
On the Analysis of Cryptographic Assumptions in the
Generic Ring Model

Tibor Jager∗
Institut für Kryptographie und Sicherheit

Karlsruhe Institute of Technology
tibor.jager@kit.edu

Jörg Schwenk
Horst Görtz Institute for IT Security

Ruhr-University Bochum
joerg.schwenk@rub.de

January 25, 2012

Abstract

The generic ring model considers algorithms that operate on elements of an algebraic ring by
performing only the ring operations and without exploiting properties of a given representation
of ring elements. It is used to analyze the hardness of computational problems defined over
rings. For instance, it is known that breaking RSA is equivalent to factoring in the generic ring
model (Aggarwal and Maurer, Eurocrypt 2009). Do hardness results in the generic ring model
support the conjecture that solving the considered problem is also hard in the standard model,
where elements of Zn are represented by integers modulo n?

We prove in the generic ring model that computing the Jacobi symbol of an integer modulo
n is equivalent to factoring. Since there are simple and efficient non-generic algorithms which
compute the Jacobi symbol, this provides an example of a natural computational problem which
is hard in the generic ring model, but easy to solve if elements of Zn are given in their standard
representation as integers. Thus, a proof in the generic ring model is unfortunately not a very
strong indicator for the hardness of a computational problem in the standard model.

Despite this negative result, generic hardness results still provide a lower complexity bound
for a large class of algorithms, namely all algorithms solving a computational problem indepen-
dent of a given representation of ring elements. Thus, from this point of view results in the
generic ring model are still interesting. Motivated by this fact, we show also that solving the
quadratic residuosity problem generically is equivalent to factoring.

Keywords: Generic ring model, Jacobi symbol, subset membership problems, idealized models
of computation, quadratic residuosity assumption.

1 Introduction

The security of many cryptosystems relies on assumptions that certain computational problems,
mostly from number theory and algebra, are intractable. Therefore it is important to study the
validity of these assumptions. Ideally, we would like to show that these assumptions hold in the
standard model, where algorithms intending to solve a computational problem are modeled as Turing
machines with reasonably restricted running time. Unfortunately, proving useful lower complexity
bounds in the standard model seems to be impossible with currently available techniques.
∗Major parts of this work executed at Ruhr-University Bochum.

1

However, many important hardness assumptions are based on computational problems defined
over algebraic groups. Famous examples are, for instance, the discrete logarithm problem [12], the
RSA problem [21], or the quadratic residuosity problem [14]. A natural approach to analyze these
assumptions is to consider algorithms solving a given problem by performing only the abstractly
defined group operations, without exploiting specific properties of the representation of group ele-
ments. This model is known as the generic group model (see [24, 17], for instance).

Indeed, there are group representations, such as for instance certain elliptic curve groups, for
which only very few properties beyond the abstractly defined properties of a group are known.
For such representations, the generic group model may be seen as a reasonable abstraction. How-
ever, important computational problems, such as the RSA problem and the quadratic residuosity
problem, are defined over the multiplicative group (Z∗n, ·), represented by integers modulo n. This
representation exhibits many properties beyond the abstract group definition, such as for instance
the fact that the group (Z∗n, ·) is embedded into the ring (Zn,+, ·). The generic group model seems
too restrictive to provide a tool for a meaningful analysis of such problems.

To reflect the additional algebraic structure of a ring, the notion of generic groups was extended
to generic rings. A long line of research [6, 7, 8, 16, 18, 3, 1, 2] analyzes cryptographically relevant
computational problems and their relationships in the generic ring model. This model is a simple
extension of the generic group model, which allows to compute an additional algebraic operation,
such that the resulting structure forms a ring. Clearly, when considering hardness assumptions
defined over rings, then this idealization is much more appropiate than the generic group model.

The RSA problem was studied extensively in the generic ring model [7, 8, 16, 1, 2]. For instance,
Aggarwal and Maurer [1] have shown that solving the RSA problem with generic ring algorithms is
equivalent to factoring integers. A common conclusion drawn in previous works is that a proof in
the generic model supports the conjecture that breaking RSA is also equivalent to factoring integers
in a standard model of computation. Is this conclusion reasonable?

1.1 Main Contribution

We prove a main theorem stating that solving certain subset membership problems in Zn with
generic ring algorithms is equivalent to factoring n. This main theorem allows us to provide an
example of a computational problem of high cryptographic relevance which is equivalent to factoring
in the generic model, but easy to solve if elements of Zn are given in their standard representation
as integers. Concretely, we show that in the generic ring model computing the Jacobi symbol [26,
Chapter 12.2] is equivalent to factoring.

A preliminary version of this paper was published at Asiacrypt 2009 [15]. This version contains
several improvements and corrections as well as much simpler and thus more comprehensible proofs.

1.2 Interpretation

For many common idealized models in cryptography it has been shown that a cryptographic re-
duction in the ideal model need not guarantee security in the “real world”. Well-known examples
are, for instance, the random oracle model [9], the ideal cipher model [4], and the generic group
model [13, 11]. All these results have in common that they provide somewhat “artificial” computa-
tional problems that deviate from standard cryptographic practice.

Note that both the definition and the algebraic properties of the Jacobi symbol are remarkably
similar to the quadratic residuosity problem [14], which builds the foundation of numerous cryptosys-

2

tems and is widely conjectured to be hard. Thus, in contrast to previous works, the equivalence of
computing the Jacobi symbol generically and factoring is an example of a natural computational
problem that is provably hard in the generic model, but easy to solve if elements of Zn are given
in their standard representation as integers modulo n. This is an important aspect for interpreting
results in the generic ring model, like [8, 16, 1, 2]. Thus, a proof in the generic model is unfortu-
nately not a very strong indicator that the considered problem is indeed useful for cryptographic
applications.

As another application of our main theorem, we also show that solving the well-known quadratic
residuosity problem [14] generically is equivalent to factoring. Thus, from a cryptanalytic point of
view, we cannot hope to find a representation-independent algorithm solving this problem efficiently,
unless factoring integers is easy.

1.3 Related Work

Previous work on fundamental cryptographic assumptions in the generic model considered primarily
discrete logarithm-based problems and the RSA problem. Nechaev [20] provided a lower complexity
bound on solving the discrete logarithm problem generically. This work was extended by Shoup [24]
to a broader and more natural class of algorithms. Starting with Shoup’s seminal paper, it was
proven that solving the discrete logarithm problem, the Diffie-Hellman problem, and related prob-
lems [19, 17, 22] is hard with respect to generic group algorithms. Damgård and Koprowski showed
the generic intractability of root extraction in groups of hidden order [10].

