
A Comparative Analysis of Delay Based PUF

Implementations on FPGA

Sergey Morozov, Abhranil Maiti, Patrick Schaumont,

Virginia Polytechnic Institute and State University

{morozovs, abhranil, schaum}@vt.edu

Abstract. Physical Unclonable Functions promise cheap, efficient, and secure

identification and authentication of devices. In FPGA devices, PUFs may be

instantiated directly from FPGA fabric components in order to exploit the

propagation delay differences of signals caused by manufacturing process

variations. Multiple delay based PUF architectures have been proposed.

However, we have observed inconsistent results among them. Ring Oscillator

PUF works fine, while other delay based PUFs show a significantly lower

quality. Rather than proposing complex system level solutions, we focus on the

fundamental building blocks of the PUF. In our effort to compare the various

delay based PUF architectures, we have closely examined how each

architecture maps into the FPGA fabric. Our conclusions are that arbiter and

butterfly PUF architectures are ill suited for FPGAs, because delay skew due to

routing asymmetry is over 10 times higher than the random variation due to

manufacturing process. On the other hand, ring oscillator PUF does not suffer

from the same limitations.

Keywords: Physical Unclonable Functions (PUF), process variation, FPGA

routing, delay, arbiter, ring oscillator, butterfly.

1 Introduction

A Physical Unclonable Function (PUF) has the unique advantage of generating

volatile chip-specific signatures at runtime. It not only excludes the need of an

expensive non-volatile memory for key storage, but also offers robust security shield

against attacks. It is emerging as a promising solution to issues like intellectual

property (IP) protection, device authentication, and user data privacy. The IP

protection issue on FPGA platform is specially a critical one due to the reconfigurable

nature of the FPGA devices. A PUF can potentially resolve this issue by creating

device-specific IPs using device-specific signature. Similarly, other security related

issues can be addressed using a PUF.

However, implementing a PUF circuit on an FPGA device requires complex design

decisions, and an in-depth understanding of the FPGA platform. Existing PUF

techniques mainly focus on the fundamental mechanism of the PUF ignoring

implementation related complexities specific to FPGA environment. In this paper, we

present the critical factors that need to be considered by the designer while

implementing a delay-based PUF on FPGA.

The majority of the PUF designs is based on delay variation of logic and

interconnect. We analyze three delay based architectures, namely, Arbiter PUF, Ring

Oscillator PUF and Butterfly PUF. The fundamental principle followed in a delay-

based PUF is to compare a pair of structurally identical/symmetric circuit elements

(composed of logic and interconnect), and measure any delay mismatch that is

introduced by the manufacturing process variation, and not by the design. This

essentially requires identical/symmetrical implementation for the two compared

circuit elements in consideration. This can be best achieved by VLSI level placement

and routing techniques. However, VLSI level circuit manipulation techniques cannot

be used because implementation of circuits on FPGA is a post fabrication process.

Moreover, the lack of information regarding the underlying VLSI layout of the

reconfigurable fabric limits the design space to FPGA components such as lookup

tables and storage. At this level, achieving symmetry in circuit elements is not only

difficult, but also requires many assumptions about the FPGA structure. Additionally,

the limitations of standard FPGA design tools to control low-level placement and

routing make a PUF design somewhat complex in nature.

 We will show that Arbiter PUF and Butterfly PUF largely suffer from the above

limitations, and an effective implementation of these two PUFs is difficult on FPGA.

The delay skew, inherently present between a pair of circuit elements that are required

to be symmetric in these PUFs, is an order of magnitude higher than the delay

variation due to random process variation. On the other hand, the architecture of a

ring oscillator based PUF is independent of these limitations, and thus allows for an

easy implementation on FPGA. Our main contribution in this paper is to present a

detailed comparative analysis of the implementation complexities of these three PUFs

on a 90nm commodity FPGA platform.

The rest of the paper is organized as follows. Section 2 briefly discusses the basic

definition of a PUF and various PUF techniques. It also includes a delay model of the

PUF interconnects, and a structural comparison of the three PUFs. Section 3 describes

some necessary architectural information of a Xilinx Spartan 3E FPGA which we

used as the reference platform. In section 4, we present our detailed analysis of the

PUF implementation complexities. Finally, in section 5 we conclude the paper.

2 Background

A PUF is a function that generates a set of responses while stimulated by a set of

challenges. It is a physical function because the challenge-response relation is defined

by complex properties of a physical material, such as the manufacturing variability of

CMOS devices. Its unclonability is attributed to the fact that these properties cannot

be controllably reproduced, making each device effectively unique.

