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Abstract
Recently, Liao et al. and Hölbl et al. each proposed a user authentication protocol,

respectively. Both claimed that their schemes can withstand various attacks. However,
Xiang et al. pointed out Liao et al.’s protocol suffers from three kinds of attacks, the
replay attack, the guessing attack, and the Denial-of-service (DoS) attack. Moreover,
we and Munilla et al. also found Hölbl et al.’s protocol suffers from the password
guessing attack. In this paper, we will propose the two protocols’improvements
respectively. After analyses and comparisons, we conclude that our improvements are
not only more secure but also more efficient in communication cost than all of the
password based schemes that we know.

Keywords: smart card, password authentication protocol, password change,
man-in-the-middle attack, denial-of-service attack, smart-card-lost
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1. Introduction

Password-based authentication protocols are widely adopted for logging into the
remote servers. To a minimum, they can provide authentication between the client and
the server to ensure the legality of the user over an open network. Many schemes in
this area have been proposed such as, two-party password authenticated key exchange
(PAKE) protocols for the client-server architecture [1-19, 30-36], three-party PAKE
(3PAKE) protocols for the client-client-server architecture [20-26], and multi-server
PAKE protocols for the client-servers architecture [27-29]. In a two-party PAKE
(2PAKE) protocol, a client can access a server’s resources; in a 3PAKE protocol, any
two clients can communicate with each other after having been authenticated by the
server; and in a multi-server PAKE protocol, a client can access many servers’ 
resources. For that 2PAKE protocol is a fundamental concept in authentication, we
therefore focus only on this type of protocols in this paper.
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In a traditional two-party password-based authentication scheme without using
smart card, the server has to store the verifier table for authenticating the client. It may
therefore suffer from the stolen verifier table attack. Hence, a better solution is the use
of a smart card. In 2006, Liao et al.[9] and Peyravian et al.[4] each proposed a
password authentication scheme using smart card, respectively. Both claimed that
their protocols are secure. However in 2008, Xiang et al.[14] found that [9] has the
security loopholes: the replay attack, the guessing attack, and the denial-of-service
(DoS) attack and Hölbl et al.[12] found that [4] suffers from the password guessing
attack. In addition, Hölbl et al. further proposed an improvement on [4]. But we [17]
and Munilla et al.[18] each found a password guessing attack on their improvement in
2008 and 2009, respectively. Also in 2008, Liu et al.[10] proposed a new mutual
authentication scheme based on nonces and smart cards, Bindu et al.[7] proposed an
improved remote user authentication scheme on Chien et al.’s protocol [1], and Juang
et al.[8] proposed an efficient password authenticated key agreement scheme,
respectively. All of them claimed that their schemes are secure. Nevertheless, in 2009,
Sun et al.[16] demonstrated that [10] suffers the man-in-the-middle attack. In addition,
we will demonstrate that [7] suffers from the smart-card-lost attack (see Appendix
A.1), and [8] suffers from the password guessing attack if the smart card is lost (see
Appendix A.2). In the same year, Rhee et al.[11] proposed a remote user
authentication scheme without using smart card. But Tsai et al.[19] found that their
protocol suffers the insider attack. Additionally, also in 2009, Goriparthi et al.[6], Kim
et al.[30], Wang et al.[31], Hsiang et al.[32], Chung et al.[33], Xu et al.[34], and
Hwang et al.[35] each proposed a 2PAKE protocol, respectively. However, after
analysis, we found that both the protocols [6, 31], proposed by Goriparthi et al. and
Wang et al. respectively, are vulnerable to the DoS attack on the password change
phase (which makes the password invalid after the protocol run, see Appendix A.3),
[30, 32] suffer from the smart-card-lost attack (see Appendix A.4), [34] is vulnerable
to the insider impersonation attack (see Appendix A.5), and the others [33, 35] are not
efficient enough for that they need four and three passes to establish the session keys,
respectively. In the same year, Hölbl et al.[37] proposed two improved two-party key
agreement protocols. But, we found that both of their protocols fail since the KGC’s
secret xs can be found (see Appendix A.6). Also in 2009, Yang et al.[38] proposed a
remote mutual authentication agreement protocol. However, their method isn’t a
password based scheme. Moreover, it is problematic in the registration phase, since
they use the group, Gp, in the manner as if it were multiplicative, which contradicts
their definition (in the system initializing phase) that Gp is a cyclic addition group. In
2010, Li et al.[36] propose a 2PAKE protocol, but we found it suffers from the
smart-card-lost attack (see Appendix A.7)
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From the above-mentioned, we know that there still lacks a secure protocol in this
area. Accordingly in this paper, we will propose two improvements on schemes [9]
and [12] respectively to make them safer and more efficient. We consider that the
reason why a smart card based protocol suffers from the password guessing attack
when it is lost is that an attacker can read out the parameters and guess the possible
passwords to check whether his guessing is correct, and that for preventing DoS
attack, a client should be able to change his password only after he has been
authenticated by the server (in the password change phase). Based on these two
considerations, we design our two improvements, hoping that they can get rid of the
DoS attack and the password guessing attack when the smart card is lost, and that
both can reduce the communicational passes and satisfy the requirement that the
clients can choose and change their passwords at will. We will examine both of our
improvements by checking whether they can resist against the replay attack, password
guessing attack, insider attack, man-in-the-middle attack, DoS attack, and
smart-card-lost attack, and examine whether the smart-card based improvement on
Liao et al.’s protocol can achieve the ten requirements proposed by Liao et al. (for a
password-based authentication protocol using smart card).

The remainder of this paper is organized as follows: In Section 2, we review both
the protocols of Liao et al. and Hölbl et al., respectively. In Section 3, we present our
two improvements and then analyze the security in Section 4. After that, some
discussions are made in Section 5. Finally, a conclusion is given in Section 6.

2. Review of Liao et al.’s and Hölbl et al.’s protocols

In this section, we review Liao et al.’s protocol [9] in Section 2.1 and Hölbl et al.’s 
protocol [12] in Section 2.2, respectively. Before that, the notations used are first
described below.

C, S : a client and a server, respectively.
E : an adversary/attacker.
ID : the identity of C.
PW : the password of C.
p : a large prime number.
g : a primitive element in a Galois field GF(p), where GF(p) is a set of integers

{0,1,…,p-1} with arithmetic operations defined on modulo p.

H : a collision-resistant one-way hash function.
(a,b) : a string denotes that string a is concatenated with string b.
⊕ : an exclusive-or operation.
△T : the tolerant time for transmission delay.

s : S’s secret key.
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=> : a secure channel.
→ : a common channel.

2.1 Review of Liao et al.’s protocol

In this section, we first briefly review Liao et al.’s schemein Section 2.1.1 through
2.1.4 then list their ten proposed requirements for a password-based authentication
protocol using smart card in Section 2.1.5 (for more details see [9]). Their scheme
consists of four phases, registration phase, login phase, authentication phase, and
password change phase. We describe them as follows and also illustrate it in Fig. 1.

C S

Registration phase
1.chooses ID and PW

calculates H(PW) {ID, H(PW)}
2. calculates

B = gH(s, ID)+H(PW)

issues a smart card which
contains ID, B, p, and g to C.

Login phase
1. keys ID and PW {ID}

2. generates R and y
calculates B''= gH(s, ID)R

M=gy

H(B'', M)
{H(B'', M), R, M}

3.calculates B'= (B.g−H(PW))R

checks H(B', M) =? H(B'', M)
selects x
calculates N=gx

V= H(T, B', N)
generates T {ID, V, T, N}

Authentication phase
1. checks ID, generates T'

compares T'−T <? △T
2. computes V' = H(T, B'', N)

checks V =?V'
3. computes session key

K=M x=gxy
3. computes session key

K=N y=gxy

Password change phase
1. selects PW'
2. computes Y = gH(PW' )

Z = B.g−H(PW)

β= Y.Z
3. assigns B =β
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Fig. 1. Liao et al.’s protocol

2.1.1 Registration phase

In this phase, C performs the following two steps to register at S for obtaining a
smart card.

1. C freely chooses his ID and PW, and calculates H(PW). C then sends {ID,
H(PW)} to S through a secure channel.

2. S calculates B = gH(s, ID)+H(PW) mod p and then issues C a smart card, which
contains ID, B, p, and g, through a secure channel.

