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Abstract. A cryptographic pairing evaluates as an element of a finite
extension field, and the evaluation itself involves a considerable amount
of extension field arithmetic. It is recognised that organising the exten-
sion field as a “tower” of subfield extensions has many advantages. Here
we consider criteria that apply when choosing the best towering con-
struction, and the associated choice of irreducible polynomials for the
implementation of pairing-based cryptosystems. We introduce a method
for automatically constructing efficient towers for more classes of finite
fields than previous methods, some of which allow faster arithmetic.
We also show that for some families of pairing-friendly elliptic curves
defined over Fp there are a large number of instances for which an efficient
tower extension Fpk is given immediately if the parameter defining the
prime characteristic of the field satisfies a few easily checked equivalences.
Keywords: Extension Fields, Pairing implementation, pairing-based
cryptosystems, Euler’s Conjectures.

1 Introduction

When considering the software implementation of a cryptographic scheme such
as RSA, or schemes based on the discrete logarithm problem, an implementation
can be written which performs reasonably efficiently for any level of security.
For example, an RSA implementation with a 1024-bit modulus can easily be
modified to use a 4096-bit modulus, maybe by just changing a single parameter
within the program. The same applies to elliptic curve cryptography where a
generic implementation will perform reasonably well for a curve with a subgroup
of points of size 160-bits, 192-bits or 256-bits. Of course an implementation
specially tailored for, and hard-wired to, a particular level of security will perform
somewhat better, but not spectacularly so.

The situation for pairing-based cryptography is fundamentally different. An
efficient implementation at the 80-bit level of security using the Tate pairing on
? Research supported by the Claude Shannon Institute, Science Foundation Ireland
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a Cocks-Pinch pairing-friendly curve [10] will be completely different from an
implementation at the 128-bit level using the R-ate [16] pairing on a BN curve
[6] and very little code will be reusable between the two implementations. In
this situation the development and maintenance of good quality pairing code
becomes difficult and there is a compelling case for the development of some
kind of automatic tool – a cryptographic compiler – which can generate good
quality code for each case [9].

When using pairing-based protocols, it is necessary to perform arithmetic in
fields of the form Fqk , for moderate values of k, so it is important that the field
is represented in such a way that the arithmetic can be performed as efficiently
as possible. It is this aspect of the implementation of pairing-based protocols
which is the focus of this paper. The first contribution of this work is to prove a
result which gives a method of checking if a binomial defined over an extension
field is irreducible by testing a single element in the base field. This result gives a
new method which complements the existing method and gives a means for au-
tomatically constructing efficient towers of extensions of finite fields in the cases
for which the existing method can not be used or do not give the most efficient
algorithms. The resulting constructions are efficient and the usefulness of these
results will be shown by the specific application to pairing-based cryptography.
The second contribution of this work is to give some constant constructions for
the tower extensions for classes of families of pairing-friendly curves.

The remainder of the paper is organised as follows: in §2 the motivation
for the work in this paper will be reinforced. In §3 the specific context will be
presented. Some existing ideas for constructing tower extensions are briefly ex-
plained in §4. A general result to use in the construction of tower extensions
for general fields is given in §5 which is applied to the context of PBC in §6. In
§6.2 Euclid’s conjectures will be presented and used to give concrete tower con-
structions for some specific families of pairing-friendly curves. In §7 the selection
of appropriate polynomials for implementation will be discussed. In §8 we draw
some conclusions.

