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Abstract. In this paper, we propose a systematic method for finding
impossible differentials for block cipher structures, better than the U-
method introduced by Kim et al [4]. It is referred as a unified impossible
differential finding method (UID-method). We apply the UID-method
to some popular block ciphers such as Gen-Skipjack, Gen-CAST256, Gen-
MARS, Gen-RC6, Four-Cell, SMS4 and give the detailed impossible differ-
entials. By the UID-method, we find a 16-round impossible differential
on Gen-Skipjack and a 19-round impossible differential on Gen-CAST256.
Thus we disprove the Conjecture 2 proposed in Asiacrypt’00 [9] and the
theorem in FSE’09 rump session presentation [8]. On Gen-MARS and
SMS4, the impossible differentials find by the UID-method are much
longer than that found by the U-method. On the Four-Cell block cipher,
our result is the same as the best result previously obtained by case-by-
case treatment.

1 Introduction

Impossible differential cryptanalysis (IDC) was proposed by Biham et al. and
Knudsen respectively to attack Skipjack [1] and DEAL [5]. It is known as one of
the most popular attacks on block ciphers. Compared with ordinary differential
cryptanalysis, impossible differential cryptanalysis uses impossible differentials
to derive the right keys by discarding the wrong keys which lead to the impossible
differential.

The key step of impossible differential cryptanalysis is to find the longest
impossible differential. Impossible differentials are in the form: (x1, · · · , xn)n 9r

(y1, · · · , yn)n which means that when the input difference is (x1, · · · , xn)n, the
output difference after r rounds cannot be (y1, · · · , yn)n. Suppose that the block
cipher has m rounds, firstly, the adversary chooses several pairs of plaintexts
which satisfy the input of the impossible differential; next he guesses the last
m− r round subkeys and decrypt the corresponding ciphertexts to r-th round,
and verifies whether one of decrypted pairs meet the output of the impossible
differential. One can conclude that the last m − r round subkey is wrong if
any decrypted pairs meet the differences of impossible differential. Usually, the
impossible differentials are retrieved manually by observing the structure of the
block ciphers. In [4], Kim et al. first introduced the U-method to find the longest



impossible differentials of various block cipher structures. However, there are
some limitations in the U-method:

– The encryption (decryption) characteristic matrix of the block cipher struc-
ture must have 1-Property [4]. Thus the U-method is not very general and
can only be applied to some special block ciphers.

– Some information is lost during calculating the impossible differentials. The
U-method can not determine some kinds of inconsistencies and some longer
impossible differential cannot be found.

In this paper, we propose an improved method to find the longest impossible
differential for block cipher structures. We refer to this method as UID-method.
The UID-method doesn’t require the 1-Property of the encryption(decryption)
characteristic matrix and can determine more kinds of inconsistencies. We apply
the UID-method to some popular block ciphers such as Gen-Skipjack [9], Gen-
CAST256 [7], Gen-MARS [7], Gen-RC6 [7], Four-Cell [2] and SMS4 [12].

In Asiacrypt’00[9], Sung et al. conjectured that there doesn’t exist an im-
possible differential in Gen-Skipjack and Gen-CAST256 after n2 rounds where
n denotes the number of subblocks. Later in FSE’09 Rump Session [8], Pu-
dovkina even proved that this conjecture is true. However, we find a 16-round
impossible differential of Gen-Skipjack and a 19-round impossible differential of
Gen-CAST256 using the UID-method when n = 4. Thus we disprove this conjec-
ture.

On Gen-MARS and SMS4, the impossible differentials found by U-method are
7-round and 6-round respectively. Using the UID-method, we find a 11-round
impossible differential of Gen-MARS and a 11-round impossible differential of
SMS4, which are much better than those found by the U-method. In [10], Wu
et al. gave an 18-round impossible differential of Four-Cell. Currently this is the
longest impossible differential for Four-Cell block cipher in the literature. Using
our UID-method, the result is the same as Wu et al.’s result obtained by case-by-
case treatment. All of these impossible differentials found by the UID-method
are listed in Table 4.

The rest of this paper is organized as follows. Section 2 describes the UID-
method. Section 3 disproves Sung et al ’s conjecture by the UID-method. Section
4 lists the detailed impossible differential results for some popular block cipher
structures and gives a comparison between the UID-method and the U-method.
Finally, Section 5 concludes this paper.