2.1.2 Login phase

When C wants to login to S, he inserts his smart card and cooperates with S to
perform the following steps.

1. C keys his ID and PW to the smart card and sends {ID} to S.

2. S selects two random numbers R and y, and calculates B''= gH(s, ID)R mod p
and M=gy. He then computes H(B'', M) and sends {H(B'', M), R, M} to C.

3. After receiving the message from S, C calculates B'= (B.g−H(PW))R mod p and
checks to see if H(B', M) is equal to the received H(B'', M). If so, S is authentic.
C then selects a random number x, calculates N=gx mod p, and computes V=
H(T, B', N), where T is the timestamp of the system. He then sends {ID, V, T, N}
to S.

2.1.3 Authentication phase

In this phase, S executes the following steps to determine whether C is allowed to
login or not.

1. S checks ID, generates the timestamp T', and compares if T'−T is less than △T.
If ID is invalid or T'−T >△T, the login request is rejected.

2. S computes V' = H(T, B'', N), and then checks if V is equal to V'. If it is, C is
authentic. Otherwise, S stops the protocol.

3. After authenticating C, S computes the session key as K=N y=gxy. And C also
computes the session key as K=M x=gxy.

2.1.4 Password change phase

When C wants to change his password from PW to PW', he performs the following
steps.
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1. selects a new password PW'.

2. computes Y = gH(PW' ) mod p, Z = B.g−H(PW) mod p, and β= Y.Z, where PW
is the old password and B is the variable stored in the smart card.

3. assigns B =βin the smart card.

2.1.5 The ten requirements for a password-based authentication protocol using
smart card

In 2006, Liao et al.[9] proposed ten requirements for evaluating the goodness of a
password-based authentication protocol using smart card. We list them as follows.

R1. It needs no password or verifier table.
R2. The clients can choose and change their passwords freely.
R3. The clients need not to reveal their passwords to the server.
R4. The passwords are not transmitted in plaintext over the Internet.
R5. It can resist the insider (a legal user) attack.
R6. It can resist replay attack, password guessing attack, modification-verifier-

table attack, and stolen-verifier attack.
R7. The length of a password is appropriate for memorization.
R8. It is efficient and practical.
R9. It can achieve mutual authentication.
R10. It can resist password guessing attack even if the smart card is lost.

2.2 Review of Hölbl et al.’s protocol

In this section, we first review Hölbl et al.’s user authentication protocol in Section
2.2.1 and then review the password change protocol in Section 2.2.2.

2.2.1 User authentication protocol

In this protocol, user C has to register at server S to become a legal client and S
stores C’s IDPW-dig(=H(ID, PW)), instead of PW. They both perform the following
steps. We also depict them in Fig. 2.

1. C chooses two random values rc, x and computes gx. Then, C masks gx as m-gx

by computing m-gx=gx⊕H(ID, IDPW-dig), and sends message {ID, rc, m-gx}
to S.

2. After receiving the message, S retrieves gx by computing gx=m-gx⊕H(ID,
IDPW-dig). Then, S chooses two random values rs, y and computes gy. He
calculates (gx)y, generates ch1 = rs⊕H(gxy, IDPW-dig, rc) and ch2 = gxy⊕
H(gxy, IDPW-dig, rc), and masks gy as m-gy by computing m-gy=gy⊕H(ID,
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IDPW-dig). Then, S sends {m-gy, ch1, ch2} to C.

C S

1.generates rc, x has stored C’s IDPW-dig
computes gx

IDPW-dig=H(ID, PW)
m-gx=gx⊕H(ID, IDPW-dig)

{ID, rc, m-gx}
2.retrieves gx=m-gx⊕H(ID,IDPW-dig)

chooses rs, y
computes gy, (gx)y

ch1= rs⊕H(gxy, IDPW-dig, rc)
ch2=gxy⊕H(gxy, IDPW-dig, rc)
m-gy=gy⊕H(ID, IDPW-dig)

{m-gy, ch1, ch2}
3.computes

gy= m-gy⊕H(ID, IDPW-dig)
(gy)x, H(gxy, IDPW-dig, rc)
H'(gxy, IDPW-dig, rc)=ch2⊕gxy

checks
H'(gxy,IDPW-dig,rc)=?H(gxy,IDPW-dig,rc)

retrieves rs'=ch1⊕H(gxy, IDPW-dig, rc)
{ID, rs'}

4.verifies rs' =?rs
generates sat=H(gxy,IDPW-dig,rc,rs)

5.computes
{sat}

sat' =H(gxy, IDPW-dig, rc, rs')
verifies sat =?sat'

6.computes session key 6.computes session key

K=H(gxy, IDPW-dig, rc, r＊
Ｓ ) K=H(gxy, IDPW-dig, rc, r＊

Ｓ )

Fig. 2. Hölbl et al.’s user authentication protocol

3. After receiving the message, C derives gy= m-gy⊕H(ID, IDPW-dig). Then, he
computes (gy)x and H(gxy, IDPW-dig, rc), and derives H'(gxy, IDPW-dig, rc) by
computing ch2⊕gxy. C checks to see if the derived H' (gxy, IDPW-dig, rc) is
equal to the computed H(gxy, IDPW-dig, rc). If it is, C then retrieves rs' by
computing ch1⊕H(gxy, IDPW-dig, rc) and sends {ID, rs'} to S. Otherwise, S is
not genuine and C terminates the protocol.

4. After receiving {ID, rs'}, S verifies if the received rs' is the same as his
generated rs (in step 2). If they are the same, C is authentic. Then, S generates
an authentication token sat =H(gxy, IDPW-dig, rc, rs) and sends {sat} to C.

5. After receiving {sat}, C computes sat'=H(gxy, IDPW-dig, rc, rs') and verifies if
the received sat is equal to sat'. If the verification succeeds, S is authentic.

6. After the successful mutual authentication, they can compute the common
session key as K=H(gxy, IDPW-dig, rc, r＊

Ｓ), where r＊
Ｓ is the result of rs plus some
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fixed value in order for K to be different from sat.

C S

1.generates
IDPW-dig-new=H(ID, new-PW)

computes mask=H(gxy, rc, rs')
mac= H(gxy, IDPW-dig-new, rc, rs')
m-IDPW-dig-new=mask⊕IDPW-dig-new

{m-IDPW-dig-new,mac}

2.computes H(gxy, rc, rs )
IDPW-dig-new=H(gxy,rc,rs)⊕-IDPW-dig-new
mac' = H(gxy, IDPW-dig-new, rc, rs)
checks mac' =?mac
computes code=H(gxy,IDPW-dig,Flag,rc,rs)

{code}

Fig. 3. Password update protocol of Hölbl et al.’s password change protocol

2.2.2 Password change protocol

In this protocol, when C wants to update his password PW to new-PW, he performs
the password update protocol as follows. We also show it in Fig. 3.

1. After authenticating the server, C computes mask=H(gxy, rc, rs'), mac=H(gxy,
IDPW-dig-new, rc, rs'), and m-IDPW-dig-new=mask⊕IDPW-dig-new, where
IDPW-dig-new=H(ID, new-PW). Then, he sends {m-IDPW-dig-new, mac} to S.

2. After receiving the message, for verifing the validity of mac, S retrieves
IDPW-dig-new by computing H(gxy, rc, rs)⊕m-IDPW-dig-new, computes
mac'= H(gxy, IDPW-dig-new, rc, rs), and compares mac' with the received mac.
If they are equal, S accepts the password change and replaces IDPW-dig with
IDPW-dig-new (Otherwise, he rejects the password change.). S then sends a
message code=H(gxy, IDPW-dig, Flag, rc, rs) to C, where Flag is set to be
either ‘accept’ or ‘reject’, depending upon whether the password change is
accepted or rejected.

3. Our improvements

In this section, we present our two improvements on Liao et al.’s protocol and
Hölbl et al.’s protocol in Section 3.1 and Section 3.2, respectively.

3.1 Improvement on Liao et al.’s protocol

Our improvement, for correcting the security flaw found by Xiang et al., consists
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of three phases, registration phase, login phase, and authentication phase. We describe
them as follows.

3.1.1 Registration phase

Our registration phase is the same as in the original scheme. That is, C gets a smart
card containing ID, p, and B(= gH(s, ID)+H(PW)).

