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Abstract

Coercion-resistance is one of the most important and intricate security re-
quirements for voting protocols. Several definitions of coercion-resistance have
been proposed in the literature, both in cryptographic settings and more abstract,
symbolic models. However, unlike symbolic approaches, only very few voting pro-
tocols have been rigorously analyzed within the cryptographic setting. A major
obstacle is that existing cryptographic definitions of coercion-resistance tend to
be complex and limited in scope: They are often tailored to specific classes of
protocols or are too demanding.

In this paper, we therefore present a simple and intuitive cryptographic defini-
tion of coercion-resistance, in the style of game-based definitions. This definition
allows to precisely measure the level of coercion-resistance a protocol provides.
As the main technical contribution of this paper, we apply our definition to two
voting systems, namely, the Bingo voting system and ThreeBallot. The results we
obtain are out of the scope of existing approaches. We show that the Bingo voting
system provides the same level of coercion-resistance as an ideal voting system.
We also precisely measure the degradation of coercion-resistance of ThreeBallot
in case the so-called short ballot assumption is not met and show that the level
of coercion-resistance ThreeBallot provides is significantly lower than that of an
ideal system, even in case of short ballots.

1 Introduction

Coercion-resistance is one of the most important and intricate security requirements
for voting protocols [15, 20, 3]. Intuitively, a voting protocol is coercion-resistant if
it prevents vote buying and voter coercion. Several definitions of coercion-resistance
have been proposed in the literature (see, e.g., [15, 18, 7, 23, 11, 14, 10, 1, 17]), both
based on cryptographic and symbolic models, where symbolic models take an idealized
view on cryptography. However, in the cryptographic setting, only very few voting
protocols have been analyzed rigorously w.r.t. coercion-resistance. A major obstacle



is that existing definitions tend to be complex and limited in scope: They are often
tailored to a very specific class of protocols or are too demanding; some otherwise
reasonable protocols are deemed insecure or can be shown to be secure only under
stronger assumptions or using stronger cryptographic primitives (see Section 3 for more
details). Even some relatively simple voting protocols are out of the scope of current
cryptographic approaches. The situation is much better for symbolic approaches.
Several quite complex voting protocols have been analyzed in this setting (see, e.g.,
[10, 1, 17]). For example, in |17| coercion-resistance of the Civitas voting system |§|
was analyzed rigorously. However, being symbolic approaches, an idealized view on
cryptography is taken and the level of coercion-resistance a protocol provides cannot
be measured precisely.

Contribution of this paper. Inspired by a definition of coercion-resistance in the
symbolic model [17], we present a definition of coercion-resistance in the cryptographic
model, in the style of game-based definitions (rather than simulation-based defini-
tions). The main idea is that a coercer should not be able to distinguish whether
a coerced voter is following the instructions of the coerced voter (e.g., voting for a
certain candidate) or whether the coerced voter is just trying to achieve her own goal
(e.g., voting for her favorite candidate), by running a counter-strategy.

The resulting cryptographic definition has the following main features compared to
other cryptographic definitions (see Section 3 for a detailed comparison with existing
definitions and approaches): i) Our definition is simple and intuitive. ii) It allows to
precisely measure the level of coercion-resistance a protocol provides. This quantita-
tive approach is much preferable over approaches that provide only a yes/no answer:
Not even an ideal voting protocol, which only reveals the result of the election, pro-
vides absolute coercion-resistance. Typically, the level of coercion-resistance depends
on several parameters, including the number of voters and the number of choices vot-
ers have (e.g., the number of candidates in the election) as well as the probability
distribution on these choices. iii) Our definition is applicable to a wide range of pro-
tocols, including protocols that are out of the scope of existing approaches, with less
stringent security assumptions and weaker cryptographic primitives than some of the
other approaches, as demonstrated by our case studies.

The case studies are the main technical contribution of our paper. Besides demon-
strating the applicability of our definition, the results of our analysis are interesting in
their own right as they constitute the first rigorous analyzes of the considered voting
systems and introduce techniques that are applicable beyond our case studies.

We first provide a detailed analysis of an ideal voting system, which merely reveals
the result of the election. The level of coercion-resistance such a system provides
is a function of the number of honest voters in an election, the number of choices
(e.g. candidates) voters have in the election, and a probability distribution on choices,
which describes how honest voters vote. The analysis of the ideal voting system
is a pure combinatorial argument. This analysis is motivated by the fact that the
analysis of certain voting protocols, namely those that provide (almost) ideal coercion-



resistance, can often be divided into two parts: a combinatorial part corresponding to
the ideal case and a cryptographic part. With the results presented in this paper, the
combinatorial part does not have be redone.

Based on the analysis of the ideal voting system, we show that the Bingo voting
system [4], which has been used in practice [2]|, provides the same level of coercion-
resistance as the ideal system (up to forced abstention attacks). This result is shown
by a reduction to the ideal case, as explained above. It could not be obtained by
previous approaches, as the Bingo voting system is either outside of the considered
class of voting systems or, in case of simulation-based definitions, cannot be proven to
be coercion-resistance, unless stronger security assumptions or more advanced cryp-
tographic primitives are used (see Section 3 and 5 for more details).

We also provide a detailed analysis of the ThreeBallot voting system [21]. This
system is known to leak partial information to a coercer. In particular, it is known that
coercion-resistance cannot be obtained if the number of candidates in the election is
high. In other words, coercion-resistance can at most be achieved under the so-called
short ballot assumption. However, this assumption has so far not been defined or
quantified within a formal framework. Using our definition, we rigorously measure the
degradation of coercion-resistance as the number of candidates grows. Surprisingly,
already with seven candidates and a few hundred voters the level of coercion-resistance
ThreeBallot provides is insufficient. With ten candidates and two thousands of voters,
ThreeBallot does virtually not provide any coercion-resistance. (Note that results of
elections are often published per polling station and that a polling station often does
not have more than a few hundred voters.) We also precisely analyze ThreeBallot
in case the short ballot assumption is clearly met; more precisely, we consider the
case of two candidates. Even in this case we find that the level of coercion-resistance
ThreeBallot provides is significantly less than the ideal protocol. This analysis of
ThreeBallot requires non-trivial combinatorial arguments as information can be leaked
in subtle ways. As in case of the Bingo voting system, other approaches are unsuitable
for the analysis of ThreeBallot (see Section 3 and 6 for more details).

Structure of this paper. In the following section, we present and discuss our defini-
tion of coercion-resistance. In Section 3 we provide a detailed comparison with other
definitions and approaches. The analyzes of the three voting systems are carried out
in Sections 4 to 6, with detailed proofs provided in the appendix.

2 Defining Coercion-Resistance

In this section, we present our definition of coercion-resistance. First, we introduce
some notation and terminology.

2.1 Preliminaries

As usual, a function f from the natural numbers to the real numbers is negligible if
for every ¢ > 0 there exists £y such that f(¢) < E% for all £ > fy. The function f is



overwhelming if the function 1 — f(¢) is negligible. Let § € [0,1]. The function f is
d-bounded if f is bounded by § plus a negligible function, i.e., for every ¢ > 0 there
exists fp such that f(¢) < 4§+ g% for all £ > .

Our definition of coercion-resistance is based on a quite standard computational
model, similar to models for simulation-based security (see, e.g., [5, 16]), in which
interactive Turing machines (ITMs) communicate via tapes. The ITMs may perform
probabilistic polynomial-time computations in the length of the security parameter
and the input received so far. The details of the model are not essential for the rest
of the paper. However, we fix some notation. A system S of ITMs is a multi-set of
ITMs, which we write as S = M || - - || M;, where M, ..., M; are ITMs. If S; and
Sy are systems of I'TMs, then S; || Sz is a system of ITMs, assuming that the systems
are connectible. As usual, the systems we consider are such that the length of a run
is polynomially bounded in the length of the security parameter. Clearly, a run is
uniquely determined by the random coins used by the ITMs in S.

We assume that a system of I'TMs has at most one I'TM with a special output tape
decision. For a system S of I'TMs and a security parameter ¢, we write Pr[S(Z) — 1]
to denote the probability that S outputs 1 (on tape decision) in a run with security
parameter £.

A property of a system S is a subset of runs of S. For a property v of S, we write
Pr[S® — 4] to denote the probability that a run of S, with security parameter ¢,
belongs to 7.

2.2 Voting Protocols

A woting protocol P specifies the programs (actions) carried out by honest voters and
honest voting authorities, such as honest registration tellers, tallying tellers, bulletin
boards, etc.

A voting protocol P, together with certain parameters, induces an election system
S = P(k,m,n,p). The parameters are as follows: k denotes the number of choices,
an honest voter has in the election apart from abstaining from voting. In the simplest
case, these choices can be the candidates the voter can vote for. Choices can also be
preference lists of candidates, etc. In what follows, we often use the terms “candidate”
and ‘“choice” interchangeably. By m we denote the total number of voters and by
n, with n < m, the number of honest voters. Honest voters follow the programs as
specified in the protocol. The actions of dishonest voters and dishonest authorities are
determined by the coercer, and hence, these participants can deviate from the protocol
specification in arbitrary ways. We make the parameter n explicit since it is crucial for
the level of coercion-resistance a system guarantees; intuitively the level of coercion-
resistance increases with the number of honest voters. One can also think of n as the
minimum number of voters the coercer may not corrupt. The vector o = pg,...,pg is a
probability distribution on the possible choices, i.e., pg, ..., pr € [0,1] and Ef:o p; = 1.
Honest voters will abstain from voting with probability pg and vote for candidate ¢ with
probability p;, 1 <7 < k. We make this distribution explicit, because it is realistic to



assume that the coercer knows this distribution (e.g., from opinion polls), and hence,
uses it in his strategy, and because, as we will see later, the specific distribution is
crucial for the level of coercion-resistance of a system.

An election system S = P(k, m,n,p) specifies (sets of) ITMs for all participants,
honest voters and authorities, the coercer, subsuming dishonest voters and dishonest
authorities, and the coerced voter: (i) There are ITMs, say Sy, ..., S, for all honest
voting authorities. These ITMs run the programs as specified by the voting protocol.
(ii) There is an ITM Sy,, i € {1,...,n} for each of the honest voters. Every such ITM
first makes a choice according to the probability distribution p. Then, if the choice
is not to abstain, it runs the program for honest voters according to the protocol
specification with the candidate chosen before. (iii) The coercer is described by a set
Cg of ITMs. This set contains all (probabilistic polynomial-time) I'TMs, and hence, all
possible coercion strategies the coercer can carry out. These I'TMs are only constraint
in their interface to the rest of the system. In particular, the ITMs can directly connect
to the interface of dishonest voters and authorities. They can also communicate with
the coerced voter. Moreover, they have access to all public information (e.g., bulletin
boards) and possibly (certain parts of) the network. The precise interface of the
ITMs in Cg depends on the specific protocol and the assumptions on the power of
the coercer. iv) Similarly, the coerced voter is described by a set Vg of ITMs. Again,
this set contains all (probabilistic polynomial-time) ITMs. This set represents all the
possible programs the coercer can ask the coerced voter to run as well as all counter-
strategies the coerced voter can run (see Section 2.3 for more explanation). The
interface of these I'TMs is typically the interface of an honest voter plus an interface
for communication with the coercer. In particular, the set Vg contains what we call a
dummy strategy dum which simply forwards all the messages between the coercer and
the interface the coerced voter has as an honest voter. We note that a program in Vg
can represent one coerced voter or a number of cooperating or independent coerced
voters (see Section 2.3).

Given an election system S = P(k, m,n,p), we denote by eg the system of I'TMs
containing all honest participants, i.e., eg = (Sy, || ... || Sv, || S1 || --- || Si), where, as
explained above, Sy, || ... || Sy, are the ITMs modeling honest voters and Sy || ... || S;
are the honest authorities. A system (c || v || eg) of ITMs, with ¢ € Cg and v € Vg, is
called an instance of S. We often implicitly assume a scheduler (modeled as an I'TM)
to be part of a system. Its role is to make sure that all components of the system are
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scheduled in a fair way, e.g., all voters get a chance to vote. For simplicity of notation,
we do not state the scheduler explicitly. We define a run of S to be a run of some
instance of S.

For an election system S = P(k, m,n, p), we denote by 2y = {0, ..., k}" the set of
all possible combinations of choices made by the honest voters, with the corresponding
probability distribution pq derived from p'= pg, p1, ..., pr. All other random bits used
by ITMs in an instance of S, i.e., all other random bits used by honest voter as well
as all random bits used by honest authorities, the coercer, and the coerced voter, are



uniformly distributed. We take po to be this distribution over the space €25 of random
bits. Formally, this distribution depends on the security parameter. We can, however,
safely ignore it in the notation without causing confusion. We define 2 = 21 x 29 and
= 1 X fo, i.e., p is the product distribution obtained from wu; and po. For an event
@, we will write Pry, w,[@], Pru, wle], or simply Pr[p] to denote the probability
p({(wi,w2) € Q: p(wr,wz)}). Similarly, Pr,,—q,[¢] or simply Pr,, [¢] will stand for
w1 ({wr € Q1 : p(w1)}); analogously for Pry,.q,[#].