2 Description of UID-method

In this paper, we assume that a block cipher structure S has n data sub-
blocks, i.e., the input and the output of one round are (X1, X2, . . . , Xn) and
(Y1, Y2, . . . , Yn) respectively. We also assume that the round function F is bijec-
tive. Thus a non-zero input difference of F has a non-zero output difference.

Given a block cipher structure S with n subblocks, if the input difference is
U = (u1, u2, . . . , un), then we call U is the difference vector and ui, 0 ≤ i ≤ n



is the difference at the i-th subblock. We denote the output difference after r
rounds for U by Ur, and denote the value of the i-th subblock of Ur by Ur

i .
Given an input difference, the possible output difference of each subblock after
r rounds is a linear XOR combination of the following four types of differences:
Zero difference. The difference is zero and denoted by 0.
Nonzero fixed difference. The difference is nonzero and fixed and denoted by
li.
Nonzero varied difference. The difference can be any value except zero and
is denoted by mi.
Varied difference. The difference can be any value and is denoted by ri.

Among these four types of differences, a nonzero fixed difference li and a
nonzero varied difference mi cannot be equal to a zero difference 0; and a varied
difference ri may be equal to either a zero difference or a nonzero difference. In
the following, we define the inconsistence of two difference vectors:

Definition 1. Two differences vectors U = (u1, u2, . . . , un) and V = (v1, v2,
. . . , vn) are inconsistent if there exists a subset I ⊆ {1, 2, . . . , n} such that the
XOR of differences in the subset are always unequal: ⊕i∈Iui 6= ⊕i∈Ivi.

For example, if U = (l1 ⊕m1, 0) and V = (l1, 0) where l1 is a nonzero fixed
difference and m1 is a nonzero varied difference, then U and V are inconsistent
since l1 ⊕ m1 cannot be equal to l1. If U = (u1, u2) = (l1, l1 ⊕ m1) and V =
(v1, v2) = (m2,m2), then u1⊕u2 = m1 and v1⊕v2 = 0 are always unequal, thus
U and V are inconsistent.

For a block cipher structure S, given an input difference vector U0 and an
output difference vector V 0, we can compute difference vector U i after i rounds
encryption and difference vector V j after j rounds decryption. If U i and V j are
inconsistent, then there exist an i+ j round impossible differential U0 9i+j V 0.

We consider 3 different kinds of transformations in a block cipher structure:
the zero transformation 0, the identical transformation 1 and the nonlinear bijec-
tive transformation F. If the input difference is 0, then after the F transformation,
the output difference is 0; If the input difference is a nonzero fixed difference li,
then after the F transformation, the output difference is mj , which is a new
nonzero varied difference; otherwise, the output difference is rj , which means a
new varied difference. The three transformations are shown in Table 1.

Table 1. Three Transformations in a Block Cipher Structure

Trans. Input Output Note
0 x ∈ {0, li, mi, ri} 0 Zero trans.
1 x ∈ {0, li, mi, ri} x Identical trans.

0 0
F li mj mj denotes a new nonzero varied difference.

mi mj

Otherwise rj rj denotes a new varied difference

In Fig.1, we give an example to demonstrate how to use the inconsistency in
Definition 1 to determine the impossible differential of the Feistel structure. If
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Fig. 1. Differences of 5-round Feistel Structure. The left denotes differ-
ences change from the encryption, the right denotes differences change from the
decryption.

the input difference vector is U0 = (l1, 0) where l1 is a nonzero fixed difference,
then from the encryption process:
1. After the first round, the difference vector U1 = (0, l1).
2. After the second round, the difference vector U2 = (l1,m1) where m1 is a
nonzero varied difference. Since a nonzero fixed difference l1 to F will result in
a nonzero varied difference m1.
3. After the third round, the difference vector U3 = (m1, l1 ⊕m3) where m3 is
a new nonzero varied difference.
4. After the fourth round, the difference vector becomes U4 = (l1⊕m3,m1⊕r1)
where r1 is a varied difference. Since l1 ⊕m3 could be zero, then according to
Table 1, applying F to l1 ⊕m3 will result in a varied difference r1.
5. After the fifth round, the difference vector U5 = (m1⊕r1, l1⊕m3⊕r3) where
r3 is a new varied difference.