3.1.2 Login and authentication phases

Since the purpose of logining to a server is usually for authentication only, seldom
for password change, for efficiency consideration, we divide our improvement into
two scenarios: (A) authentication only (as shown in Fig. 4), and (B) authentication
and password change (as shown in Fig. 5).

(A) Authentication only

(1) Login phase
If C wants to communicate with S without changing his password, C will

run the following steps.

C S

Login phase
1. keys {ID, PW}
2. generates T, x

computes N=gx

B'=(B.g−H(PW) ).N
V=H(T, B')

3.{ID, V, T, N}
Authentication phase
1. generates T'

checks ID
compares T'−T <?△T

2. generates y
calculates M=gy

B''=(gH(s, ID) ).N
H(T, B'')

checks H(T, B'') =?V
{M, U} calculates U=H(M, B'')

Authentication phase
3. calculates H(M, B')

compares U=?H(M, B')
4. computes

session key K= M x=gxy
4. computes

session key K= N y=gxy
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Fig. 4. Our improvement for authentication only (on Liao et al.’s protocol)

1. inserts his smart card and keys {ID, PW}.
2. generates a timestamp T and a random nonce x, and computes N=gx mod

p, B'=(B.g−H(PW) mod p).N, and V=H(T, B').
3. sends {ID, V, T, N} to S.

(2) Authentication phase
When receiving the message {ID, V, T, N} from C, S runs the following

steps to verify the legitimacy of C and negotiates their common session key.

1. S generates a timestamp T', checks ID, and compares to see if T'−T is
less than △T. If ID is valid and T'−T <△T, S accepts the login request.

2. S generates a random nonce y and calculates M=gy mod p, B''=(gH(s, ID)

mod p).N mod p, and H(T, B''). He checks to see if H(T, B'') is equal to V.
If so, C is authentic. S then computes U=H(M, B'') and sends {M, U} to
C.

3. After receiving the message, C calculates H(M, B') and compares if U is
equal to H(M, B'). If it is, S is authentic.

4. After above successful mutual authentication, S can compute the
common session key as K=Ny=gxy and C also can compute the
common session key as K = M x= gxy.

(B) Authentication and password change

(1) Login phase
Although in the password change phase of Liao et al.’s protocol, C can

change his password without communicating with S. However, Xiang et al.
found that it suffers from the DoS attack. Hence, in the following, we propose
our improvement to resist such an attack.

Assume that C wants to change his password from PW to PW', he performs
the following steps.

1. inserts his smart card and keys {ID, PW}.
2. generates a timestamp T and a random nonce x, and computes N=gx mod

p, B'=(B.g−H(PW) mod p).N. He chooses a new password PW' and
calculates Y= gH(PW') mod p, Z = B.g−H(PW) mod p (=gH(s, ID) mod
p), VP = H(Y, T, B'), and Y⊕Z (= gH(PW')⊕gH(s, ID) mod p).

3. sends {ID, VP, Y⊕Z, T, N} to S.
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(2) Authentication and password change phase

After receiving the message {ID, VP, Y⊕Z, T, N} from C, S executes the

C S

Login phase
1. keys {ID, PW}
2. generates T, x

computes N=gx

B'=(B.g−H(PW)).N
chooses PW'
calculates Y= gH(PW')

Z = B.g−H(PW)

VP = H(Y,T,B')
Y⊕Z 3.{ID, VP, Y⊕Z, T, N}

Authentication and password change phase
1. generates T'

checks ID
compares T'−T <? △T
generates y

2. calculates M=gy

B''=(gH(s, ID) ). N
Y'=Y⊕Z⊕(gH(s, ID))
H(Y', T, B'')

checks H(Y', T, B'')=?VP
computes U=H(M, B'')

K= N y

UP=H(Flag, K, B'')
3.{M, U, UP}

4. calculates H(M, B')
H(Flag, K, B')

compares U =? H(M, B')
UP =? H(Flag, K, B')

5. computes session key
K= M x=gxy

5. computes session key
K= N y=gxy

Fig. 5. Our improvement for authentication and password change (on Liao et al.’s protocol)

following steps to identify C. If C is legal, S accepts the login request for
password change and then computes the session key.

1. After receiving the message, S generates a timestamp T', checks ID, and
compares if T'−T is less than △T. If ID is valid and T'−T < △T, the

login request continues.

2. S generates a random nonce y and calculates M=gy mod p, B''=
gH(s,ID).N mod p, Y'=Y⊕Z⊕gH(s, ID) mod p (=gH(PW') mod p), and
H(Y', T, B''). He checks to see if H(Y', T, B'') is equal to VP. If it isn’t, S 
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refuses the request and terminates the protocol. Otherwise, C is authentic.
S accepts the password change request and computes U=H(M, B'') , K=
N y mod p, and UP=H(Flag, K, B''), where Flag is set to ‘accept’.

3. S sends {M, U, UP} to C.
4. After receiving the message, C calculates H(M, B') and H(Flag, K, B').

He compares if U is equal to H(M, B'). If it is, S is authentic. C then
compares UP with the value H(Flag, K, B'). If they are equal, C
confirms that his password change request is accepted.

5. After successful mutual authentication, S can compute the common
session key as K= N y= gxy and C also can compute the common session
key as K= M x= gxy.

3.2 Improvement on Hölbl et al.’s protocol

In this section, we describe our improvement on Hölbl et al.’s authentication 
protocol as follows and also show it in Fig. 6.

Our improvement performs the following steps.

1. C generates a random nonce x, computes gx mod p, and masks it as m-gx by

C S

1.chooses x
computes gx

m-gx=gx⊕H(ID, IDPW-dig)
{ID, m-gx}

2. retrieves gx=m-gx⊕H(ID,IDPW-dig).
chooses rs, y
computes gy

(gx)y

ch= rs⊕H(gxy, IDPW-dig)
sat=H(gxy, IDPW-dig, rs)
m-gy=gy⊕H(ID, IDPW-dig)

{m-gy, ch, sat}
3.derives

gy= m-gy⊕H(ID, IDPW-dig)
computes (gy)x

rs' =ch⊕H(gxy, IDPW-dig)
sat' =H(gxy, IDPW-dig, rs')

checks sat =?sat'
computes

rsc=H(gxy, rs', IDPW-dig)
{rsc} 4.computes

rsc'=H(gxy, rs, IDPW-dig)
checks rsc' =?rsc
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5.computes session key
K=H(gxy, rs')

5.computes session key
K=H(gxy, rs)

Fig. 6. Improvement on Hölbl et al.’s authentication protocol

computing m-gx=gx⊕H(ID, IDPW-dig). Then C sends message {ID, m-gx} to
S.

2. After receiving the message, S retrieves gx by computing gx=m-gx⊕H(ID,
IDPW-dig). Then, he chooses two random nonces rs, y and computes gy mod p.
S calculates (gx)y mod p, generates ch= rs⊕H(gxy, IDPW-dig), sat=H(gxy,
IDPW-dig, rs), and masks gy as m-gy by computing m-gy=gy ⊕ H(ID,
IDPW-dig). Then, S sends {m-gy, ch, sat} to C.

3. After receiving the message from S, C derives gy= m-gy⊕H(ID, IDPW-dig),
computes (gy)x mod p, and retrieves rs' by computing ch⊕H(gxy, IDPW-dig).
He computes sat'=H(gxy, IDPW-dig, rs' ) and checks to see if the received sat is
equal to the computed sat'. If it is, S is authentic. C then computes rsc=H(gxy,
rs', IDPW-dig) and sends {rsc} to S.

4. After receiving {rsc}, S computes rsc'=H(gxy, rs, IDPW-dig) and verifies if rsc'
is the same as the received rsc. If they are, C is authentic.

5. After successful mutual authentication, C and S each can compute the common
session key K=H(gxy, rs')=H(gxy, rs).

4. Security analysis for the two improvements

In this section, we show that both of our improvements not only can provide
mutual authentication, perfect forward and backward secrecy and key freshness but
also can resist the following attacks: replay attack, off-line password guessing attack,
insider attack, man-in-the-middle attack, on-line password guessing attack, and DoS
attack. We show them in turn below. For abbreviation, we make the analysis behind
notation (a) denotes that it is for the improvement on Liao et al.’s protocol. The
notations  and  following notation (a) stand for that they are the analyses for
authentication only (as shown in Fig. 4) and for authentication and password change
(as shown in Fig. 5), respectively. In addition, we also make the analysis behind
notation (b) stands for that it is for the improvement on Hölbl et al.’s protocol(as
shown in Fig. 6).