A property of an election system S = P(k,m,n,p) is defined to be a class 7
of properties containing one property yr for each instance T of S. We will write
Pr [T — ~] to denote the probability Pr [T — ~r].

2.3 Coercion-Resistance

We can now present our definition of coercion-resistance, which, as already mentioned
in the introduction is inspired by the symbolic definition of coercion-resistance in [17].
For now, we concentrate on the case that only a single voter is coerced. The case of
multi-voter coercion-resistance is discussed later. In what follows let P be a voting
protocol and S = P(k,m,n,p) be an election system for P.

Our definition of coercion-resistance assumes that a coerced voter has a certain
goal v that she would try to achieve in absence of coercion. Formally, « is a property
of S. If, for example, y is supposed to express that the coerced voter wants to vote for
a certain candidate, then v would contain all runs in which the coerced voter voted
for this candidate and this vote is in fact counted. We note that in some cases such
a goal cannot be achieved, e.g., in case ballots are sent over an unreliable channel or
an election authority misbehaves in an observable way (e.g., fails to provide a valid
proof of compliance) and as a result the election process is stopped. A more realistic
goal v would then be that the coerced voter successfully votes for a certain candidate,
provided that the voters ballot is delivered in time and the election authority did not
misbehave in an observable way.

In the definition of coercion-resistance we imagine that the coercer demands full
control over the voting interface of the coerced voter, i.e., the coercer wants the coerced
voter to run the dummy strategy dum instead of the program an honest voter would
run. As mentioned in Section 2.2, dum simply forwards all the messages between the
coercer and the interface the coerced voter has as an honest voter. If the coerced voter
runs dum the coercer can effectively vote on behalf of the coerced voter or decide to
abstain from voting. Of course, the coercer is not bound to follow the specified voting
procedure; he can perform arbitrary coercion strategies: The coercer can send fake
messages and depend his decisions on the information he has gathered so far. The
intention of the coercer might even be to merely test whether the coerced voter follows
his instructions, e.g., to find out whether this voter is “reliable”, and hence, is a good
candidate for coercion in later elections. Also, the coercer is not necessarily bound to
use the interface of the coerced voter in his coercion strategy. There may be other
ways to vote on behalf of the coerced voter. However, for a protocol to be coercion-



resistance, there will always be at least one step in the protocol that the coercer cannot
do all by himself, e.g., register, perform operations on a security token, or vote in a
voting booth. For such actions, the coercer has to consult the coerced voter.

Now, for a protocol to be coercion-resistance our definition requires that there
exists a counter-strategy ¥ that the coerced voter can run instead of dum such that (i)
the coerced voter achieves her own goal v, with overwhelming probability, by running
v and (ii) the coercer is not able to distinguish whether the coerced voter runs dum
or v. More precisely, we will measure the ability of the coercer to distinguish between
these two cases. Hence, ¥ has to simulate dum while at the same time make sure that
v is achieved. If such a counter-strategy exists, then it indeed does not make sense for
the coercer to try to influence a voter in any way, e.g., by offering money or threatening
the voter, at least not from a technical point of view:! Even if the coerced voter tries
to sell her vote, the coercer is not able to tell whether she is actually following the
coercer’s instructions or just trying to achieve her own goal by running the counter-
strategy. For the same reason, the coerced voter is safe, even if she wants to achieve
her goal and therefore runs the counter-strategy.

Our formal definition of coercion-resistance is the following:

Definition 1. Let P be a protocol and S = P(k,m,n,p) be an election system. Let
5 € [0,1], and v be a property of S. The system S is d-coercion-resistant w.r.t. v, if
there exists v € Vg such that for all ¢ € Cs we have:

(i) Pr[(c| 7| es)® — ] is overwhelming, as a function of the security parameter.
(i) Pr[(c || dum || eg)® 1] = Pr[(c || 7 || es)®) — 1] is d-bounded, as a function of
the security parameter.

Condition (i) says that by running the counter-strategy © the coerced voter achieves
her goal with overwhelming probability, no matter which coercion-strategy the coercer
performs.

Condition (ii) captures that the coercer is unable to distinguish whether the coerced
voter run dum or ¥. More precisely, the coercer accepts a run (i.e., outputs 1 on
tape decision) with almost the same probability no matter whether the coerced voter
performs dum or ¥, where “almost the same” is formalized as d-bounded, for some
reasonably small 0 (see below for more explanation). If the two probabilities are far
apart, say for example, for some ¢, the probably of ¢ accepting the run is 60% higher
in case the coerced voter performs dum, this would give strong incentive to follow the
instructions of the coercer, i.e., run dum: In case the coerced voter is threatened by
the coercer, chances of being punished would be reduced significantly. In case the
coerced voter wants to sell her vote, chances of being payed increase significantly.

In the rest of this section, we discuss further important aspects concerning the
definition.

Negligible vs. §-bounded. The reader might wonder why we require the difference
in (ii) to be d-bounded, rather than negligible. The reason is that negligibility is too

LOf course, voters can be influenced psychologically.



strong. The difference, even for an ideal protocol, which merely reveals the result
of the election, does not decrease with an increasing security parameter, but may
depend on the number of choices, the distribution p on these choices, and the number
of honest voters: Imagine for example that a candidate did not get any vote in an
election. Now, if the coercer asked the coerced voter to vote for this candidate, it is
clear that the coerced voter did not follow the coercer’s instruction. The probability
for this to happen is non-negligible and depends on p and the number of voters; the
larger the number of voters is, the more likely it is that a candidate gets a vote. In
fact, in our examples (see Section 5 and 6), § will depend on the number of candidates,
p, and the number of honest voters. Such a é provides for a precise measure of the
level of coercion-resistance, which is of practical relevance: It might, for example,
indicate that a voting protocols does not have a sufficient level of coercion-resistance
if the number of voters is below a certain threshold, the number of candidates is too
big, or the probability distribution of the choices (e.g., according to opinion polls) is
problematic in terms of coercion-resistance. These points will be illustrated in our
examples.

Coercion strategies. In Definition 1, we assume that the coercer wants the coerced
voter to run the dummy strategy dum. Alternatively, one could assume that the
coercer wants the coerced voter to run some arbitrary coercion strategy v € V.
Then, one would demand that for every coercion strategy v € Vg, there exists a
counter-strategy v’ such that (i) and (ii) are satisfied (with dum replaced by v and v
replace by v’). However, it is easy to see that this formulation of coercion-resistance
is not stronger than Definition 1: Intuitively, the reason is that the coercer can run
v himself. More precisely, if there exists a counter-strategy v for dum, then it is
easy to define a counter-strategy v’ for a coercion strategy v, namely v' = (v || 0).
Clearly, with this counter-strategy, (i) is satisfied, since for every ¢ € Cg, the system
(c|l (v] ©) | es) behaves exactly as the system ((c || v) || ¥ || es) and (c || v) can be
seen as a coercer ¢ € Cg. By definition of #, we know that Pr[(¢’ || © || es)®) — 4]
is overwhelming, as a function of the security parameter. Condition (ii) is satisfied as
well, following a similar reasoning: The system S; = (¢ || v || es) behave exactly the
same as S] = ((c¢ || v) || dum || eg), since dum merely forwards messages. Moreover,
the system Sy = (¢ || (v || 0) || es) is equivalent to S5 = ((¢ || v) || © || es). Now,
as above, (¢ || v) can be considered to be a coercer ¢ € Cg and by definition of v,
we know that Pr[S] — 1] — Pr[S} — 1] is d-bounded, as a function of the security
parameter k, and hence, this is true for Pr[S; — 1] — Pr[Sy — 1].

We use Definition 1 since it simplifies proofs. Also, ¢ is the strongest counter-
strategy in that it can be used to construct counter-strategies for all coercion strategies
(as shown above). Therefore, © should in fact be part of the protocol specification.

Specific voter goals. We have already pointed out that the flexibility of defining
the voter goal v is important to make reasonable statements about practical voting
protocols. We illustrate this flexibility by another example: As already explained, in



elections where the probability for one candidate, say A, to get a vote is very low,
the level of coercion-resistance can be quite low, i.e., § can be quite big, because the
coercer can tell the coerced voter to vote for A. Even in an ideal voting protocol the
coerced voter has not much choice in such a situation than to vote for A. However,
if there are two other candidates, B and C, say, with reasonably high probabilities,
and the goal of the coerced voter is to vote for C, then v could be defined as: If
the coercer asks the coerced voter to vote for B (and the coerced voter can tell that
this is the case), then the coerced voter votes for C. For such a (weakened) goal, §
would be smaller, saying that the level of coercion-resistance is high in case the coercer
wants the coerced voter to vote for a candidate with high probability and the favorite
candidate of the coerced voter is reasonably high as well.

Class of voter goals ~. Definition 1 is formulated w.r.t. a single goal v the coerced
voter tries to achieve. This can easily be generalized to a class of goals: A protocol is
coercion-resistant for such a class if it is coercion-resistant for all goals in that class.
The goals a coerced voter should be able to achieve should be all goals an honest voter,
not under coercion, typically can achieve, e.g, vote for a certain candidate or abstain
from voting.

Multi-voter coercion. We have so far focused on the case were only one voter is
coerced. In reality a coercer can coerce many voters. From the point of view of a
single coerced voter, say Alice, the behavior of other coerced voters may deviate in
arbitrary ways from the prescribed protocol. Alice should be able to resist coercion,
independently of the other coerced voters, whom Alice might not know anyway, and
independently of their behavior. However, this is already captured by Definition 1
since other coerced voters can simply be considered to be dishonest voters, and hence,
they are subsumed by the coercer. This makes the coercer only more powerful, since
now he even fully dictates the behavior of other coerced voters in the coercion of Alice.
Conversely, coerced voters might want to team up, e.g., to have better chances
to sell their votes. This can also be modeled using Definition 1 since dum and ©
can represent a set of coerced voters. So, dum would be a parallel composition of
single dummy strategies, one for every coerced voter, and ¥ would be either a joint
counter-strategy or a parallel composition of independent counter-strategies.

3 Comparison with Other Definitions

One of the first rigorous definitions of coercion-resistance was presented by Juels et
al. [15]. They defined coercion-resistance relative to an ideal system. However, their
definition is tailored towards voting in a public-key setting, with protocols having a
specific structure. In particular, neither the Bingo voting system nor ThreeBallot fall
into the class of protocols considered by Juels et al. Conversely, the voting protocol
proposed by Juels et al., and also the Civitas system [8] which generalizes the protocol
by Juels et al., falls in our framework.



A rather general definition of coercion-resistance within the simulation-based ap-
proach was presented by Moran and Naor [18|, based on a definition of coercion-
resistance for multi-party computation by Canetti and Gennaro [6]. In this approach,
a protocol is considered to be coercion-resistant, if it realizes an ideal voting functional-
ity. The advantage of such definitions, compared to game-based definitions considered
here, is that they provide composability by construction (see also [24]). However, this
comes with a price: Some reasonable voting protocols cannot be proven secure due to
the so-called commitment problem. This is, for example, the case for the Bingo voting
system (see Section 5 for details). Other protocols are equipped with more advanced
cryptographic primitives only in order for the security proofs in the simulation-based
setting to go through (see, e.g., the split-ballot protocol [19]). Even if the commitment
problem does not occur, the simulation-based definition is often too strong: It gives
a yes/no answer—the difference between the ideal and real system is negligible or
not—instead of measuring the level of coercion-resistance (as we do in our definition).
Indeed for many protocols, such as paper-based protocols, the difference between a real
and ideal system is non-negligible, but still reasonably small: For example, in some
paper-based protocols there is a certain probability that a single fake ballot can be
produced without being noticed (since, e.g., only partial auditing is done). If a coerced
voter gets such a fake ballot, her vote might be revealed. However, the probability
that a fixed coerced voter gets the fake ballot might be small (but non-negligible),
e.g., approximately %, where n is the number of voters. Hence, the coercion level is
increased by %, i.e., in our definition, ¢ is increased by % This could be considered to
be reasonably small, but is not capture by a yes/no answer as given in the simulation-
based definition. In the simulation-based definition, one could replace negligibility by
d-boundedness. Unfortunately, in the definition of Moran and Naor  might be quite
big because the environment knows how honest voters vote, and hence, in situations
like the above, it can tell with high probability whether it deals with the real or ideal
system. So, replacing “negligible” by “d-boundedness” in the simulation-based defini-
tion often does not yield satisfactory results. In [19], Moran and Naor proposed and
analyzed the paper-based voting protocol split-ballot which, in fact, is not perfect due
to fake ballots. In this work, they indeed do not opt for J-boundedness or the like, but
change the ideal functionality. This approach can be problematic since it might not
be clear whether the resulting functionality can be considered ideal. In particular, in
their “ideal” functionality, they allow the adversary to retroactively change the votes
of corrupted voters as a function of the tally, where the difference to the original tally
is only bounded by the security parameter. For other “imperfect” protocols, such as
ThreeBallot (see Section 6), finding a reasonable ideal functionality which is not too
close to the protocol itself can be very challenging.