In the similar way, if the output difference vector is V 0 = (0, l1), then we
can get the difference vectors V i(1 ≤ i ≤ 5) from the decryption process. The
results are shown in the right of Fig.1.

From Fig.1, we know U3 = (U3
1 , U3

2 ) = (m1, l1 ⊕m3) and V 2 = (V 2
1 , V 2

2 ) =
(m2, l1). Then according to Definition 2, U3 and V 2 are inconsistent since U3

2 ⊕
V 2

2 = m3, which cannot be zero. Therefore we get a 5-round impossible differ-
ential (l1, 0) 95 (0, l1) for the Feistel structure.

2.1 Matrice Representation of Block Cipher Structures

The encryption and decryption characteristic matrix of block cipher structures
are defined as follows.



Definition 2. If the output (Y1, . . . , Yn) can be expressed in terms of (X1, . . . , Xn)
in one round of the block cipher structure S in the following UID-form:

Y1 = F11(X1)⊕ F21(X2)⊕ . . .⊕ Fn1(Xn)
Y2 = F12(X1)⊕ F22(X2)⊕ . . .⊕ Fn2(Xn)

...
...

Yn = F1n(X1)⊕ F2n(X2)⊕ . . .⊕ Fnn(Xn)

where F11, . . . , Fnn are transformations in Table 1, then the encryption char-
acteristic matrix E is an n× n matrix defined as:

E =


F11 F12 · · · F1n

F21 F22 · · · F2n

. . . . . . . . . . . . . . .
Fn1 Fn2 · · · Fnn


Similarly, the decryption characteristic matrix of the block cipher structure
D is defined by the decryption process in the similar way.

Taking the Feistel structure as an example, we have (Y1, Y2) = (X2, X1 ⊕
F (X2)) and (X1, X2) = (F (Y1) ⊕ Y2, Y1), thus the E and D matrices are E =(
0 1

1 F

)
and D =

(
F 1

1 0

)
.

There are some block cipher structures which cannot be transformed into the
UID-form in Definition 2. In this case, we can transform them into a composition
of several UID-forms, and for each UID-form there is a corresponding character-
istic matrix. For example, assume that (Y1, Y2) = (F (X1⊕X2), F (X1⊕X2)⊕X2),
then we can divide the encryption function into the composition of two func-
tions. The first function is (Z1, Z2) = (X1 ⊕ X2, X2) and the second function
is (Y1, Y2) = (F (Z1), F (Z1) ⊕ Z2). Consequently the characteristic matrix is

E1 · E2 =
(
1 0

1 1

)
·
(

F F
0 1

)
.

2.2 Searching the Impossible Differentials.

Definition 3. The multiplication of a difference vector U = (u1, u2, . . . , un)
and an encryption (decryption) characteristic matrix E(D) is defined as U · E =
(
∑n

i=1 ui · Ei1,
∑n

i=1 ui · Ei2, . . . ,
∑n

i=1 ui · Ein). Here ui · Eij means applying the
transformation Eij to the difference ui.

For example, if the input difference of the Feistel structure is U = (u1, u2) =

(l1, 0), then U · E = (l1, 0) ·
(
0 1

1 F

)
= (0, l1). After the one-round encryption

function and decryption function are converted into matrices, denoted as E and
D, we can compute the difference vector after i-round encryption from the input



difference vector U0 as U i = ((U0 · E) · · · · E︸ ︷︷ ︸
i times

) and the difference vector after j-

round decryption from the output difference vector V 0 as V j = ((V 0 ·D) · · · · D︸ ︷︷ ︸
j times

).

If U i and V j are inconsistent, then we find an impossible differential U0 9i+j

V 0.

Input: The n × n encryption characteristic matrix E , decryption
characteristic matrix D and an integer r = 0.

Output: The longest impossible differential ∆in 9r ∆out where ∆in
is the input difference vector and ∆out is the output difference
vector.

Step1. For a difference vector pair (U0, V 0), find the maximum in-
teger m = i + j such that U i = ((U0 · E) · · · · E︸ ︷︷ ︸

i times

) and V j =

((V 0 · D) · · · · D︸ ︷︷ ︸
j times

) are inconsistent. If r < m, let r ← m and

(∆in,∆out)← (U0, V 0).
Step2. Repeat Step1 until all the cases of (U0, V 0) have been enu-

merated.
Step3. Return ∆in 9r ∆out.