Brown [8] reduced the problem of factoring integers to solving the low-exponent RSA problem
with straight line programs, which are a subclass of generic ring algorithms. Leander and Rupp [16]
augmented this result to generic ring algorithms, where the considered algorithms may only perform
the operations addition, subtraction and multiplication modulo n, but not multiplicative inversions.
Aggarwal and Maurer [1] generalized this result to full RSA and to generic ring algorithms that may
also compute multiplicative inverses, and Aggarwal, Maurer, and Shparlinski [2] extended it further
to the strong RSA problem. Boneh and Venkatesan [7] have shown that there is no straight line
program reducing integer factorization to the low-exponent RSA problem, unless factoring integers
is easy.

The notion of generic ring algorithms has also been applied to study the relationship between the
discrete logarithm and the Diffie-Hellman problem, and the existence of ring-homomorphic one-way
permutations [6, 18, 3].

2 Preliminaries

2.1 Notation

For ` ∈ N we write [`] to denote the set [`] = {1, . . . , `}. We denote with a
$← A the action of

sampling a uniformly random element a from set A. Throughout the paper we let n be the product
of at least two different primes, and denote with n =

∏`
i=1 p

ei
i the prime factor decomposition of n

such that gcd(pi, pj) = 1 for i 6= j.
Let P = (S1, . . . , Sm) be a finite sequence. Then |P | denotes its length, i.e., |P | = m. For

k ≤ m, we write Pk v P to denote that Pk is the subsequence of P that consists of the first k
elements of P , i.e., Pk = (S1, . . . , Sk).

3

2.2 Straight Line Programs

A straight line program P over a ringR is an algorithm performing a fixed sequence of ring operations
to its input x ∈ R, without branching or looping, that outputs an element P (x) ∈ R.

In the sequel we are interested in straight line programs over the particular ring R = Zn, where
elements are represented by integers. Note that we can not only compute the ring operations
addition, subtraction, and multiplication in the ring Zn, but we also know how to compute division,
that is, multiplication by multiplicative inverses (if existent), efficiently. In order to make the class
of considered algorithms as broad and natural as possible, we therefore include an explicit division
operation, though it is generally not explicitly defined for a ring.

The following definition is a simple adaption of [8, Definition 1] to straight line programs that
may also compute multiplicative inverses. For our purposes it is sufficient to consider straight-line
programs that take as input a single ring element x ∈ R, a generalization to algorithms with more
input values is straightforward.

Definition 1 (Straight Line Programs). A straight line program P of length m over R is a sequence
of tuples

P = ((i1, j1, ◦1), · · · , (im, jm, ◦m))

where ik, jk ∈ {−1, . . . ,m} and ◦k ∈ {+,−, ·, /} for k ∈ {1, . . . ,m}. The output P (x) of straight
line program P on input x ∈ R is computed as follows.

1. Initialize L−1 := 1 ∈ R and L0 := x.

2. For k from 1 to m do:

• if ◦k = / and Ljk is not invertible, then return ⊥,
• else set Lk := Lik ◦ Ljk .

3. Return P (x) = Lm.

We say that each triple (i, j, ◦) ∈ P is a SLP-step.

For notational convenience, for a given straight line program P we will denote with Pk the
straight line program given by the sequence of the first k elements of P , with the additional con-
vention that P−1(x) = 1 and P0(x) = x for all x ∈ R.

2.3 Generic Ring Algorithms

Similar to straight line programs, generic ring algorithms apply a sequence of ring operations to an
input value x ∈ R. In contrast to straight line programs, which perform the same fixed sequence
on ring operations to any input value, generic ring algorithms can decide adaptively which ring
operation is performed next. The decision is made either based on equality checks or on coin tosses.
Moreover, the output of generic ring algorithms is not restricted to ring elements.

We formalize the notion of generic ring algorithms in terms of a game between an algorithm A
and a black-box O, the generic ring oracle. The generic ring oracle receives as input a secret value
x ∈ R. It maintains a sequence P , which is set to the empty sequence at the beginning of the game.
The oracle implements two internal subroutines test() and equal().

4

• The test()-procedure takes a tuple (j, ◦) ∈ {−1, . . . , |P |}×{+,−, ·, /} as input. The procedure
returns false if ◦ = / and Pj(x) is not invertible, and true otherwise.

• The equal()-procedure takes a tuple (i, j) ∈ {−1, . . . , |P |} × {−1, . . . , |P |} as input. The
procedure returns true if Pi(x) = Pj(x) and false otherwise.

Recall here that we have defined P−1(x) = 1 and P0(x) = x.
In order to interact with the oracle, the algorithm may ask two types of queries.

• To apply the ring operations to ring elements, the algorithm makes a query of the form

(i, j, ◦) ∈ {−1, . . . , |P |} × {−1, . . . , |P |} × {+,−, ·, /}

to O. This query is processed as follows. The oracle runs test(j, ◦). If test(j, ◦) = false, the
oracle returns the error symbol ⊥. Otherwise (i, j, ◦) is appended to P .

• To check for equality of computed elements, the algorithm submits a query of the form

(i, j) ∈ {−1, . . . , |P |} × {−1, . . . , |P |}.

In this case the oracle returns equal(i, j).

We measure the complexity of A by the number of oracle queries.

2.4 On Adopting Proving Techniques from the Generic Group Model

The generic ring model (GRM) is an extension of the generic group model (GGM), see [24], for
instance. Despite many similarities, showing the hardness of computational problems in the GRM
seems to be more involved than standard proofs in the GGM. The reason is that a typical proof
in the GGM (cf. [24, 17, 16], for instance) introduces a simulation game where group elements are
replaced with polynomials that are (implicitly) evaluated with group elements corresponding to a
given problem instance. A key argument in these proofs is that, by construction of the simulator, the
degree of these polynomials cannot exceed a certain small bound (often degree one or two). Following
Shoup’s work [24], a lower bound on the success probability of any generic group algorithm for the
given problem is then derived by bounding the number of roots of these polynomials by applying the
Schwartz-Zippel Lemma [27, 23]. Usually the bound is useful if the number of roots is sufficiently
small. Rupp et al. [22] have even been able to describe sufficient conditions for the generic hardness
of discrete log type problems, that essentially make sure that there is no possibility to compute
polynomials with “too large” degree.

This technique could be adopted to the generic ring model, by observing that straight line
programs are algorithms which compute rational functions, which in turn can be represented by
tuples of polynomials (as done in [?, 1], for instance). However, here we face a problem. In the
GGM the number of roots of polynomials is kept small by performing only addition operations on
polynomials of small degree in the simulation game (sometimes also a small bounded number of
multiplications, for instance when the model is extended to groups with bilinear pairing map, as
done in [5]). However, in the generic ring model we explicitly allow for multiplication operations,
and we do not want to put a restriction on the number of allowed multiplications, in order to
keep the model as realistic as possible. Thus, by repeated squaring an algorithm may compute
polynomials of exponential degree. In this case applying the Schwartz-Zippel Lemma does not yield
a useful bound on the number of roots.