In [24], Unruh and Miiller-Quade generalize the simulation-based framework of [18]
and [6] for coercion-resistance. This paper was submitted to the Cryptology ePrint
Archive only very recently. Independent of our work, this paper also presents a game-
based definition of coercion-resistance which is similar to our definition. However, this
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definition is not further applied, except as a means to illustrate the simulation-based
framework: It is shown that their simulation-based definition implies their game-based
definition. As such, our work is complementary to the work by Unruh and Miiller-
Quade. Our work directly uses our game-based definition, since, as explained above,
the simulation-based approaches often cannot be used to analyze existing protocols.
Also, while a main contribution of our work is the application of our game-based
definition to existing voting protocols, Unruh and Miiller-Quade do not apply their
framework to published protocols. Finally, the game-based definition of Unruh and
Miiller-Quade misses two important parameters, which are crucial in the analysis of
practical voting protocols: (i) While we have a parameter v for the goal of a coerced
voter, they fix a specific goal, requiring that the coerced voter has to vote for a specific
candidate. As explained in Section 2.3, such a goal is too strong for most practical
protocols (e.g., in presence of network delays or observable misbehavior). (ii) While
we have a parameter § for specifying the level of coercion-resistance, they fix § to be
the level of coercion-resistance an ideal protocol guarantees plus a negligible function.
As argued before, many reasonable protocols, such as some paper-based protocols, do
not achieve this level of coercion-resistance.

Teague et al. [23] proposed a definition of coercion-resistance which takes a quan-
titative approach. However, this definition has the following limitations: (i) It is
intended to be used for ideal protocols, combined, as the authors suggest, with a
simulation-based definition. (ii) The coercer may only use a specific strategy to decide
whether to punish the coerced voter or not. Also, the class of counter-strategies avail-
able to the coerced voter is limited. (iii) Only the probability that a cheating voter
gets punished is considered, ignoring the possibility that a voter might try to sell her
vote by following the instructions of the coercer.

A recent definition of coercion-resistance by Gardner et al. [11] is specifically tai-
lored to the protocol considered by the authors. It also considers only a very restricted
part of an election process, denying, for example, the coercer access to information in
the tallying phase. In particular, the Bingo voting system and ThreeBallot are not in
the scope of this definition.

As already mentioned in the introduction, several definitions of coercion-resistance
were proposed in symbolic models (see, e.g., [10, 1, 17]), where, as mentioned, our
game-based definition is inspired by the definition in [17].

4 Analyzing the Ideal Protocol

In this section, we analyze an ideal voting protocol and precisely establish the level of
coercion-resistance this protocol provides. More precisely, we determine the optimal
(i.e. minimal) constant &,,;, for which the ideal protocol is coercion-resistant. In
particular, no real protocol can be d-coercion-resistant for any & < dmin. As already
explained in the introduction, the results of this section are motivated by the fact
that the analysis of real voting protocols can often be reduced to the ideal case (see
Section 5 for an example).
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We consider here the most common tallying function. It returns the number of
votes each candidate gets. This kind of tallying function is used in the protocols that
we analyze in the following sections. We note that the level of coercion-resistance
depends on the tallying functions used in an election.

The ideal protocol. In the ideal protocol, denoted by Pjgeal, & voter sends her choice
directly to the fully trusted election process. The election process properly counts the
votes and outputs the result, without revealing any additional information. Here we
consider a result to be a (k4 1)-tuple indicating the number of abstaining voters and
the number of votes each of the k candidates got.

More precisely, let S = Pigeal(k,m,n,p) denote the election system defined as
follows. The system .S contains exactly one voting authority. The program of an honest
voter randomly picks a choice according to the distribution p’and either abstains from
voting or, in the other case, sends the chosen candidate on some untappable channel
to the voting authority. In particular, only the voter and the voting authority know
whether the voter abstained and, if the voter did not abstain, the chosen candidate,
unless the voter is dishonest. The program of the voting authority simply collects the
votes received on the untappable channels from the voters (one vote for each voter)
and then outputs the result of the election.

The coercer completely controls the dishonest voters and can also send messages
to the coerced voter. In fact, by definition of the ideal protocol, the only reasonable
message the coercer can send to the coerced voter and on the untappable channels
of the dishonest voters are the desired candidates; everything else would be ignored
by the voting authority. Since the protocol does not output messages to voters, the
coercer does not expect to receive messages either. Hence, the view of the coercer
merely consists of his own random coins and the result of the election.

A coerced voter, running the dummy strategy or emulating it by running the
counter-strategy, can receive a message from the coercer and send her choice on the
untappable channel to the voting authority.

Goals of the coerced voter. We will consider goals v; of the coerced voter, for
i €{1,...,k}, defined as follows: ~; is satisfied in a run, if whenever the coerced voter
has sent her candidate to the voting authority, she has successfully voted for the i-th
candidate. This implies that if the coerced voter is not instructed by the coercer to
vote, i.e., the coercer does not send his candidate to the coerced voter, and hence,
effectively wants the coerced voter to abstain from voting, the coerced voter does not
have to vote in order to fulfill 7;. In other words, by ~; abstention attacks are not
prevented.

Alternatively, we could consider a stronger and simpler goal 4/ which requires the
coerced voter to vote for i, even if the coercer wants the coerced voter to abstain.
In fact, for this goal we obtain very similar results. However, 7/ is too strong for
most practical protocols, including the ones we consider in this paper. For reasons of
uniformity, we therefore restrict ourselves to the goal ~;.
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We also note that, for the ideal protocol, we could consider abstention to be a
goal of the coerced voter. But again, this goal cannot be achieved in most of practical
protocols in which a voter is given a receipt, as such receipts can be used by the coercer
to verify that the voter has actually voted.

The optimal constant 6,,;,. Now, we establish the optimal constant d,,;, men-
tioned above. As this constant depends on the number of candidates, on the number
of honest voters, and the probability distribution p, we will denote it by d,min(k, n, D).

This constant will be achieved if the counter-strategy v of the coerced voter is as
follows: If the coerced voter receives a candidate from the coercer, then the coerced
voter sends the i-th candidate to the voting authority; otherwise, she abstains from
voting. Clearly, this counter-strategy guarantees that ~; is met.

To determine 6,4, we need some terminology and notation.

Since the coercer knows the votes of dishonest voters, he can simply subtract these
votes from the final result and obtain what we will call the pure result of the election.
The pure results only depends on the votes by the n honest voters and the coerced
voter. Hence, a pure result is a tuple ¥ = (rg,...,r;) of non-negative integers such
that 7o + -+ 4+ rx = n+ 1, where r;, for i € {1,...,k}, is the number of votes for the
i-th candidate and rg denotes the number of voters who abstained from voting. As
already mentioned above, the coercer has to base his decision—accept or reject—solely
on such a pure result 7. We will denote the set of pure results by Res.

In the definition of &, (k, n,p), we will use the probability Af;» that the choices
made by the honest voters and the coerced voter yield the pure result ¥ = (rg,..., %),
given that the coerced voter votes for the i-th candidate. It is easy to see that

i 0 Ti—1 Ti—1 Tit1 Tk
& = ( i — 1, >'p0 Pt it Pyt Py
T0y-- -5 Ti—1,7 — LiTi41,. .-, Tk

n! T

— 70 Tk v

= ' ‘ . po .. pk: - —,

ro: Tk Pi

n _ n!
where (mo,...,mk)  mgol-...omy!”

The intuition behind the definition of d,,,(k, n,p) is the following: If the coercer
wants the coerced voter to vote for j and the coerced voter wants to vote for 7, for some
i,7 €{1,...,k}, then, as we will show, the best strategy of the coercer to distinguish
whether the coerced voter has voted for j or i is to accept a run if the pure result 7
of the election in this run is such that AL < Af,;. Let M}; = {7 € Res : AL < A;} be
the set of those results, for which — according to his best strategy — the coercer should
accept the run.

The following lemma yields a convenient and intuitive characterization of the set
M ;. Tt says that a result should be accepted by the coercer iff the actual ratio %
of the number of votes for j to the number of votes for i is bigger than the expected

. pj
ratio =L.
atio o

Lemma 1. A;‘; < Afn; iff % > Z—Z, and therefore M5 = {7 € Res : % > Z—:}.
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Figure 1: Level of coercion-resistance () for the ideal protocol. The goal of the coerced
voter is, in each case, to vote for candidate 1.

Proof. We have the following equation:
; ; n! ri T
Al = e e (DD T
T T . lc' 0 k Dj Di

This term is > 0 if and only if :—7 > %. ]

Now, we are ready to define the constant & which we will show to be optimal:

min’
Sin(n, k) = max Y (AL— AL).
je{1,....k} Fe
57
In the definition of this constant, we take into account all possible candidates 1,...,k

that the coercer can wish the coerced voter to vote for, excluding abstention, as in

this case the counter-strategy coincides with the dummy strategy. We take the worst

possible case, i.e., the index j for which the sum in the expression above is maximal.
The following theorem shows that d,,, is indeed optimal (see Appendix A).

Theorem 1. Let S = Pigeal(k,m,n,p). Then S is -coercion-resistant with respect to
i, where § = &' . (n,k,p). Moreover, S is not &'-coercion-resistant for any §' < 6.

In Figure 1, we depict values of § = 9,,;n, for some selected cases. These values
illustrate that the level of coercion-resistance heavily depends on the number of honest
voters, the number of candidates, and the probability distribution on the choices. Note
that even for national elections, it is realistic to assume that the number of voters is
small, since results are often published per polling station and the number of voters
who voted in one polling station is often not more than a few hundred.

The following example illustrates differences in the level of coercion-resistance de-
pending on the parameters.
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Example 1. Consider two elections that use the ideal protocol. In both cases, we
assume that the goal of the coerced voter is 71 (to vote for 1) and that the coercer
is willing to pay $50 to a coerced voter if (using some decision procedure) he decides
that the voter followed his instructions.

In the first election, we assume 2000 honest voters, two candidates, and probabili-
ties pg = 0.3, p1 = 0.35, po = 0.35 that an honest voter abstains from voting, chooses
candidate 1, or chooses candidate 2, respectively. By Theorem 1 we know that this
system is (0.021)-coercion-resistant w.r.t. ;. This means that if the coerced voter runs
her counter-strategy to vote for her own candidate, then she will be paid—in the worst
possible case—with probability only 2.1% less, and thus will earn, on average, $1.05
less, compared to the case when she follows the instructions of the coercer. Hence, in
this case, the coerced voter has only little incentive to follow the instructions of the
voter. Conversely, by running the counter-strategy, chances of being accused of not
following the instructions of the coercer are not much bigger than in case the coerced
voter would actually follow the coercer’s instructions.

In the second election, we take 100 honest voters, five candidates, and probabilities
po = 0.3, p1 = 0.2, po = 0.05, and p3 = py = p5 = 0.15. In this case the system is
only (0.198)—coercion resistant w.r.t. -1, which means that the coerced voter earns,
on average, $9.9 less when she runs her counter-strategy, which might give sufficient
incentives to follow the instructions of the coercer. Also, chances of being accused
of not following the coercer’s instructions are now much higher when running the
counter-strategy compared to following the coercer’s instructions.

5 Analyzing Bingo Voting

In this section, we analyze the Bingo voting system [4]. We prove that this system
enjoys the same level of coercion-resistance as the ideal protocol, except for forced-
abstention attacks.

5.1 Description of the System

We describe the Bingo Voting system, which we will denote by Ppgijngo-

In addition to the voters, the participants in this system are the following: (i) A
voting machine, which is the main component in the voting process. (ii) A trusted
random number generator (RNG), which is an independent source of randomness,
with its own display, and which is connected to the voting machine. (iii) A bulletin
board. iv) Some number of auditors who will contribute randomness in a distributed
way used for randomized partial checking (RPC) in zero-knowledge proofs provided
by the voting machine. While in our analysis we concentrate on the case of one voting
machine, the analysis easily carries over to the case of several voting machines, as they
are independent.

The election consists of three phases described below: initialization, voting, and
tallying.

15



Initialization phase. In this phase, the voting machine, for every candidate j, gen-
erates n random numbers :r{, ..., @), (where n is the number of voters), along with an
unconditionally hiding commitment comm(j, xf ) for each pair (j, m{ ); more precisely,
Pedersen commitments are used. All commitments are then shuffled and published
on the bulletin board. Moreover, zero-knowledge proofs are published to guarantee
that the same number n of commitments is created for every candidate (see below for

details).

Voting phase. In this phase, a voter enters the voting booth to indicate the candidate
of her choice, say j, to the voting machine, by pressing a button corresponding to j.
Note that a voter can of course also abstain from voting. Then, the RNG creates
a fresh random number which is displayed to the voter and transfered to the voting
machine. The machine then prints a receipt consisting of the candidate names along
with the following numbers next to them: The number next to the chosen candidate
is the fresh random number, where the voter is expected to check that this number is
the same as the one displayed by the RNG. Next to the other candidate names the
machine prints a so far unused number x{ , for some [.