Algorithm 1. Compute the longest impossible differential.

In the UID-method, firstly we choose an input difference vector U0 and an
output difference vector V 0. Then we compute U i from U0 forwardly and V j

from V 0 inversely, if U i and V j are inconsistent then we get an impossible differ-
ential. After achieving a maximum i+j such that U i and V j are inconsistent, we
find the longest impossible differential based on U0 and V 0. To find the longest
impossible differential for a block cipher structure, we enumerate every possi-
ble difference vector of input U0 and output V 0, and find the maximum i + j.
Algorithm 1 explains the idea of finding the longest impossible differential.
Toy example. It’s well known that there exists a 5-round impossible differential
(l1, 0) 95 (0, l1) for the Feistel structure. The input difference vector U0 and the
output difference V 0 can be any one of the difference set {(l1, 0), (0, l1), (l1, l1),
(l1, l2), (l2, l1), (l2, 0), (0, l2), (l2, l2)} where l1 and l2 are different nonzero fixed
differences.

– If U0 = (l1, 0) and V 0 = (0, l1), then U3 and V 2 are inconsistent, we find a
3 + 2 = 5 round impossible differential (l1, 0) 95 (0, l1).

– If U0 = (0, l1) and V 0 = (0, l1), then U3 and V 1 are inconsistent, we find a
3 + 1 = 4 round impossible differential (0, l1) 94 (0, l1.)



– After enumerate all of the cases, we cannot find an impossible differential
longer than 5. Therefore the longest impossible for Feistel structure found
by UID-method is (l1, 0) 95 (0, l1).

For the Feistel structure, we need to enumerate 82 = 64 cases in order to find
the longest impossible differential. It is not hard to write a computer program to
do this job. In later sections, we will apply UID-method to some popular block
cipher structures when the number of subblocks n = 4.

3 Disprove Sung et al ’s Conjecture

In ref.[9], Sung et al. analyzed the impossible differential of (i) the Gen-Skipjack
structure whose one-round function is (y1, y2, . . . , yn) = (F (x1)⊕x2, x3, . . . , xn, F (x1)),
and (ii) the Gen-CAST256 structure whose one-round function is (y1, y2, . . . , yn) =
(F (x1) ⊕ x2, x3, . . . , xn, x1), where F is a keyed-round bijective function. They
proposed the following conjecture:

There does not exist an impossible differential in Gen-Skipjack and Gen-
CAST256 after n2 rounds.

Later in FSE’09 rump session, Pudovkina claimed that this conjecture is true
and even gave the proof [8].
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Figure 2. Gen-Skipjack and Gen-CAST256 structure in the case of n = 4.

We apply the UID-method on these two structures in the case of n = 4
and find a 16-round impossible differential (0, 0, 0, l1) 916 (l2, 0, 0, l2) for Gen-
Skipjack and a 19-round impossible differential (0, 0, 0, l1) 919 (l1, 0, 0, 0) for
Gen-CAST256. Thus we disprove Sung et al ’s conjecture. For n = 4, the Gen-
Skipjack and Gen-CAST256 structure are depicted in Fig.2.

The encryption characteristic matrix E and decryption characteristic matrix
D of Gen-Skipjack are:

E =


F 0 0 F
1 0 0 0

0 1 0 0

0 0 1 0

 ,D =


0 1 0 0

0 0 1 0

0 0 0 1

F 1 0 0


In order to find the longest impossible differential for Gen-Skipjack, we im-

plemented Algorithm 1 and ran it on a laptop with Windows XP2 operating
system . We found a 16-round impossible differential (0, 0, 0, l1) 916 (l2, 0, 0, l2)
less in one minute.