2 Extension Fields

Consider the implementation of the extension field Fpk . The natural repre-
sentation of the elements of this field is as polynomials of degree k − 1,
Fpk = Fp[x]/f(x)Fp[x], where f(x) is an irreducible polynomial in Fp[x] of de-
gree k. For efficiency reasons some effort might be made to choose f(x) to have
a minimal number of terms and small coefficients. For example, for the field Fp2 ,
where p is a prime and p ≡ 3 mod 4, a good choice for f(x) would be x2 + 1,
and elements can be represented as ax + b, with a, b ∈ Fp. For the case p ≡ 5
mod 8, a good choice for f(x) would be x2 − 2. For the final case p ≡ 1 mod 8
there is no immediately obvious way to choose a suitable irreducible binomial,
but for some small value i which is a quadratic non-residue in Fp, x2 − i would
be appropriate.
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In some settings the value of the extension degree k might be much greater
than 2, in which case the direct polynomial representation becomes more arith-
metically complex. For elliptic curve cryptography implemented over “Optimal
Extension Fields”, (OEFs) as suggested by Bailey and Paar [3], extensions as
high as Fp30 are considered; in pairing-based cryptosystems, an extension degree
of up to 50 is reasonable [10]. OEFs are usually defined as extensions with re-
spect to a small single-word pseudo-mersenne prime. The extension fields that
arise in the context of efficient implementations of pairing-based cryptography,
however, are rather different.

If the extension degree is a parameter of the implementation then the poten-
tially uncomfortable situation arises where, if the extension degree changes, an
optimal implementation must be re-written again, largely “from scratch”. The
alternative seems to be to use generic polynomial code to construct the exten-
sion field, making the implementation slow and bulky. A nice compromise that
applies when the extension k is smooth (that is has only small factors) is to use
a “tower” of extensions, where one layer builds on top of the last, and ideally
where each sub-extension is quite small. For example, Fp12 could be implemented
as a quadratic extension, of a cubic extension, of a very efficiently implemented
(and reusable) quadratic extension field Fp2 , as implemented by Devegili et al.
[8].

This idea of using a tower of extensions was suggested by Baktir and Sunar
[19] as a better way of implementing OEFs, and in the process of doing this
they discovered that the resulting simpler implementation resulted in an asymp-
totically improved method for performing field inversion. The point is that it is
relatively easy to implement quadratic and cubic extensions efficiently, whereas
the complexity of implementing generic methods over large extensions might
result in the inadvertent use of sub-optimal methods.

It is also proposed in the IEEE draft standard “P1363.3: Standard for
Identity-Based Cryptographic Techniques using Pairings” that extensions of odd
primes are constructed using a tower of extensions created using irreducible bi-
nomials at each stage [1].

Clearly it is advantageous to use this towering method when implementing a
pairing-based protocol. One issue remains: finding the best tower for a particular
value of k. Obviously, for different values of k, we will need to use different towers;
a very reasonable approach in the context of Pairing-Based Cryptography (PBC)
would be to fix the tower for a particular k. This will be made clear in §6.

The construction does not only depend on k however, but also on p, the
characteristic of the base field. There is an existing method for constructing such
towers given by Koblitz and Menezes in [15] which can only be used for some
p with specific properties, so relying on this method alone places unnecessary
restrictions on the parameters of a pairing-friendly curve. Given that pairing-
friendly elliptic curves are quite rare, it is clear that we should aim to reduce the
number of constraints on the parameters that may compromise the efficiency of
the implementation.
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Motivating this work is our ambition to contribute to a “cryptographic com-
piler” [9], that is, a compiler which when given as input the parameters for
a pairing-friendly curve, should be able to automatically generate the optimal
pairing code, including the optimal field arithmetic implementation.

3 Pairings and pairing-friendly elliptic curves

The Tate pairing of two linearly independent points P and Q on an elliptic curve
E(Fqk), denoted e(P,Q), evaluates as an element of the extension field Fqk . If
P is of prime order r, then the pairing evaluates as an element of order r. Here
we focus on the case of non-supersingular elliptic curves over prime fields, that
is, q = p. In practice it is common to choose P as a point on the elliptic curve
over the base field, E(Fp). As is well known, the number of points on this elliptic
curve is p+ 1− t, where | t |≤ 2

√
p (Hasse bound) is the trace of the Frobenius

endomorphism [23].
The Tate pairing is only of interest if it is calculated on a “pairing-friendly”

elliptic curve. This pairing-friendliness entails that r | (pk − 1) for some rea-
sonably small value of k, that is, the rth roots of unity in Fp are contained in
Fpk , the codomain of the pairing. To find the actual parameters of the curve,
however, it is also required that the integer 4p − t2 (always positive as a con-
sequence of the Hasse condition), has a relatively small non-square part D (the
CM discriminant), that is it factors as Dv2 for small D. Such curves can then
be found using the method of complex multiplication (CM) [7].