5

2.5 Uniform Closure

By the Chinese Remainder Theorem, for n =
∏`

i=1 p
ei
i the ring Zn is isomorphic to the direct

product of rings Zp
e1
1
×· · ·×Zp

e`
`
. Let ψ be the isomorphism Zp

e1
1
×· · ·×Zp

e`
`
→ Zn, and for C ⊆ Zn

let Ci := {x mod peii : x ∈ C} for i ∈ [`].

Definition 2. We say that U [C] ⊆ Zn is the uniform closure of C ⊆ Zn, if

U [C] = {y ∈ Zn : y = ψ(x1 . . . , x`), xi ∈ Ci for i ∈ [`]}.

Example 1. Let p1, p2 be different primes, n := p1p2, and ψ be the isomorphism Zp1 × Zp2 → Zn.
For x ∈ Zn let x1 := x mod p1 and x2 := x mod p2. Consider the subset C ⊆ Zn such that

C = {a, b} = {ψ(a1, a2), ψ(b1, b2)}.

The uniform closure U [C] of C is the set

U [C] = {ψ(a1, a2), ψ(b1, b2), ψ(a1, b2), ψ(a1, b2)}.

In particular note that C ⊆ U [C], but not necessarily U [C] ⊆ C.

Lemma 1. Sampling y $← U [C] is equivalent to sampling zi
$← Ci for i ∈ [`] independently and

setting y = ψ(z1, . . . , z`).

The above follows directly from the definition of U [C] and the Chinese Remainder Theorem.

2.6 Homogeneous Sets

Definition 3. We say that a set C ⊆ Zn is homogeneous, if for each i ∈ [`] and for each c ∈ Zp
ei
i

we have that
Pr[x ≡ c mod peii : x

$← C] = Pr[y ≡ c mod peii : y
$← U [C]].

Putting it differently, C is homogeneous, if for each i ∈ [`] and for x $← C and y $← U [C] we have
that x mod peii is identically distributed to y mod peii .

Example 2. Again let p1, p2 be different primes, n := p1p2, ψ be the isomorphism Zp1 × Zp2 → Zn,
and for c ∈ {a, b} ⊂ Zn let c1 := c mod p1 and c2 := c mod p2.

• Let C = {ψ(a1, a2), ψ(a1, b2), ψ(b1, b2), ψ(b1, a2)}, then C = U [C]. Clearly C = U [C] implies
that C is homogeneous.

• Let C′ = {ψ(a1, a2), ψ(a1, b2), ψ(b1, b2)}, then we have U [C′] = C. Note that it holds that

Pr[x ≡ a1 mod p1 : x
$← C′] = 2/3 6= 1/2 = Pr[x ≡ a1 mod p1 : x

$← U
[
C′
]
].

Thus, C′ is not homogeneous.

• Let C′′ = {ψ(a1, a2), ψ(b1, b2)}, then again we have U [C′′] = C. C′′ is homogeneous, since we
have

Pr[x ≡ ci mod pi : x
$← C′′] = 1/2 = Pr[x ≡ ci mod pi : x

$← U
[
C′′
]
]

for all i ∈ {1, 2} and ci ∈ {ai, bi}.

6

3 Some Lemmas on Straight Line Programs over Zn
In the following we will state some lemmas on straight line programs over Zn that will be useful for
the proof of our main theorem.

Lemma 2. Suppose there exists a straight line program P such that for x, x′ ∈ Zn we have that
P (x′) 6=⊥ and P (x) =⊥. Then there exists Pj v P such that Pj(x

′) ∈ Z∗n and Pj(x) ∈ Zn \ Z∗n.

Proof. P (x) =⊥ means that there exists a SLP-step (i, j, ◦) ∈ P such that ◦ = / and Lj = Pj(x) ∈
Zn \ Z∗n. However, P (x′) does not evaluate to ⊥, thus it must hold that Pj(x

′) ∈ Z∗n.

The following lemma provides a lower bound on the probability of factoring n by evaluating a
straight line program P with a random value y $← U [C] and computing gcd(n, P (y)), relative to the
probability that P (x′) ∈ Zn \ Z∗n and P (x) ∈ Z∗n for randomly chosen x, x′ $← C.

Lemma 3. Let n =
∏`

i=1 p
ei
i with ` ≥ 2, and let C ⊆ Zn be homogeneous. For any straight line

program P , x, x′ $← C, and y $← U [C] holds that

Pr
[
P (x′) ∈ Zn \ Z∗n and P (x) ∈ Z∗n

]
≤ Pr [gcd(n, P (y)) 6∈ {1, n}] .

Similar to the above, the following lemma provides a lower bound on the probability of factoring
n by computing gcd(n, P (y)−Q(y)) with y $← U [C] for two given straight line programs P and Q,
relative to the probability that P (x) ≡n Q(x) and P (x′) 6≡n Q(x′) for random x, x′

$← C.

Lemma 4. Let n =
∏`

i=1 p
ei
i with ` ≥ 2, and let C ⊆ Zn be homogeneous. For any pair (P,Q) of

straight line programs, x, x′ $← C, and y $← U [C] holds that

Pr
[
P (x) ≡n Q(x) and P (x′) 6≡n Q(x′)

]
≤ Pr [gcd(n, P (y)−Q(y)) 6∈ {1, n}] .

Before giving proofs for Lemmas 3 and 4, we will give some intuition in the following section.

3.1 Some Intuition for Lemma 3 and 4

Simplifying a little, Lemma 3 and 4 state essentially that: if we are given a straight line program
mapping “many” inputs to zero and “many” inputs to a non-zero value, then we can find a factor of
n by sampling y $← U [C] and computing gcd(n, P (y)).1 At a first glance this seems counterintuitive.

As an example let us consider the case C = Zn with n = p1p2, where p1 and p2 are not necessarily
prime, but p1, p2 > 1 and gcd(p1, p2) = 1. Note that we have U [C] = Zn. Assume a straight line
program P mapping about one half of the elements of Zn to 0, and the other half to 1. Then P maps
“many” inputs to zero and “many” inputs to a non-zero value, but clearly computing gcd(n, P (y))
for any y ∈ Zn yields only trivial factors of n. This seems to be a counterexample to Lemma 3
and 4. However, in fact it is not, since there exists no straight line program P satisfying the assumed
property, if n is the product of at least two different primes.

1In case of Lemma 3 note that P (x) ∈ Z∗n and P (x′) ∈ Zn \ Z∗n means that P (x′) is zero modulo at least one
prime factor of n, while P (x) 6≡ 0 modulo all prime factors of n. In case of Lemma 4 observe that if we have
P (x)−Q(x) ≡ 0 mod n and P (x′)−Q(x′) 6≡ 0 mod n, then x is mapped to zero and x′ is not mapped to zero by the
straight line program S(x) := P (x)−Q(x).

