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Abstract. Efficient zero-knowledge proofs of knowledge for group ho-
momorphisms are essential for numerous systems in applied cryptogra-
phy. Especially, Σ-protocols for proving knowledge of discrete logarithms
in known and hidden order groups are of prime importance. Yet, while
these proofs can be performed very efficiently within groups of known
order, for hidden order groups the respective proofs are far less efficient.
This paper shows strong evidence that this efficiency gap cannot be
bridged. Namely, whilst there are efficient protocols allowing a prover
to cheat only with negligibly small probability in the case of known or-
der groups, we provide strong evidence that for hidden order groups this
probability is bounded below by 1/2 for all efficient Σ-protocols not using
common reference strings or the like.
We prove our results for a comprehensive class of Σ-protocols in the
generic group model, and further strengthen them by investigating cer-
tain instantiations in the plain model.

Keywords. Generic Group Model; Σ-Protocols; Proofs of Knowledge;
Error Bounds;

1 Introduction

A Zero-Knowledge Proof of Knowledge (ZK-PoK) is a two party protocol be-
tween a prover and a verifier enabling the prover to convince the verifier that
he knows some secret value, without the verifier being able to learn anything
about it. More precisely, in a ZK-PoK an honest prover can always convince the
verifier, whilst no malicious prover (not knowing the secret) can do so with a
probability larger than some threshold value (the knowledge error).
? This work was partly funded by the European Community’s Seventh Framework

Programme (FP7) under grant agreement no. 216499. An extend abstract appears
at TCC 2010 [1].
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Fundamental results show that there are ZK-PoK for all languages in NP [2].
Yet, the respective protocols are of theoretical interest only, because executing
them once is either computationally and communicationally too expensive for
real world use, or enables the prover to cheat with a high probability. In the latter
case, the protocols have to be repeated numerous times to reduce the knowledge
error (remember that r repetitions of a ZK-PoK with knowledge error κ result
in a protocol with knowledge error κr), and thus they become inefficient again.

A (group) homomorphism is a mapping between two groups G and H satisfy-
ing φ(a+b) = φ(a)·φ(b) for all a, b ∈ G. Proving knowledge of a preimage under a
homomorphism (i.e., of w satisfying x = φ(w)) can often be done very efficiently
by using the so-called Σφ-protocol (i.e., the Schnorr [3] or Guillou/Quisquater [4]
protocol generalized to arbitrary homomorphisms [5–7]). This protocol consists
of three messages being exchanged: the prover chooses r at random from the do-
main of the homomorphism, and sends the commitment t := φ(r) to the verifier.
The verifier then chooses a random challenge c from a predefined challenge set C,
and sends it to the prover, who computes its response s := r+ c ·w. The verifier
now accepts the proof, if and only if φ(s) = xc · t. Standard techniques [8] allow
to transform this protocol into non-interactive versions or so called signatures of
knowledge.

The Σφ-protocol is a very efficient proof of knowledge for many proof goals
existing in cryptography (e.g., knowledge of a discrete logarithm in a known
order group, or of the plaintext encrypted in a Paillier ciphertext). The reason is
that for the respective homomorphisms, a negligibly small knowledge error can be
obtained in a single run of the Σφ-protocol. Yet, the situation is different for the
important class of exponentiation homomorphisms with hidden order co-domain
(e.g., φ(·) : Z → Z∗n : a 7→ ga, where g is a generator of the quadratic residues
modulo n). Such homomorphisms play an important role for many cryptographic
applications, e.g. [9–16], including Direct Anonymous Attestation (DAA) [17],
and the identity mixer (idemix) anonymous credential system [18]. In this case,
the Σφ-protocol is only known to be a PoK with knowledge error 1/2, and hence
must be repeated sequentially to get a sufficiently small knowledge error (e.g.,
80 sequential repetitions are required to obtain a knowledge error of 1/280). The
resulting computational and communicational costs are much too high for many
practical applications.

In the recent past a branch of research has tried to overcome the above
problem by proposing alternative protocols for exponentiation homomorphisms
with hidden order co-domain [5, 19–23]. All these protocols build on a basic
idea put forth by Fujisaki and Okamoto [22], and we thus call them FO-based
henceforth. Unfortunately, none of these FO-based protocols is fully satisfactory
- either from a practical or from a theoretical point of view:

– One run of any FO-based protocol is much more expensive than running the
Σφ-protocol once. Moreover, if only standard complexity assumptions (i.e.
the Strong RSA Assumption [22]) are made, a recent analysis has revealed
that in many cases FO-based protocols are even more expensive than the
sequential repetition of the Σφ-protocol with knowledge error 1/2 [20].
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– The FO-based protocols in [5, 19–22] make use of a common reference string,
which is either issued by a trusted third party or generated in an expensive in-
teractive setup phase. Yet, the presence of common reference strings reduces
the modularity, and thus increases the complexity of the security analysis of
larger applications (as discussed, e.g., in [23–25]). The security proofs for the
protocols in [5, 19] additionally assume the existence of ideal hash functions,
and thus only hold true in the random oracle model4.

Because of these disadvantages, the natural question arises whether it is nec-
essary to use FO-based protocols at all? After all, the possibilities of Σ-protocols
have not yet been explored thoroughly, and it could be possible that a novel,
cleverly designed Σ-protocol or even the existing Σφ-protocol could be used
to overcome the current efficiency limitations. (We note that the latter could
be quite possible, if one could find a new knowledge extractor working for the
Σφ-protocol with a suitably chosen challenge set that allows to obtain a small
knowledge error in a single execution of the protocol.).

Contribution and Results. In this paper we are aiming at answering this
question. We provide ample evidence suggesting that the known minimal knowl-
edge error of the Σφ-protocol cannot be underrun, neither by a better knowledge
extractor for the Σφ-protocol nor by any other Σ-protocol. In particular, our
results indicate that using Σ-protocols the knowledge error of 1/2 cannot be
decreased for exponentiation homomorphisms with hidden order co-domain.