For the Tate pairing the point Q is commonly represented as a point over
some twist E′(Fpk/d), where d | k, as opposed to being on the curve defined over
the full extension field E(Fpk). When k is even, the quadratic twist (d = 2) can
always be used, when the pairing-friendly curve has a CM discriminant of D = 1
and 4 | k, the quartic twist (d = 4) can be used, if D = 3, 3 | k and k is odd,
cubic twists (d = 3) can be used and when the CM discriminant is D = 3 and
6 | k, the sextic twist (d = 6) can be used. It is preferable to use the highest
order twist available, as this leads to a faster more compact implementation [13].

Variants of the Tate pairing have recently been discovered (the ate pairing
[13], and the R-ate pairing [16]) that are more efficient in some cases, but which
require the roles of P and Q to be reversed. This makes it even more important to
use the highest order twist available as a significant part of the pairing calculation
is a point multiplication of the first parameter (now Q), which is more expensive
than in the Tate pairing.

In their taxonomy of pairing-friendly curves [10], Freeman, Scott and Teske,
following a recommendation from Koblitz and Menezes [15, §8.3], particularly
recommend curves for which the embedding degree k is of the form k = 2i · 3j

for i, j ≥ 0. Here we further restrict that i ≥ 1, j ≥ 0 as an even value for k
facilitates the important “denominator elimination” optimization for the pairing
calculation [4]. In each case we prefer curves which support the maximal twist.
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4 Existing ideas for constructing general towers

Let p be an odd prime, and let n,m > 0 be integers. the most obvious way to
construct the tower of sub-extensions of the field Fpnm over Fpn would be to use
a binomial xm−α which is irreducible over Fpn and successively adjoin roots of
the previously adjoined root until the tower has been constructed (we refer to
this as the ‘general method’). We are able to test xm−α for irreducibility using
the following theorem:

Theorem 1. [18, Theorem 3.75] Let m ≥ 2 be an integer and α ∈ F×pn . Then
the binomial xm − α is irreducible in Fpn [x] if and only if the following two
conditions are satisfied:

1. each prime factor of m divides the order e of α ∈ F×pn , but not (pn − 1)/e;
2. If m ≡ 0 mod 4 then pn ≡ 1 mod 4.

The order of γ ∈ Fpn is the smallest positive integer e such that γe = 1 in Fpn

and the order is a divisor of pn − 1.
By Theorem 1 we see that the general method above works for all m 6≡ 0

mod 4. When m ≡ 0 mod 4, this method works if pn ≡ 1 mod 4.
Given the constraints outlined in §3, it is clear that the tower of extensions

used in pairing-based cryptography can be built using a sequence of cubic and
quadratic sub-extensions. This was recognised by Koblitz and Menezes in [15].
They called a field Fpk pairing-friendly (not to be confused with a pairing friendly
elliptic curve) if p ≡ 1 mod 12 and k is of the form k = 2i3j , in which case by
[15, Theorem 2] (which is derived from Theorem 1 above) the polynomial xk−α
is irreducible over Fp if α neither a square not a cube in Fp. The extension can
be constructed using the general method by simply adjoining a cube or square
root of some small such α and then successively adjoining a cube or square root
of the previously adjoined root until the tower has been constructed. If j = 0
then it is sufficient that p ≡ 1 mod 4 and that α be a quadratic non-residue in
Fp. This result gives us an easy method for building towers over pairing-friendly
fields: simply find an element α ∈ Fp which is a quadratic and (when necessary)
cubic non-residue and adjoin successive cube and square roots of α to Fp.