7

The reason for this is a consequence of the Chinese Remainder Theorem, which states that the
ring Zn is isomorphic to Zp1 × Zp2 . Let ψ : Zp1 × Zp2 → Zn denote this isomorphism. Assume
x, x′ ∈ Zn and a straight line program P such that P (x) ≡ 0 mod n and P (x′) ≡ 1 mod n. Since ψ
is a ring-isomorphism and P performs only ring operations, it holds that

P (x) = ψ(P (x) mod p1, P (x) mod p2) = ψ(0, 0)

and
P (x′) = ψ(P (x′) mod p1, P (x′) mod p2) = ψ(1, 1).

The crucial observation is now that for each pair (x, x′) ∈ Z2
n, there exist c, d ∈ Zn such that

c = ψ(x′ mod p1, x mod p2) and d = ψ(x mod p1, x
′ mod p2). Evaluating P with c or d yields

P (c) = ψ(P (x′) mod p1, P (x) mod p2) = ψ(1, 0)

or
P (d) = ψ(P (x) mod p1, P (x′) mod p2) = ψ(0, 1).

We therefore have gcd(n, P (c)) = p2 and gcd(n, P (d)) = p1.
In this example we have C = U [C] = Zn, and we assume that P has the property that P (x) =

ψ(0, 0) and P (x′) = ψ(1, 1) with “high” probability for uniformly random x, x′
$← Zn. The crucial

observation is now that the Chinese Remainder Theorem implies that if we sample y $← Zn uniformly
random, then we also have with “high” probability that P (y) = ψ(0, 1) or P (y) = ψ(1, 0). A factor
of n can therefore be found by sampling y and computing gcd(n, P (y)).

Generalizing this idea to subsets C ⊂ Zn. The proofs of Lemma 3 and 4 generalize the above
idea to the case where C is a subset of Zn. This generalization made it necessary to define the
uniform closure U [C] and homogeneous sets.

For instance, consider a subset C = {x, x′} with x = ψ(xp, xq) and x′ = ψ(x′p, x
′
q). Suppose

we are given a straight line program P such that P (x) = 0 and P (x′) = 1. We can factor n
using this straight line program by computing gcd(n, P (y)), if we can find a suitable y such that
y ∈ {ψ(xp, x

′
q), ψ(x′p, xq)}.

The uniform closure U [C] is defined such that we know that it contains such a suitable y ∈ U [C].
Moreover, as we show in the proofs of Lemma 3 and 4, if C is homogeneous, then we can find a
suitable y with sufficiently high probability simply by sampling y $← U [C] uniformly random.

Finally, in order to obtain an efficient factoring algorithm, we will need to require that there
exist efficient sampling algorithms for C and U [C]. We will have to show this separately for each
considered subset membership problem.

3.2 Proof of Lemma 3

First, observe that P (x′) ∈ Zn \ Z∗n implies, that there exists at least one i ∈ [`] such that P (x′) ≡
0 mod pi, while P (x) ∈ Z∗n implies that P (x) ∈ Z∗pj for all j ∈ [`]. Thus, we have

Pr[P (x′) ∈ Zn \ Z∗n and P (x) ∈ Z∗n]

= Pr[∃i ∈ [`] s.t. P (x′) ≡ 0 mod pi and P (x) ∈ Z∗pj for all j ∈ [`]]

≤Pr[∃i, j ∈ [`] s.t. j 6= i and P (x′) ≡ 0 mod pi and P (x) ∈ Z∗pj].

8

Note furthermore that we have P (x) ≡ P (x mod peii) mod pi, since P performs only ring oper-
ations. Thus we have

Pr[∃i, j ∈ [`] s.t. j 6= i and P (x′) ≡ 0 mod pi and P (x) ∈ Z∗pj]

= Pr[∃i, j ∈ [`] s.t. j 6= i and P (x′i) ≡ 0 mod pi and P (xj) ∈ Z∗pj],

where x′i := x′ mod peii and xj := x mod p
ej
j .

Since C is homogeneous, we have that sampling x, x′
$← C and computing x′i = x′ mod peii

and xj = x mod p
ej
j is equivalent to sampling z, z′

$← U [C] and setting z′i := z′ mod peii and
zj := z mod p

ej
j . Thus we have

Pr[∃i, j ∈ [`] s.t. j 6= i and P (x′i) ≡ 0 mod pi and P (xj) ∈ Z∗pj]

= Pr[∃i, j ∈ [`] s.t. j 6= i and P (z′i) ≡ 0 mod pi and P (zj) ∈ Z∗pj]

for z, z′ $← U [C].
Now Lemma 1 states that for z, z′, y $← U [C] holds that

Pr[∃i, j ∈ [`] s.t. j 6= i and P (z′i) ≡ 0 mod pi and P (zj) ∈ Z∗pj]

= Pr[∃i, j ∈ [`] s.t. j 6= i and P (yi) ≡ 0 mod pi and P (yj) ∈ Z∗pj],

where yi = y mod peii and yj = y mod p
ej
j .

Using again that P performs only ring operations, we obtain that

Pr[∃i, j ∈ [`] s.t. j 6= i and P (yi) ≡ 0 mod pi and P (yj) ∈ Z∗pj]

= Pr[∃i, j ∈ [`] s.t. j 6= i and P (y) ≡ 0 mod pi and P (y) ∈ Z∗pj].

Finally, we find a factor of n by computing gcd(n, P (y)) if there exists i, j ∈ [`] such that
P (y) ≡ 0 mod pi and P (y) ∈ Z∗pj . Thus we have

Pr[∃i, j ∈ [`] s.t. j 6= i and P (y) ≡ 0 mod pi and P (y) ∈ Z∗pj]

≤Pr [gcd(n, P (y)) 6∈ {1, n}] .

3.3 Proof of Lemma 4

Let x, x′ $← C and y $← U [C], and let us write ai := a mod peii for all a ∈ {x′, x, y}. Let ∆(x) :=
P (x)−Q(x). Then, with the same arguments as in the proof of Lemma 3, we have

Pr
[
∆(x′) 6≡n 0 and ∆(x) ≡n 0

]
= Pr

[
∃i s.t. ∆(x′) 6≡ 0 mod peii and ∆(x) ≡ 0 mod p

ej
j for all j ∈ [`]

]
≤Pr

[
∃i, j s.t. j 6= i and ∆(x′) 6≡ 0 mod peii and ∆(x) ≡ 0 mod p

ej
j

]
= Pr

[
∃i, j s.t. j 6= i and ∆(x′i) 6≡ 0 mod peii and ∆(xj) ≡ 0 mod p

ej
j

]
= Pr

[
∃i, j s.t. j 6= i and ∆(yi) 6≡ 0 mod peii and ∆(yj) ≡ 0 mod p

ej
j

]
= Pr

[
∃i, j s.t. j 6= i and ∆(y) 6≡ 0 mod peii and ∆(y) ≡ 0 mod p

ej
j

]
≤Pr [gcd(n,∆(y)) 6∈ {1, n}] .

9

4 Subset Membership Problems in the Generic Ring Model

Definition 4. Let C ⊆ Zn and V ⊆ C with |V| > 1. The subset membership problem defined by
(C,V) is: given x $← C, decide whether x ∈ V.