More precisely, we first consider PoK based on Σ-protocols in the generic
group model. That is, Σ-protocols where prover, verifier, and knowledge ex-
tractor are generic algorithms that can only access the homomorphism and its
domain and co-domain through an oracle. We then show that there are lower
bounds on the knowledge error for (almost) arbitrary Σ-protocols. These lower
bounds on the knowledge error in turn imply efficiency limitations for most pos-
sible protocol instances. Roughly, these follow by the fact that a PoK with a
large knowledge error needs to repeated sequentially to reduce the knowledge
error, which results in a high computational and communicational overhead.
Within the generic group model our efficiency analysis shows that the existing
Σφ-protocol is optimal and there cannot be another, more efficient Σ-protocol.

We further complement our results by proving lower bounds on the knowl-
edge error of the Σφ-protocol in the plain model. First, for homomorphisms of
the form w 7→ we in RSA groups we show that 1/d is a lower bound on the
knowledge error, where d is the smallest prime dividing e. Then, we show that
for exponentiation homomorphisms with hidden order co-domain, 1/2 is a lower
bound on the knowledge error for all knowledge extractors structurally related
to the only one currently known. These results are in accord with those in the
generic model and again suggest that the knowledge error that is currently known
to be achievable and the associated efficiency limitations cannot be underrun.

4 For completeness, we note that while the protocol in [23] yields ZK-PoK in the plain
model, it is by far too inefficient for practical usage.
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Finally, we note that our results do not rule out entirely the possibility to ob-
tain efficient PoK using Σ-protocols. On the one hand, we clearly describe a large
number of cases (i.e., instances of Σ-protocols) where this is indeed impossible,
indicating that there are inherent efficiency limitations for Σ-protocols. On the
other hand, the cases that are not covered by our results also seem to be valu-
able, since they provide cues for protocol designers on how it could be possible
to conceive novel Σ-protocols that overcome current efficiency limitations.

Related Work. Given the abundant usage of Σ-protocols, very little work on
their theoretical foundations has been done. Shoup [26] shows that the knowledge
error of 1/2 for homomorphisms of the form φ(w) = w2t

in RSA groups cannot
be improved. One of our results in the plain model extends this to arbitrary
exponents. Further, parts of our results are based on unpublished results of
one of the authors [5]. Apart from this we are not aware of any other work
on efficiency limitations of Σ-protocols. Yet, technically we make use of generic
group proof techniques devised by Shoup [26] as well as the extension of these
techniques to groups of hidden order by Damg̊ard/Koprowski [27].

The generic group model goes back to [28, 29]. It has been extensively used
since then to provide evidence for the security of various cryptographic systems,
e.g., [27–38]. The model is often criticized, because of the risk of lulling a user in
a false sense of security. Indeed, there are cases where information only available
in the plain model (i.e., obtained from encoding specific properties of the group)
can be used to break a system which was proved secure in the generic model [39,
40]. Yet, the implications of these observations are different for all the systems
cited above, and our results. All these proofs are used to give evidence for the
security of a cryptographic system. Thus, if any of them does not hold true in
the plain model, the security of the according system can be flawed, resulting in
dire consequences for all applications using the respective scheme. In contrast
to this, we use the generic group model in a more conservative way. Namely, we
show efficiency limitations on the efficiency of a cryptographic primitive. Thus,
if our results do not hold true in the plain model this means that the efficiency
of the scheme can be increased, but the security of the scheme is not affected by
any means.

We finally remark that our results do not conflict with those in [41]. The
authors there show how to build efficient Σ-protocols for certain exponentiation
homomorphisms with hidden order co-domain. Yet, their approach is not generic,
but rather uses certain properties of the homomorphism at hand. Further, only
very view proofs of practical interest can be performed with their technique.

Structure of this Document. In §2 we recap the basic definitions, and in-
troduce the notion of lower bounds and the class of Σ-protocols for which our
results hold true. In §3 we then formulate our main result in the generic group
model. This result is strengthened in §4, where we give results in the plain model.
We finally conclude and point out some open problems in §5.
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2 Preliminaries

In §2.1 we give a short introduction to ZK-PoK and briefly discuss the Σφ-
protocol in §2.2. Then, in §2.3 we introduce the notion of lower bounds on the
knowledge error of a protocol. In §2.4 we recap the generic group model we are
working in, and finally describe the class of protocols for which our results in
the generic group model hold true in §2.5.

2.1 Zero-Knowledge Proofs of Knowledge

After having defined ZK-PoK informally in §1, we next define them formally.
We therefore use the widely accepted standard definition of [42, 43]. We use
(P(w),V)(x) to denote a two party protocol between a prover P and a verifier V
with common input x and private input w to P.

Definition 1 (Computational Proof of Knowledge [42, 43]). A computa-
tional proof of knowledge for a binary relation R with knowledge error κ(·) : N→
[0, 1] is a two party protocol (P(w),V)(x), satisfying the following two conditions:

Completeness: The verifier always accepts the proof, if (x,w) ∈ R.
Soundness: There exists a polynomial poly(·), and a probabilistic algorithm M

(the knowledge extractor) with input x and rewindable black-box access to the
prover, such that the following holds true. For every probabilistic polynomial-
time (PPT) prover P∗ that can make V accept the proof with probability
ε(x) > κ(x), M outputs w′ satisfying (x,w′) ∈ R in expected time at most

t+(ε, κ, x) :=
poly(‖x‖)

ε(x)− κ(‖x‖)
,

where access to P∗ counts as one step only.

The computational aspect of this definition, i.e., the restriction of P∗ to be
a PPT algorithm, is of importance for our results, as it (almost) allows us to
stay in the standard complexity class of PPT algorithms. This issue will also be
discussed in §2.3.

A proof of knowledge (PoK) is called honest verifier zero knowledge (HVZK),
if no verifier following the protocol is able to gain any information about the se-
cret value w except that it satisfies the stated relation. For a formal description
we refer to [43]. There are well known techniques to transform HVZK proto-
cols into protocols which are zero-knowledge also against maliciously behaving
verifiers [8].