4.1 Mutual authentication

Mutual authentication means that both the server and the user can authenticate each
other before generating the common session key. In the following, we demonstrate
how our protocol can achieve this goal.

(a) In the phase of authentication only, to authenticate C, S has to verify the
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validity of V=H(T, B') and to authenticate S, C must check the validity of
U=H(M, B''), where B'=B''. Since, these two evidences, V and U, are
computed with the common secret B'/B'' and only C and S know the common
secret, no one else can forge V and U. In other words, when both the
validities of V and U are confirmed by S and C respectively, the mutual
authentication between them is achieved.

 In the phase of authentication and password change, to authenticate C, S has
to verify the validity of VP = H(Y, T, B') and to authenticate S, C must check
the validities of both U=H(M, B'') and UP=H(Flag, K, B''). Since, VP, U and
UP are computed with the common secret B'/B'' and only C and S know the
common secret, no one else can forge these values. In other words, when the
validities of VP, U and UP are confirmed by S and C respectively, the mutual
authentication between them is achieved.

(b) For authenticating S, C has to verify the validity of sat=H(gxy, IDPW-dig, rs').
Conversely, for authenticating C, S must check the validity of rsc=H(gxy, rs,
IDPW-dig). For only S and C can know or deduce the common secrets, gxy,
IDPW-dig, and rs, no one else can forge the value of sat or rsc. In other words,
after the validities of sat and rsc are confirmed by C and S respectively, the
mutual authentication in our protocol is achieved.

4.2 Perfect forward and backward secrecy

Perfect forward and backward secrecy means that if an intruder gets the session key,
he can’t reconstruct any previous or subsequent session keys. In both of our
improvements, a compromised password PW can’t be used to reconstruct any
previous or subsequent session keys for that we use the Diffie-Hellman key agreement
protocols whose session keys are based on large random nonces. If an intruder gets
PW in our two protocols, he can’t deduceK=gxy in (a), or K=H(gxy, rs) in (b),
without the knowledge of the two random numbers, x and y. Therefore, both of our
protocols can provide perfect forward and backward secrecy.

4.3 Key freshness

Key freshness means that the key used in each session is different from the ones
used in other sessions. Since each party picks his random nonce secretly when
computing the session key in our protocols, it can be easily seen that the freshness of
the used session keys in our protocols is guaranteed.

4.4 Preventing the replay attack
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Replay attack means that a legal peer’s transmission message is intercepted and
replayed by an adversary for fooling another legal peer to regard him as authentic.
However, the fresh nonces chosen at each protocol run are used to avoid such replay
attacks in our improvements. More clearly, we list the reason for each case below.

(a) An adversary cannot be authenticated by resending previous messages
transmitted by a legal client for that we use the random nonces x, y, and the
timestamp T to withstand such kind of attack. Hence, the replay attack can be
avoided in this improvement.

(b) Similarly, we use the random nonces rs, x, y to prevent replay attack in this

protocol. An attacker thus cannot be authenticated by resending previous
messages transmitted by a legal client. Hence, our protocol can prevent the
replay attack.

4.5 Preventing the off-line password guessing attack

Off-line password guessing attack means that a passive attacker slinkingly
intercepts the communication line between a legal client and the server, and tries to
guess the client’s password off line. In the following, we prove why our protocols can
resist against such an off-line password guessing attack.

(a)  In the authentication only scenario, although an adversary E may intercept
the message {V, T, N}, where N = gx, V = H(T, B'), and B'=(B.g−H(PW)).N .
However, he doesn’t know both the values of B (stored in C’s smart card)
and C’s password. Therefore, he may guess PW as PW1, but without the
knowledge of B, he can’tcompute the value H(T, (B.g−H(PW1)).N ) to
compare with the intercepted value V. Thus, the off-line password guessing
attack can’t work.

 In the authentication and password change scenario, although E might
intercept the message {VP, Y⊕Z, T, N}, where N = gx, Z = B.g−H(PW), Y=
gH(PW'), VP = H(Y, T, B'), and B'=(B.g−H(PW)). However, he doesn’t 
know the values of B (storedin C’s smart card), PW (kept secret by C), and
PW' (chosen by C). Therefore, E may guess PW and PW' as PW1 and PW2,
respectively but without the knowledge of B, he can’tcompute the value
H(gH(PW2), T, B.g−H(PW1)) to compare with the intercepted value VP. In
other words, the off-line password guessing attack fails.

(b) Assume that E has intercepted the transmitted messages, {ID, m-gx}, {m-gy, ch,
sat}, and {rsc}, between C and S. However, since m-gx=gx⊕H(ID, IDPW-dig),
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m-gy=gy⊕H(ID, IDPW-dig), ch=rs⊕H(gxy, IDPW-dig), sat=H(gxy, IDPW-dig,
rs), and rsc=H(gxy, rs', IDPW-dig), even E has the knowledge of gx or gy, due
to the one-way property of the hash function, E can hardly figure out
IDPW-dig from both m-gx and m-gy. Similarly, even E has the knowledge of rs,
rs' and gxy, he can by no means figure out IDPW-dig from ch, sat or rsc. Not
to mention, all the above parameters are kept secret. Therefore, E can’t 
implement the off-line password guessing attack.

4.6 Preventing the insider attack

Insider attack means that a legal client D can impersonate another legal client C to
gain the service of server S.

(a) Assume that D wants to impersonate C to login to S. However, without the
knowledge of C’s password pw and B, he can not deduce V and
consequently be authenticated by S. Therefore, the insider attack fails.

Similarly, if D wants to impersonate C to login to S. Without the knowledge
of B and C’s password, he can not deduce VP and be successfully
authenticated by S. Therefore, the insider attack fails.

(b) If D wants to impersonate C to login to S. Without the knowledge of C’s
IDPW-dig, the value gx he uses would be different from the value S retrieves.
Hence, the value of rsc which D will produce in step 3 would be different from
the value of rsc' computed by S in step 4 (of Fig. 6). That is, D can’t be
authenticated by S successfully. Therefore, the insider attack fails.

4.7 Preventing man-in-the-middle attack ( MIMA )

Man-in-the-middle attack means that an active attacker intercepts the
communication line between a legal user and the server and uses some means to
successfully masquerade as both the server to the user and the user to the server. Then,
the user will believe that he is talking to the intended server and vice versa.

(a) We now launch such a MIMA on our protocol for authentication only (as
described in Section 3.1.2.(A)) and illustrate it in Fig. 7. In the figure, after
E intercepts the communication line between S and C, he impersonates C by
sending {ID, V’, T’, N’} to S and masquerades as S by sending {M’, U’} to
C. If both C and S can successfully verify U’and V’respectively, E is
regarded as being authentic by both of the two communicating parties and
will have the two same session keys shared with C and S, respectively.
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However, since that for verifying U’, C should compute H(M, B') and for
verifying V’, S should calculate H(T, B''), where B'= (B.g−H(PW) ).N= B''=
(gH(s, ID) ).N, without the knowledge of PW or s, E can’t send valid U’and
V’. Hence, the MIMA fails.

C E(S) E(C) S

1.{ID, V, T, N} 2.{ID, V’, T’, N’}

4.{M’, U’} 3.{M, U}

Fig. 7. The MIMA on authentication only in section 3.1.2.(A)

 In Fig. 8, we depict a MIMA on the authentication and password change (as
described in Section 3.1.2.(B)). In the figure, after E intercepts the message
transmitted between S and C, he impersonates C by sending {ID, VP’, Y’⊕
Z’, T’, N’} to S and masquerades as S by sending {M’, U’, UP’} to C. If C
can successfully verify U’and UP’and S can successfully verify VP’, E is
regarded as being authentic by both of them. That is, E would have the two
same session keys shared with C and S, respectively. Therefore, C can make
them believe that they each are talking to the intended party. However, for
verifying U’and UP’, C should compute H(M, B') and H(Flag, K, B'). And
for verifying VP’, S should calculate H(Y', T, B''), where B'=
(B.g−H(PW) ).N=B''=(gH(s, ID) ).N. Without the knowledge of PW or s, E
can’t compute valid U’, UP’, and VP’. Hence, the MIMA fails.