Tallying phase. In this phase, the voting machine publishes the result of the election
as well as all the receipts given to voters (in a lexicographical order). The machine
also opens the commitments to all pairs (j,x{ ) where the number a:{ is unused, i.e.,
:c{ has not been printed on any receipt.

Moreover, the machine provides zero-knowledge proofs to show that (i) for each
unopened commitment on a pair of the form (7, :1:{ ), the number x{ occurs on exactly
one receipt, and (ii) every receipt contains (k — 1) numbers x{ for distinct candidates
j. (The k-th number is the one provided by the RNG.) These zero-knowledge proofs
are described below.

The zero-knowledge proofs are checked as described below. If they are valid, every
observer can verify the correctness of the result: the number of votes for candidate j
should be the number of opened commitments of the form comm(j, x{), for some ﬁ,
minus the number of abstaining voters.

Zero-knowledge proofs. Now, we describe the zero-knowledge proofs used both in
the tallying phase and the initialization phase.

ZK-proofs in the tallying phase. To prove conditions (i) and (ii) in the tallying
phase, the following steps are performed for every receipt: First, the voting machine
generates a new commitment on the pair (j, ), where j is the chosen candidate and r is
the number generated by the RNG and printed next to j. Then, all the commitments
for the receipt are published: one of them is the commitment just described, the other
(k — 1) commitments are unopened commitments published on the bulletin board in
the initialization phase, where for different receipts, different commitments are taken
from the bulletin board. An observer can verify that this is the case. Next, these
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commitments are re-randomized and shuffled twice; both the intermediate and the
final set of commitments are published. The final commitments are opened. Now an
observer can check that there is exactly one commitment for each candidate. Finally,
the auditors choose a random bit in some distributed way. Depending on the value
of this bit, the voting machine publishes the random factors for the first or for the
second re-randomization step.

If the voting machine would try to cheat, this would be detected with a probability
of 50%; this probability can be increased by repeating the procedure.

ZK-proofs in the initialization phase. This proof was not precisely defined
in [4], but it can be implemented by randomized partial checking similarly to
the zero-knowledge proof in the tallying phase. To this end, we assume that a
commitment comm(j, xf) on a pair (j, xf) is implemented as the pair (le,Dlj) =
(comm(j),comm(x{)), where the commitments on the single components are Peder-
son commitments. Now, to show that among the published commitments there are
exactly n of the form comm(j, x{ ) for every candidate j, the zero-knowledge proof pro-
ceeds similarly as in the tallying phase, except that it only uses the first component
Cji of a commitment.

5.2 Modeling and Security Assumptions

The modeling of the Bingo voting system as an election system S = Pgingo(k, m, 1, D) is
straightforward. However, we highlight some modeling issues, and most importantly,
our security assumptions.

Voting authorities. We assume that the voting machine and the random num-
ber generator are honest; the bulletin board may be dishonest. This assumption is
necessary for the Bingo voting system to be coercion-resistant. (However, for voter
verifiability the voting machine does not need to be honest.) We also assume that at
least one of the auditors is honest; all others may be dishonest.

Honest voters. As usual, an honest voter first makes a choice according to the prob-
ability distribution p. If the choice is to abstain from voting, she abstains, otherwise
follows the procedure described for the voting phase. After the voting phase is fin-
ished, an honest voter reveals her (paper) receipt, e.g., mails it to an organization to
ask it to verify the correctness of the voting process w.r.t. her receipt or to publish
it on some bulletin board. In particular, the coercer will get to see all receipts of
honest voters, and hence, knows whether a voter voted or not. The assumption that
the paper receipts are revealed after the voting phase is reasonable. Also, the (pre-
sumably small) fraction of honest voters for which the coercer manages to get hold of
the receipt earlier, could be considered to be dishonest. In any case, the assumption
helps in the proof and we believe that our results also hold without that assumption.
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The coerced voter. A coerced voter, running the dummy strategy or emulating it by
running a counter-strategy, can communicate with the coercer and send her candidate
on an untappable channel to the voting authority.

The coercer. The coercer can freely communicate with dishonest participants (voters
and authorities) as well as with the coerced voter; in fact, dishonest participants are
considered to be part of the coercer program. In a run of the system the coercer
can see the following: (v1) his random coins, (v2) all messages published by the
voting machine, both in the initialization phase and the tallying phase, (v3) receipts
of all honest voters, as already explained above and (v4) the messages received from
the coerced voter (and dishonest parties), including the receipt of the coerced voter.
However, the coercer cannot directly see the information the coerced voter obtains in
the voting booth. In particular, the coerced voter can lie about what she sees and does
in the voting booth, such as the random number shown by the RNG or the candidate
she picked. So, while talking with the coercer on the phone would be allowed, taking
pictures or videos should be prohibited (unless they can be manipulated on-the-fly,
which, however, is unrealistic).

5.3 Coercion-Resistance of the System

We now show that the Bingo voting system enjoys the same level of coercion-resistance
as the ideal protocol. However, since we assume that the coercer can see all receipts
of voters who voted, the coerced voter can be forced to abstain from voting. Hence,
the coerced voter can only achieve goal ~;, but not ~/ (see Section 4).

More precisely, the goal v;, i € {1,...,k}, is satisfied in a run, if whenever the
coerced voter has indicated her candidate to the voting machine, she has successfully
voted for the i-th candidate.

We prove the following theorem:

Theorem 2. Let S = Pgingo(k,m,n,p). Then S is 0-coercion-resistant with respect
to i, where § = &8¢ . (n, k,p).

As already mentioned in Section 3, other approaches are unsuitable for the analy-
sis of the Bingo voting system. We note that the simulation-based definitions [18, 24|
cannot be applied due to the commitment problem. However, they might be appli-
cable if we weakened the security assumptions, assuming that all the auditors are
honest. In this case a simulator can simulate these auditors, which allows it to fake
the zero-knowledge proofs in the tallying phase, as it “knows” the challenges. Another
alternative could be to consider more advanced commitments, as, e.g., in [19]. The
game-based definition in [24] could be adapted to deal with the Bingo voting system
(see also Section 3). However, the simulation-based approach taken in [24] to prove
coercion-resistance would, as explained, not work.

The remainder of this section is devoted to the proof of Theorem 2. First, we define
the counter-strategy v of the coerced voter: ¥ coincides with the dummy strategy dum,
with the following exceptions:
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1. © votes for candidate i, i.e., the coerced voter presses the button for candidate
1, if the coercer instructs the coerced voter to vote for some candidate j.

2. If dum would forward the number that is shown on the display of the random
number generator to the coercer, v forwards the number next to the candidate
7, as shown on her receipt.

It is easy to see that if the coerced voter runs the counter-strategy v, then condition
(1) of Definition 1 is satisfied for every ¢ € Cs. Note that if the coercer does not instruct
the coerced voter to vote for some candidate j (abstention attack), then following the
counter-strategy the coerced voter abstains from voting, which is in accordance with
Yi-

It remains to prove condition (ii) of Definition 1. For this purpose, let us fix a
program c of the coercer. We need to prove that Pr[T — 1] — Pr[T — 1] < §, where
T = (dum || ¢ || eg) and T = (¥ || ¢ || eg). The rest of the proof consists of the
two parts already mentioned in the introduction, a cryptographic and a combinatorial
part. The cryptographic part is Lemma 2. Using Lemma 2, the combinatorial part
is merely a reduction to the ideal case, as studied in the previous section; it does not
have to be redone.

As introduced in Section 2.2, by wy € 21 we denote a vector of choices made by the
honest voters and by ws € €2y we denote all the remaining random coins of a system.
We denote by p a view of the coercer, as described in Section 5.2, (v1)-(v4). We use
the notion of a pure result ¥ = (rg,...,r;) as introduced in Section 4. In particular, it
holds that rg+---+ 7, = n+ 1 and the coercer can compute this result from his view,
by subtracting the votes of dishonest voters from the result of the election. We will
denote the pure result determined by a view p of the coercer by res(p). A pure result
determined by w; and the choice j of the coerced voter will be denoted by res(ws, j).

As mentioned before, the coercer can derive from his view which voters abstained
from voting. Given a view p of the coercer, we denote by abst(p) the set of voters who
abstained from voting, among the honest voters and the coerced voter; the number of
such voters is referred to by r9(p) = |abst(p)|. As this set/number depends only on
w1, we will sometimes write abst(w;)/ro(wy).

For a coercer view p in a run of the system, we denote by f(p) the candidate the
coercer wants the coerced voter to vote for; if the coercer does not instruct the coerced
voter to vote, then f(p) is undefined. Note that the coercer has to provide the coerced
voter with f(p) before the end of the election. Consequently, all messages the coercer
has seen up to this point only depend on wy and are independent of the choices made
by honest voters, which are determined by w;. Therefore, we sometimes write f(w2)
for the candidate the coercer wants the coerced voter to vote for in runs that use the
random coins wsy.

For a coercer view p, let ¢, be a predicate over € such that ¢,(w;) holds iff
res(wy, f(p)) = res(p) and abst(w;) = abst(p), i.e., the choices w; of the honest voter
are consistent with the view of the coercer, as far as the result of the election and the set
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of abstaining voters is concerned, in case the coerced voter runs the dummy strategy.
Analogously, for the counter-strategy, we define that ¢,(w1) holds iff res(wy, ) = res(p)
and abst(w;) = abst(p).

For a coercer view p, by T(wyi,ws) — p, or simply 7"+ p, we denote the fact that
the system 7', when run with wy,ws, produces the view p (similarly for T) For a set
M of views, we write T (w1, ws) — M if T(w1,ws) — p for some p € M.

The following lemma is the key fact used in the proof of Theorem 2 (see Appendix B
for the proof). It constitutes the cryptographic part of the proof of Theorem 2.

Lemma 2. Let p be a coercer view such that f(p) is defined. Let w] and &f be some
fized elements of Q1 such that ¢,(w)) and p,(&f), respectively. Then, the following
equations hold true:

PrT — ] = Prlpp(wn)] - PrIT(wf,w2) — 4 1)
PrT — ] = Pr(p(wn)] - PrIT(of, w2) — 4 )
PrT(wfw2) = p] = PTG, w5) = ] - (3)

Intuitively, the lemma says that the view of the coercer is information-theoretically
independent of the choices of honest voters and the coerced voter as long as these
choices are consistent with the result of the election given in this view.

Now, using this lemma, we can link the level of coercion-resistance the Bingo voting
system provides with the optimal bound &, established in Section 4. Clearly, if f(p)
is defined, we have:

Prlpp(wn)] = AL, - Prlabst(wi) = abst(p) | res(wr, f(p)) = res(p)]

and
Prl3p(w1)] = Alny - Prlabst(wr) = abst(p) | res(wn, i) = res(p)].
Furthermore, we have

Prlabst(wr) = abst(p) | es(ir. £(p) = res(p)] =
— Priabst(w) = abst(p) row1) = ro(p)]
= E{[abst(wl) = abst(p) | res(w1,1) = res(p)],

as the set of abstaining voters depends only on the number of abstaining voters.
Together with Lemma 2, we immediately obtain for all wf with ¢,(wf):

Pr[T — p] — Pr[T —p| =

(Af(p) - AreS(P)) Er[T(WDWQ) p] ' Elr[abSt(wl) = abst(p)]?"o(aq) = ?"o(p)]-

res(p)
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Let M be the set of views that are accepted by the program c of the coercer, i.e.,
for which the coercer outputs 1. In what follows, let j range over the set of candidate
names {1,...,k}, 7= (rg,...,rg) over all the pure results and S over all subsets of
{1,...,n}. Let Mf’s ={pe M: f(p) =7, abst(p) = S and res(p) = 7}. Further, let

j’F’S be an arbitrary element, such that res(w {T 5 j) =7 and abst (wy I S) S. Then
we have @, (w)"” ") for all p € M]FS We have

® = Pr[T + 1] — Pr[T + 1]
= Pr[T — M] — Pr[T — M]|

—ZZZ ZPrTHp PF[THp])

7 S pEMTS

—ZZZ Do (A= AL PAT(]™, ws) — )

S peM'rS

w{[abst(wl) = S|ro(w1) = o]

=Y D (A=A Z Pr{T (W™ wa) > p] Priabst(wi) = Slro(w1) = ro].
VA

S pEM

Let M} ; = {7 Af_;. > AL}. Then, we obtain
BEY Y W)Y S P 0 g
J rer S peMF,S w2
- Prlabst(w1) = S | ro(w1) = 70)-
w1
Next, we use that, by the definition of M;-?’S, for p € M;-?’S we have f(p) = j and,

because f(p) depends only on wo, T(w{’F’S,wg) — p implies f(we) = j. With this, we
obtain:

PrT(wf, w2) = pl = Pr(f(wa) = j] - Pr{T(@f"™%, w2) = p | f(w2) = j]

w2

for p € M;’S. Now, we can conclude

o < Z Z — AL ZPr abst(wy) = S|ro(w1) = 70]

J reMﬁ
> Prif(w) =T

peM] PrT (@], w2) = p | flw2) = ]
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Figure 2: Two ways of voting for the second candidate (candidate B) in the ThreeBallot
protocol, where x represents a marked position and o represents an unmarked position.
All the other possibilities of voting for B can be obtained as permutations of these
two.
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This concludes the proof of Theorem 2.