2.2 The Σφ-Protocol in Hidden-Order Groups

Most practical applications using ZK-PoK make use of theΣφ-protocol explained
in §1. This allows to prove knowledge of a preimage w of a public value x under
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some group homomorphism φ(·) : G → H. If φ(·) is an exponentiation homomor-
phism with hidden order co-domain, e.g. φ(·) : Z → Z∗n : a 7→ ga for some RSA
modulus n, the domain of the homomorphism is infinite. To circumvent the prob-
lem of drawing random values from an infinite set in P’s first step, the random
choice r ∈R G = Z is substituted by r ∈R G′, where G′ = {−∆w, . . . ,∆w}, such
that ordH/∆w is negligibly small. The rest of the protocol remains unchanged.
This approach can be generalized also to the case G = Zu for some integer u.
For more details see, e.g., [5, 23].

It is well known that the Σφ-protocol is a PoK with knowledge error 1/2
for exponentiation homomorphisms with hidden order co-domain. For homo-
morphisms with a co-domain of known order v, and power homomorphisms
(w1, w2) 7→ ψ(w1) · we2, it is known to have a knowledge error of 1/d, where d is
the smallest prime dividing v, respectively e [6].

2.3 Lower Bounds of the Knowledge Error

Let us now introduce the notion of lower bounds, which is a key to our results
stated in the following. Intuitively, β is a lower bound of the knowledge error of
a protocol, if for this protocol it is not possible to achieve any knowledge error
smaller than or equal to β:

Definition 2 (Lower Bound). A function β(·) : N → [0, 1] is called a lower
bound on the knowledge error of the protocol (P,V) for a binary relation R, if
(P,V) is not a computational proof of knowledge for R for any κ′(·) : N→ [0, 1]
with κ′(·) ≤ β(·).

An alternative but equivalent characterization is, that β(·) is a lower bound,
if and only if (P,V) is not a computational PoK with knowledge error β(·) for
the given relation.

All our results on lower bounds are proven by showing that the conditions of
the following theorem are satisfied.

Theorem 3 (Sufficient Conditions for Lower Bounds). Let (P,V) be a
two-party protocol, let R be a binary relation, and let β(·) : N → [0, 1] be a
function. Then β(·) is a lower bound on the knowledge error of (P,V) for R, if
the following two conditions are satisfied:

Uniformity: There are a polynomial poly(·) and PPT algorithms P∗ and D,
such that ε(x)−β(‖x‖) ≥ 1/poly(‖x‖) holds for all sufficiently long x gener-
ated by D, where ε(x) is the probability that P∗ makes V accept on common
input x.

Hardness: For all expected PPT algorithms M having rewindable black-box ac-
cess to P∗, the probability that M outputs a w′ with (x,w′) ∈ R is negligible.

Proof. By the remark after Definition 2 we need to show that if the conditions
hold, then the protocol (P,V) is not a computational PoK for R with knowledge
error β(·). We show this by contrapositive, and thus assume that (P,V) is a
computational PoK for R with knowledge error β(·).
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Hence, by Definition 1, there is a knowledge extractor M for the protocol,
which runs in expected time at most t+(ε, β, x) := poly(‖x‖)

ε(x)−β(‖x‖) , where ε(x) is
the probability that P∗ makes V accept on common input x, and poly(·) is an
arbitrary but fixed polynomial.

By the uniformity condition there is a P∗ such that when x is generated by D,
we have ε(x)− β(‖x‖) ≥ 1/(‖x‖). This implies that the upper bound t+(ε, β, x)
on the expected running time of M given rewindable black-box access to P∗ is
a polynomial function in ‖x‖, i.e., the knowledge extractor M is an expected
PPT algorithm. We now immediately see that the hardness property cannot be
fulfilled, which concludes our argument by contrapositive. ut

From the uniformity condition and Definition 1 it follows that any hypotheti-
cal knowledge extractor must be an expected PPT algorithm. This is important,
as in our results we show that the hardness condition has to be satisfied by show-
ing that otherwise the respective knowledge extractor could be used to break a
cryptographic standard assumption, which are typically defined against PPT
attackers. Still, we will have to adopt these assumptions in a natural way. As
the standard definition of PoK allows the knowledge extractor to be an expected
time algorithm [42, 43], we have to generalize the class of attackers the crypto-
graphic assumption holds against to expected PPT algorithms as well. Yet, we
believe that this generalization is reasonable as by Markov’s inequality we see
that an expected PPT algorithm may only run super-polynomially long for a
small fraction of its executions.

2.4 The Generic Group Model and Groups of Hidden Order

Our main result holds in the generic group model, which we briefly recap next.
The generic group model is used to analyze the complexity of problems by

considering algorithms in groups whose representation does not reveal any infor-
mation to the algorithm. That is, such an algorithm must not exploit encoding
dependent properties of the group, but may only use operations which are avail-
able in arbitrary groups. The hardness of a problem in the generic model is
a necessary but not sufficient condition for a problem to be hard in the plain
model [39, 40].

Various formalizations of this model have been proposed [28, 29, 35, 44]. They
all have in common that an algorithm does not get the concrete group descrip-
tion, but only handles to group elements (e.g., via random encodings [29] or
indices to elements [35]). Further, the algorithm gets access to an oracle. To
evaluate a group operation, the algorithm gives the handles of elements and the
operation to perform to the oracle, which then returns the handle of the result.
Similarly, a homomorphism φ(·) : G → H has to be evaluated through an oracle.

We call an algorithm a generic homomorphism algorithm for φ(·) : G → H,
if, through an oracle Oφ(·), it might perform the following operations.
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+ : Evaluation of the group operation within G or H,
− : inverting an element within G or H,
?= : testing the equality of two elements from the same group,
∈R : choosing a group element uniformly at random within G and H, and
φ(·) : evaluating the homomorphism on arbitrary elements a ∈ G.