Table 2. 16-round Impossible differential of Gen-Skipjack

R X1 X2 X3 X4
0 ↓ 0 0 0 l1
1 0 0 l1 0
2 0 l1 0 0

14 m7 m1 ⊕ m6 m4 ⊕ r1 m2 ⊕ m3 ⊕ m5
13 m6 m4 ⊕ r1 m2 ⊕ m3 ⊕ m5 m1
12 r1 m2 ⊕ m3 ⊕ m5 m1 m4
11 m5 m1 m4 m2 ⊕ m3
10 0 m4 m2 ⊕ m3 m1
9 m4 m2 ⊕ m3 m1 0
8 m3 m1 0 m2
7 0 0 m2 m1
6 0 m2 m1 0
5 m2 m1 0 0
4 0 0 0 m1
3 0 0 m1 0
2 0 m1 0 0
1 m1 0 0 0

0 ↑ l2 0 0 l2

Table 3. 19-round Impossible differential of Gen-CAST256

R X1 X2 X3 X4
0 ↓ 0 0 0 l1
1 0 0 l1 0
2 0 l1 0 0
3 l1 0 0 0

16 l1 ⊕ m10 m2 ⊕ m7 ⊕ m9 ⊕ r13 m2 ⊕ r5 ⊕ r11 m8 ⊕ r9
15 m2 ⊕ m7 ⊕ m9 m2 ⊕ r5 ⊕ r11 m8 ⊕ r9 l1 ⊕ m10
14 m2 ⊕ r5 m8 ⊕ r9 l1 ⊕ m10 m2 ⊕ m7 ⊕ m9
13 m8 l1 ⊕ m10 m2 ⊕ m7 ⊕ m9 m2 ⊕ r5
12 l1 m2 ⊕ m7 ⊕ m9 m2 ⊕ r5 m8
11 m2 ⊕ m7 m2 ⊕ r5 m8 l1
10 m2 m8 l1 m2 ⊕ m7
9 0 l1 m2 ⊕ m7 m2
8 l1 m2 ⊕ m7 m2 0
7 m2 m2 0 l1
6 0 0 l1 m2
5 0 l1 m2 0
4 l1 m2 0 0
3 0 0 0 l1
2 0 0 l1 0
1 0 l1 0 0

0 ↑ l1 0 0 0

In order to verify the result, let U0 = (0, 0, 0, l1) and V 0 = (l2, 0, 0, l2), we
can see that U2 = (0, l1, 0, 0) and V 14 = (m7,m1 ⊕m6,m4 ⊕ r1,m2 ⊕m3 ⊕m5)
from Table 2, since m7 cannot be zero, U2 and V 14 are inconsistent. Thus a 16
round impossible differential is found.

Using the same method, we find a 19-round impossible differential (0, 0, 0, l1)
919 (l1, 0, 0, 0) for Gen-CAST256 . In Table 3, if U0 = (0, 0, 0, l1) and V 0 =
(l1, 0, 0, 0), then U3 and V 16 are inconsistent, since l1⊕m10 and l1 are inconsis-
tent. Note in [11], Yap found a 19-round impossible differential on EFN Type-I
(See Table 2 in [11]) by the U-method. Actually this is a 19-round impossible



differential of Gen-CAST256, but it seems that they don’t know Sung et al’s
conjecture about Gen-CAST256.

4 Results for Some Other Block Cipher Structures

In this section, we list our results for some other block cipher structures, such
as Four-Cell [2], Gen-MARS [7], Gen-RC6 [7] and SMS4 [12]. We assume that
the number of subblocks is n = 4. These block cipher structures are depicted in
Fig.3 and the results are listed in Table 4.
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Figure 3. Some popular block cipher structures.

Table 4. Summary of Impossible differentials of some popular block cipher
structures found by U-method and UID-method

Block Cipher U-method (round) UID-method (round) Impossible Differential
Gen-Skipjack [9] - 16 (0, 0, 0, l1) 916 (l2, 0, 0, l2)

Gen-CAST256 [7]
15 [4]
19 [3]

19 (0, 0, 0, l1) 919 (l2, 0, 0, 0)

Four-Cell [2] - 18 (l1, 0, 0, 0) 918 (l2, l2, 0, 0)
Gen-MARS [7] 7 [4] 11 (0, 0, 0, l1) 911 (l1, 0, 0, 0)

Gen-RC6 [7] 9 [4] 9
(0, 0, l1, 0) 99 (0, l1, 0, 0)
(l1, 0, 0, 0) 99 (0, 0, 0, l1)

SMS4 [12] 6 [11] 11 (l1, l1, l1, 0) 911 (0, l1, l1, l1)

In [10], Wu et al. gave an 18-round impossible differential on Four-Cell. Cur-
rently this is the longest impossible differential for Four-Cell block cipher in the
literature. Using our UID-method, the result is the same as Wu et al.’s result
obtained by case-by-case treatment. As shown in Table 5, if U0 = (l1, 0, 0, 0) and
V 0 = (l2, l2, 0, 0), then U12 and V 6 are inconsistent, since m2 cannot be zero.