C E(S) E(C) S

1.{ID, VP, Y⊕Z, T, N} 2.{ID, VP’, Y’⊕Z’, T’, N’}

4.{M’, U’, UP’} 3.{M, U, UP}

Fig. 8. The MIMA on authentication and password change in section 3.1.2.(B)

(b) Similarly, we launch a MIMA on the proposed improvement in section 3.2 and
also illustrate it in Fig. 9. In the figure, after C sends {ID, m_gx} to S, for
impersonating S, E forges m_gx to be m_g x’, then he forwards {ID, m_gx’} to
S. Likewise, after S sends out {m_gy, ch, sat}, E replaces it and sends his
forged message {m_gy’, ch’, sat’} to C. Subsequently, after C sends out {rsc},
E replaces it and sends {rsc’} to S. If C and S can successfully verify sat’and
rsc’respectively, E is authenticated by the two communicating parties. Then,
E will have the two right session keys shared with C and S, respectively.
However, for verifying sat’, C should compute H(gxy, IDPW_dig, rs’), and
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for verifying rsc’, S should calculate H(gxy, rs, IDPW_dig), where x is a
random number chosen by C, and rs, y are chosen by S (as shown in Fig. 6).
Obviously, without the knowledge of IDPW_dig, E can’t successfully be
authenticated by C and S, respectively. Not to mention, E doesn’t know the
values of rs and gxy. Therefore, the MIMA on this improvement fails.

C E(S) E(C) S

{ID, m_gx} {ID, m_gx’}

{m_gy’, ch’, sat’} {m_gy, ch, sat}

{rsc} {rsc’}

Fig. 9. The MIMA on (b) in section 3.2

4.8 Preventing the on-line password guessing attack

Suffering on-line password guessing attack means that an attacker can successfully
guess a legal user’s password on line. Since the two improvements we proposed have
the mutual authentication function. Only the user with the right password can pass the
authentication of the server. Therefore, any attempt to launch a password guessing
attack will be detected by the server. Moreover, we can set both improvements to
tolerate some times of wrong password logins, e.g., three time. If the number of
wrong login times is reached, the system would reject the login request. Under such a
setting, both of our schemes can resist the on-line password guessing attack.

4.9 Preventing smart-card-lost attack

Smart-card-lost attack means an attacker can launch various attacks when he gets a
legal user’s smart card. In the following, we discuss two of the most common attacks
launched under such a situation, impersonation attack and off-line password guessing
attack.

(a) Suppose C’s smart card is lost and obtained by E. Through, E can read the
value of B. However, without the knowledge of s, E still can’t get the value 
of gH(s, ID), where s is the secret of S. Hence, E can’t launch the off-line
password guessing attack, for example, he may guess password PW as PW'
and verify whether B.g−H(PW') is equal to gH(s, ID). Therefore, the off-line
password guessing attack can’t work.As for the impersonation attack
prevention, we analyze them respectively below for the two scenarios.

 In the scenario of authentication only, if E has got C’s smart card and knows
the value of B. He starts the authentication protocol for being authenticated
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by S. However, he doesn’t know C’s password PW. He can not deduce C’s

B'(=(B.g−H(PW)).N) and henceforth V(= H(T, B')) which will be verified
by S (as shown in Fig. 4). Therefore, he can’t be authenticated by S
successfully. In other words, the impersonation attack fails.

 Similarly, in the scenario of authentication and password change, assume
that E has got C’s smart cardand knows B. He starts the authentication
protocol for being authenticated by S (as shown in Fig. 5). However, he
faces the same problem as stated above in  that he doesn’t know C’s
password PW. He can not deduce C’s B' and hence VP. Since for being
authenticated by S, E generates a random x, computes N=gx, and randomly
selects two passwords PW'' and PW''' as the old and new one respectively.
He then computes Y=g−H(PW'''), B'=B.g−H(PW'').N, and Z= B.g−H(PW''), and
let VP=H(Y, T, B' ). However, due to B=gH(s, ID)+H(PW) and PW is not equal
to PW'' with nonnegligible probability, without the knowledge of s and PW,
VP can hardly be authenticated by S since B' (computed by E) is not equal
to B'' (deduced by S). That is, he can not be authenticated by S. Therefore,
E can’t launch the impersonation attack.

(b) For the protocol using no smart cards, we needn’t examineit.

4.10 Preventing DoS attack after password changing

Suffering DoS attack means that if an attacker temporarily gets access to the
client’s smart card and successfully guesses the password. Then, he can perform the
password change phase to replace the old password with his new one. This would
result in making the legal user’s password invalid and thereafter the server will deny
providing any service to the legal user. However, we have shown above that both of
our improvements can prevent smart-card-lost attack, on-line, and off-line password
guessing attack (as shown in section 4.5, 4.8, and 4.9 respectively). That is, even an
attacker E can temporarily get access to the client’s smart card, he can’t successfully
launch smart-card-lost attack, on-line, or off-line password guessing attack.
Consequently, our two improvements can resist against the DoS attack.

5. Discussion and comparison

In this section, we first demonstrate that both of our two improvements, (1) (on [9])
and (2) (on [12]), are more efficient and secure than [9], [12], and all other existing
2PAKE schemes. Then, we show why the improvement on [9] can meet the ten
requirements as indicated in Section 2.1.5
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5.1 Low communication cost

From in Fig. 1 and Fig. 2, we know that Liao et al.’s protocol [9] needs three
passes and Hölbl et al.’s protocol [12] needs four passes. However, our improvement
on Liao et al.’s protocol needs only two passes in both of the two scenarios (as shown
in Fig. 4 and 5 respectively), and the improvement on Hölbl et al.’s protocolneeds
only three passes. Due to the reason that when we estimate the efficiency of a protocol,
the number of passes is always the dominant factor when compared with its
computational overhead. Therefore, our improvements are more efficient than [9] and
[12], respectively.

In the following, we make comparisons, in the aspects of needed number of passes
and whether it can satisfy the ten security features (STSF) listed in Section 4, among
our two schemes and other existing 2PAKE protocols [1-12, 30-36] as mentioned in
Section 1 (Here, we ignore schemes [13-19] since they didn’t propose improvements
or new methods). We show the results for the smart-card password based schemes in
Table 1, and for the non-smart-card password based schemes in Table 2, respectively.
For convenience, in the tables, we use notations i(1) and i(2) to denote the
improvements on [9] and [12], respectively.

Table 1. Comparisons in passes and STSF for smart-card password based schemes

schemes i(1) [1] [2] [3] [5] [6] [7] [8] [9] [10] [30] [31] [32] [33] [34] [35] [36]

passes 2 2 3 3 3 1 3 3 3 4 2 2 2 3 2 4 3

STSF ○ × ○ ○ ○ × × × × × × × × ○ × ○ ×

Table 2. Comparison in passes and STSF for the
non-smart-card password based schemes

schemes i(2) [11] [12] [4]

passes 3 2 4 4

STSF ○ × × ×

From Table 1 and 2, we can see that both of our improvements, i(1) (smart-card
password based) and i(2) (non-smart-card password based), are the most efficient and
secure than all of the proposed schemes.

5.2 Ten requirements satisfaction of our improvement on Liao et al.’s scheme

For the improvement on Hölbl et al.’s protocolusing no smart card, in this section,
we only show that the improvement on Liao et al.’sscheme can meet Liao et al.’s ten
requirements for a smart-card password based authentication protocol.
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R1. It needs no password or verifier tables.

Our improvement (as described in Section 3.1) needs no password or
verifier tables stored in the server’s memory or in the clients’ smart cards.
Hence, it meets this requirement.

R2. The clients can choose and change their passwords at will.

Since in our schemes, the password change request can only be accepted
after successful mutual authentication. This guarantees that only the real card
holder can securely and freely change his password. We have shown this in
Section 3.1.2.(B). Put it another way, the improvement we proposed on the
password change protocol can let the client choose and change his password
freely and securely.

R3. The clients need not reveal their password to the administrator of the server.