When proving our results, we show that any generic algorithm, acting as
hypothetical knowledge extractor for a knowledge error smaller than the stated
lower bounds, must fail with overwhelming probability. We therefore describe
next which operations such an algorithm may perform.

Definition 4 (Generic Black-Box Algorithm). A generic black-box algo-
rithm is a generic homomorphism algorithm for φ(·) with oracle Oφ(·), which
additionally has rewindable black-box access to P∗. That is, it can (i) execute P∗,
(ii) choose the random inputs of P∗, and (iii) repeatedly reset P∗. Resetting P∗

does not reset Oφ(·).

We remark that the black-box property of such an algorithm is exactly the
same as for a knowledge extractor according to Definition 1.

Groups of Hidden Order. In the following we will be interested in group ho-
momorphisms with hidden order co-domain. Intuitively this means that the order
of the image of φ(·) (denoted by Im φ(·)) cannot be computed with non-negligible
probability. More precisely, using the formalization of Damg̊ard/Koprowski [27],
we let π be the largest prime dividing the order of Im φ(·), and let α(π) denote
the maximal probability that π occurs when φ(·) is chosen randomly from a
predefined finite set of homomorphisms. Then φ(·) is said to have a hidden order
co-domain, if α(π) is negligibly small.

2.5 Generic Σ-Protocols

We call the class of protocols for which our results hold true generic Σ-protocols.
Informally, this class consists of almost all HVZK Σ-protocols of the follow-
ing form. The prover is allowed to compute and send arbitrary elements ob-
tained from generic homomorphism algorithms in both moves. The verifier may
send multiple randomly chosen challenges in its first move, and use an arbitrary
generic algorithm to decide whether to accept or to reject the proof.

Definition 5 (Generic (Group) Σ-Protocols). Let aij , bij , di, ei, fi, gi be in-
teger coefficients, let {(b11, . . . , b1l), . . . , (bn1, . . . , bnl)} be linearly independent
over the integers, and let C1, . . . , Cp ⊆ Z be arbitrary finite sets. Let further
Verify(·, . . . , ·) be a generic homomorphism algorithm, and let the verifier always
accept for an honest prover. We then call an HVZK two party protocol a generic
(group)Σ-protocol for a homomorphism φ(·) : G → H, if it has the form depicted
in Fig. 1.

It can easily be seen that this class covers the existing Σφ-protocol as well
as the parallel execution of multiple instantiations thereof. Yet, a much broader
set of protocols is covered by the class of generic Σ-protocols.
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P(x,w) V(x)

ri ∈R G ∀ 1 ≤ i ≤ l−
tj := φ(

P
ajiri + fjw) ∀ 1 ≤ j ≤ m−

sk :=
P
bkiri + dkw ∀ 1 ≤ k ≤ n−

t1, . . . , tm− , s1, . . . , sn− -

(c1, . . . , cp) ∈R C := C1 × · · · × Cp
c1, . . . , cp�

ri ∈R G ∀ l− < i ≤ l
tj := φ(

P
ajiri + (fj +

P
gjici)w) ∀ m− < j ≤ m

sk :=
P
bkiri + (dk +

P
ekici)w ∀ n− < k ≤ n

tm−+1, . . . , tm, sn−+1, . . . , sn-

Verify(x, c1, . . . , cp, s1, . . . , sn, t1, . . . , tm)

Fig. 1. Structure of a generic Σ-protocol for a homomorphism φ : G → H.

We make two minor remarks on this definition. First, the required linear
independence can often be inferred from the HVZK property. Namely, if the
vectors were not linearly independent the verifier could compute a multiple of
w, and using Shamir’s trick [5] could thus often compute the secret. Second,
the definition of generic homomorphism algorithms also allows to draw random
choices in the co-domain of the homomorphism. The above definition allows to
draw random choices in the image by drawing r ∈R G and computing φ(r).

3 Efficiency Limitations in the Generic Group Model

In this section we describe lower bounds on the knowledge error for generic Σ-
protocols with generic black-box algorithms as knowledge extractors. From these
lower bounds we infer efficiency limitations for ZK-PoK using Σ-protocols.

In the statement of our results we refer to the notion of expected PPT
pseudo random functions. These are defined just as pseudo random functions
(cf., e.g., [43]), except for one minor modification. Namely, we require that no
expected PPT algorithm can distinguish such a function from a truly random
function (whereas usually only strict PPT distinguishers are considered). See
§2.3 for a brief discussion why we resort to expected PPT time assumptions.

We are now ready to formulate our main result in the generic group model.

Theorem 6 (Lower Bounds in the Generic Group Model). Let be given
an arbitrary but fixed polynomial poly(·), a homomorphism φ(·) : G → H with
hidden order image, and x ∈ H, for which knowledge of a preimage under φ(·)
shall be proven. Consider a generic Σ-protocol as in Definition 5, and let q
equal the number of responses sent by the prover in its second step, i.e., q :=
n−n−+m−m−. Assuming that expected PPT pseudo random functions exist,
the knowledge error of this protocol in the generic group model is lower bounded
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by
1

2min(p,q)
− 1

poly(‖x‖)
.

Let us briefly discuss the relevance and implications of this result.

– Our results indicates that a knowledge error of 1/2 is an inherent limitation
of the Σφ-protocol for homomorphisms with hidden order co-domain, which
especially cover exponentiation homomorphisms in RSA groups.

– The best known technique to decrease the knowledge error is to sequentially
or parallely repeat the Σφ-protocol. In either case, the number of elements
sent by the prover and the verifier increases by the number of repetitions. Our
results show that at least for the second and third move, i.e., the challenges
sent by V and the responses sent by P, this growth cannot be avoided.
Put differently, Theorem 6 shows that the number p of challenges, and the
number q of responses are the key parameters determining the size of the
knowledge error. This implies that the strategy of repeating the Σφ-protocol
parallely is optimal concerning the second and third move of the protocol.

– Finally, a protocol designer can deduce from Theorem 6 how an alterna-
tive for the Σφ-protocol must not look like. Namely, it must either not be
a generic Σ-protocol, or the protocol must have a non-generic knowledge
extractor, which uses particulars of the homomorphism.