6 Analyzing ThreeBallot

In this section, we study the ThreeBallot voting system [22|. As already mentioned
in the introduction, based on our definition of coercion-resistance, we measure the
degradation of coercion-resistance of ThreeBallot as the number of candidates grows,
i.e., in case the so-called short ballot assumption is not met. We also show that the
level of coercion-resistance ThreeBallot provides is significantly lower than that of an
ideal system, even in case of short ballots. We first recall the ThreeBallot voting
system and state our security assumptions.

6.1 Description of the System

In ThreeBallot, a voter is given a multi-ballot consisting of three simple ballots, where
the candidates are written in a fixed order. In the secrecy of a voting booth, the
voter is supposed to fill out all three simple ballots in the following way: She marks
the candidate of her choice on exactly two simple ballots and every other candidate
on exactly one simple ballot. Figure 2 shows two ways of voting for candidate B in
an election with two candidates. After this, she feeds all three simple ballots to a
machine (some kind of scanner) and indicates the simple ballot she wants to get as
a receipt. The machine checks the well-formedness of the multi-ballot, prints secretly
random numbers on each simple ballot, where numbers on different simple ballots are
chosen independently, and gives the voter a copy of the chosen simple ballot, with the
random number printed on it. Note that the voter does not get to see the random
numbers of the remaining two simple ballots. The scanner keeps all ballots.

In the tallying phase, all the cast simple ballots are shuffled by an voting authority
and published on a bulletin board. From this publicly available information, the result
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can be easily computed: The number of votes for the i-th candidate is the number of
simple ballots with the i-th position marked minus the total number of votes, which
is the total number of simple ballots on the bulletin board divided by three.

Intuitively, the system is coercion-resistant (at least to some extent), as every
simple ballot that a voter can take as a receipt can be part of a multi-ballot for any
candidate.

In our analyzes we consider the variant of ThreeBallot as proposed in [9]. In
this variant a specific way of filling out the ballots is proposed: A voter first, for
each candidate, marks the position corresponding to this candidate on a randomly
chosen simple ballot. Then, she randomly chooses one simple ballot to be taken as a
receipt. Finally, she marks the position corresponding to the candidate of her choice
on some simple ballot, excluding the one chosen as a receipt (if there is more than one
possibility, one of the two possible simple ballots is chosen randomly). The advantage
of this procedure is that the receipt an honest voter gets is stochastically independent
from the candidate the voter votes for, which gives better privacy. We note that in
[9], ThreeBallot was analyzed in simulation-based setting, focussing on privacy. The
analysis was based on the (only informally stated) assumption that the adversary is
not able to reconstruct the multi-ballot corresponding to a receipt. However, this
assumption is unjustified: Runs for which an adversary can reconstruct the multi-
ballots occur with non-negligible probability (see Section 6.3).

6.2 Modeling and Security Assumptions

The modeling of ThreeBallot as an election system S = Pyhreealiot(k, m,n,p) is
straightforward. Here, we only highlight some modeling issues and our security as-
sumptions.

Voting authorities. We assume that the scanner and the authorities in charge of
shuffling the ballots are honest; the bulletin board may be dishonest. Without this
assumption, coercion would easily be possible.

Honest voters. As usual, an honest voter first makes a choice according to the prob-
ability distribution p. If the choice is to abstain from voting, she abstains, otherwise
follows the procedure described for the voting phase. After the voting phase is fin-
ished, an honest voter may reveal her (paper) receipt. However, to measure how much
information a coercer gains from the receipts of honest voters, we will also consider
the case that the coercer does not get to see the receipts of honest voters.

The coerced voter. A coerced voter, running the dummy strategy or emulating it
by running a counter-strategy, can communicate with the coercer. Just as an honest
voter, she can also fill out a multi-ballot, feed it to the scanner and pick a receipt. If
the coerced voter follows the dummy strategy, she will carry out these steps following
the instructions of the coercer. Of course, if she follows the counter-strategy she can
deviate from these instructions.
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The coercer. As usual, the coercer subsumes dishonest voters and can freely commu-
nicate with the coerced voter. In a run of the system, the coercer can see the following:
(v1) his random coins, (v2) the bulletin board consisting of the shuffled simple ballots
with serial numbers of all voters (v3) optionally, depending on the case under consid-
eration, the receipts of the honest voters, after the voting-phase is finished, (v4) the
messages received from the coerced voter, including the receipt of the coerced voter.
As in case of Bingo voting, the coercer cannot directly see the information the coerced
voter obtains or the actions she performs in the voting booth.

6.3 ThreeBallot with Two Candidates

Based on our definition, we now precisely measure the level of coercion-resistance
ThreeBallot provides and show that it is significantly lower than that of an ideal
system, even in case of short ballots, and hence, under the so-called short ballot
assumption (see, e.g., [21]). More precisely, we analyze the case of two candidates.
The case for multiple candidates will be studied in Section 6.4.

As a warming up, we note that the bulletin board and the receipts potentially
reveal more information to the coercer than just the result of the election: It may, for
instance, happen, that the multi-ballots of all voters are of the form (},%,9) or (2,%,2),
where the underlined ballots (5 and ¢, respectively) are picked as receipts. In this
case, a receipt directly indicates the choice of the voter, which allows for successful
coercion.

In what follows, we often use the above notation for multi-ballots and the receipt
picked, and refer to this object as a pattern. A pattern does not fix the order of simple
ballots, e.g., (2,%,9) is considered to be the same pattern as, say, (,2,2).

As before, our analysis is w.r.t. the goal ~;, for i € {1,2}, which is met if the
voter votes for candidate i, in case she is instructed by the coercer to vote for some
candidate.

We proceed as follows: First, we define a counter-strategy, which is optimal for
the coerced voter. Second, we define the constant §, which describes the optimal level
of coercion-resistance ThreeBallot achieves. For this, we introduce what we call an
essential view of the coercer which abstracts away from some details of the actual view
of the coercer. Finally, we state the main result of this section, namely d-coercion-
resistance of ThreeBallot and the optimality of §. This is done both for the case where
the coercer gets to see all receipts of voters and for the case where receipts of honest
voters are hidden from the coercer, resulting in two constants g+ and dpg-.

Counter-strategy. We define the counter-strategy of the coerced voter to coincide
with the dummy strategy with one exception: If the coerced voter is requested to fill
out her ballot and cast it according to a certain pattern Z, then the coerced voter
will, instead, fill out the ballot according to C'(Z, 1), as defined next. (Recall that the
goal of the coerced voter is to vote for ).

We define C'(Z, i) in such a way that it yields the same receipt as Z does and adjusts
the two remaining ballots in such a way that the resulting multi-ballot is a vote for
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candidate i. By this requirement, C(Z, ) is uniquely determined, except for two cases:
C((5:%:%): 1) and C((2,5,5),2)- In the former case, for instance, one can take (g,5,%),

07 X7 X X’ 070
(3:%:0), or randomly pick one of the two, possibly based on further information. For

these cases, we define C((3,%,%),1) = (5,5,%) and C((3,5,5),2) = (3, %5)- We use this
strategy in the proof of Theorem 3. From the proof of this theorem it follows that this
counter-strategy achieves the maximal level of coercion-resistance and, in this sense,

is optimal for the coerced voter.

Essential views. In the essential view of the coercer, we abstract away from the
following information: the serial numbers on the simple ballots, the order of the
simple ballots on the bulletin board, the order of the receipts of the honest voters
(if considered), the random coins of the coercer (i.e., randomness does not help the
coercer), the receipt of the coerced voter (as both in the dummy strategy and the
counter-strategy as defined above, she returns what the coercer expects her to return)
and the simple ballots of the dishonest voters (which are as expected by the coercer).

More precisely, an essential view of the coercer consists only of (i) three integers
nx, nx, ne, indicating the number of the respective simple ballots on the bulletin board
and (ii) in case the coercer can see the receipts of honest voters, three integers rx, r<, re,
indicating the number of the respective receipts taken by the those voters. Note that
from these numbers the number of ($)-ballots on the bulletin board and the number
of (§)-receipts can be derived by the coercer.

By V* and V'~ we denote the set of all essential views of the coercer, when he can
or cannot see the receipts of the honest voters, respectively.

The constants (VTB_

Ag that the choices made by the honest voters and the coerced voter result in an

and 6§,B+. To define these constants we use the probability

essential view p, given that the coerced voter chooses the pattern Z.

The intuition behind the result given below is similar to the one for the ideal
protocol (Section 4): If the coercer wants the coerced voter to choose the pattern
Z and the coerced voter wants to vote for candidate ¢, then the best strategy of
the coercer to distinguish whether the coerced voter has chosen Z or C(Z,i) is to
accept a run if the essential view p in this run is such that AE(Z’“ < Ag . Let
My, ={pe V™ : AT < AZ} and M, = {pe V' : AgP") < AZ} be the sets of
those essential views for which — according to his best strategy — the coerced should
accept the run.

Now, we are ready to define the constants expressing the (optimal) level of coercion-
resistance of ThreeBallot, for the case that the coercer cannot see the receipts of the
honest voters:

b (n,7) =g Y0 (A7 — A (4)
peMy;
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and for the case that the coercer can see these receipts:

s (n,7) =g 3 (A7 — ACC) ®)

+
peMy;

The following theorem shows that the two constants (more precisely, functions) just
defined in fact capture the optimal level of coercion-resistance provided by ThreeBallot
in case of an election with two candidates.

Theorem 3. Let S = PypreeBaliot(2, m, n, ). Then:

1. If the coercer cannot see the receipts of the honest voters, then PThreeBallot 1S 0-
coercion resistant with respect to «y; for 6 = 0%5_(n,P).

2. Similarly, if the coercer can see the receipts of the honest voters, but only after
the voting phase, then PThreeBallot @S 0-coercion resistant with respect to ~y; for § =
5ZTB+ (nam

Moreover, in both cases the system is not §'-coercion-resistant for any §' < 6.

The proof of this theorem is given in Appendix C. The main part of this proof
is to show that the additional information given in a full view of the coercer, and
omitted in an essential view, can safely be discarded. This is similar to the proof of
Theorem 2, where we reduced the analysis of the Bingo voting system to the ideal
protocol, although the technical details differ and are simpler for ThreeBallot.

For ThreeBallot the bigger challenge is to come up with explicit formulas for the
probabilities Ag , which allow to compute the level of coercion-resistance for concrete
parameters. In particular, this is so for the case where the coercer can see the receipts
of honest voters. The formulas are stated in the following two lemmas.

Lemma 3. Consider the case when the coercer cannot see the receipts of the honest
voters. Let p = (nx,nx,ne) be an essential view. Then we have Ag = A,_z, where
p — Z denotes the view we get by removing the ballots of Z from p and

_(nN(NY N om on-r (N <2>”¢(1>N‘"¢
A”‘(N)(R) boopiebe g, J\3) 3 !

where N = (2nx + nx + ne)/3 denotes the total number of non-abstaining voters and
R = (ng +nx) — N denotes the votes for candidate 1.

While the above formula can be obtained relatively easily, the following formula is
harder to obtain (see Appendix C).

Lemma 4. Consider the case when the coercer can see the receipts of the honest
voters. Let p = (nx,nx,ne, rx,1x,70) be an essential view of the coercer. Then we have
X o] X X [e] X
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Ag = A,_z where

Ll oL

<ré tre— T — 7'2> (1)r§+ri_71_72
T1,72 ng — N 415+ 2
. N —rg—me <r> <rg)pRpNR.
R—(ry—m)—m )\ /) \n) "2
N 1IN /2 ré+r3 4 N—'I“;—Té—rg
' (7“@7“3,7“2) . <9) (9) (9)

with 71 and T2 ranging over the set {0,...,n}. We use the convention that (T) =0
form < 0.

Using these formulas, we have computed the level of coercion-resistance for con-
crete values (see Figure 3). In order to be able to compare this level with the one for
the ideal protocol, we depict the corresponding values also for this protocol.

As can be seen from the diagram (a) in Figure 3, the level of coercion-resistance of
the ideal protocol is about double the level provided by ThreeBallot, in case receipts
of honest voters can be seen by the coercer, i.e., the value for § for the ideal protocol
is half of the value for ThreeBallot (if the number of honest voters is at least five).
This difference is quite significant. It means that in case of ThreeBallot the expected
gain when trying to sell ones vote (by following the instructions of the coercer instead
of running the counter-strategy) is twice as high as in the ideal protocol. Conversely,
by running the counter-strategy (instead of following the instructions of the coercer)
the expected growth in the risk of being caught is twice as big as in the ideal protocol.

The difference between ThreeBallot and the ideal protocol decreases in case the
coercer cannot see the receipts of honest voters. We found that it also decreases
if the probability distribution for the candidates is less uniform as the deficiency of
ThreeBallot then becomes less significant (see the diagram (b) in Figure 3).