2.1 CMOS PUFs

Extraction and characterization of the static process variation out of a CMOS device

is the underlying principle of an on-chip PUF circuit. On-chip PUF techniques either

exploit components such as SRAM cells [1, 2], FPGA configuration memory [3] or

add a specialized circuit to extract the process variation imprint. In analyzing the

design complexity, we will consider only the last type. This category of PUF is

mainly based on the delay variation of logics and interconnects, and we focus on three

existing techniques of this category – arbiter PUF (APUF), ring oscillator PUF

(ROPUF) and Butterfly PUF (BPUF).

Arbiter PUF – An APUF, proposed by Lim et.al [4], is composed of two identically

configured delay paths that are stimulated by an activating signal. The difference in

the propagation delay of the signal in the two delay paths is measured by an edge

triggered flip-flop known as the arbiter. The delay difference is a function of the

manufacturing process variation present in the delay paths. Several PUF response bits

can be generated by configuring the delay paths in multiple ways using the challenge

inputs. An APUF scheme is shown in Figure 1.

Fig. 1. An arbiter PUF scheme with several switches and an arbiter.

Ring Oscillator PUF – In an ROPUF [5], variations in frequencies of several

identically laid out ring oscillators are exploited to build the PUF. The RO

frequencies are captured in a counter, and are subsequently transformed into binary

outputs by a simple comparison method.

Butterfly PUF – The Butterfly PUF, proposed by Kumar et.al [6], is a technique that

aims to emulate the behavior of an SRAM PUF [1]. However, the functionality of this

PUF is based on the delay variations of interconnects unlike the SRAM PUF where

the variation in threshold voltage of transistors is the key factor. A BPUF cell

employs two cross-coupled latches, and exploits the random assignment of a stable

state from an unstable state that is forcefully imposed by holding one latch in preset

while the other in clear mode by an excite signal (Figure 3(c)). The final state is

determined by the random delay mismatch in the pair of feedback paths and the excite

signal paths due to process variation.

A

rb
it
e

r
Challenge Bits

Repeating

Elements

2.2 Delay Model in Delay Based PUFs

The main idea of this work is to analyze the implementation complexities of the three

delay-based PUF architectures, namely, APUF, ROPUF and BPUF. In order to do

that, we first introduce a delay model for the PUF interconnect. We define the delay d

of a net in Equation 1, where dS is the static delay as determined by the static timing

analysis tools, and dR is the random delay component due to process variation.

d = dS + dR (1)

In a delay based PUF, let us consider two nets N1 and N2 that need to be compared.

The delay values for the two nets are defined as follows.

d (N1)= dS1 + dR1

d (N2) = dS2 + dR2

(2)

(3)

If the two nets have identical layout, then we can assume dS1 = dS2. As a result, the

delay skew Δd between N1 and N2 can be expressed as follows.

Δd = d1 – d2 = dR1 – dR2 = ΔdR (4)

This is the ideal case for a delay based PUF where the delay skew is purely a function

of the random delay component. The output of the PUF, in this case, will be

dependent entirely on the delay difference due to process variation. However, if N1

and N2 are not identically laid out, it is more likely that we have dS1 ≠ dS2. As a result,

delay skew becomes:

Δd = dS1 – dS2 + dR1 – dR2 = ΔdS + ΔdR (5)

In such case, the output of a given PUF structure will be at least partially dependent

on ΔdS, causing the output to be biased. Further, if ΔdS > ΔdR, the effect of random

variation becomes insignificant, and the output of the PUF structure becomes static

regardless of dR.

For an efficient PUF implementation, the designer should achieve a routing such

that ΔdS → 0. In an ASIC environment, this is easier to implement using VLSI layout.

However, in an FPGA, static timing values provided by the timing analysis tools are

the only available delay estimates that a designer can access. We will show that using

existing FPGA routing resources, it is very difficult to achieve the condition such that

ΔdS → 0. As a result, those PUF techniques that strictly depend on this condition are

not suitable choice for FPGA implementation.

2.3 Structural Comparison among APUF, ROPUF and BPUF

A delay-based PUF circuit involves extraction and comparison of the random delay,

dR. The effectiveness of the PUF depends on how much symmetry we can achieve

between a particular pair of elements in order to minimize the effect of ΔdS in

Equation 5. This symmetry requirement is different in nature from one PUF technique

to another, and determines the implementation complexity of a PUF on FPGA.