3.1 Generalization to Other Classes of Homomorphisms

So far we have considered homomorphisms with hidden order co-domain. Yet,
in practice this information is sometimes available and could potentially be used
to decrease the lower bounds on the knowledge error.

More generally, we thus consider the class of special homomorphisms next.
A homomorphisms φ(·) : G → H is called special, if for every x ∈ H a pair
(u, v) ∈ G × Z \ {0} satisfying φ(u) = xv can be computed efficiently. The pair
(u, v) is calles pseudo-preimage of x under φ(·). Besides homomorphisms with
known order co-domain, also power homomorphisms are known to be special.

We model this property by adding one more query to the oracle Oφ(·).
Namely, we allow a generic homomorphism algorithm to request a pseudo-
preimage under φ(·) for arbitrary elements from the co-domain of the homo-
morphism. We then obtain the following lemma, the proof of which is a straight-
forward adoption of the proof of Theorem 6.

Lemma 7 (Lower Bounds for Special Homomorphisms).

(i) For power homomorphisms (w1, w2) 7→ ψ(w1) · we2 with hidden order co-
domain, Theorem 6 can be generalized with a lower bound of 1

dmin(p,q) −
1

poly(‖x‖) , where d is the smallest prime dividing e.
(ii) For arbitrary homomorphisms with a co-domain of known order v, Theo-

rem 6 generalizes literally with a lower bound of 1
dmin(p,q) − 1

poly(‖x‖) , where
d is the smallest prime dividing v, if v has a super-polynomially large prime
factor.
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Note that no such generalization is suitable for exponentiation homomorphisms
with hidden order co-domain, as they are not known to be special. Further,
analogue observations as for Theorem 6 on the implications of this lemma hold.
Especially, in the generic group model the known knowledge error of the Σφ-
protocol cannot be underrun for special homomorphisms.

Examples for homomorphisms falling into Case (i) are those used in the
RSA- and Paillier respectively Damg̊ard/Jurik encryption schemes [45–48]. The
according protocol was introduced by Guillou/Quisquater [4]. Case (ii) covers
the ElGamal encryption scheme [49], or the protocol proposed by Schnorr [3].

3.2 Proof of Theorem 6

The remainder of this section is now dedicated to proving the theorem. We
therefore recap the following lemma introduced by Damg̊ard/Koprowski.

Lemma 8 (Lemma 3 of [27]). Let E := a1X1 + · · ·+ auXu ∈ Z[X1, . . . , Xu]
be a non-zero polynomial, and let z ≥ |ai| for all i. Let further G be a group of
hidden order, and x1, . . . , xu ∈R G. For any positive A, we then have

Pr[a1x1 + · · ·+ auxu = 0] ≤ 1
A

+ (log2 z +A)α(π).

Proof (of Theorem 6 – Sketch). The proof is structured as follows. We describe
a prover P∗ for which we show that it satisfies the conditions of Theorem 3. We
will see that the uniformity condition holds true by definition. For the hardness
condition we simulate the behavior of P∗ in the additive subgroup of a suitable
polynomial ring. We then estimate the success probability of this simulated game
and the error made when making this simulation.

We start with describing a malicious prover P∗.This cheating prover essen-
tially behaves like the honest prover, but it does not answer all challenges, but
only certain ones. Depending on whether p ≤ q or not, this set (called C′ in the
following) is defined as follows:

p ≤ q: For i = 1, . . . , p, let c̄i ∈ {0, 1} such that at least half of the elements of
Ci have the same parity as c̄i. Then C′ := {(c1, . . . , cp) ∈ C|ci ≡ c̄i mod 2}.

q < p: We define C′ as a subset of C, which has a cardinality of at least #C/2q,
and all (c1, . . . , cp), (c′1, . . . , c

′
p) ∈ C′ satisfy the following q equations for all

j = m− + 1, . . . ,m and all k = n− + 1, . . . , n:∑
gjici ≡

∑
gjic

′
i mod 2 and

∑
ekici ≡

∑
ekic

′
i mod 2

Note that such a C′ can easily be constructed from C by letting S1 be a subset
of cardinality at least #C/2 for which all tuples yield the same parity when
evaluating the first equation. Then, inductively, let Si be a subset of Si−1 of
cardinality at least #Si−1/2 such that all tuples have the same cardinality
when evaluating the ith equation. Finally, set C′ := Sq.

We next describe P∗. We therefore make the random input ζ = (ζ1, . . . , ζl)
to the prover explicit, and let ρ(·) be a pseudo random function.
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(i) It sets r′i := ρ(ζi) for i = 1, . . . , l, and using these random elements, it
behaves just as an honest prover.

(ii) If ci ∈ C′, P∗ behaves like an honest prover, using (r′l−+1, . . . , r
′
l) as random

elements. Otherwise it halts.

The uniformity property of Theorem 3 is obviously satisfied, as the prover
answers a fraction of at least 1/2min(p,q) of all challenges, and makes the verifier
accept (because the verifier would accept for an honest prover).

Let us now turn towards the hardness property. We say that a generic
black-box algorithm succeeds, if after v steps it outputs the handle corresponding
to a preimage of x under φ(·). Now, instead of letting the knowledge extractor
interact with P∗ and the oracle Oφ(·), we play the following game. We substitute
G,H by the following subgroups of the polynomial rings over the indeterminantes
W,Oij , Rij , Tij :

G′ := 〈W,O11, . . . , O1l, . . . , Ov1, . . . , Ovl, R11, . . . , R1m, . . . , Rv1, . . . , Rvm〉
H′ := 〈G′, T11, . . . , T1n, . . . , Tv1, . . . , Tvn〉.