In the sequel we will consider only subset membership problems such that |C| = 2 · |V|.
We formalize the notion of subset membership problems in the generic ring model in terms of

a game between an algorithm A and a generic ring oracle Osmp. Oracle Osmp is defined exactly
like the generic ring oracle described in Section 2.3, except that Osmp receives a uniformly random
subset membership challenge x $← C as input. We say that A wins the game, if x ∈ C \ V and
AOsmp(n) = 0, or x ∈ V and AOsmp(n) = 1.

Note that Pr[x ∈ V : x
$← C] = 1/2, since x is chosen uniformly random and we have |C| = 2 · |V|.

Note also that any algorithm for a given subset membership problem (C,V) has at least the trivial
success probability 1/2 by guessing. For an algorithm solving the subset membership problem given
by (C,V) with success probability Pr[S], we denote with

Adv(C,V)(AOsmp(n)) := |Pr[S]− 1/2|

the advantage of A.

Theorem 1. Let n =
∏`

i=1 p
ei
i . Let (C,V) be a subset membership problem such that C is homoge-

neous and 2 · |V| = |C|. For any generic ring algorithm A solving the subset membership problem
with advantage Adv(C,V)(AOsmp(n)) by performing m queries to Osmp, there exists an algorithm B
that outputs a non-trivial factor of n with success probability at least

Adv(C,V)(AOsmp(n))

2(m2 + 4m+ 3)

by running A once, performing at most 2m additional operations in Zn and at most (m+ 2)2 gcd-
computations on dlog2 ne-bit numbers, and sampling each one uniformly random element from C
and U [C].

Note that the factoring algorithm B from the above theorem is efficient only if we can efficiently
sample uniformly random elements from C and U [C]. In general such an algorithm need not exist
for any subset C ⊆ Zn. There are simple examples for sets C where sampling uniformly random
from U [C] is already equivalent to factoring.2 Thus, in order to apply the above theorem to show
that factoring reduces efficiently to solving a given subset membership problem (C,V) in the generic
ring model, we will also have to show that there exists efficient sampling algorithms for C and U [C].

Proof Outline. We replace Osmp with a simulator Osim. Let Ssim denote the event that A is
successful when interacting with the simulator, and let F denote the event that Osim answers a query
ofA different from howOsmp would have answered. ThenOsmp andOsim are indistinguishable unless
F occurs. Therefore the success probability Pr[S] of A in the simulation game is upper bound by
Pr[Ssim] + Pr[F] (cf. the Difference Lemma [25, Lemma 1]). We derive a bound on Pr[Ssim] and
describe a factoring algorithm whose success probability is lower bound by Pr[F].

2For instance, if n = pq is the product of two primes and C := {0, 1} ⊂ Zn, then the uniform closure of C is equal to
U [C] = {0, 1, p(p−1 mod q), q(q−1 mod p)}. Clearly computing gcd(n, p(p−1 mod q)) = p or gcd(n, q(q−1 mod p)) = q
reveals a non-trivial factor of n.

10

Remark. The idea of making the computations of the generic ring algorithm independent of the
challenge input value was introduced by Leander and Rupp [16, Lemma 2] for the case where n = pq
is the product of two primes, C = Zn, and generic ring algorithms that do not compute multiplicative
inverses. This was generalized in [?, Chapter 5.3.2] and independently in [1, Lemma 7] to generic
ring algorithms that may also compute inverses, still for the case C = Zn with n the product of two
primes. To prove our theorem we have to generalize this to the general case where algorithms may
compute inverses, n =

∏`
i=1 p

ei
i is the product of at least two different primes, and where C ⊆ Zn

may be a subset of Zn.

4.1 Introducing a Simulation Oracle

We replace oracle Osmp with a simulator Osim. Osim receives x $← C as input, but never uses this
value throughout the game. Instead, all computations are performed independent of the challenge
value x. Note that the original oracle Osmp uses x only inside the test() and equal() procedures. Let
us therefore consider an oracle Osim which is defined exactly like Osmp, but additionally samples a
random value x′ $← C at the beginning of the game. Moreover, it replaces the procedures test() and
equal() with procedures testsim() and equalsim().

• The testsim()-procedure returns false if ◦ = / and Pj(x
′) 6∈ Z∗n, and true otherwise (note that

we may have Pj(x
′) =⊥, where ⊥ 6∈ Z∗n).

• The equalsim()-procedure returns true if Pi(x
′) = Pj(x

′) and false otherwise.

Note that the simulator Osim proceeds exactly like Osmp, except that it samples a random x′ at the
beginning of the game, and uses x′ instead of x in invertability and equality tests. Therefore all
computations of A are independent of the challenge value x when interacting with Osim. Hence,
any algorithm A has at most trivial success probability in the simulation game, and therefore

Pr[Ssim] = 1/2.

4.2 Bounding the Probability of Simulation Failure

We say that a simulation failure, denoted F , occurs if Osim does not simulate Osmp perfectly.
Observe that an interaction of A with Osim is perfectly indistinguishable from an interaction with
Osmp, unless at least one of the following events occurs.

• The testsim()-procedure fails to simulate test() perfectly. This means that testsim() returns
false on a procedure call where test() would have returned true, or vice versa. Let Ftest denote
the event that this happens on at least one call of testsim().

• The equalsim()-procedure fails to simulate equal() perfectly. This means that equalsim() has
returned true where equal() would have returned false, or vice versa. Let Fequal denote the
event that this happens on at least one call of equalsim().

Since F occurs if and only if at least one of the events Ftest and Fequal occurs, we have

Pr[F] = Pr[Ftest ∪ Fequal]

≤Pr[Ftest] + Pr[Fequal | ¬Ftest].

In the following we will bound Pr[Ftest] and Pr[Fequal | ¬Ftest] separately.

11

4.2.1 Bounding the Probability of Ftest

The testsim()-procedure fails to simulate test() only if either testsim() has returned false where test()
would have returned true, or vice versa. This happens only if there exists Pj v P such that

(Pj(x) ∈ Z∗n and Pj(x
′) 6∈ Z∗n) or (Pj(x

′) ∈ Z∗n and Pj(x) 6∈ Z∗n).

Note that we may have Pj(x̃) = ⊥ 6∈ Z∗n for x̃ ∈ {x, x′}. However, we can simplify our analysis a
little by applying Lemma 2. The existence of Pj v P such that Pj(x̃) =⊥ implies the existence of
Pk v Pj such that Pk(x̃) ∈ Zn \ Z∗n. Hence, Ftest occurs only if there exists Pj v P such that

(Pj(x) ∈ Z∗n and Pj(x
′) ∈ Zn \ Z∗n) or (Pj(x

′) ∈ Z∗n and Pj(x) ∈ Zn \ Z∗n).