In [4], Kim et al. gave a 7-round impossible differential on Gen-MARS using
the U-method. Table 6 shows our result on the Gen-MARS structure, if U0 =
(0, 0, 0, l1) and V 0 = (l1, 0, 0, 0), then U3 = (u1, u2, u3, u4) = (l1, 0, 0, 0) and
V 8 = (v1, v2, v3, v4) = (l1 ⊕m4 ⊕ r2 ⊕ r4,m2 ⊕m4 ⊕ r2 ⊕ r6,m2 ⊕m4 ⊕ r4 ⊕



Table 5. 18-round Impossible differential of Four-Cell

R X1 X2 X3 X4
0 ↓ l1 0 0 0
1 0 0 0 m1
2 0 0 m1 m1
3 0 m1 m1 0
4 m1 m1 0 0
5 m1 0 0 m1 ⊕ m3
6 0 0 m1 ⊕ m3 m1 ⊕ m3 ⊕ m5
7 0 m1 ⊕ m3 m1 ⊕ m3 ⊕ m5 m5
8 m1 ⊕ m3 m1 ⊕ m3 ⊕ m5 m5 0
9 m1 ⊕ m3 ⊕ m5 m5 0 m1 ⊕ m3 ⊕ r4
10 m5 0 m1 ⊕ m3 ⊕ r4 m1 ⊕ m3 ⊕ m5 ⊕ r4 ⊕ r6
11 0 m1 ⊕ m3 ⊕ r4 m1 ⊕ m3 ⊕ m5 ⊕ r4 ⊕ r6 m5 ⊕ m2 ⊕ r6
12 m1 ⊕ m3 ⊕ r4 m1 ⊕ m3 ⊕ m5 ⊕ r4 ⊕ r6 m5 ⊕ m2 ⊕ r6 m2

6 r1 m4 m2 0
5 m4 m2 0 0
4 m2 0 0 0
3 0 0 0 l2
2 0 0 l2 l2
1 0 l2 l2 0

0 ↑ l2 l2 0 0

r6,m2 ⊕ r2 ⊕ r4 ⊕ r6). Since u1 ⊕ u2 ⊕ u3 = l1 and v1 ⊕ v2 ⊕ v3 = l1 ⊕ m4,
which are inconsistent, thus U3 and V 6 are inconsistent. Therefore an 11-round
impossible differential is found, which is much better than Kim et al.’s result.

Table 6. 11-round Impossible differential of Gen-MARS

R X1 X2 X3 X4
0 ↓ 0 0 0 l1
1 0 0 l1 0
2 0 l1 0 0
3 l1 0 0 0

8 l1 ⊕ m4 ⊕ r2 ⊕ r4 m2 ⊕ m4 ⊕ r2 ⊕ r6 m2 ⊕ m4 ⊕ r4 ⊕ r6 m2 ⊕ r2 ⊕ r4 ⊕ r6
7 m2 ⊕ m4 ⊕ r2 m2 ⊕ m4 ⊕ r4 m2 ⊕ r2 ⊕ r4 l1 ⊕ m4 ⊕ r2 ⊕ r4
6 m2 ⊕ m4 m2 ⊕ r2 l1 ⊕ m4 ⊕ r2 m2 ⊕ m4 ⊕ r2
5 m2 l1 ⊕ m4 m2 ⊕ m4 m2 ⊕ m4
4 l1 m2 m2 m2
3 0 0 0 l1
2 0 0 l1 0
1 0 l1 0 0

0 ↑ l1 0 0 0

For the Gen-RC6 structure, we found two 9-round impossible differentials,
the details are shown in Table 8 and Table 9. One of our results is the same as
the result in [11].