There is one major issue remaining, the strict condition that p ≡ 1 mod 12
to give a pairing-friendly field. When searching for pairing-friendly curves of a
suitable size there are typically other criteria that we wish to meet (for example,
it is preferred that the Hamming weight of the variable that controls the Miller
loop in the pairing calculation should be as small as possible [8]). Having to
skip a nice curve just because p ≡ 3 mod 4 seems unnecessarily restrictive.
Since the publication of [15], new families of pairing-friendly elliptic curves have
been discovered which the results of [15] could not have taken into account.
In particular, the KSS curves with embedding degree k = 18 [14] are good for
implementation given the many optimisations possible using these curves. The
condition that p ≡ 1 mod 12 here is completely unnecessary as this condition
arises from condition 2 of Theorem 1 which is not applicable when k = 18.
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Given the many applications of pairings in cryptography and the fact that
the parameters of a pairing-based protocol are already subject to quite strict
constraints, it is clear that there is a necessity for a method to construct towers
for fields which would not be considered pairing-friendly (in the sense of Koblitz
and Menezes) but would otherwise be favourable for implementation of a pairing-
based protocol. The term ‘pairing-friendly’ field is slightly misleading, as there
are families of pairing-friendly elliptic curves attractive for implementation which
are defined over fields which do not necessarily satisfy p ≡ 1 mod 12. In a sense,
the pairing-friendly fields of [15] are the fields, in the context of pairings, over
which it is easy to build the towers. We instead refer to these fields as towering-
friendly as this gives a more accurate description of these fields – the towers over
such fields are easily constructed. This definition is not specific to pairings, but
in this setting we would like to use towering-friendly fields for the most efficient
implementation possible.

Definition 2. A towering-friendly field is a field of the form Fqm , where q is a
prime power, for which all prime divisors of m also divide q − 1.1

In essence, towering-friendly fields are fields for which the tower of sub-extensions
can be easily (and most efficiently) constructed; that is, using binomials. The
OEFs of Bailey and Paar [3] are by definition towering-friendly fields with char-
acteristic a prime of a special form. The fields said to be pairing-friendly by
Koblitz and Menezes are indeed towering-friendly, but these are not the only
towering-friendly fields which occur in the context of pairing-based cryptogra-
phy.

5 General tower construction method

Considering first the general case where p is an odd prime, n > 0 and m > 1 are
integers and we want to construct the tower of sub-extensions of the towering-
friendly finite field Fpnm over Fpn . The general method uses a binomial xm − α
which is irreducible in Fpn [x] and successively adjoins roots of the previously
adjoined root until the tower has been constructed, as in [19]. By Theorem 1
the only restriction on α is that α should not be a qth power in Fpn for any
prime divisor q of m. This method works for all m, m 6≡ 0 mod 4. When m ≡ 0
mod 4, this method will work if pn ≡ 1 mod 4 (which is always true for even
n).

The two issues to address now are:

– we need a method to build a tower when m ≡ 0 mod 4 and pn ≡ 3 mod 4;
– we need to find a suitable irreducible binomial xm−α ∈ Fpn [x] to construct

the tower.
1 This definition is in fact in line with the definition of a generalised OTF as given

in [19]. We use this definition to dispel any ambiguity of towers using primes of
particular forms.
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The first problem has a relatively simple solution. We construct first a quadratic
extension of Fpn , Fp2n , which we will refer to as a base tower, using a binomial.
We now have p2n ≡ 1 mod 4 so we can use the general method to build the
rest of the tower above Fp2n using a binomial xm/2 − α, where α ∈ Fp2n (not
in Fpn). In the particular case of n = 1 this can be done by simply adjoining a
square root of −1. This idea is a generalisation of the approach taken by Barreto
and Naehrig in [6] to construct the field Fp12 over Fp. They first implement an
efficient quadratic extension over the base field, and then look for irreducible
polynomials of the form x6 − α, where α ∈ Fp2/Fp is neither a square nor a
cube.