As already pointed out in Section 3, existing cryptographic approaches are unsuit-
able for analyzing coercion-resistance of ThreeBallot.

6.4 ThreeBallot with multiple candidates

We now analyze the degradation of coercion-resistance of ThreeBallot as the num-
ber of candidates grows, i.e., the case where the so-called small ballot assumption is
not met. The degradation itself is not surprising since certain patterns become very
unlikely to occur. This has been noted for variants of ThreeBallot, e.g., in [12, 13].
However, our definition allows us to measure the degradation rigorously in the con-
text of coercion-resistance, showing that the level of coercion-resistance ThreeBallot
provides is completely insufficient already with five to seven candidates and a few
hundred voters.

More precisely, in this section we state negative results for ThreeBallot with mul-
tiple candidates by providing lower bounds for the level of coercion of ThreeBallot, i.e.
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Figure 3: Level of coercion resistance (§) for the ideal protocol (Id), ThreeBallot
without revealing receipts of the honest voters (TB-) and with revealed receipts of the
honest voters (TB+).

we show that the studied systems are not d-coercion-resistant for any ¢ smaller than
the lower bound. (Unlike the two candidate case, we do not show that the systems are
coercion-resistant for the given lower bound.) These results apply both to the case
with and without receipts.

Our method is the following. We consider a restricted class C C Cg of programs of
the coercer. Then we define a counter-strategy of the coerced voter (which is optimal
for C), and apply the definition of coercion-resistance with the set of coercer programs
restricted to the class C.

The class C is defined as follows. In every program c € C, the coercer instructs
the coerced voter to vote for some candidate j by marking all the position on one
single ballot (we will call such a single ballot fully marked), the j-th position on the
second ballot, and no position on the third ballots. The coercer then asks the coerced
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voter to bring the second ballot (the one with one position marked) as a receipt. The
program ¢, which decides whether to accept a run, only uses the following parts of its
view: (v1) the receipt given by the coerced voter, (v2) the pure result 7= (ry,...,7%),
as introduced in Section 4, and (v3) the number u of all fully marked ballots on the
bulletin board cast by honest voters and the coerced voter. A tuple p = (7, u) will be
called a restricted view of the coercer. For the same reason as in the two candidate
case, the receipt of the coerced voter is not part of the view; the counter-strategy will
always return the expected receipt.

Now, let v; denote the goal as specified in the two candidate case. We define
the counter-strategy v* as follows: The coerced voter, when instructed to vote as
determined by the coercer, fills out the multi-ballot in such a way that (a) she votes
for ¢ and (b) one of the single ballots is the required receipt. This can be done in
possibly many ways; v* just fixes one of them.

This counter-strategy is optimal for C because any two strategies satisfying these
conditions produce exactly the same restricted views (since they do not use fully
marked ballots), and it is clear that any successful counter-strategy has to satisfy (a)
and (b).

Now, the technique for obtaining the lower bound is very similar to the one used
for the case with two candidates without receipts.

Let k, p and ; be as usual. Let p = (¥,u) be a restricted view. We will denote
by Aﬁ;o (AZ’C) the probability that the choices of the honest voters and the coerced
voter result in the restricted view p, given that the coerced voter votes for candidate
¢ with (without) one fully marked ballot. Note that if the coerced voter obeys the
instructions of the coercer her multi-ballot contains a fully marked ballot; otherwise,
it does not. These probabilities are given by

o pi n—rg _1 —ro—u-tl
AZO—A%'(U_I)QU (1—g) o
and

respectively, where Aﬁ; is defined as in Section 4 and g = 3,%1 is the probability that
an honest, non-abstaining voter produces a fully marked ballot.
Let M; ; be the set of those restricted views p for which Ag"’ > Aﬁ;c and let

0;(n,k,p) = max AJo — Abe) 6
) = e, 3 (4= 450 ©)

Then, we obtain the following result (see Appendix D for the proof):

Theorem 4. Let S = PypreeBaliot (K, m,n, D). Then S is not §-coercion resistant w.r.t.
~i for any 6 < 6;(n, k, D).

This result allows us to compute lower bounds for the level of coercion of ThreeBal-
lot for different numbers of candidates. Figure 4 depicts some of these lower bounds.
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ThreeBallot. po = 0.3, p; = (1 — po)/k, for i € {1,...,k}
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Figure 4: The lower-bound of coercion resistance (§) for the ThreeBallot system with
k candidates with the probability that an honest voter abstains pg = 0.3 and equal
probability of choosing a candidate ((1 — pg)/k).

As already mentioned, the figure shows that the level of coercion-resistance Three-
Ballot provides is completely insufficient already with five to seven candidates and a

few hundred voters. Note that the actual levels of coercion can even be higher than

depicted in this figure.
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A  Proof of Theorem 1

Our goal is to prove that S = Pigeal(k, m, n, p) is d-coercion-resistant w.r.t. ;, where
i € {1,...,k} and 6 = 4. (n,k,p). To show d-coercion-resistance, we take the
counter-strategy © which, when the coerced voter is instructed to vote (for some can-
didate), votes for the i-th candidate. This strategy clearly meets condition (i) of
Definition 1, for every ¢ € Cg.

We need to show that condition (ii) of this definition is satisfied. We begin with

some auxiliary definitions and facts. Let

Ay = > (AL— AY. (7)

FEM;

So, we have & . (n,k,p) = maxje(,.. ky Aij-

By res(wi,7), where wy € Qp (recall that €5 is the set of candidate choices made
by honest voters) and i € {1,...,k}, we denote the pure result of the election (i.e. an
element of Res) obtained when the honest voters vote according to w; and the coerced
voter vg votes for ¢. Therefore, we have

AL = Prlres(wy, i) = 7). (8)

T w1

By definition of M}, it is easy to see that for every i,j € {1,...,k} and every set

Z?j’

M C Res of pure results, the following inequality holds:

> (o) T (a)-a, 0

FeM FEM;

Now, to prove condition (ii) of Definition 1, let ¢ € Cs. Recall that he view of
the coercer in a run of the system consists only of his random coins we € €2 and the
result of the election.

32



The only action of the coerced voter, besides receiving a candidate name from the
coercer, is to indicate the candidate of choice to the voting machine. Therefore, the
dummy strategy of the coerced voter also only needs to forward one message, namely
the candidate name; no other message is going to be accepted by the voting machine.
Moreover, this message has to be sent before the result of the election is published, in
order for the voting machine to accept the message. Therefore, if the coercer demands
that the coerced voter votes for candidate j, he has to do this before the result is
published. In particular, the coercer has to determine j — the candidate he wants the
coerced voter to vote for — based solely on his random coins ws, independently of the
result of the election. Hence j is a function of wy, which we denote by f(ws); this
function can be undefined if the coercer does not want the coerced voter to vote. Note
that f(w2) € {1,...,k}. Hence, the view of the coercer if the coerced voter runs the
dummy strategy dum is the random variable view(dum, ¢), where

view(dum, ¢)(w1, w2) = (wa,res (w1, f(w2)))
for every w = (w1, wq) € Q. It is
view(v, ¢)(wr,w2) = (w2, res (wi,1)),

if the coerced voter runs the counter-strategy o to vote for i.

Now, let M, be the set of views accepted by the machine c¢. Each element of M,
is of the form (ws,7), where wy € Q9 and 7 is a pure result. For wy € Qq, we define
M2 to be {7 € Res : (wa,r) € M.}. Moreover, we define ) = {ws € Qo | f(wa) is
defined}. Note that for wo ¢ 5, the counter-strategy behaves exactly like the dummy
strategy, namely, abstains from voting. With this, we obtain:

Pr((c || dum [| es) — 1] = Pr[(c[| © || es) = 1]
= Pr[view(dum, c) € M,.] — Prlview(v,c) € M,]
= Z Z (Pr[m’ew(dum,c) = (w2, T)]—
waE TEMSE  prview(, ¢) = (wn, 7))
=3 Y (n2(ws) - Profres(wr, f(ws)) = 7]

YRR w
wa€Y FEMS? —pi2(w2) - Pry, [res(wr, i) = 7?])

= > ppw2)- > (Af;(wz)—Af?)

wa QY FeM,?
< Y el Y (Al -4 (by (9))
w2 QY F’GM;J,(wQ)
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= D ha(w2) - A pey) (by (7))

szQIQ

< D palwn) s max A
w2 €9 JedL, -k}

= ]G?ll,ax,k} Aivj = 57171271(”’ kvﬁ)

This implies that Pr[(c || dum || eg) — 1] — Pr[(c || © || es) + 1] is d-bounded, for
§ =6, (n,k,p). So, Condition (ii) of Definition 1 follows.

It remains to show that § is optimal. First, we observe that in the above inequalities
we obtain equality for a coercer program c i) which always instructs the coerced voter
to vote for candidate jo, where, for the fixed ¢, A; ; takes its maximum for j = jo, and
hence, f(wz) = jo for all we € 9, and ii) ) accepts a run only if the pure result 7 in
his view belongs to M.

Second, we observe that if the coercer wants the coerced voter to abstain from
voting, then the best counter-strategy is to abstain as well, because in this case the
dummy strategy and the counter-strategy behave the same, and the counter-strategy
satisfies ~;; if a counter-strategy would not abstain in this case, then this could possibly
be detected by the coercer.

Conversely, if the coercer wants the coerced voter to vote, the counter-strategy has
to vote for ¢ with overwhelming probability, as it has to achieve v; with overwhelming
probability. Hence, using a different counter-strategy than o the term Pr[(c || dum ||
es) — 1] — Pri(c || © || es) + 1] would at most be negligibly smaller than ¢. In

particular, there is no constant ¢’ such that ¢’ < 6 and S is §’-coercion-resistant.

B Proof of Lemma 2

The core of Lemma 2 is stated in the following lemma.

Lemma 5. Let p be an arbitrary view such that f(p) is defined. Let wy,w],wy,wy’

be arbitrary, fized elements of Q1 with p,(w1), pp(w)), ¢p(wl), and ¢,(wi’). Then the
sets

A ={ws : T(w1,w2) — p}, C = {wy : T(w},wo) — p},
B = {ws : T(w],w2) — p}, D = {wy : T(w),wa) = p}.

have the same cardinality, and hence, po(A) = p2(B) = pu2(C) = pe(D).

To prove this lemma, we use Lemma 6. To state Lemma 6, we use the following
notation. By T} we denote the system (9, || ¢ || es), where ; is defined like & but votes
for j instead of i. So we have & = ©; and T = T;. Moreover, for each view p of the
coercer, for which f(p) is defined, we clearly have: T'(wy,ws) — p iff Tf(p) (w1, ws2) — p.
A permutation o on a tuple (vg,...,v,) € {0,1,...,k}""! is a permutation on the
set of indices {0,...,n}. We write o(vo,...,v,) for the tuple (vy(g), ..., Vy(n)). For
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simplicity of notation, we sometimes write o(v;) instead of v,(;). We say that o does
not change the abstaining votes of (vg,...,v,) if o(j) = j for every j € {0,...,k}
with v; = 0. For j € {1,...,k} and w1 € Q1(= {0,1,...,k}"), we consider (j,w;) to
be an (n+1)-tuple over {0, 1,...,k}. If o is a permutation on (j,w), we may apply o
to w1, written o(wy), with the obvious meaning. With this and the above conventions,
we have that o(j,w1) = (0(j),0(w1))-

Lemma 6. For every j € {1,...,k}, every wi € Q1 and every permutation o° on

(j,w1) that does mot change the abstaining votes, there is a bijective function h =
hisw1.0” from Qg to Qo such that for all wy we have that Tj(wi,ws) yields the same
view as Tho(j) (0%(w1), h(w2)).

We postpone the proof of this lemma to the end of this section. Now, Lemma 5

follows directly from Lemma 6: Given the assumptions of Lemma 5, there are per-
mutations 0¥, ¢, and o9 such that (f(p),w1) = aV(f(p),wy) = ag(i,wi’) = o(i,w)").

Moreover, T (w1, ws) +— p iff Tf(p)(wl,wg) — p and T(wl,wg) — p iff Tj(w1,w2) — p.
From this and Lemma 6 we obtain that the functions hf(P)w1:(6) ™" pf(P)w1,(e)7" anq
ht (p)’“’l’("g)_l, are bijections between A and B, A and C, and A and D, respectively.

Now with Lemma 5 we can easily complete the proof of Lemma 2:
PriT"— p] = Pr [pp(wr), T(wr, w2) = p]

= > Prlwi=ui,T(w),w2) = pl

w1,w2
wiipp(wh)
= Y ) Pr[T(wg,ws) = p|wr = o]
wi1,w2
wiipp(wy)
= Y ) PrT(w),ws) = gl
Whipp(wr)
= Y mwh) - PriT(wf,ws) = g
Wiipp(w)

= B{ [(pp<W1)] . B2r [T(wi}’w2) — p} )

This proves (1). The proof for (2) is analogous. Statement (3) follows immediately
from Lemma 5.

