
infinitely many k’s,

∣∣∣∣Pr
[
Dρ(idealf

SAρ(zρ)
ρ

(k,xρ)) = 1
]
− Pr

[
D(realρ,Aρ(zρ)(k,xρ))

]∣∣∣∣ >
1

q(k)
(4)

in contradiction to the assumption that Sρ is a “good simulator”.
As we have mentioned above, the key point in the proof is to use the auxiliary input zρ for Aρ in a

stand-alone execution of ρ in place of the execution of π together with ρ. Specifically, a secure protocol
must remain secure when the adversary receives any auxiliary input, even one that is correlated with
the honest parties’ inputs. In particular, for every vector of inputs xρ to ρ, security must hold when
the auxiliary input zρ consists of a vector of inputs x and random coins r for the honest parties (and
the adversary) such that when π is run with the adversary A, inputs x and random tapes r, the honest
parties’ inputs to f (or equivalently to ρ) are those given in xρ. (Note that the random tapes r in zρ

are actually chosen uniformly from all those meeting the requirement.) Before proceeding, we stress
that defining such an auxiliary input is only possible if the inputs of the parties in ρ are independent
of the ρ-execution itself. This is ensured because ρ begins with start synchronization.

Next, we describe an adversary Aρ attacking ρ. Adversary Aρ internally invokes A and perfectly
simulates the honest parties’ actions in π by running the π-instructions of the honest parties on the
inputs and random-tapes specified in its auxiliary input zρ. In contrast to the π-messages that are
internally emulated by Aρ for A, all of the messages belonging to ρ are forwarded by Aρ from A to
the external honest parties and back. At the end of the execution of ρ, adversary Aρ halts, outputting
A’s current view.
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Given the above, we show that by the contradicting assumption, there exists at least one vector
of inputs xρ to ρ with associated auxiliary input zρ such that a real execution of ρ with adversary
Aρ, auxiliary input zρ and inputs xρ, can be distinguished from an ideal execution of f with adver-
sary/simulator SAρ(zρ)

ρ and inputs xρ. We prove this by showing that if this is not the case (i.e., if
Eq. (4) does not hold), then this would imply that Eq. (3) holds (in contradiction to the assumption).
To see this, notice that an efficient distinguisher Dρ who receives the adversary’s view after the exe-
cution of ρ is completed (including its outputs from ρ or f), the auxiliary input zρ of the adversary,
and the honest parties’ outputs from ρ or f , can complete the execution of π itself and obtain the
outputs of A and all the honest parties. Now, if Dρ receives outputs from a real execution of ρ, the
output distribution that it will internally compute will be exactly realπρ,A(z)(k,x). In contrast, if Dρ

receives outputs from an ideal execution of f , the output distribution that it will internally compute
will be exactly hybridf

π,SA(z)(k,x). (This holds due to the construction of S that runs Sρ for the ρ

part of the execution, and everything else is run according to A.) We conclude that if Eq. (3) does not
hold, then there exist xρ and zρ such that Dρ can distinguish between ideal and real as in Eq. (4).
This contradicts the assumed security of ρ.

7 Black-Box Straight-Line Simulation and Fixed Inputs

Theorem 2 states that black-box straight-line simulation does not suffice for achieving security under
concurrent general composition. In this section, we show that it does however suffice for achieving
security under concurrent general composition with fixed inputs. Recall that in the setting of fixed
inputs, each party Pi receives a pair of inputs (xi, yi) before the execution begins. Then, party Pi uses
xi as its input to π and it uses yi as its input to ρ.

Theorem 6 Let f be a probabilistic polynomial-time function and let ρ be a protocol that computes
f with computational (resp., statistical/perfect) security and abort in the stand-alone model under
black-box straight-line simulation. Then, ρ computes f with computational (resp., statistical/perfect)
security under concurrent general-composition with fixed inputs.

The proof of this theorem is a simple, special case of the proof of Theorem 5 where instead of using
the auxiliary input to fix the inputs to ρ, they are already fixed ahead of time.
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