Remark 3. The idea of a base tower can be generalised: Suppose Fpnm over Fpn

is not a towering-friendly field. Write m = m1m2 such that gcd(pn− 1,m2) = 1
and all the primes dividing m1 divide pn − 1. If all the primes dividing m2

divide pnm1 − 1 then the tower of Fpnm over Fpn can be constructed in two parts
using the general method. First Fpnm1 over Fpn is constructed using a binomial,
this is the base-tower. Then Fpnm = Fpnm1m2 over Fpnm1 is constructed using a
binomial defined over Fpnm1 (not over any subfield of Fpnm1 ). This method can be
implemented recursively to achieve an efficient tower for a non-towering-friendly
extension.

As to the problem of finding a suitable α for constructing the tower (and
also the base tower when necessary), Theorem 1 provides a means for deter-
mining whether a given binomial is irreducible, but it does not give an efficient
method for constructing the towers: taking random small elements then com-
puting their order in the extension field and verifying that the conditions hold is
quite cumbersome, the order could be quite large and this could require a lot of
extension field computation for a single element. Using Theorem 1, however, we
are able to prove a theorem which results in a simpler method for checking the
irreducibility of a polynomial xm−α in certain cases and hence a more practical
method for finding irreducible polynomials to construct the towering-friendly
field extensions, particularly in the context of PBC.

We first recall some definitions and properties which will be used in the
following theorems and proof: Let γ ∈ Fpn . The Norm of Fpn over Fp of γ,
denoted NFpn /Fp

(γ), is the product of all its conjugates,

NFpn /Fp
(γ) =

n−1∏
i=0

(γ)pi

∈ Fp.

The norm is multiplicative, that is, for γ1, γ2 ∈ Fpn ,

NFpn /Fp
(γ1 · γ2) = NFpn /Fp

(γ1) ·NFpn /Fp
(γ2)

and so for any ` ∈ Z+ we have NFpn /Fp
(γ`) = NFpn /Fp

(γ)`.

Theorem 4. Let m > 1, n > 0 be integers, p an odd prime and α ∈ F×pn .
The binomial xm − α is irreducible in Fpn [x] if the following two conditions are
satisfied:
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1. each prime factor q of m divides p − 1 and NFpn /Fp
(α) ∈ Fp is not a qth

residue in Fp;
2. If m ≡ 0 mod 4 then pn ≡ 1 mod 4.

Proof. To prove this theorem, we show that condition 1 of Theorem 4 implies
condition 1 of Theorem 1. We assume that condition 1 of Theorem 4 is true. Let
e denote the order of α in Fpn and q denote a prime divisor of m.

Suppose that q | (pn − 1)/e. This implies that e | (pn − 1)/q and so α is a
qth power in Fpn . Let δ ∈ Fpn be such that δq = α. Taking the norm of α we see
that NFpn /Fp

(α) = NFpn /Fp
(δq) = NFpn /Fp

(δ)q where NFpn /Fp
(δ) ∈ Fp and thus

NFpn /Fp
(α) is a qth residue in Fp, a contradiction, so q - (pn − 1)/e.

We have also assumed that q | (pn − 1) and since q - (pn − 1)/e it is clear
that q | e and so condition 1 of theorem 4 is satisfied.

Using Theorem 4 we are able to verify the irreducibility of a binomial xm−α
over an extension field Fpn [x], where α is an element of Fpn , by checking the
properties of just one particular element of the base field, namely the norm
of Fpn over Fp of α – a much simpler task than computing the order of an
element in Fpn . Theorem 4 can be used in all cases for which the prime divisors
of m also divide p − 1 to automatically generate towers of extensions over all
towering-friendly fields to build an efficient tower of extensions for the extension
field Fpnm . As already mentioned, if condition 2 of Theorem 1 is not satisfied,
the towers can still be easily constructed by first constructing a base tower, a
quadratic extension, then using the theorem to construct the tower over the base
tower.

We now illustrate the usefulness of Theorem 4 by adapting it to the context
of PBC as outlined in §3.

6 Towers in Pairing-Based Cryptography

Given the constraints outlined in §3, it is clear that the tower of extensions can
be built as a sequence of quadratic and cubic sub-extensions. There is some
freedom as to the best way to order the extensions. The choice here may be
influenced by whether or not it is intended to compress the value of the pairing
[21, 12]. This compressed value can then be further efficiently exponentiated in
its compressed form by using Lucas or XTR based methods for times 2 and times
3 compression respectively. This is facilitated by terminating with a quadratic
or a cubic extension respectively.