Accordingly, the oracle O′φ(·) performs its computations within G′,H′.
The prover P∗ is adopted as described next. It maintains a list L, which is

initially empty, and sets u := 0. On random input ζ, it performs the following
steps:

(i) For each ζi, it checks whether there is a pair (ζji, R̄ji) with ζi = ζji in L.
If so, it sets R̂i := R̄ji. Otherwise, it increases u by 1 (but at most once in
each run), sets R̂i := Rui, and adds (ζi, R̂i) to L. Then it sends(

(
∑

aji · R̂i + fj ·W )m
−

j=1, (
∑

bki · R̂i + dk ·W )n
−

k=1

)
to V. Former are marked as elements of G′, latter as elements of H′.

(ii) If ci ∈ C′, P∗ analogously computes its response according to the protocol.
Otherwise, if c 6∈ C′, P∗ halts.

By r we denote an element from the set of random choices done by the oracle,
and by the generator of the input to the protocol, i.e.,

r ∈
{

(φ(·), x, w, ρ, o, t)
∣∣ φ(·) : G → H has hidden order co-domain,

x = φ(w), ρ(·) pseudo random, o ∈ Gv×l, t ∈ Hv×m
}

We then define the following two mappings. By ιrG′(·) we denote the evaluation
homomorphism from G′ into G. That is, by ιrG′(E) we denote the element in G
which results when all indeterminantes in E are substituted in the following way:

W 7→ w Oij 7→ oij Rij 7→ r′ij .

In absolute analogy we let ιrH′(·) be the evaluation homomorphism from H′ into
H. That is, the substitution is given by:

W 7→ φ(w) Oij 7→ φ(oij) Rij 7→ φ(r′ij) Tij 7→ tij .
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We observe that for all E ∈ G′ we have φ(ιrG′(E)) = ιrH′(E).
During its computation the generic black-box algorithm maintains a list of

elements Ei ∈ G′ respectively Fi ∈ H′. We say that the algorithm wins this
modified game, if one of the following to cases occurs. In case (a), the algorithm
finds a preimage of x under φ(·), while in case (b) there is a pair i 6= j satisfying
the following. For a randomly chosen r, we either have Ei 6= Ej and ιrG′(Ei −
Ej) = 0, or Fi 6= Fj and ιrH′(Fi − Fj) = 0.

Observing that the behavior of this game and the actual interaction between
the algorithm and the real oracle are indistinguishable as long as the above game
is not won, we get that the success probability of the generic black-box algorithm
is upper bounded by the probability that the algorithm wins the game [50].

Case (a). Finding a preimage means to compute Ei such that φ(ιrG′(Ei)) = x.
Using the observation that we always have ιrH′(W ) = x this means to find an Ei
such that ιrH′(Ei−X) = 0. By introspection of how the Ei are computed, and by
using the linear independency of the vectors {(b11, . . . , b1l), . . . , (bn1, . . . , bnl)},
one can show that W 6= Ei for all i. A proof of this claim can be found in App. A.

Let K := K(C, aji, bki, gji, eji, fj , dk) be an integer such that K is larger than
the absolute values of all coefficients occurring in the definition of the examined
generic Σ-protocol. Using that Ei 6= W and Lemma 8, and noting that after v
oracle queries for every Ei, Fj all coefficients are smaller than 2v ·K, we get

Pr[(a)] ≤ 1
A

+ (v + log2K +A)α(π) for all A ∈ Z.

Case (b). Using K as before, and observing that there are at most v different
Ei, Fi, we get by a similar argument that the probability for (b) is bounded by

Pr[(b)] ≤ v2

(
1
A

+ (v + log2K +A)α(π)
)

for all A ∈ Z.

We here assumed that φ(·) is surjective, and that ρ(·) is a truly random function.
The former can easily be seen to be just a technical issue to ease presentation,
and the latter yields only a negligible error as ρ(·) is pseudo random by definition.

Demonstration of Hardness Condition. The overall probability that the
algorithm wins the game described above is hence limited by

Pr[(a)] +Pr[(b)] ≤ (v2 + 1)
(

1
A

+ (v + log2K +A)α(π)
)

for all A ∈ Z.

for a fixed choice of r. We now set the so far arbitrary value of A to A :=√
1/α(π), such that both, 1/A and A · α(π) are negligible, and observe that K

and α(π) are independent from r. Using now that for the hardness condition to
be satisfied we only need to consider generic black-box algorithms the expected
number v of steps of which is polynomially bounded, and computing the ex-
pectation value over all choices of r, we get that the success probability of the
generic black-box algorithm is negligible. ut
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4 Lower Bounds for the Σφ-Protocol in the Plain Model

As pointed out in [39, 40], restrictions proven in the generic model do not nec-
essarily hold true in the plain model as well. In this section we thus confirm
our results in the generic model by showing the existence of lower bounds in
the plain model. That is, we provide evidence that for exponentiation homomor-
phisms with hidden order co-domain, and for power homomorphisms of the form
φ(·) : H → H : w 7→ we, no smaller knowledge error than in the generic model
can be reached in the plain model. The results only hold for the Σφ-protocol,
and not for the entire class of generic Σ-protocols.

The following results are based on a generalization of the Root Assump-
tion [47], which we call the Expected Root Assumption. We say that a group
H satisfies the Expected Root Assumption, if there exists no expected PPT
algorithm, that on input h ∈R H and e ≥ 2 outputs an eth root of h with
non-negligible probability.

In contrast to the standard formulation of the Root Assumption we also
require that no expected PPT algorithm has a noticeable success probability.
Again this requirement naturally arises from the fact that the definition of PoK
only restricts the expected running time of the knowledge extractor, cf. §2.3.

4.1 Lower Bounds for Power Homomorphisms

We first consider the Σφ-protocol for power homomorphisms of the form φP (·) :
H → H : w 7→ we. Such homomorphisms underlie, e.g., the RSA encryption
scheme [47]. The instance of the Σφ-protocol allowing to prove knowledge of
preimages under such homomorphisms was proposed by Guillou/Quisquater [4].
We generalize the result from Shoup [26] from exponents of the form e = 2t to
arbitrary values of e.