Independent of the implementation platform, we first analyze the elementary building

blocks of the three PUFs to present the inherent symmetry requirement that eventually

leads to the implementation complexity.

In Figure 2(a), the switch which is the main building block of the APUF, is shown.

The pairs of nets connected to the multiplexers (pairs shown with different patterns)

need to be symmetric in order to minimize ΔdS. In Figure 2(b), multiple instances of a

ring oscillator loop are shown. It can be noticed that there is no symmetric pair of

components involved in an individual RO loop. In this case, the value of ΔdS between

a pair of RO loops needs to be minimized. As a result, each of these RO loops needs

to be identical. In figure 2(c), a BPUF cell is presented. For a functional BPUF, the

pair of nets AB/AC as well as XY/X’Y’ need to be symmetric along with the latches.

.

.

.

2(a) 2(b) 2(c)

Fig. 2. (a). A switch with two multiplexers and delay paths in Arbiter PUF. The symmetric

pairs of components are highlighted with matching patterns. (b) Multiple instances of a basic

five stage ring oscillator loop for a ROPUF (c) A BPUF cell with two cross coupled latches.

Table 1 shows a brief summary of the routing requirements of the three PUFs. This

shows that careful routing is required for APUF and BPUF while creating their

respective building blocks. On the other hand, an oscillator loop for an ROPUF does

not require any such design constraint. Instead, it requires identical instantiations of

RO loops. In section 4, we will show that this fundamental structural difference

causes complexity in PUF implementation on FPGA. The pair of multiplexers in an

APUF as well as a pair of latches in a BPUF cell needs to be identical, too. However,

this is not difficult to achieve. Hence, we focus on the interconnect issue.

Table 1. Summary of comparison among APUF, ROPUF and BPUF.

APUF ROPUF BPUF

A

B

C

Y’

X’Y

X

clk

clk

clr

clr

D

D

Q

Q

pre

pre

excite

Requires symmetric

routing in a building

block.

Does not require symmetric

routing in a building block.

Requires symmetric routing

in a building block.

Identical instantiation of

building blocks may not be

necessary.

Building blocks require

identical instantiation.

Identical instantiation of

building blocks may not be

necessary.

3 FPGA Architecture and Resources

Before we can explain how the previously described PUF architectures map into an

FPGA, we must closely examine the resources available in an FPGA device. We

describe the architecture of a Xilinx Spartan3E FPGA device that we used as a

platform in our experiments.

Like many commercial FPGA devices, the Spartan 3E FPGAs follow island-style

architecture. In this architecture, the primary FPGA resources can be separated into

two categories: logic blocks (referred to as Configurable Logic Blocks, CLBs) and

routing resources (interconnect). Each CLB is surrounded by and interfaced with a

"sea" of interconnect, hence the name. The CLB itself is composed of sub-blocks of

logic elements, called slices in Xilinx architectures. Each slice is composed of a

lookup table, configurable flip-flops and other logic, and connects to the CLB through

ports. We will not focus on the internal structure of the logic elements further,

because it is the routing resources that prove to be more important to the construction

of PUFs. An important observation is that different resources are often not accessible

through the same port of a slice, so routing is specific to the CLB, slice, and port

simultaneously.

Any given route in an FPGA is composed of multiple segments, called arcs. For

example, there are over 100 arcs going into and coming out of each CLB. The

majority of arcs are unidirectional, meaning they can only propagate a signal one

way. Arcs begin and terminate at components referred to as Programmable

Interconnection Points (PIPs). Any given PIP has a varied number of arcs terminating

at it and a varied number of arcs originating from it. During the FPGA configuration,

PIPs are activated in a particular way to create the signal routes out of multiple arcs: a

PIP is "turned on" with a certain configuration in order to bridge a terminating arc

with one or more originating arc. There can only be one driver signal for any

particular arc, though it is possible for one signal to fanout and drive multiple arcs.

Each PIP is associated with a CLB, and all the PIPs for a particular CLB combine to

form a virtual structure referred to as a switchbox. PIP functionality varies: some

bridge signals to and from adjacent CLBs creating inter-CLB route, while others

direct the signals through switchbox to other local slices, creating an intra-CLB route.

3.1 Routing Complexity

In order to control the routing to meet the design needs, it is essential to know the

nature of the routing resources.