Consider for example the BN curves [6], which have an embedding degree of
12 and which support the sextic twist t = 6. In this case E(Fp2) arithmetic must
be supported, and so it makes sense that the tower should start with a quadratic
extension over the base field. This can be followed by a cubic extension and then
a quadratic, or indeed the other way around. Assuming that the highest possible
compression should be supported, the tower of choice in this case is 1−2−4−12.
This particular tower construction is given as an example by the IEEE draft
standard [1]. Starting with a quadratic extension where possible is preferred (in
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case a base tower is needed). Taking all these constraints into account, in Table
1 we make the towering recommendations for the curves recommended in [10].

Table 1. Suggested Towers for Curves with Efficient Arithmetic

k ρ D Twist d Construction Tower

4 2 1 4 FST [10] 1-2-4
6 2 3 6 FST [10] 1-2-6
8 1.5 1 4 KSS [14] 1-2-4-8
12 1 3 6 BN [6] 1-2-4-12
16 1.25 1 4 KSS [14] 1-2-4-8-16
18 1.333 3 6 KSS [14] 1-3-6-18
24 1.25 3 6 BLS [5] 1-2-4-8-24
32 1.125 1 4 KSS [14] 1-2-4-8-16-32
36 1.167 3 6 KSS [14] 1-2-6-12-36
48 1.125 3 6 BLS [5] 1-2-4-8-16-48

The ρ-value is given by log(p)
log(r) for p the characteristic of the field over which

the curve is defined and r the cardinality of the group of points on the elliptic
curve.

There have been some advances in arithmetic performance in Fpk based on
the final extension being a quadratic extension [2]. Such towers can also be
constructed using our method.

6.1 Tower construction for PBC

From the definition of towering-friendly fields we are only able to distinguish
on a specific case-to-case basis if a general extension field is a towering-friendly
field.

In the PBC setting we have a little more information. We are able to deter-
mine information about some of the parameters for particular curves in advance
by making some observations. We see from the following discussion that all the
fields Fpk arising when using the families of pairing-friendly curves in Table 1
are towering-friendly.

Elliptic curves with CM discriminant D = 1 Elliptic curves from Table 1
with CM discriminant D = 1 have equations of the form E : y2 = x3 + Ax. We
know that these curves are not supersingular (which is the case for curves with
such equations defined over a prime field with characteristic p ≡ 3 mod 4 [7])
and so p ≡ 1 mod 4. This means that the field is towering-friendly as all D = 1
cases in Table 1 have k = 2n so the Koblitz-Menezes strategy appears to be
optimal. Indeed, in the case of p ≡ 5 mod 8 we can always choose α = 2, which
leads to fast reduction. An implementation can simply tower up quadratically, by
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adjoining the square root of the last adjoined element to build the next extension
at each step.

Elliptic curves with CM discriminant D = 3 For elliptic curves with
CM discriminant D = 3, p will not always be a pairing-friendly prime in the
sense of the Koblitz and Menezes definition, but we do have some information
which will aid us in the construction of the towers over Fp. Given that the CM
discriminant D = 3, we know that the elliptic curve must have an equation of the
form E : y2 = x3 +B. If p ≡ 2 mod 3 then such a curve would be supersingular
[23] and so p ≡ 1 mod 3 must be true. We see then that all the fields resulting
from this construction are towering-friendly.

For the KSS k = 18 curves and FST k = 6 curves we are able to use the
general method in every case without a base tower (as k 6≡ 0 mod 4 and both
2 and 3 divide p− 1). We simply adjoin successive cubic and quadratic roots of
some cubic and quadratic non-residue α ∈ Fp in the recommended order.