In the following we use the following notation. For a set S and r ∈ Z, we
define Div(S, r) to be all multiples of r within S, i.e. Div(S, r) := {s : s ∈ S, r|s}.
Theorem 9 (Bounds for Power Homomorphisms). Let poly(·) be an ar-
bitrary but fixed polynomial. Then for every power homomorphism φP (·) : H →
H : w 7→ we with e ≥ 2, the knowledge error of the Σφ-protocol for φP (·) is
lower bounded by

max
2≤r≤e,r|e

# Div(C, r)
#C

− 1
poly(‖x‖)

,

if the Expected Root Assumption is satisfied for H and gcd(e, ordH) = 1.

Note here that, if H is an RSA group, i.e. H = Z∗n for a composite modulus n
of unknown factorization, the condition gcd(e, ordH) = 1 is always satisfied.

Proof. We prove the theorem by defining a prover and showing that this satisfies
the conditions of Theorem 3.

Let 2 ≤ f ≤ e be such that # Div(C, f) = max # Div(C, r), where the max-
imum is taken over all r satisfying 2 ≤ r ≤ e and r|e. Let further x := ue/f for
an arbitrary element u. The malicious prover P∗ now takes u as private input,
and performs the following steps:
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(i) It chooses r ∈R H, sets t := φP (r) = re and sends t to V.
(ii) If the received challenge c satisfies c ∈ Div(C, f), the prover sets s := r ·uc/f

and sends s to V. Otherwise P∗ halts.

For the uniformity condition see that for all c ∈ Div(C, f) we have φP (s) =
φP (r · uc/f ) = t · uce/f = t · xc. Thus, with the maximum taken over the same
values of r as before, P∗ succeeds with probability max # Div(C, r)/#C.

For the hardness condition, assume by contradiction, that there is an ex-
pected PPT algorithm M with black-box access to P∗ that succeeds in computing
an w such that φP (w) = we = x with non-negligible probability. Then, by def-
inition of x, we also have ue/f = we. Because of gcd(e, ordH) = 1 this implies
u = wf , and we have computed a f th root of u with non-negligible probability.
This contradicts the expected Root assumption. ut

We stress that, if the challenge set C is an integer interval, the theorem implies
a lower bound which is equal to the smallest knowledge error that is currently
known to be achievable:

Corollary 10. Let the conditions of Theorem 9 be satisfied, and let the challenge
set be an integer interval (i.e. C = {a, . . . , b} for some a, b ∈ Z). Let d denote the
smallest prime dividing e. Then knowledge error of the Σφ-protocol is bounded
below by

1
d
− 1

poly(‖x‖)
.

Theorem 9 becomes meaningless if all elements of C are co-prime (e.g., if all
elements of C are primes), as it then implies a lower bound of 0. Though, the
result is still relevant when seen in connection with Theorem 6. Namely, whilst
the latter states that any hypothetical knowledge extractor has to use encoding
specific properties of the homomorphism φP (·), the former further restricts the
situations where the generic result could potentially be violated in the plain
model. In summary, the existence of an extractor underrunning the limitation
of 1/d seems unlikely.

4.2 Lower Bounds for Exponentiation Homomorphisms

For exponentiation homomorphisms φE(·) : Z→ H : w 7→ hw with hidden order
co-domain H, the Σφ-protocol is only known to be a PoK with knowledge error
1/2. In this section we show that (if existing at all) any knowledge error achieving
a smaller knowledge error in this case would require fundamentally new insights
to the Σφ-protocol.

Although being used for numerous different homomorphisms, essentially only
one knowledge extractor is known for the Σφ-protocol. This standard knowl-
edge extractor works as described next. In a first phase, it is given rewindable
black-box access to the prover, and extracts a pseudo preimage (u, v), i.e. a
pair satisfying v 6= 0 and xv = φE(u), cf. §3.1, [6]. Then, in a second phase in
which the extractor does not have access to the prover any more, it computes
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a preimage of x from this pseudo preimage. We call knowledge extractors work-
ing this way pseudo preimage based. We show that no such knowledge extractor
can underrun a knowledge error of 1/2 for the Σφ-protocol and exponentiation
homomorphisms with hidden order co-domain.

Let us introduce some notation: for a set S of integers, we write Diff(S) for
the set of all possible absolute values of differences between different elements
of S, i.e. Diff(S) := {|s1 − s2| : s1 6= s2 ∈ S}. We further say that an integer d
and a set S are co-prime, if gcd(d, s) = 1 for all s ∈ S.

Theorem 11 (Bounds for Exponentiation Homomorphisms). Let poly(·)
be an arbitrary but fixed polynomial. Then for every exponentiation homomor-
phisms φE(·) : Z → H′ : w 7→ hw, with h ∈ H′, the knowledge error of the
Σφ-protocol for φE(·) is lower bounded by

1
2
− 1

poly(‖x‖)
,

against pseudo preimage based knowledge extractors, if the following conditions
are satisfied. The co-domain H′ is a large subgroup of H (i.e. #H′/#H is not
negligible), the Expected Root Assumption is satisfied for H, and ordH′ and
Diff(C) are co-prime.

We remark that this result can straightforwardly be generalized to homomor-
phisms of the form φM (·) : Gr → H : (w1, . . . , wr) 7→ hw1

1 . . . hwr
r .

Proof (Sketch). The proof works by showing that the conditions of Theorem 3
are satisfied. Because of space limitations, we here only describe the required
malicious prover, and the main idea how the proof works. For describing the
prover P∗, let c̄ ∈ {0, 1} be such that at least half of the elements in C have the
same parity as c̄, and G′ = {−∆w, . . . ,∆w}, such that ordH′/∆w is negligible.
Then P∗, upon input x,w and ordh, performs the following steps.

(i) It chooses r ∈R G′, sets t := φE(r) = hr and sends t to V.
(ii) If the received challenge c has the same parity as c̄, the prover sets s :=

r + c · x+ c+c̄
2 · ordh and sends s to V. Otherwise, P∗ halts.