Inter-CLB Routing - At first glance the examination of inter-CLB routing appears

promising: there exist direct routes to all adjacent CLBs in most of the FPGA as

shown in Figure 3(a). This gives us a large design space for our circuits. It also

means that the potential for the required symmetry exists: a signal originating from

CLB X1Y1 can be routed to CLB X2Y1, while a signal from CLB X2Y1 can be

routed to CLB X1Y1. However further examination of these routes indicate that the

PIPs and the arcs employed in implementing these routes are not necessarily

symmetric, and can lead to a timing imbalance in the circuits. Moreover, even if the

inter-CLB route appears to be symmetric in the FPGA design tool, we can draw no

conclusion as to the delay of the route. Even near identical looking routes between

slice A and slice B created by the routing software may differ in their estimated delay.

Further, not all ports are equal: if a signal must go into a specific port to reach some

logic element, the routing for it may differ significantly for other ports of the same

slice as in Figure 3(b).

Intra-CLB Routing – Similar observations are found in case of intra-CLB routing as

well. All the slices belonging to a particular CLB have identical input and output nets.

Connection among these slices can be configured using a specific set of PIPs.

However, similar connection between a pair of slices does not necessarily results in

same delay. For example, the connection from an output port, say out1, of slice A to

an input port, say in1 of slice B may not have the same delay as the delay of the

connection from out1 of slice B to in1 of slice A. Yet this type of configuration is

often required in a PUF implementation.

X1Y0

Switch Box
A

B

From X1Y1

3 (a) 3(b)

Fig. 3. (a)Possible inter-CLB routes from a given CLB include all 8 adjacent squares. Routes

A to A and B to B may differ in timing. (b) Routing to the ports of the same slice may differ.

4 Analysis of PUF Implementation Complexity

In this section we discuss our experiments, as well as the associated analysis of

Arbiter PUF, Butterfly PUF and RO PUF.

X1Y1 A

B

Switch

Box

To X0Y0 To X2Y0

To X0Y1

To X0Y2 To X1Y2 To X1Y2

X1Y0

Switch

Box

A

B

To X2Y1

From X2Y1

4.1 Arbiter PUF

The two primary components required for the Arbiter PUF architecture are the

switches and the arbiter itself. A useful secondary component is a delay element:

trivial logic that inserts additional delay into the paths. By design, the arbiter PUF

must route the internal signals through long identical paths in order to extract the

manufacturing variation in these paths. This lends the PUF to an inter-CLB design.

We used identical 2-input MUXes in two different slices for the switches. The

arbiter was instantiated as a positive clock-edge triggered flipflop in a slice. A look-

up table in a slice served as the delay element.

The first mapping scheme that we considered was the Parallel CLB scheme shown

in Figure 4. Under this scheme the two paths are located in parallel CLBs, with

routes crossing between the two CLBs to create the crossing switch route and one of

the arbiter routes. Notice that there are 2 possible locations for the arbiter in this

scheme; we considered both. We tested this scheme in four configurations, altering

the direction of the path in the chip: East to West, West to East, North to South, and

South to North.

Slice1_0

Delay Element SwitchDelay Element Arbiter

Slice1_3

D

CLK

Slice2_3Slice2_0 Slice2_1

Slice1_1

Select

Slice2_2

A

B

Select

Slice1_2

A

B

Select

D

CLK

Path 1

Start

Path 2

Start

Fig. 4. Circuit used to analyze the routing properties of APUF paths. The doted white

rectangles denote a CLB. The shaded rectangles denote an individual slice. Slice2_3 is an

alternative location for the arbiter.

Using timing analysis tools, we observed the routing delay caused by each

component. This value does not account for the manufacturing variability. Therefore,

we hoped to find identical static delays for symmetric routes. Figure 5(a) shows the

delay caused by each component for the West to East route. There are two values for

the switch component: Switch Nominal is the delay of the signals when the paths are

straight, Switch Crisscross is the delay of the signal when the paths are crossed.

Figure 5(b) shows the cumulative delay of the signal propagated along the route when

the switches are crossed.

5(a) 5(b)

Fig. 5. (a) Individual delays of each component. (b). Cumulative delay of the path through after

each component.

These results indicate that this PUF structure will not function. The 3σ value of

delay variation due to process variability in 90 nm technology has been estimated to

be approximately 3.5% [7]. On the other hand, we observe that in this case, variation

due to routing is much higher than expected variation due to process variability: ΔdS /

ΔdR is 25.6 times. There are two causes of routing variation in this design: the

asymmetric routes for the switch crisscrossing paths and the much more dramatic

asymmetric routes to the arbiter. The larger difference in arbiter routes is due to the

fact that routing to a CLK input of a flipflop requires sending the signal through

multiple additional segments to reach the CLK port, whereas the route to the D input

of the flipflop is comparatively simple.