Note that for one fixed Pj we have

Pr
[
(Pj(x

′) ∈ Zn \ Z∗n and Pj(x) ∈ Z∗n) or (Pj(x) ∈ Zn \ Z∗n and Pj(x
′) ∈ Z∗n) : x, x′

$← C
]

≤2 · Pr
[
Pj(x) ∈ Zn \ Z∗n and Pj(x

′) ∈ Z∗n : x, x′
$← C
]
.

Thus, by taking the maximum probability over all Pj , we get

Pr[Ftest] ≤ 2 ·
m∑
j=0

Pr
[
Pj(x) ∈ Zn \ Z∗n and Pj(x

′) ∈ Z∗n : x, x′
$← C
]

≤ 2(m+ 1) max
0≤j≤m

{
Pr
[
Pj(x) ∈ Zn \ Z∗n and Pj(x

′) ∈ Z∗n : x, x′
$← C
]}

4.2.2 Bounding the Probability of Fequal

The equalsim()-procedure fails to simulate equal() only if either equalsim() has returned false where
equal() would have returned true, or vice versa. This happens only if there exists Pi, Pj v P such
that

(Pi(x) = Pj(x) and Pi(x
′) 6= Pj(x

′)) or (Pi(x) 6= Pj(x) and Pi(x
′) = Pj(x

′)). (1)

Note that we want to consider the event Fequal, conditioned on that event Ftest did not occur.
Therefore we may assume that there exists no straight line program Pk v P such that Pk(x) = ⊥
and Pk(x′) 6= ⊥, or vice versa. This allows us to simplify our analysis slightly, since in this case (1)
is equivalent to

(Pi(x) ≡n Pj(x) and Pi(x
′) 6≡n Pj(x

′)) or (Pi(x) ≡n Pj(x) and Pi(x
′) 6≡n Pj(x

′)).

Thus, like in the previous section, we have

Pr[Fequal | ¬Ftest] ≤
∑

−1≤i<j≤m
2 · Pr

[
Pi(x) ≡n Pj(x) and Pi(x

′) 6≡n Pj(x
′) : x, x′

$← C
]

≤2(m+ 2)(m+ 1) max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x

′) 6≡n Pj(x
′) : x, x′

$← C
]}

=2(m2 + 3m+ 2) max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x

′) 6≡n Pj(x
′) : x, x′

$← C
]}

.

12

4.2.3 Bounding the Probability of F

Summing up, we obtain that the total probability of F is at most

Pr[F] ≤ Pr[Ftest] + Pr[Fequal | ¬Ftest]

≤ 2(m+ 1) max
0≤j≤m

{
Pr
[
Pj(x) ∈ Zn \ Z∗n and Pj(x

′) ∈ Z∗n : x, x′
$← C
]}

+ 2(m2 + 3m+ 2) max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x

′) 6≡n Pj(x
′) : x, x′

$← C
]}

.

4.3 Bounding the Success Probability

Since all computations of A are independent of the challenge value x in the simulation game, any
algorithm has only the trivial success probability when interacting with the simulator. Thus the
success probability of any algorithm when interacting with the original oracle is bound by

1/2 + Adv(C,V)(AOsmp) = Pr[S] ≤ Pr[Ssim] + Pr[F] ≤ 1/2 + Pr[F],

which implies
Adv(C,V)(AOsmp) ≤ Pr[F].

4.4 The Factoring Algorithm

Consider a factoring algorithm B which samples a random element x ∈ C and runs A as a subroutine
by implementing the generic ring oracle for A. That is, it performs all computations queried by A
to x ∈ Zn.

In parallel, B applies all queried operations to y ∈ Zn, where y
$← U [C] is chosen uniformly

random at the beginning of the game. Moreover, each time a triple (i, j, ◦) is appended to P , B
computes

• gcd(P (y), n), and

• gcd(P (y)− Pi(y), n) for all i ∈ {−1, . . . , |P | − 1}.

4.4.1 Running time

B samples random values x $← C and y
$← U [C]. Since by assumption A submits m queries, B

has to perform at most 2m operations in Zn in order to perform all computations queried by A
simultaneously on x ∈ C and y ∈ U [C]. In addition, B performs at most (m+ 2)2 gcd-computations
on dlog2 ne-bit numbers.

4.4.2 Success probability

B evaluates any straight line program Pk with a uniformly random element y of U [C]. In particular,
B computes gcd(Pk(y), n) for y $← U [C] and the straight line program Pk v P satisfying

Pr
[
Pk(x) ∈ Zn \ Z∗n and Pk(x′) ∈ Z∗n : x, x′

$← C
]

= max
0≤k≤m

{
Pr
[
Pk(x) ∈ Zn \ Z∗n and Pk(x′) ∈ Z∗n : x, x′

$← C
]}

.

13

Let γ1 := max0≤k≤m{Pr[Pk(x) ∈ Zn\Z∗n and Pk(x′) ∈ Z∗n : x, x′
$← C]}, then by Lemma 3 algorithm

B finds a factor in this step with probability at least γ1.
Moreover, B evaluates any pair Pi, Pj of straight line programs in P with a uniformly random

element y $← U [C]. So in particular B evaluates gcd(Pi(y)−Pj(y), n) with y $← U [C] for the pair of
straight line programs Pi, Pj v P satisfying

Pr
[
Pi(x) ≡n Pj(x) and Pi(x

′) 6≡n Pj(x
′) : x, x′

$← C
]

= max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x

′) 6≡n Pj(x
′) : x, x′

$← C
]}

.

Let γ2 := max−1≤i<j≤m{Pr[Pi(x) ≡n Pj(x) and Pi(x
′) 6≡n Pj(x

′) : x, x′
$← C]}, then by Lemma 4

algorithm B succeeds in this step with probability at least γ2.
So, for γ := max{γ1, γ2}, the total success probability of algorithm B is at least γ.

4.4.3 Relating the success probability of B to the advantage of A

Using the above definitions of γ1, γ2, and γ, the fact that Adv(C,V)(AOsmp(n)) ≤ Pr[F], and the
derived bound on Pr[F], we can obtain a lower bound on γ by

Adv(C,V)(AOsmp(n)) ≤ Pr[F] ≤ 2(m+ 1)γ1 + 2(m2 + 3m+ 2)γ2 ≤ 2(m2 + 4m+ 3)γ,

which implies the inequality

γ ≥
Adv(C,V)(AOsmp(n))

2(m2 + 4m+ 3)
.

Therefore the success probability of B is at least

Adv(C,V)(AOsmp(n))

2(m2 + 4m+ 3)
.

5 Applications

In this section, we apply our general theorem to two specific subset membership problems with high
cryptographic relevance. The first application shows that computing Jacobi symbols modulo n with
generic ring algorithms is as hard as factoring n.

Then we apply our main theorem to the well-known quadratic residuosity problem. It is unknown
whether there exists an efficient algorithm for this problem, and it is widely conjectured that this
problem is hard if factoring the modulus n is hard. We show that any algorithm solving this problem
efficiently needs to exploit specific properties of the representation of elements of Zn (possibly in a
way similar to the known algorithms for computing Jacobi symbols).