Our register phase is the same as the one in Liao et al.’s protocol. Hence,
the password is not revealed to the administrator of the server.

R4. The passwords are not transmitted in plaintext over the Internet.

In the two scenarios, (A) and (B), of our improvement in Section 3.1, the
password is not transmitted in a clear form. Hence, the improvement can
satisfy this requirement.

R5. It can resist the insider (a legal user) attacks.

We have demonstrated this in Section 4.6.(a).

R6. It can resist against the replay attack, password guessing attack, modification-
verifier-table attack, and stolen-verifier attack.

Since our improvement needs no verifier table (as does in Liao et al.’s
protocol), it can resist the modification-verifier-table attack and stolen-verifier
attack. In addition, we have demonstrated that our protocol can resist the
replay attack in Section 4.4, and password guessing attack in Section 4.5 and
4.8, respectively.

R7. The length of a password is appropriate for memorization.

Although Liao et al.’sprotocol [9] suffers from the password guessing
attack, our improvement can withstand this kind of attack. Since, the client’s
password is first hashed then computed with several secret parameters which
are unknown to any attacker. Although, an attacker may eavesdrop on the
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communication line and get the value of V (in Fig. 4) or VP (in Fig. 5).
However, the value of B in both of them is first randomized by g−H(PW).N and
then hashed by a hash function H. Due to the one-way property of a secure
hash function, the attacker has no idea about the value of B in both cases.
Therefore, he hasn’t any information available to guess the password. Not to
mention, our scheme can prevent on-line and off-line password guessing attack.
That is, our improvement is really secure even if the client uses a weak
easily-memorized password. In other words, our protocol can let the client use
an easy-remember password.

R8. It is efficient and practical.

Other than its low communication cost as described in Section 5.1, our
improvement has another advantage that it needs no complex computation
(such as bilinear pairing [1, 6, 7]), it only uses the computations of hash
functions and Diffie-Hellman key agreement as performed in the original one
[9]. Hence, our improvement is efficient and practical.

R9. It can achieve mutual authentication.

We have demonstrated this in Section 4.1.(a).

R10. It can resist password guessing attacks even if the smart card is lost.

We have demonstrated this in Section 4.9.(a).

6. Conclusion

In this article, we have analyzed and improved the two password-based
authentication protocols, [9] and [12], and shown that both of our improvements are
not only more secure but also more efficient than the two original schemes (reviewed
in Section 2). Especially, we also have shown that our improvement on Liao et al.’s 
protocol not only can satisfy the ten requirements (proposed by Liao et al. themselves)
but also can withstand both DoS attack on the password change phase and the
password guessing attack if the smart card is lost. Moreover, we have made
comparisons among our two improvements and the other proposed schemes on both
the communicational cost (needed number of passes) and the ten security features
(listed in Section 4) in Table 1 and Table 2, respectively. From the tables, we conclude
that both of our improvements can satisfy the ten security features and have lower
communication cost while compared with all of the other proposed password based
schemes nowadays.
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Appendix A

In the following (A.1 to A.7), we first briefly review the scheme then show the
attack.

A.1 Why does Bindu et al.’s scheme [7] suffer from the smart-card-lost attack
launched by an insider?

Review
There are three phases in Bindu et al.’s scheme: the registration phase, the

login phase and the authentication phase.
In the registration phase, the server S issues to legal user i a smart card which

contains mi and Ii, where mi=H(IDi⊕s)⊕H(s)⊕H(PWi), Ii=H(IDi⊕s)⊕s, and s is

S’s secret key.
When i wants to login to S, he starts the login phase by computing ri=gx (x is a

random number chosen by i), M=mi⊕H(PWi), U=M⊕ri, R=Ii⊕ri= H(IDi⊕s)⊕s
⊕ri, and ER[ri, IDi, T] (T is a timestamp, and ER[ri, IDi, T] is a ciphertext

encrypted by the secret R). He then sends {U, T, ER[ri, IDi, T]} to S.
In the authentication phase, after receiving {U, T, ER[ri, IDi, T]} at timestamp

Ts, S computes R= U⊕H(s)⊕s =M⊕ri⊕H(s)⊕s =mi⊕H(PWi)⊕ri⊕H(s)⊕s =
H(IDi⊕s)⊕H(s)⊕H(PWi)⊕H(PWi)⊕ri⊕H(s)⊕s = H(IDi⊕s)⊕ri⊕s, decrypts
ER[ri, IDi, T], checks to see if Ts−T is less than △T, and compares R with H(IDi

⊕s)⊕s⊕ri to see if they are equal. If they are, he sends { Ts, ER[rs, ri+1, Ts]} to i,

where rs=gy and y is a random number chosen by S. After that, i verifies the
validity of the time interval, decrypts ER[rs, ri+1, Ts], and checks to see if ri+1 is
correct or not. If it is, S is authentic. Then, i sends {EKus[rs+1]} to S, where
Kus=rs

x=gxy. S decrypts the message and checks to see if rs+1 is correct or not. If
it is, i is authentic.

Attack
If C lost his smart card and the card is got by an insider E, E can impersonate C

to log into S. We show the attack in the following.

For that C’s smart card stores mc=H(IDc⊕s)⊕H(s)⊕H(PWc) and Ic=H(IDc⊕s)
⊕s, and E’s smart card stores me=H(IDe⊕s)⊕H(s)⊕H(PWe) and Ie=H(IDe⊕s)
⊕s, suppose E gets C’s smart card but doesn’t have the knowledge of PWc, E can
choose a random number x and computes rc=gx, V= me⊕Ie⊕H(PWe)=H(s)⊕s,
M=Ic⊕V= H(IDc⊕s)⊕s⊕H(s)⊕s =H(IDc⊕s)⊕H(s) which equals mc⊕H(PWc),
U=M⊕rc, and R= Ic⊕rc. Then, E masquerades as C by sending {U, T, ER[rc, IDc,
T]} to S. After receiving the message, S computes R=U⊕H(s)⊕s and compares
R with H(IDc⊕s)⊕s⊕rc. If they are equal, S sends C the message { Ts, ER[rs,
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rc+1, Ts]}. E intercepts the message, decrypts ER[rs, rc+1, Ts], and uses rs to
compute Kus=rs

x=gxy. E then can send a correct message {EKus[rs+1]} to S, to let
S authenticate him as C. In other words, insider E can successfully launch a
smart-card-lost attack.

More clarity, we demonstrate why R=U⊕H(s)⊕s is equal to H(IDc⊕s)⊕s⊕rc

by the following equations.

R=U⊕H(s)⊕s
= M⊕rc⊕H(s)⊕s ······································································· ∵ U=M⊕rc

= Ic⊕V⊕rc⊕H(s)⊕s ································································· ∵ M=Ic⊕V
= H(IDc⊕s)⊕s⊕V⊕rc⊕H(s)⊕s ·································· ∵ Ic=H(IDc⊕s)⊕s
= H(IDc⊕s)⊕s⊕H(s)⊕s⊕rc⊕H(s)⊕s ··················· ∵ V=H(s)⊕s
= H(IDc⊕s)⊕s⊕rc

A.2 Why isJuang et al.’s [8] protocol vulnerable to the password guessing attack
if the smart card is lost?

Review
In [8], if an attacker gets C’s smart card, he can successfully launch an off-line

password-guessing attack for impersonating C to log into the server S. In the
following, we first review Juang et al.’s protocol and then show the attack.

Their protocol consists of four phases: the setup phase, the registration phase,
the login and authentication phase, and the password changing phase.

In the setup phase, S chooses two secrets s, x and publishes Ps=sP, where P is a
generator of an additive cyclic group G1 with a prime order q.

In the registration phase, the server S issues to legal user i a smart card which
contains bi (bi=Ex[H(PWi, b), IDi, H(H(PWi, b), IDi)] and Ex[M] is a ciphertext of
M encrypted by S’s secret key x) and b (a random number chosen by i).

When i wants to log into S, i starts the login and authentication phase and
sends {aP, α} to S, where a is a random number chosen by i, α=EKa[bi], Ka=H(aP,
Ps, Q, ê(Ps, aQ)), ê: G1×G1→G2 is a bilinear mapping, Q=h(IDs), h(.) is a
map-to-point hash function h:{0,1}* → G1, and IDs is S’s identification.