In ref. [11], Yap found a 6-round impossible differential for the block cipher
SMS4 by using the U-method. We find a 11-round impossible differential by the
UID-method. The details are shown in Table 7. Our result is one round shorter
than Lu’s result [6] obtained by case-by-case treatment. This is because Lu used



Table 7. 11-round Impossible differential of SMS4

R X1 X2 X3 X4
0 ↓ l1 l1 l1 0
1 l1 l1 0 l1
2 l1 0 l1 l1
3 0 l1 l1 l1

8 m2 ⊕ r6 l1 ⊕ r4 l1 ⊕ r2 l1 ⊕ m4
7 l1 ⊕ r4 l1 ⊕ r2 l1 ⊕ m4 m2
6 l1 ⊕ r2 l1 ⊕ m4 m2 l1
5 l1 ⊕ m4 m2 l1 l1
4 m2 l1 l1 l1
3 l1 l1 l1 0
2 l1 l1 0 l1
1 l1 0 l1 l1

0 ↑ 0 l1 l1 l1

Table 8. 9-round Impossible differential of Gen-RC6 (1)

R X1 X2 X3 X4
0 ↓ 0 0 l1 0
1 0 l1 0 0
2 l1 0 0 m1
3 0 m3 m1 l1

6 m8 ⊕ r5 m4 ⊕ r2 m2 ⊕ m7 ⊕ r6 l1 ⊕ m10
5 m4 ⊕ r2 m2 ⊕ m7 l1 ⊕ m10 m8
4 m2 ⊕ m7 l1 m8 m4
3 l1 0 m4 m2
2 0 0 m2 l1
1 0 0 l1 0

0 ↑ 0 l1 0 0

Table 9. 9-round Impossible differential of Gen-RC6 (2)

R X1 X2 X3 X4
0 ↓ l1 0 0 0
1 0 0 0 l1
2 0 m1 l1 0
3 m1 l1 0 m3

6 m2 ⊕ m8 ⊕ r5 l1 ⊕ m10 m7 ⊕ r6 m4 ⊕ r2
5 l1 ⊕ m10 m7 m4 ⊕ r2 m2 ⊕ m8
4 m7 m4 m2 ⊕ m8 l1
3 m4 m2 l1 0
2 m2 l1 0 0
1 l1 0 0 0

0 ↑ 0 0 0 l1



the details of the S-Box to exhaustively search the impossible differential, while
our method considers only the block cipher structure.

Compared with the U-method, the UID-method has the following advantages.
a). UID-method doesn’t require the 1-Property of the characteristic matrix. If
the number of 1 in each column of the encryption or decryption characteristics
matrix is zero or one, then the matrix is a 1-property matrix. U-method requires
the characteristic matrix must have the 1-property. The UID-method doesn’t
need this property. Thus it is more general and can be applied to more block
cipher structures. The encryption characteristic matrix of the Four-Cell block
cipher doesn’t have the 1-property, thus the U-method doesn’t work , whereas
the UID-method still works.

b). UID-method can determine more kinds of inconsistencies. U-method con-
siders only the inconsistency by the corresponding component of difference vec-
tors. UID-method considers the inconsistency of the XOR sum of several corre-
sponding components, which has more capability to detect the conflict.

Taking the Gen-MARS block cipher structure as example (see Table 6), if
U0 = (0, 0, 0, l1) and V 0 = (l1, 0, 0, 0), then U3 = (u1, u2, u3, u4) = (l1, 0, 0, 0)
and V 6 = (v1, v2, v3, v4) = (l1⊕m4⊕ r2⊕ r4,m2⊕m4⊕ r2⊕ r6,m2⊕m4⊕ r4⊕
r6,m2 ⊕ r2 ⊕ r4 ⊕ r6). Since u1 ⊕ u2 ⊕ u3 = l1 and v1 ⊕ v2 ⊕ v3 = l1 ⊕m4 are
inconsistent, thus U3 and V 6 are inconsistent. This kind of inconsistency cannot
be detected by the U-method.

5 Conclusion

Inspired by the work [4] of automatically retrieving the impossible differentials,
we make some improvements based on the U-method and propose a unified
impossible differential finding method for block cipher structures. We apply the
UID-method to some block cipher structures and get better results than the
previous work. Thus, UID-method can be used as a unified tool to evaluate
the vulnerability of new block cipher structures against impossible differential
cryptanalysis.
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