5.1 Computing the Jacobi Symbol with Generic Ring Algorithms

In order to define and analyze the Jacobi symbol we need the Legendre symbol. For an integer x
and a prime p the Legendre symbol (x | p) of x modulo p is defined as

(x | p) =


0, if gcd(x, p) 6= 1,

1, if gcd(x, p) = 1 and x has a square root modulo p,
−1, if gcd(x, p) = 1 and x has no square root modulo p.

14

The Jacobi symbol generalizes the Legendre symbol from prime to composite moduli. If n =
∏l

i=1 p
ei
i

is the prime factor decomposition of n, then the Jacobi symbol (x | n) of an integer x modulo n is
defined as

(x | n) :=
∏̀
i=1

(x | pi)ei , (2)

where (x | pi) is the Legendre symbol. There exists an algorithm computing the Jacobi symbol
(x | n) efficiently, even if the factorization of n is not given, using the law of quadratic reciprocity.
See [26, Chapter 12.3], for instance.

Properties of the Jacobi symbol. In the sequel we will consider the problem of computing
the Jacobi symbol as a subset membership problem over Zn. To this end, let us summarize some
properties of the Jacobi symbol, which will become relevant.

1. Note that for x ∈ Z∗n we have (x | n) ∈ {1,−1}. Let

Jn := {x ∈ Z∗n : (x | n) = 1}

be the set of elements of Zn having Jacobi symbol 1. Thus, we can perceive the problem of
computing the Jacobi symbol as a subset membership problem (C,V) over Zn with C = Z∗n
and V = Jn.

2. The cardinality |Jn| of the set of elements having Jacobi symbol 1 depends on whether n is a
square in N. We have

|Jn| =

{
ϕ(n)/2, if n is not a square in N,
ϕ(n), if n is a square in N,

where ϕ(·) is the Euler totient function [26, Chapter 2.6]. This is an immediate consequence
of the definition of the Jacobi symbol.

Now we are ready to apply our main theorem to show that there is no efficient generic ring
algorithm computing the Jacobi symbol efficiently, unless factoring n is easy.

Theorem 2. Let n =
∏`

i=1 p
ei
i . Suppose there exist a generic ring algorithm A solving the subset

membership problem given by (C,V) with C = Z∗n and V = Jn with advantage Adv(C,V)(AOsmp(n))
by performing m ring operations. Then there exists an algorithm B finding a non-trivial factor of n
with probability at least

Adv(C,V)(AOsmp(n))

2(m2 + 4m+ 3)

by running A once, performing at most 2m additional operations in Zn and at most (m + 2)2

gcd-computations on dlog2 ne-bit numbers, and sampling two random elements from Z∗n.

Proof. If n is a square in N then the theorem is trivially true, since in this case it is easy to find a
factor of n. Therefore we only need to consider the case where n is not a square.

Note that in this case we have 2 · |Jn| = ϕ(n) = |Z∗n| = |C|. Furthermore, it holds that
U [C] = U [Z∗n] = Z∗n = C, which implies that C is homogeneous. The result follows by applying
Theorem 1.

15

5.2 The Generic Quadratic Residuosity Problem and Factoring

Let us denote with QRn ⊆ Zn the set of quadratic residues modulo n, i.e.

QRn := {x ∈ Z∗n : x ≡ y2 mod n, y ∈ Z∗n}.

It holds that QRn ⊆ Jn, and therefore given x ∈ Zn\Jn it is easy to decide that x is not a quadratic
residue by computing the Jacobi symbol.

Definition 5. The quadratic residuosity problem [14] is the subset membership problem given by
C = Jn and V = QRn.

If n = pq is the product of two different odd primes, then it holds that |QRn| = ϕ(n)/4 and
|Jn| = ϕ(n)/2 (see for instance [26, p.348]). Thus, for n = pq we have 2 · |V| = |C|.

Given the factorization of an integer n, the quadratic residuosity problem in Zn can be solved
easily by a generic ring algorithm. Thus, in order to show the equivalence of generic quadratic
residuosity and factoring, we have to prove the following theorem.

Theorem 3. Let n = pq be the product of two different odd primes. Suppose there exist a generic
ring algorithm A solving the subset membership problem given by (C,V) with C = Jn and V = QRn

with advantage Adv(C,V)(AOsmp(n)) by performing m ring operations. Then there exists an algorithm
B finding a non-trivial factor of n with probability at least

Adv(C,V)(AOsmp(n))

2(m2 + 4m+ 3)

by running A once, performing at most 2m additional operations in Zn and at most (m + 2)2

gcd-computations on dlog2 ne-bit numbers, and sampling each one random element from Jn and Z∗n.

Proof. If n = pq is the product of two different odd primes, then we have U [C] = U [Jn] = Z∗n and
|C| = |Jn| = 2 · |QRn| = 2 · |V|. It is easy to see that Jn is homogeneous, cf. Appendix A. The result
follows by applying Theorem 1.

To show that B factors n efficiently, it remains to show that B can efficiently sample uniformly
random elements of Jn. Consider an algorithm B which samples uniformly random elements x from
Zn until x ∈ Jn (note that B can test efficiently whether x ∈ Jn by running the algorithm from [26,
Chapter 12.3]). Moreover, for x $← Zn and large n, we have

Pr[x ∈ Jn] =
|Jn|
|Zn|

=
ϕ(n)/2

n
≈ 1

2

thus we may expect that B finds a suitable x very quickly.

Acknowledgements. We would like to thank Andy Rupp and Sven Schäge for helpful discussions,
Yvo Desmedt and the program committee members of Asiacrypt 2009 for valuable suggestions,
and the anonymous referees of the Journal of Cryptology for providing very detailed and helpful
comments leading to numerous improvements and corrections.

16

References

[1] Divesh Aggarwal and Ueli Maurer. Breaking RSA generically is equivalent to factoring. In
Antoine Joux, editor, Advances in Cryptology – EUROCRYPT 2009, volume 5479 of Lecture
Notes in Computer Science, pages 36–53, Cologne, Germany, April 26–30, 2009. Springer,
Berlin, Germany.

[2] Divesh Aggarwal, Ueli Maurer, and Igor Shparlinski. The equivalence of strong rsa and factoring
in the generic ring model of computation. In Daniel Augot and Anne Canteaut, editors,
Workshop on Coding and Cryptography - WCC 2011. INRIA, July 2011.

[3] Kristina Altmann, Tibor Jager, and Andy Rupp. On black-box ring extraction and integer
factorization. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008: 35th International Colloquium
on Automata, Languages and Programming, Part II, volume 5126 of Lecture Notes in Computer
Science, pages 437–448, Reykjavik, Iceland, July 7–11, 2008. Springer, Berlin, Germany.