Subsequently, S chooses a random number r, computes the session key
sk=H(H(aP, Ps, Q, ê(aP, sQ)), r, IDi, IDs) =H(Ka, r, IDi, IDs) since ê(Ps, aQ)=
ê(aP, sQ) , and sends {Auths, r} to user i, where IDi is i’s identification,
Auths=H(Ka, H(PWi, b), r, sk), and H(PWi, b) is obtained from decrypting αand
bi. Then, i computes the session key sk. For authenticating S, he verifies Auths to
see if it is equal to H(Ka, H(PWi, b), r, sk). If it is, i computes and sends {Authi}
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to S, where Authi=H(Ka, H(PWi, b), r+1, sk) and H(PWi, b) is the hash result of b
stored in the smart card with PWi inputted by i. Finally, for authenticating i, S
checks to see if Authi is equal to H(Ka, H(PWi, b), r+1, sk).

Attack
In this protocol, it can be easily seen that if user C lost his smart card and the

card is got by an insider E, E can impersonate C to log into S. We show the attack
in the following.

E reads out b and bc (which equals Ex[H(PWc, b), IDi, H(H(PWi, b), IDi)])
stored in C’s smart card but he doesn’t have the knowledge of PWc. He can
choose a random number c, computes cP, Kc=H(cP, Ps, Q, ê(Ps, cQ)), α=EKc[bc],
starts the protocol, and masquerades as C to send { cP, α} to S. After receiving
the message, S chooses a random number r, computes session key sk=H(Kc, r,
IDc, IDs), Auths=H(Kc, H(PWc, b), r, sk), and sends {Auths, r} to C. E intercepts
the message and launches an off-line password guessing attack. He chooses a
possible password PW', computes Kc=H(cP, Ps, Q, ê(Ps, cQ)), sk=H(Kc, r, IDc,
IDs), H(Kc, H(PW', b), r, sk) and checks to see if it is equal to the received Auths.
If it is, the attacker successfully gets C’s password PWc which is equal to PW'.
Subsequently, E can masquerade as C by using PW' and C’s smart card to log into
S.

A.3 Why are the protocols of Goriparthi et al.[6] and Wang et al.[31] vulnerable
to the DoS attack on the password change phase which can make the
password invalid after their protocol run?

Review of [6]
In the password change phase of Goriparthi et al.’s protocol [6], when client C

wants to change his password PW, he keys his ID and PW to his smart card. The
smart card verifies ID (without verifying his password PW) to see if it is correct.
If it is, the smart card will subsequently receive a new password PW* submitted
by C and compute Reg*

ID= RegID –h(PW)+h(PW*)= s.h(ID)+h(PW*), where
RegID= s.h(ID) + h(PW) is stored in C’s smart card, h(.) is a map-to-point hash
function h:{0,1}*→G1, and G1 is a group on an elliptical curve. Finally, the smart

card will replace RegID with Reg*
ID.

Attack on [6]
In [6], assume that there is an attacker temporarily gets access to C’s smart card.

He randomly selects two passwords PW' and PW'' as the old and the new ones,
respectively. The smart card will then compute Reg'ID =RegID–h(PW') +h(PW'')=
s.h(ID)+h(PW)–h(PW') +h(PW'') and replace RegID with Reg'ID. This would make
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C’s password PW invalid.

Review of [31]
In Wang et al.’s protocol [31], C inserts his smart card, keys PW, and requests

to change the password PW to a new one PW*. Then, the smart card computes
Ni* = Ni⊕H(PW)⊕H(PW*) and replaces Ni with Ni*, where Ni=H(PWi)⊕H(x) is

stored in C’s smart card, PWi is chosen by the user when he registers at the
remote server S, and x is S’s secret key.

Attack on [31]
Obviously, protocol [31] also exits the same security loophole as does in [6].

Since if an attacker temporarily gets access to C’s smart card and reads the value
of Ni, he can use two random values PW' and PW'' to compute Ni' = Ni⊕H(PW')
⊕H(PW'') and replace Ni with Ni'. From then on, client C can never pass the

authentication and the attack succeeds.

A.4 Why do [30, 32] suffer from the smart-card-lost attack?

Review of [30]
In [30], when user C wants to change his password, he inserts his card and

types his ID and PW. The smart card computes K*1=R⊕H(PW) and compares
K*1 with K1 to see if they are equal, where R(=K1⊕H(PWc)) and K1(=H(ID⊕x)
⊕N ) are stored in C’s smart card, PWc is chosen by the user when he registers at

the remote server S, and N is a random number. If they are, the card accepts the
password change request and C inputs a new password PW*. Then, the card
computes R*= K*1⊕H(PW*) and K*2= K2⊕H(PW⊕H(PW))⊕H(PW*⊕
H(PW*)), where K2=H(ID⊕x⊕N)⊕H(PWc⊕H(PWc)) is also stored in C’s smart

card. Finally, the smart card will replace R and K2 with R* and K*2, respectively.

Attack on [30]
An attacker who gets C’s smart card and reads the values of R, K1, and K2 can

launch a password-guessing attack. He chooses a possible password PW',
computes K'1=R⊕H(PW'), and checks to see if K'1 and K1 are equal. If they are,

PW' is the correct password. Then, for changing the password from PW' to PW*,
the attacker logins to the server and computes R*= K'1⊕H(PW*) and K2

* = K2⊕

H(PW'⊕H(PW')) ⊕H(PW*⊕H(PW*)). He then replaces R and K2 with R* and

K2
*, respectively. Eventually, he can masquerade as C to log into the server. That

is, he can successfully implement a smart-card-lost attack.

Review of [32]
In [32], when user C wants to change his password, he inserts his card and

types his ID and PW. The smart card computes P*=R⊕H(b⊕PW), and V*=H(P*
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⊕H(PW )), and compares V* with V, where PW is C’s password inputted for

being changed, and R, b, and V are stored in C’s smart card. If they are equal, the
card accepts the password change request and then computes Rnew=P*⊕H(b⊕
PW*) and Vnew=H(P*⊕H(PW*)), where PW* is a new password submitted by C.

Finally, the smart card replaces V with Vnew.

Attack on [32]
Assume that an attacker who can get C’s smart card reads the values of R, b,

and V and implements a password-guessing attack. He chooses a possible
password PW', computes P'=R⊕H(b⊕PW' ) and V'=H(P'⊕H(PW' )), and checks

to see if V' and V are equal. If they are, PW' is the correct password. Then, for
changing the password from PW' to PW'', the attacker logins to the server and
computes R''=P'⊕H(b⊕PW'' ) and V''=H(P'⊕H(PW'' )), where PW'' is a new

password submited by E. Finally, the smart card replaces R and V with R'' and V'',
respectively. The attacker can therefore masquerade as C to log into the server.
That is, the attacker successfully implements a smart-card-lost attack.

A.5 Why does Xu et al.’s protocol [34] is vulnerable to the insider impersonation
attack?

Review
We first briefly review the protocol [34] and then present our attack.

Xu et al.’s protocol consists of three phases: the registration phase, the login
phase and the authentication phase.

In the registration phase, user C submits his IDc and PWc to the server S. S
issues C a smart card which stores C’s identity IDc, and B=H(IDc)x+H(PWc),
where x is S’s secret key and PWc is C’s password.

In the login phase, user C inputs IDc and PWc to his smart card. The card
obtains system’s timestamp T, chooses a random number v, computes
Bc=(B-H(PWc))v =H(IDc)x v, W=H(IDc) v, and C1=H(T, Bc, W, IDc), and sends { IDc,
C1, W, T } to S.

In the authentication phase, after receiving { IDc, C1, W, T } at time T*, S
computes Bs= W x, and checks to see if IDc is valid, T*−T < △T, and C1 is equal

to H(T, Bs, W, IDc). If they are, S selects a random number m, sets Ts to be the
current time, computes M=H(IDc)m, Cs=H(M, Bs, Ts, IDc), and sends { IDc, Cs, M,
Ts } to C. After receiving the message, C validates IDc and Ts, computes H(M, Bc,
Ts, IDc), and compares it with the received Cs. If they are equal, S is authentic.
Then, C and S can compute the common session key as sk=H(IDc, M, W, M v) and



28

sk=H(IDc, M, W, W m), respectively.