For all other families of curves, if the prime p 6≡ 1 mod 4 then we need to use
a base tower to construct the tower. One advantage in this case is that we know
p ≡ 3 mod 4 and so the base tower Fp2 over Fp can be efficiently constructed
by adjoining a square root of −1. This may actually be more efficient than an
implementation using a pairing-friendly field as the arithmetic in Fp(

√
−1) can

be performed faster than in Fp(
√
τ) for some other quadratic non-residue τ ∈ Fp

[11]. The following Corollary (drawing on ideas from Barreto and Naehrig in
[6]) gives a method for finding an appropriate value α such that the polynomial
xm − α is irreducible over a finite field of the form Fp2 = Fp(

√
−1).

Corollary 5. The polynomial xm− (a± b
√
−1) is irreducible over Fp2 , for m =

2i3j, i, j > 0, if a2 + b2 is neither a square nor a cube in Fp.

Proof. For any element a±b
√
−1, NFp2/Fp

(a±b
√
−1) = (a+b

√
−1)(a−b

√
−1) =

a2+b2. The integer m is of the form 2i3j and so by Theorem 4 if a2+b2 is neither
a quadratic nor a cubic residue modulo p, then xm − (a ± b

√
−1) is irreducible

over Fp2 .

This Corollary is basically Theorem 4 in the case p ≡ 3 mod 4, n = 2 and
m = k/2, this is the case of most concern in PBC. Using this corollary, in order
to construct the tower, small values of a and b can be tested until a combination
is found such that a2 + b2 is neither a square nor a cube in Fp. This process
only requires a few cubic and quadratic non-residue tests to be performed on
elements of the base field. Small values for a and b can be found to help improve
efficiency.

As 1
2 of the non-zero elements of Fp are non-squares and 2

3 of the non-zero
elements are non-cubes, such an element must exist; in fact, on heuristic grounds
it is expected that 1

3 of the elements will be neither squares nor cubes, which
the experimental evidence supports [6].

Given a little more information about p, which is easily found, we are able
to give some more specific constructions.
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Construction 6. For approximately 2/3 of the primes p ≡ 3 modulo 8 the
polynomial xm − (1 +

√
−1) is irreducible in Fp2 [x] for m = 2i3j, i, j > 0.

Proof. In this case a2+b2 = 2. The polynomial will be irreducible if 2 is neither a
square nor a cube modulo p. We know that 2 is a quadratic non-residue modulo
p when p ≡ 3 mod 8. The only remaining condition is that 2 is not a cube
modulo p.

All primes p ≡ 1 mod 3 can be written in the form p = 3u2 + v2. As Euler
conjectured (proved by Gauss [17]) 2 is a cubic residue modulo p if and only if
3 | u. Instinctively we would presume that this occurs 1/3 of the time. There is
currently no proof concerning the number of primes in a quadratic sequence but
this is supported by experimental results. So 2 is a cubic non-residue modulo p
for approximately 2/3 of the values of p.

When p ≡ 7 mod 8 the following corollary may be useful:

Construction 7. For approximately 2/3 of the primes p ≡ 2 or 3 modulo 5 the
polynomial xm − (2 +

√
−1) is irreducible in Fp2 [x] for m = 2i3j, i, j > 0.2

Proof. The values of a and b in Corollary 5 in this case are 2 and 1 respectively,
so a2 + b2 = 5. The polynomial will be irreducible if 5 is neither a square nor
a cube modulo p. When p ≡ 2 or 3 modulo 5 we know that 5 is a quadratic
non-residue modulo p and so the only condition left is that 5 should not be a
cube in Fp. With p written in the form p = 3u2 + v2, we know that 5 is a cube
if 15 | a, or 3 | a and 5 | b, or 15 | (a ± b), or 15 | (a ± 2b) [17]. Again, there is
currently no proof concerning the number of primes in a quadratic sequence but
as supported by experimental results we expect that this occurs 1/3 of the time.
So 5 is a cubic non-residue modulo p for approximately 2/3 of the values of p.

The result of Constructions 6 and 7 is that for around 2/3 of the fields not
considered pairing-friendly we have a more automatic and often more efficient
implementation than is possible for pairing-friendly fields.