[4] John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash func-
tion. In Matthew J. B. Robshaw, editor, Fast Software Encryption – FSE 2006, volume 4047
of Lecture Notes in Computer Science, pages 328–340, Graz, Austria, March 15–17, 2006.
Springer, Berlin, Germany.

[5] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH assump-
tion in bilinear groups. J. Cryptology, 21(2):149–177, 2008.

[6] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their application to cryp-
tography (extended abstract). In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96,
volume 1109 of Lecture Notes in Computer Science, pages 283–297, Santa Barbara, CA, USA,
August 18–22, 1996. Springer, Berlin, Germany.

[7] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to factoring.
In Kaisa Nyberg, editor, Advances in Cryptology – EUROCRYPT’98, volume 1403 of Lecture
Notes in Computer Science, pages 59–71, Espoo, Finland, May 31 – June 4, 1998. Springer,
Berlin, Germany.

[8] Daniel R. L. Brown. Breaking RSA may be as difficult as factoring. Cryptology ePrint Archive,
Report 2005/380, 2005. http://eprint.iacr.org/.

[9] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J.
ACM, 51(4):557–594, 2004.

[10] Ivan Damgård and Maciej Koprowski. Generic lower bounds for root extraction and signature
schemes in general groups. In Lars R. Knudsen, editor, Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 256–271, Amsterdam,
The Netherlands, April 28 – May 2, 2002. Springer, Berlin, Germany.

[11] Alexander W. Dent. Adapting the weaknesses of the random oracle model to the generic group
model. In Yuliang Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of
Lecture Notes in Computer Science, pages 100–109, Queenstown, New Zealand, December 1–5,
2002. Springer, Berlin, Germany.

17

[12] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22:644–654, 1976.

[13] Marc Fischlin. A note on security proofs in the generic model. In Tatsuaki Okamoto, edi-
tor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer
Science, pages 458–469, Kyoto, Japan, December 3–7, 2000. Springer, Berlin, Germany.

[14] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–
299, 1984.

[15] Tibor Jager and Jörg Schwenk. On the analysis of cryptographic assumptions in the generic
ring model. In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, volume
5912 of Lecture Notes in Computer Science, pages 399–416, Tokyo, Japan, December 6–10,
2009. Springer, Berlin, Germany.

[16] Gregor Leander and Andy Rupp. On the equivalence of RSA and factoring regarding generic
ring algorithms. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology – ASI-
ACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages 241–251, Shanghai,
China, December 3–7, 2006. Springer, Berlin, Germany.

[17] Ueli M. Maurer. Abstract models of computation in cryptography. In Nigel P. Smart, editor,
IMA Int. Conf., volume 3796 of Lecture Notes in Computer Science, pages 1–12. Springer,
2005.

[18] Ueli M. Maurer and Dominik Raub. Black-box extension fields and the inexistence of field-
homomorphic one-way permutations. In Kaoru Kurosawa, editor, Advances in Cryptology
– ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 427–443,
Kuching, Malaysia, December 2–6, 2007. Springer, Berlin, Germany.

[19] Ueli M. Maurer and Stefan Wolf. Lower bounds on generic algorithms in groups. In Kaisa
Nyberg, editor, Advances in Cryptology – EUROCRYPT’98, volume 1403 of Lecture Notes in
Computer Science, pages 72–84, Espoo, Finland, May 31 – June 4, 1998. Springer, Berlin,
Germany.

[20] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical
Notes, 55(2):165–172, 1994.

[21] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21:120–126, 1978.

[22] Andy Rupp, Gregor Leander, Endre Bangerter, Alexander W. Dent, and Ahmad-Reza Sadeghi.
Sufficient conditions for intractability over black-box groups: Generic lower bounds for gen-
eralized DL and DH problems. In Josef Pieprzyk, editor, Advances in Cryptology – ASI-
ACRYPT 2008, volume 5350 of Lecture Notes in Computer Science, pages 489–505, Melbourne,
Australia, December 7–11, 2008. Springer, Berlin, Germany.

[23] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, 1980.

18

[24] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in Computer
Science, pages 256–266, Konstanz, Germany, May 11–15, 1997. Springer, Berlin, Germany.

[25] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology
ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/.

[26] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge
University Press, second edition, 2008.

[27] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic
Computation, pages 216–226, 1979.

A Jn is Homogeneous

Lemma 5. Let n = p1p2 be the product of two different odd primes. Then Jn is homogeneous.

Proof. We have to show that for each c1 ∈ Zp1 and c2 ∈ Zp2 holds that

Pr[x ≡ c1 mod p1 : x
$← Jn] = Pr[x ≡ c1 mod p1 : x

$← Z∗n] (3)

and Pr[x ≡ c2 mod p2 : x
$← Jn] = Pr[x ≡ c2 mod p2 : x

$← Z∗n]. (4)

In the sequel we will consider case (3), case (4) is identical.
Note first that we have Pr[x ≡ 0 mod p1 : x

$← Z∗n] = 0, and for each c1 ∈ Z∗p1 with c1 6≡ 0 mod p1
we have

Pr[x ≡ c1 mod p1 : x
$← Z∗n] = 1/(p1 − 1).

Since Jn ⊆ Z∗n we have Pr[x ≡ 0 mod p1 : x
$← Jn] = 0, thus it only remains to show that

Pr[x ≡ c1 mod p1 : x
$← Jn] = 1/(p1 − 1)

holds for all for all c1 6≡ 0 mod p1.
Let ψ denote the isomorphism ψ : Zp1 × Zp2 → Zn. Then the set Jn consists of all elements

x = ψ(x1, x2) ∈ Z∗n such that (x1 | p1) · (x2 | p2) = 1, which is equivalent to (x1 | p1) = (x2 | p2).
Thus we have

Jn = {x ∈ Z∗n : (x | n) = 1}
= {ψ(x1, x2) ∈ Z∗n : (x1 | p1) · (x2 | p2) = 1}
= {ψ(x1, x2) ∈ Z∗n : (x1 | p1) = (x2 | p2)}

It is well-known that for each odd prime p2 holds that∣∣{x2 ∈ Z∗p2 : (x2 | p2) = 1}
∣∣ =

∣∣{x2 ∈ Z∗p2 : (x2 | p2) = −1}
∣∣ = (p2 − 1)/2.

Therefore for each element x1 ∈ Z∗p1 there are exactly (p2 − 1)/2 elements x2 ∈ Z∗q such that
(x1 | p1) · (x2 | p2) = 1, and thus ψ(x1, x2) ∈ Jn. Thus we have

|{x ∈ Jn : x ≡ c1 mod p1}| = (p2 − 1)/2.

19

This yields that for each c1 ∈ Z∗p1 with c1 6≡ 0 mod p1 we have

Pr[x ≡ c1 mod p1 : x
$← Jn] =

|{x ∈ Jn : x ≡ c1 mod p1}|
|Jn|

=
(p2 − 1)/2

(p1 − 1)(p2 − 1)/2
=

1

p1 − 1
.

20