Proof of Lemma 6. To prove Lemma 6, we first introduce notation for the compo-
nents (cryptographic operations, random numbers, etc.) of the Bingo Voting protocol.

The cryptographic components. For the sake of simplicity, we omit the description of
the zero-knowledge proofs in the initialization phase. However, the proof of Lemma
6 can easily be extended to deal with these proofs as these proofs can be dealt with
very similarly to the zero-knowledge proofs in the tallying phase.

We first describe in detail the structure of the sequence ws € €9 of random coins.
In the following, by comm(a)” we denote the commitment on a with randomness 7.
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(a)
(b)

—
o

()

« — the random coins of the coercer.
xi and r{, fori € {0,...,m} and j € {1,...,k} — the random numbers and the

. . . J
randomness used in the commitments ¢ = comm(j, z])".

) m — the permutation used by the machine to shuffle the commitments C’Z .

x;, for i € {0,...,m} — the random number generated by RNG for the i-th voter.
mj, for every candidate j € {1,...,k} — a permutation of {0,...,m}, such that
xfr L(0) is the number (taken from the pool of random numbers generated for the
j-th candidate) assigned by the machine in the voting booth to the i-th voter (if
necessary, i.e. if the i-the voter does not abstain and does not vote for j).

ri, for every candidate ¢ € {0,...,m} who does not abstain — a random number
used by the voting machine to create a commitment ¢; = comm(v;, z;)".

0¥, for every candidate i € {0,...,m} who does not abstain — a permutation
used by the machine to shuffle the commitments associated with the receipt R; of

the i-th voter (see (B3) below).

T}J and o}, for every j € {1,...,k} and every candidate i € {0, ..., m} who does

not abstain — random numbers and permutations used for masking and shuffling
commitments in Clieft (see (B5) below).

7'5]- and o2, for every j € {1,...,k} and every candidate i € {0,...,m} who does

not abstain — random numbers and permutations used for masking and shuffling
commitments in C? ... (see (B6) below).

Random values contributed by the auditors to compute a challenge s € {1, 2}.

A view p of the coercer, depending on ws and the choices vy, ..., v, taken by the

voters, consists of the following parts:

(B1) o — random coins of the coercer.
(B2) The commitments ¢! shuffled with 7.
(B3) R; — the receipt of the i-th candidate, for every non-abstaining candidate 1.

Such a receipt is of the form sq,..., s, where s; = (J, x;_( )), for 7 # v;, and
J

i
Sv; = (vi, T5).

(B4) The values 2, and 7’ . for opening the unused commitments ¢/ ., for all
(1) m; (%) ;i)

J

j€{0,...,k} and i € {0,...,m} such that v; =0 or v; = j.

In the following items, ¢ ranges over all the non-abstaining voters i € {0,...,m}:

(B5) The list of commitments Clieft = d},...,d" shuffled with ¢!, where dg = ¢, if

j=v;and d] = Cer(i)’ otherwise,

(B6) The list of commitments C? ... = d},...,d¥ shuffled with (o} o _JZO), where

m

- ritr! o . N N Y
] 1,07 (v; : s ] - J (i) 'L,o’Q
d} = comm(v;, ;) i § = v, and & = comm(j,g;wj(i)) i 00
otherwise.

(B7) The list of commitments 1i"ight =d},...,d" shuffled with (¢ o o} 0 0f)), where
5 R s D VRN
d} = comm(v;, ;) H7Cd Bo D) T = v, and

36



- . rj . +T1 +7—2
. 75 (%) ',0.1 j ',(7.1 0@ :
dl = comm(],mij(i)) 3t e (@) e (7)) gtherwise.
o 1 2 j 1 2 .
(B8) The values r; + T 00 (0s) + T, o1 (0%(0r)) and ") + Ti0%() + T L (@9())’ for j €

i

{1,...,k}, j # i, for opening the commitment in Clight-

(B9) The challenge s along with masking factors o7 and permutations 7;°;.
Proof. Because every permutation is the finite composition of permutations that
switch only two successive positions, it suffices to consider the case where o flips the
positions [ and [ 4+ 1; the rest follows from composing permutations and bijections.
Let g, ..., 7, be such that

o(Voy -y Un) = (TVoy oy ) = (V0y« oy Vi1, ULy -« -5 Up.)

Further, we assume that v; = y # z = v;41, as the case that ao(vo,...,vn) =
(vo, ..., vp) is trivial. Recall that, by assumption, we have that y, z # 0.

Let wy be any element of Qy and let o, a7, 7, 7, x;, 7, 14, a, ’Til’j, ol ng, o? and
s be the parts of wy defined as above. Here, i ranges over 0,...,m and j over 1,... k.

We will denote the corresponding parts of h(ws) by &, 7, and so on. We define h(ws)
as follows:

e & = . As one can see, (Bl) remains unchanged.

o 7; = mj, for all j.

° 5:{ are defined like :L'g , except for:

=) Try) = (10)
Brp1 = T ) (1) = T, (11)
Ty = Tra(i41); T 41) = Tuy(1)° (12)

One can check that, by (10) and (11), the receipts (B3) remain unchanged.

e 7 are defined like r{, except for: ffrz(l) = rfrz(l+1) and ﬂyry( = T?ry(l) (which,

I+1)
together with (12) implies that (B4) remains unchanged) and, furthermore, ng(l)

and 77 (14+1) are (uniquely) defined in such a way that
=Y z
comm(y,i;fry(l))Twy(l> = comm(z,a:frz(l))TWZ(l> (13)
- 7z rY
Comm(Z,$7Z,rZ(l+1))rﬂz(l+l) = comm(y,xfry(lﬂ)) my(i+1) (14)

(Note that Pedersen commitments used in this protocol guarantee that for each a
and b there exists exactly one r such that comm(a)” = b.)

e 7 is as m with the straightforward adjustment such that the list of published com-
mitments (B2) in both cases (i.e. for wy and h(wy) is exactly the same (it can be
easily done, because, as one can check, the produced commitments in both cases
are, up to the ordering, the same).
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e 7; are like 7; with the two following exceptions: 7; and 741 are (uniquely) defined
in such a way that

comm(z, ;)™ = comm(y, x;)"

comm(y, Zy41)"+ = comm(z, 241 )"+

e ) are like o) with the following exceptions:

One can verify that (B5) remains unchanged.

In the following, we assume that s = 1; the case for s = 2 is very similar.

e Let § =5 =1, =0}, and 7}, = 7}, for all i,j. Therefore (B9) remains the
same. One can also check that (B6) remains the same (this is because (B5) remains
the same and (B6) is obtained from it using the same permutations and masking
factors).

e Let 67 be like o7 with the following exceptions:
67(61 (6 (1)) = ot (01 (0} () and  &7(51(67(2))) = 07 (07 (07(2)))

and analogously for (I + 1).

~2 . 2 ~2 ~2 . .
o Let 7 be like 7;7;, except for Ti61(59(2)) and Ti61(69(y)) which are defined in such a
way that
s Al ~2 _ 1 2
P4 T1500) T Tia1@9(z) = Tra) T T 109() T Tiod (o9(2)) (15)
~y ~1 ~2 _ 1 2
Try T Tiavw) T Tt @0w) = T Tiodw) T et 0 w) (16)

and analogously for (I + 1). Now, one can check that (B7) and (B8) remain the
same.

This concludes the description of h(wz). As we have noted, all the parts (B1)-(B9) of
the views in both cases—for wo and h(wse)—are exactly the same. What remains to
be shown is that h is a bijection from s to £25. To do this, it is enough to prove that
wo can be uniquely determined by @o = h(wsz). We only have to deal with those parts
of wo that are changed by h. We consider those changed parts of ws case by case:

e It is easy to see that the numbers z; and xz (for j € {1,...,k} and i € {0,...,m})
are uniquely determined by the numbers z; and Z7.

o 17 (1) can be computed from @y, as it is uniquely determined by the equality (13)
(recall that Ty (1)) s we already stated, is determined by @s). Analogously for

rfrz 141y T and r;41. Apart from these values, 77 and r; coincide with 7/ and 7,
respectively, and therefore are determined by @-.
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e The permutations in @y are obtained from the corresponding permutation of ws, by
switching some selected positions. It is easy to define the inverse operation.
e if §=s5=1, then TI%U;(U?

in the equation are determined by @s. (Note that Tllao(z) is not changed if s = 1.)
9]

) is is uniquely determined by (15), as all the other parts

Analogously for I + 1 and for the case s = 2.

C Proofs for ThreeBallot with Two Candidates

In this section, we prove Theorem 3 and Lemma 4, where for Theorem 3 we only
prove the second statement, i.e., the more involved case in which the coercer gets to
see the receipts of the honest parties; the proof of the first statement is analogous and
simpler. The proof of Lemma 3 is simple (much simpler than the one for Lemma 4)
and therefore omitted.

We first introduce some notation. We will assume that the space 21 of all possible
combinations of choices made by honest voters determines not only the candidate the
voters have chosen, but also the way they vote, i.e. the exact pattern (see Section 6.3
for the definition of a pattern). We define the following random variables on . F(w;)
is the number of }-ballots, rec(w;) is the vector (rg,rx,re) of numbers of receipts of

honest voters of the corresponding types, Rec(w;) is the vector (rq,...,7,), where
ri € {£,%,2,2} is the receipt of the i-th honest voter (without a serial number), R(w;)

is the number of votes of honest voters for candidate 1, S(wp) is the set of non-
abstaining honest voters, and N(wj) is the number of non-abstaining honest voters
(determined by wy € Q).

C.1 Proof of Theorem 3

First, we can represent an element wo of the space of random bits {25 used in a run of
a system, in addition to the random choices w1, as a tuple wy = (o, 7, ), where « is
a sequence of random coins of the coercer, 7" = (7ij)ic{o,....m},je{1,2,3}, Where r;; is the
serial number printed by the voting machine on the j-th ballot cast by the i-th voter
(where the 0-th voter is the coerced voter), and 7 is a permutation applied to the set
of ballots before publishing. As usually, by o we denote the uniform distribution on
. (Note that a serial number 745, j € {1,2, 3}, is not printed, if the i-th voter does
not vote.)

A view of the coercer consists of (1) his random coins, (2) the content of the
bulletin board, which is a sequence of simple ballots with serial numbers, and (3) the
sequence of receipts (where, again, a receipt is a simple ballot with a serial number)
associated to the voters. We will use letter n to range over views of the coercer. Recall
that p is used to denote an essential view of the coercer.

By p(n) we will denote the essential view determined by 7. By p(Z,w1), for a
pattern Z and w; € €21, we denote the essential view obtained when the coerced voter
casts simple ballots according to Z and the honest voters casts ballots determined
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by wi. By f(n) we denote the pattern that the coercer requires the coerced voter to
use in a run 7, if any; otherwise f(n) is undefined. By Rec(n) we denote the receipts
without serial numbers that the honest voters give to the coercer in run 7.

For a coercer view 7, let ¢, be a predicate over Q4 such that ¢, (w1) iff p(f(n),w1) =
p(n) and Rec(wi) = Rec(n). Analogously, we define a predicate ¢, (wi) which holds
iff p(C(f(n),i),w1) = p(n) and Rec(w) = Rec(n). i

Let ¢ be a program of the coercer. Let T'= (c || dum || eg) and T = (c || ¥ || eg).

We now show that the view of the coercer is information-theoretically independent
of the choices of honest voters and the coerced voter as long as these choices are
consistent with the essential view and the order of the receipts. This is formulated in
Lemma 8, with the core stated in the following lemma.

Lemma 7. Let n be a view of the coercer such that f(n) is defined. Let wq,w],w},w!’

be arbitrary elements of Q1 with v,(w1) @n(w)), @n(wl) and @, (W)"). Then the sets

A = {wg : T(wl,wg) — 77}, B = {wg : T(wi,wg) — 77}’
C={wsy: T(wi’,wz) — N}, D = {ws: T(wi”,u@) —n}

have the same cardinality, and hence, have the same probability.

Proof. We will show how to construct a bijection h : A — B. The proof for the
remaining cases are very similar.

Let I ={1,...,n} x{1,2,3}. For (i,0) € I, by by € {},5, 5,3} and b}; € {},8,5:%
we denote the marking on the [-th ballot cast by the i-th voter according to wy and
wi, respectively. Because ¢y, (w1) and ¢, (w]), we know that there exists a permutation
o : I — I such that b’w) = by(i1)- Moreover, we can assume that o preserves receipts
of honest voters, i.e. if the i-th voter picks the I-th ballot as her receipt according
to wy and she picks the I’-th ballot as a receipt according to v}, then o(i,l") = (i,1).
Note that, in this case, b; ;) = b’(i’l,).

Let (o, 7,m) € wy. We define h(a,7,7) = (o, 7, 7’), where réij) = To(,;) and
7'(i,1) = w(a(4,1)) (recall that 7 determines the position 7 (7, j) of the ballot b; ;y on
the bulletin board). It is easy to check that h is a bijection from A to B. O

From this, we can conclude.