The uniformity condition can directly be seen by noting that hs = hr+c·x for
all challenges answered by P∗.

For the hardness condition, the proof follows the following reasoning. Un-
der the expected Root assumption it is hard to compute a preimage of x from
any pseudo preimage (u, v) not satisfying v | u [19, 12, 21] (note here that we
assumed the domain of φE(·) to be Z). We show that all pseudo preimages that
can be extracted from P∗ satisfy (c1 − c2) - (s1 − s2), and hence the knowledge
extractor fails in its second phase. ut

In practice the conditions of this theorem are most often satisfied. For in-
stance consider the case where H = Z∗n for a safe RSA modulus n, i.e. n =
(2p + 1) · (2q + 1), where p, q, (2p + 1), (2q + 1) are prime. Then H′ is usually
given by the set of quadratic residues modulo n, and we have #H′/#H = 1/4.
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Further, ordH′ = p · q, and hence any challenge set C only containing elements
smaller than p, q will satisfy the condition of Diff(C) and ordH′ being co-prime.

Although this result only considers pseudo preimage based knowledge ex-
tractors, it is still relevant for the following reason. Together with the results in
the generic group model in §3, Theorem 11 implies that a knowledge extractor
for exponentiation homomorphisms with hidden order co-domain must neither
be generic nor pseudo preimage based. Thus, if possible at all, substantially new
insights were required to underrun the restriction of 1/2 in this case. Accord-
ing to current knowledge, we doubt the existence of such an extractor. We thus
believe that for reaching a small knowledge error in the case of exponentiation
homomorphisms with hidden order co-domain, either running the Σφ-protocol
repeatedly or employing an FO-based protocol cannot be avoided.

5 Conclusion

We have introduced the class of generic Σ-protocols, and have shown that in
the generic group model a knowledge error of 1/2n (where n is the minimum of
the number of challenges and responses sent in the protocol) is inherent to any
of these protocols for homomorphisms with hidden order co-domain. We further
generalized this result to special homomorphisms as well, covering essentially
all homomorphisms being used in cryptography. Especially, those underlying
various crypto systems fall into this class [45–49]. We then confirmed our results
for the Σφ-protocol and certain homomorphisms in the plain model as well.

Besides pointing out these limitations, our results also give new insights in
how these restrictions could be overcome. Namely, any Σ-protocol overcoming
these bounds must either be substantially different from the Σφ-protocol (i.e.,
it must not be a generic Σ-protocol), or it must have a non-generic knowledge
extractor.

The former seems to be hard to achieve without using auxiliary constructions
resulting from a common reference string as done in [5, 20, 21], because the class
of generic Σ-protocols does not leave much design options for other Σ-protocols
to look like. Yet, the latter also is unlikely, because of our results in the plain
model. Thus, although being riddled with various limitations from a theoretical
point of view, FO-based protocols [5, 19–23] using common reference strings seem
to be inevitable for many real systems.

An interesting open question is whether similar results can be found protocols
with an arbitrary, but fixed number of moves, or whether efficient constant-
move protocols achieving a negligibly small knowledge error for exponentiation
homomorphisms with hidden order co-domain can be constructed.
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A Proof of Case (a) in Theorem 6

We here only consider the case that (ζ1, . . . , ζl) 6= (ζ ′1, . . . , ζ
′
l) always implies that

ζi 6= ζ ′j for all i, j. If this is not the case, the proof can still be adopted. Yet, this
is accompanied by technical issues which primarily complicate the presentation
of the proof. We hence exclude this case in the following.

We first note that each Ei is a linear combination of all elements received by
the verifier by communicating with the oracle, or the malicious prover. Further,
we let c1, . . . , ck be the challenges answered by P∗. Using qab to denote the
coefficient of the secret in the computation of sa for challenge cb, we have, for
some j ≤ v and integer coefficients uabc, u′ab,

Ei =
j∑
ι=1

(
uι11(

∑
b1iRιi + q11W ) + · · ·+ uιn1(

∑
bniRιi + qn1W ) + · · ·+

uι1k(
∑

b1iRιi + q11W ) + · · ·+ uιnk(
∑

bniRιi + qn1W )
)

+

u′11O11 + · · ·+ u′vlOvl (1)

For this to be equal to W , the coefficients of all other indeterminantes have to
be equal to zero. Thus, we have for each Rιi that

0 = uι11b1i + · · ·+ uιn1bni + · · ·+ uι1kb1i + · · ·+ uιnkbni

= (uι11 + · · ·+ uι1k)b1i + · · ·+ (uιn1 + · · ·+ uιnk)bni.

Using the linear independency pf the vectors {(b11, . . . , b1l), . . . , (bn1, . . . , bnl)},
this can only hold true for a fixed ι and all i = 1, . . . , l, if

(uι11 + · · ·+ uι1k) = · · · = (uιn1 + · · ·+ uιnk) = 0. (2)

If W = Ei, the coefficients of W in (1) had to sum up to one. Thus we had:

1 =
n∑
ν=1

(
(u1ν1qν1 + · · ·+ u1νkqνk) + · · ·+ (ujν1qν1 + · · ·+ ujνkqνk)

)
. (3)

Yet, by (2), we can write (3) in the following way:

1 =
n∑
ν=1

((
(−u1ν2 − · · · − u1νk)qν1 + u1ν2qν2 + · · ·+ u1νkqνk

)
+ · · ·+

(
(−ujν2 − · · · − ujνk)qν1 + ujν2qν2 + · · ·+ ujνkqνk

))
=

n∑
ν=1

(
(u1ν2 + · · ·+ ujν2)(qν2 − qν1) + · · ·+ (u1νk + · · ·+ ujνk)(qνk − qν1)

)
.

By construction of P∗, or more precisely by the set of challenges which it re-
sponses to, we now can infer that qν1 ≡ · · · ≡ qνk (mod 2) for all ν = 1, . . . , n.
Thus, the right hand side of the last equation is equal to zero modulo 2, and
consequently (3) cannot be satisfied, and we get W 6= Ei. ut