All 4 directions using this mapping produced similar results. While some

directions significantly reduced the routing delay, a difference of at least 100 ps

remained. We also considered a 2nd mapping architecture where the slices were

located in the same CLB, rather than parallel. We hoped that this would reduce the

asymmetry in arbiter delay. However, this did not produce a noticeable improvement.

Moreover, this mapping introduced a routing imbalance in the delay elements and

nominal switch paths. Figure 6 shows the delays we observed for the arbiter

component in each direction, depending on the location of the arbiter, and the

mapping scheme. Under the best possible conditions of 2 CLB mapping and West to

East placement we observe ΔdS / ΔdR to be 11.6 times.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Delay El Switch
Nominal

Switch
Crisscross

Arbiter

Component Delay, ns

path1 path2

0.348

0.714

1.116

0.348

0.812

1.795

0

0.5

1

1.5

2

2.5

Delay El. Switch Arbiter

Cumulative Delay, ns

path1 path2

Fig. 6. Delay difference in routing to the D input and the CLK input of a slice under various

conditions. NS – North to South layout; SN – South to North; EW – East to Wes; WE – West

to East.

These results indicate that additional delay due to the complexity of routing a

signal to the CLK input of a flipflop cannot be avoided using current routing schemes

and architectures. Asymmetry in routing of crisscrossing switch routes is also

present, but that delay difference is dwarfed by the arbiter. Additional mapping

schemes exist, but any schemes not utilizing parallel CLBs runs a high chance of

introducing routing delay in other components. The possibility of trying to balance

out the delays of the arbiter paths seems low, since all the elements examined here

introduce delays on the order of hundreds of picoseconds themselves. Trying to

balance out the delays using these building blocks is unlikely to produce an

architecture that allows us to observe the delay variation due to process variability.

4.2 Butterfly PUF

The effectiveness of the Butterfly PUF is fundamentally based on the symmetry of

interconnects between the two latches. In the figure 7(a), the net AB and AC are

required to be symmetric for the proposed functionality of the BPUF. Similarly, the

pair of nets XY and X’Y’ also needs to be symmetric. While mapping a BPUF cell

into FPGA, two latches can be instantiated in the dedicated latch in the slices. It can

be safely assumed that two latches at the same position of two different slices are

identical since the slices have identical components and ports.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

NS SN EW WE NS SN EW WE NS SN EW WE NS SN EW WE

D

CLK

2 CLB Mapping

Arb. Pos. 1

1 CLB Mapping

Arb. Pos. 1Arb. Pos. 2 Arb. Pos. 2

7(a) 7(b)

7(c)

Fig. 7. (a). Circuit structure of BPUF cell. (b) Intra-CLB BPUF mapping (c) Inter-CLB BPUF

mapping.

However, the real design challenge comes when a designer has to ensure that the

interconnection pairs (XX’/YY’ and AB/AC) are symmetric. Since no layout level

information inside the switch box is available, we depend on the static delay values

provided by the design tool. Figure 7(b) and figure 7(c) represent how a BPUF cell

can be mapped into an FPGA device. Figure 7(b) shows the case when both the

latches are implemented inside a single CLB. Another way of implementing would be

to place the latches in two different CLBs as shown in figure 7(c).

During the automatic routing executed by the design tool, arbitrary PIP

connections are assigned leading to different delay values of the nets. A strict timing

constraint on the pair of nets to be matched can partially solve this problem. However,

based on the availability of the routing resources, this often doesn’t produce the best

result. In figure 8, we present a set of data showing the delay skew in the pair of nets

AB/AC and XY/X’Y’ (refer to figure 7(a)) as a result of automatic routing with

timing constraint for an intra-CLB mapping. For the delay skew in XY/X’Y’ net pair,

the minimum value of the ratio ΔdS / ΔdR is estimated to be 17 whereas the same

quantity for the delay skew in AB/AC is 16. Since ΔdS is an order of magnitude

higher than ΔdR, it is obvious that this PUF implementation will produce highly

biased outputs.