Lemma 8. Let 1 be a coercer view such that f(n) is defined. Let w] and &) be some
fized elements of Q1 such that p,(w]) and @, (&]), respectively. Then, the following
equations hold true:

PHT 1] = Prligg(w1)] - PrIT (], w2) 1] (17)
PrT 1] = Prlgg(wn)] - PrIT(&,wa) v 1) (18)
Pr(T (W], w2) =] = Pr{T(&Y,wa) =] (19)
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Proof. Using Lemma 7 we obtain:

Pr[T" — n] = Prlpy(wi), T (w1, w2) — 7]

= Y. Priwr=w T(wy,we) = 1]

wiipn (@)

= D Prlwr =] Pr{T(w),wz) = 7]
Wi (w1)

= D Prlw=wi] - PrT(w],w) = 7]
wiipn(wi)

= Elr {Son(tcﬂ)] . Bzr [T(u}?,u&) — 77] .

This proves (17). One can prove (18) in an analogous way. The equation (19) follows
directly from Lemma 7. O

Now, using Lemma 8, we can link the level of coercion-resistance ThreeBallot
provides with the optimal bound 5% p+ stated in Section 6. Clearly we have:

Prly(w1)] = AN - PriRec(wi) = Ree(n) | p(f (n), w1) = p(1)]
and
Prly (wn)] = A" - PriRec(wr) = Ree(n) | p(C(f (), ), w1) = p(n)]:

Furthermore, it is easy to show that given two essential views with the same number
of receipts of every type (and otherwise possibly different information on the bulletin
board), the probably of obtaining a specific vector of receipts (which links receipts
and voters) stays the same. From this it follows:

PriRec(wi) = Ree(n) | p(f(n),w1) = p(n)] =
= Pr[Rec(w1) = Rec(n) | p(C(f(n),7),w1) = p(n)]

= E{[Rec(wl) = Rec(n) | rec(wr) = rec(n)].

Together with Lemma 8, we immediately obtain for all w} with ¢, (w])

) 4CUmay,

PrT ) = Pr(T =] = (A7) — ACY

(
PrT (W], ws) = 1] - Pr[Rec(wr) = Rec(n) | rec(wr) = rec(n)].

Now, we are ready to prove that the system S, as defined in Theorem 3 in the case
the coercer can see the receipts of honest voters, is d-coercion resistant w.r.t. ; for

0= 5iTB+ (na m
Let M be the set of views that are accepted by the program c of the coercer, i.e.,
for which the coercer outputs 1. In what follows, let Z range over the set of all possible
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patterns, p over all essential views, 1 over all views, and Rec over all possible vectors
of receipts. We abbreviate C(Z,4) by C(Z). Finally, let M?Rec ={neM: f(n =
Z, Rec(n) = Rec, and p(n) = p}. Let w?7 be arbitrary with p(Z,w? 1) = p
and Rec(w?"°) = Rec. Then we have @, (w”") for all n € M. We have:

® = Pr[T +— 1] — Pr[T — 1]
= Pr[T — M] — Pr[T~ — M]

=333 N (Pr[T ] — Pr[T — 7))

Z P Rec neMg’Rec

=222 (A7 AT ST N7 PrT (w1 wa)
Z p

Rec UGMP Rec

Pr[Rec(w1) = Rec | rec(w1) = rec(p)].
w1
With MZ+ = M;Z as defined in Section 6.3, we get:

e IPIC DD D P ws) )

p€M+ Rec nEMp ,Rec

. Blr[Rec(wl) = Rec | rec(wi) = rec(p)]

Next, we use that, by the definition of Mg’Rec, for n € Mg’Rec we have f(n) = Z

and, because f(n) depends only on wsy, T(w{,ws) — 1 implies f(w2) = Z. With this,
we obtain:

PriT(wisw2) = n] = Prif(ws) = Z]-
PrT(W],we) = n | flwz) = Z].

Now we obtain

O < Y Priflws) = 2] Y (A7 — AT (20)
Z peMgr
< Y Prlf(ws) = 7] e (21)
Z
< Oy =0 (22)

This shows that S is d-coercion resistant w.r.t. ;. It remains to show that ¢ is
optimal.

Let us consider the program c of the coercer which requests the coerced voter to
vote using Z* and accepts a view 7 only if p(n) is in M}Z, where M}Z is as defined
in Section 6.3, and Z* is a pattern with

max Z —ATE = N (A - AGEY),

+
MZ*,Z‘
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With this program c of the coercer we have, for each essential view p:

PrT—p=AZ"  and  Pr[T ] = A5

We immediately obtain:

o= > (PTwp—PrT—p))= Y (A7 A =5, (23

+ +
pEM . pEM .

which shows that S is §’-coercion resistant for any ¢’ < §, in case the counter-strategy
¥ is used. To complete the proof of Theorem 3, we need to show that every other
counter-strategy v’ does not yield a smaller 6.

First, note that every reasonable counter-strategy v’ should, up to a negligible set
of runs, (a) cast ballots only when instructed by the coercer, (b) in case instructed
by the coercer to cast a ballot, cast a ballot for candidate i, and (c) take the receipt
requested by the coercer. Failing to meet (b) would violate Condition (i) of Defintion 1.
Conversely, to satisfy Condition (i), the coerced voter only needs to vote if instructed
by the coercer. Therefore, to be as indistinguishable from the dummy strategy as
possible, it is clear that a counter-strategy should only cast a ballot if instructed to do
so by the coercer, which explains (a). As for (c), it is clear that if a counter-strategy
takes a receipt different from the one requested by the coercer, the coercer can easily

distinguish this strategy from the dummy strategy. Therefore, ¥’ must be like v, up

X O O

to the response in case it is instructed to vote according to Zy = (5,3,

), assuming
i = 1; the case i = 2 is analogous. By (b) and (c¢) we know this response must
be (%,2,5) or (5,%,2). One of these responses can be chosen randomly, according to
some strategy. Recall from Section 6.3 that the response for the counter-strategy v is
C(Zo) = C(Zo,1) = (%,2,%). If C"(Z) = C'(Z,1) denotes the response for a pattern
Z in the counter-strategy o', we know that C'(Z) = C(Z) for every Z # Z. For
Z = Zy, as just explained, C” (Z) has two choices which could be chosen randomly,
according to some strategy. For simplicity of the argument, we assume that C’ (Zp)

always chooses (;, %,2); the case of a randomized choice can be treated similarly. (Note

that whenever C’(Z) chooses (%,2,%), then this would coincide with C(Zp).)

Let ¢ be the program of the coercer which requests the coerced voter to vote using
Z* and accepts a view 7 only if p(n) is in M}J, where M;Z ={p: Af, > Agl(z)},
and Z* is a pattern such that

max > (A7 - ATy = 37 (A7 - A7)

pelTS, peNT},
With this, analogously to (23), we have:

® =Pr[(c| dum | es) — 1] —Pr[(c| ¥ || es) — 1] = > (A7 - Ag'(zw),

p
peEMF,
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Hence it remains to show that

max Z ACI >max Z AC(Z)) J.

M+ pEM

Let Z1 = (3,5,%)- Then C'(Z,) is uniquely determined and equal to C(Z;). As the
receipt of the coerced voter is not part of the essential view, we have for all wq:

p(Zl,(.Ul) = p(Z(),CU1) and p(C(Z1),W1) = p(C(ZO)7w1)'
It follows:

S (Af - AT = 3T (afe - AR,

pEM ; pEM
Now, we obtain:
c'(z z c'(z
max Z — AS <>)>2&az>§ (A = A7)
pEM} 2 pEM}yi
_ z C(2)
= max A A
Z4Z0 " ( P P )
peMy ;
_ Z _ AC(2)
= max (A — A7)
peM;i

This concludes the proof of Theorem 3.

C.2 Proof of Lemma 4

In the proof of Lemma 4, we will use the following easy to prove facts (see 9] for
similar results).

Lemma 9. Consider honest, non-abstaining voters.
1. The probability that a voter takes receipt } is é.

2. The probability that a voter takes receipt § and the probability that she takes receipt
ois %.

3. The probability that a voter who does not abstain votes for candidate 1 (or candidate
2) is independent of the receipt she gets and is

p2 ;
o +p2 (or RS respectively).

4. The probability that a voter produces a %-ballot is 5 in either of the following cases:
(a) if we assume that she votes for candidate 1 and takes $ as a receipt, and (b) if
she votes for candidate 2 and takes  as a receipt.

We introduce two new random variables: 71(w1), indicating the number of voters
that vote for 2 and take % as receipt; 72(w1), indicating the number of voters that vote
for 1 and take ¢ as receipt.
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Let p = (ng,nx,ne, rx,rx,790). Let N = (2nx + nx + ne)/3 denote the total number
of non-abstaining voters and R = (ny + nx) — N denote the votes for candidate 1.
Then we have the following equality, where 71 and 75 range over {0,...,n}.

Prip(wi) = p = 3 Prlp(wr) = p,i(wn) = 71, 72(w1) = 7).

T1,7T2
Moreover,

B{[P(wl) =p,1i(w1) =71, T2 (w1) = o] =

:E{[F(wl) =nyg, R(w1) = R, 7 (w1) = 71, T2(w1) = 72, rec(wr) = (rs,7x,70), N(w1) = N] =

:E{ [F(wl) =ny | R(w1) = R, 11(w1) = 71, Ta(wa) = 7o, mec(wr) = (rx,7x,70), N(w1) = N] .

(24)

[R =R |7 (w1) =71, T2(w2) = T2, rec(wr) = (rs, 75, 19), N(w1) = N - (25)
Primi(wi) =71, m(ws) = 72 [ rec(wn) = (rg,my,me), N(wn) = N - (26)
[rec (re,m,m9) | N(wi) = NJ - (27)
-5; [N(wi) = N] . (28)

For (28), we have

PrN(r) = N = (3 ) o6~ n + )"

For (27), we have to distribute (independently) the receipts to the N non-abstaining
voters. With Lemma 9 we obtain:

Pr [rec(wr) = (rx,rs,79) | N(w1) = N|

N I\ /2\"3Fre /4\N-r—m—re
B (%ﬂ"gﬂ"g) <9) <9> <9> '

For (26), we have to distribute rx — T1 votes resp. Ty votes for cand; in the set of those
voters that get 5 resp. 3 as receipt. Using Lemma 9, we obtain

Prri(w1) = 11, 72(w1) = 72 | rec(wr) = (g, 75, 79), N(w1) = N]
_ (ré> qréf‘l'l(l _ q)n . <T°> (1 . q)T‘o T2
1 T2
where ¢ = pfﬁp?

For (25), we have to distribute the rest of the votes for cand (i.e. R—(rs—71)—72)
to those non-abstaining voters that do not get 5 or 3 as receipt. With Lemma 9 we
have that the probability that a non-abstaining voter votes for cand; is ¢, regardless

o
X
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of the receipt. Hence we have

Blr [R(w1) = R| 11(w1) = 71, T2(w1) = 72, rec(wr) = (rg,mx, %), N(w1) = N| =

= N - s TR . qR*(TéfTI)*TQ . (1 . q)N*TQ*R*TlJ’*TQ'
R—(rx—m1)—7

For (24), we have to spot nx voters that submit an X-ballot among all voters. Clearly,
every voter that takes } or J as receipt, submits an ¥-ballot. Also, the voters who vote
according to 71 or 72 do not submit a }-ballot (that was the reason for introducing
71, 72). Hence we have to distribute ny —rx — (N —rx —rx —19) = nx — N 4 15 + 10
among N —rx — (N —rx —rx — o) — 71 — T2 voters. Note that any of those voters
either votes for cand; with receipt 3 or for candy with receipt 3. The probability that
such a voter submits a }-ballot is %, according to Lemma 9. Hence we have

Pr[F(wi1) =n1 | R(w1) = R, 71(w1) = 71, T2(w1) = 7o, rec(wr) = (15, m5,70), N(w1) = N| =

T To — T — Ty 1\t
nx — N + 1<+ 710 2 ’

By putting everything together and rewriting the formula, we obtain the formula in
Lemma 4.

D Proof of Theorem 4

Let us consider the program ¢ € C which:

e instructs the coerced voter to vote for the candidate j for which the sum from
equation (6) achieves its maximum. (Note that, by the definition of C, the exact
pattern the coerced voter is supposed to use is determined.)

e accepts a run if and only the receipt given by the voter is as required and the
restricted view p in this run is in M, ;.

Let v* be the counter-strategy as defined in Section 6. As we argued Section 6, this
strategy is optimal for C and therefore for c. Hence, to prove Theorem 4, it suffices to
show that

O =Pr[T — 1] = Pr[T — 1] > 6,

where T = (¢ || dum || es), T = (¢ || v* || es), and & = &;(n, k,p). We show, in fact,
that & = §:

= 3 (PrT = pl —PrT s p) = 3 (A42°— A) =3,
pEM; ; pEM; ;

where we use the equalities
Pr(T — p] = A{;O and  Pr[T — p] = Aﬁ)’c .

These hold true, because the events T — p and T — p depend only on the choices
made by honest voters and the coerced voter. This concludes the proof of Theorem 4.
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