Attack
Assume that a malicious insider U wants to masquerade as C to access S’s

resource. He reads B from his smart card, obtains system’s timestamp Tu, chooses
a random number r, computes Bu=(B-H(PWu))r = H(IDu)xr, W=H(IDc)r, C1=H(Tu,
Bu, W, IDc), and sends { IDc, C1, W, Tu } to S.

After receiving the message, S validates IDc and Tu, computes Bs= W x =H(IDc)r

x, and checks to see if the received C1 is equal to the computed H(Tu, Bs, W, IDc).
In this case, we can see that C1 is doomed to be equal to H(Tu, Bs, W, IDc). So, U
(who masquerades as C) is authentic. Finally, S obtains the system’s timestamp Ts

and sends { IDc, Cs, M, Ts } to U, where M=H(IDc)m and m is a random number
chosen by S. U also can compute the session key as sk=H(IDc, M, W, M r ) shared
with S. Therefore, user U’s impersonation attack succeeds.

A.6 Why do both Hölbl et al.’s protocols [37] fail ?

Hölbl et al. proposed two improvements of two-party key agreement protocols.
In the following, we first briefly review then present our attack on both of their
protocols, respectively.

Review of the first protocol
Hölbl et al.’s first protocol consists of three phases: the system setup phase, the

private key extraction phase, and the key agreement phase.

In the system setup phase, key generation center (KGC) chooses a random

number xs and keeps it secret. He computes ys=gxs and publishes it.

In the private key extraction phase, with each user having his identity ID, KGC
selects a random number ki, and calculates i’s private key vi=Iiki+xsui (mod p-1)

and public key ui=gki (mod p), where Ii=H(IDi).

In the key agreement phase, user A chooses a random number ra, computes ta=

gra , and then sends { ua, ta, IDa } to user B. After receiving { ua, ta, IDa }, B
chooses a random number rb , calculates tb= grb, and then sends { ub, tb, IDb }
back to A. Finally, A and B can compute their common session key,

K=(ub
Ib.ys

ub.tb)(va+ra)= g(vb+rb).(va+ra) and K=(ua
Ia.ys

ua.ta)(vb+rb)=g(va+ra).(vb+rb),
respectively, where Ia=H(IDa) and Ib=H(IDb).

Attack on the first protocol
Assume that an insider C calculates Ic=H(IDc) and q=gcd(Ic, uc), and computes

w=Ic/q, z=uc/q, and j=vc/q, where vc is C’s private key. Hence, gcd(w, z)=1. Then,
he can use the extended Euclid’s algorithm to find αand βboth satisfying that
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α.w+β.z =1. As a result, he can obtain both xs and kc, since vc=1.jc
.qc=(α.w+β.z).jc

.qc

=(α.Ic/q+β.uc/q).j.q=(α.Ic+β.uc).j=Ic
.(α.j)+(β.j).uc and vc=Ic

.kc+xs
.uc, where xs is

KGC’s secret key and kc is a random number selected by KGC satisfying uc=gkc.
More clearly, the value xs he obtains is equal to β.j.

After obtaining xs, C can deduce any user’s private key in the same manner. As
an example, in the following, we demonstrate how C can deduces i’s private key,
ki. C calculates Ii=H(IDi) and qi=gcd(Ii, ui), computes wi=Ii /qi and zi=ui /qi, and
then uses the extended Euclid’s algorithm to compute γand εsatisfying that
γ.wi+ε.zi=1. Finally, since vi=1.ji

.qi =(γ.wi+ε.zi).ji
.qi =(γ.Ii/qi+ε.ui/qi).ji.qi =(γ.Ii+ε.ui).ji

=Ii
.(γ.ji)+(ε.ji).ui and vi =Ii

.ki+xs
.ui, he can calculate ji=xs/εand thus obtains i’s

private key by computing vi=.ji
.qi. With the knowledge of i’s private key, insider C

can impersonate user i to communicate with any other legal user. That is, to a
minimum, an insider attack exists.

Review of the second protocol
Hölbl et al.’s second protocol consists of three phases: the system setup phase,

the private key extraction phase, and the key agreement phase.

The system setup phase of this protocol is the same as the one in the first
protocol.

In the private key extraction phase, with each user having his identity ID, KGC
selects a random number ki, and calculates i’s private key vi=ki+xs

.H(IDi, ui) and

public key ui=gki .

In the key agreement phase, user A chooses a random number ra, computes ta=

gra, and then sends { ua, ta, IDa } to user B. After receiving { ua, ta, IDa }, B
chooses a random number rb , calculates tb= grb, and then sends { ub, tb, IDb } to A.
Finally, A and B can compute their common session key, K=

(ub
.ys

H(IDb,ub).tb)(va+ra) = g(vb+rb).(va+ra) and K= (ua
.ys

H(IDa,ua).ta)(vb+rb) =
g(va+ra).(vb+rb), respectively.

Attack on the second protocol
Likewise, we can launch the same attack, as do in the first one, on this scheme.

Since gcd(1, H(IDc, uc))=1, an insider C can use the extended Euclid’s algorithm
to find αand βboth satisfying that α.1+β.H(IDc, uc) =1. And since vc=kc+xs

.H(IDc,
uc) and 1=(kc/vc).1+(xs/vc).H(IDc, uc), he can obtain both xs and kc by letting xs=β.vc

and kc=α.vc , where vc is C’s private key, xs is KGC’s secret key and kc is a random

number selected by KGC satisfying uc=gkc. Consequently, similar to the result as
shown in the attack of the first protocol, insider C can impersonate user i to
communicate with any other legal user. That is, to the minimum, there exists an
insider attack in their second scheme. Therefore, the protocol fails.
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A.7 Why does Li et al.’s protocol [36] suffer from the smart-card-lost attack?

Review

We first briefly review the registration phase, the login phase and the authenti-
cation phase of protocol [36] and then present our attack.

In the registration phase, user C submits his IDc, PWc, and his personal
biometric Bc to the server S. S issues C a smart card which stores the values of
IDc, fc=H(Bc), and ec=H(IDc, x)⊕H(PWc, fc), where x is S’s secret key.

In the login phase, user C inputs IDc and PWc to his smart card and inputs his
personal biometric Bc on the specific device to check if H(Bc) is equal to fc stored
in the smart card. If it is, the card selects a random number Rc, computes M1= ec

⊕H(PWc, fc)=H(IDc, x), M2 = M1⊕Rc, and sends { IDc, M2 } to S.

In the authentication phase, after receiving { IDc, M2 }, S checks to see if IDc is
valid. If it is, S chooses a random number RS, computes M3=H(IDc, x), M4= M2⊕

M3= Rc, M5 =M3⊕RS, M6=H(M2, M4), and sends { M5, M6} to C. After receiving

S’s message, C verifies whether M6 is equal to H(M2, Rc). If it is, S is authentic. C
then computes M7=M5 ⊕M1=M3⊕RS⊕M1=H(IDc, x)⊕RS⊕H(IDc, x)=RS,

M8=H(M5, M7), and sends {M8} to S. After receiving C’s message, S verifies
whether M8 is equal to H(M5, Rs). If it is, C is authentic. S then accepts C’s login
request.

Attack
Assume that an attacker E gets C’s smart card and reads the values of IDc, fc

and ec. He can successfully launch a password-guessing attack as shown below. E
chooses a random number Me and sends {IDc, Me} to S. After receiving the
message, S checks to see if IDc is valid. If it is, S chooses a random number RS,
computes M3=H(IDc, x), M4= Me⊕M3, M5= M3⊕RS, M6=H(Me, M4), and sends

{ M5, M6} to E. After receiving S’s message, E terminates the communication,
chooses a possible password PW', computes M'=H(Me, Me⊕ec⊕H(PW', fc)), and

compares to see if M' is equal to M6. If they are, PW' is the correct password,
since Me⊕ec⊕H(PW', fc)=Me⊕H(IDc, x)⊕H(PWc, fc)⊕H(PW', fc). If PW' =PWc,
then the equation equals to Me⊕H(IDc, x) which equals to Me⊕M3= M4. That is,

M'=H(Me, M4)=M6. E can therefore masquerade as C to log into the server. In
other words, the attacker can successfully implement a smart-card-lost attack.
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