A

B

C

Y’

X’Y

X

clk

clk

clr

clr

D

D

Q

Q

pre

pre

excite
SLICE

SLICE

Latch

Latch

X

Y’

B

X’

Y

C

SWITCH MATRIX

A

Source

of

Asymmetry

SLICE

Latch

X

Y’

B

SWITCH MATRIX SWITCH MATRIX SLICE

Latch

X’

Y

C

A

Source

of

Asymmetry

Source

Of

Asymmetry

CLB 1 CLB 2

8(a) 8(b)

Fig. 8. (a). The delay values of nets XY and X’Y’. Two configurations correspond to two

possible placements of the pair of latches inside a CLB. (b) The delay values of nets AB and

AC. Eight configurations correspond to four possible placements of the excite signal buffer in a

CLB for each of the two possible placements of the latches in the CLB.

Manual routing by manipulating the PIP settings can ensure identical routing

configuration. However, it is observed that even in this case, the delay of a pair of

interconnects do not match based on the static delay values provided by the design

tool. This is the reason why we refer the switch box as the source of asymmetry as

shown by the cloud in the figure 7(b) and 7(c).

From figure 7(b) and 7(c), it is evident that both intra-CLB and inter-CLB

configuration of a BPUF cell suffers from the asymmetric nature of the FPGA routing

resources. Thus, our observations contradict the results presented in [6]. However, we

note that our experiments have been done on a Spartan-3E FPGA, and not on a

Virtex-5 as used in [6].

4.3 RO PUF

A ring oscillator loop does not contain any symmetric pair of components. Therefore,

the delay skew ΔdS does not exist in the oscillator loop. Unlike ABUF and BPUF, no

pair of signals race with each other in a ROPUF. Instead the frequency of individual

ring oscillators is independently recorded and compared subsequently. As a result,

ΔdS needs to be minimized between a pair of oscillator. This leads to the fact that all

the ROs composing the PUF must be identical.

This requirement can be easily fulfilled in an FPGA with the help of the hard

macro technique. When a hard macro is instantiated, the automated place and route

tools avoid the placement of logic and signals in the designated area, and instead

replicate the specified macro. A single implementation of an RO can be created as a

hard macro which preserves the relative placement and routing of all the components

in the loop. Since all the CLBs contain identical logic and routing resources,

instantiating the hard macros in several CLB locations implements identical ROs.

0
100
200
300
400
500
600
700
800

config 1 config 2

(ps)

Delay Skew in Feedback Paths in a BPUF Cell

Delay of XY

Delay of X'Y'

0

200

400

600

800

1000

1200

1400

(ps)

Delay Skew in Excite Signal in a BPUF Cell

Delay of AB

Delay of AC

5. Conclusion

In this work, we have analyzed how the peculiarities of FPGA routing affect the

implementations of delay based PUFs. Our results show that symmetry requirements

for Arbiter and Butterfly PUF architectures cannot be satisfied using available FPGA

routing schemes, despite the apparent routing flexibility of FPGA devices. Using the

best possible routing, the delay difference due to static variation routes is an order of

magnitude higher than expected delay variation due to manufacturing variability. Yet

an architecture without the mirror symmetry requirement, such a Ring Oscillator

based PUF, can produce a working PUF. Ultimately, understanding how a particular

PUF architecture maps into FPGA fabric allows us to select a promising architecture

for further investigation and characterization of PUF circuits in FPGAs.

References

1. Guajardo, J., Kumar, S. S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and their use for

IP protection. Cryptographic Hardware and Embedded Systems (2007).

2. Holocomb, D., Burleson, W.: Power-up SRAM State as an Identifying Fingerprint and

Source of True Random Numbers. IEEE Transactions on Computers. Vol. 57, No. 11,

November (2008).

3. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from Flip-flops on Reconfigurable

Devices. Workshop on Information and System Security (2008).

4. Lim, D., Lee, J.W., Gassend, B., Suh, G. E., Van Dijk, M., Devadas, S.: Extracting secret

keys from integrated circuits. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems (2005).

5. Suh, G. E., Devadas, S.: Physical Unclonable Functions for Device Authentication and

Secret Key Generation. Proceedings of Design Automation Conference (2007).

6. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G. J., Tuyls, P.: The Butterfly PUF:

Protecting IP on every FPGA, IEEE International Workshop on Hardware-Oriented Security

and Trust, HOST (2008).

7. Sedcole, P., Cheung, P. Y. K.: Within-die delay variability in 90nm FPGAs and beyond.

Proceedings of IEEE International Conference on Field Programmable Technology (2006).