6.2 Using Euler’s Conjectures

For primes which are equivalent to 2 mod 3 it is easily shown that every element
is a cubic residue modulo p. For primes which are 1 mod 3 Fermat showed that
p can be written as the sum p = a2 + 3b2 for some integers a and b. Euler
conjectured (and Gauss proved) that using this form we can easily determine if
some small elements are cubic residues [17]:

1. 2 is a cubic residue ⇔ 3 | b.
2. 3 is a cubic residue ⇔ 9 | b; or 9 | (a± b).
3. 5 is a cubic residue ⇔ 15 | b; or 3 | b and 5 | a; or 15 | (a± b); or 3 | (2a± b).
4. 6 is a cubic residue ⇔ 9 | b; or 9 | (a± 2b).

2 In this case, the polynomial xm − (1 + 2
√
−1) is also irreducible.
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5. 7 is a cubic residue ⇔ 21 | b; or 3 | b and 7 | a; or 21 | (a± b); or 7 | (a± 4b);
or 7 | (2a± b).

These conjectures can be used once p has been constructed to decide if con-
structions 6 or 7 can be used. For some cases we have this information already.

BN Towers The prime characteristic p of the field over which a BN curve is
defined is parameterised by the polynomial p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1;
an appropriate value x0 is chosen to give p = p(x0). It was noticed by Shirase
[22] that this parameterisation can be written in the form p(x) = a(x)2 + 3b(x)2

thus giving us more information about the towers we can construct for certain
values of x0 without having to perform the quadratic and cubic residue tests
modulo p. We have a(x) = 6x2 + 3x + 1 and b(x) = x. With this additional
information, we now see that we are able to use Theorem 4 to put conditions on
the values of x0, which, when satisfied, give an immediate construction for the
tower of fields of degree 12 over BN primes.

Considering first BN primes p ≡ 3 mod 4 we know that x0 ≡ ±1 mod 4
and that we have a towering friendly field which requires a base tower Fp2 which
can be constructed by adjoining

√
−1 to Fp. We now need to find an element

a+b
√
−1 ∈ Fp2 such that x6−(a+b

√
−1) is irreducible to construct the remaining

extensions. From Corollary 5 we know that x6 − (a + b
√
−1) is irreducible if

a2 + b2 is neither a square nor a cube in Fp. We know from the conjecture 1
that if x0 ≡ ±1 mod 3 then 2 is a cubic non-residue modulo p. For 2 to be
a non-quadratic residue also we need p ≡ 3 mod 8, this implies that x0 ≡ 3
mod 4. Together, these two constraints give the following:

– If x0 ≡ 7 or 11 mod 12 then x6 − (1 +
√
−1) is irreducible over Fp2 =

Fp(
√
−1).

In [22] the same conclusion is drawn, but using a much more elaborate method.
We see that this result supports the claim in Construction 6 as 2/3 of the possible
values of x0 (for p ≡ 3 mod 8) give a p for which 2 is a quadratic non-residue.

Using Theorem 4 we are also able to classify more constructions than those
given in [22]. Using a similar method as above:

– If x0 is odd and x0 ≡ 1, 3, 7, 11, 12 or 13 mod 15 then x6 − (1 + 2
√
−1) is

irreducible over Fp2 = Fp(
√
−1).

Using Euler’s conjectures it is also straight forward to set construction for BN
primes p ≡ 1 mod 4 not needing a base tower.

– If x0 6≡ 0 mod 3 and x0 ≡ 2, 6 mod 8 then x12 − 2 is irreducible;
– If x0 ≡ 1, 3, 7, 11, 12 or 13 mod 15 then x12 − 5 is irreducible;
– If x0 6≡ 0, 2 or 4 mod 9 and x0/2 is odd then x12 − 6 is irreducible.

BN curves are quite plentiful and easy to find. Using BN curves in pairing-based
protocols means that we need an efficient implementation of Fp12 and also of Fp2

as we would use a degree 6 twist. It may be favourable to choose x0 ≡ 1 mod 2
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and x0 satisfying one of the equivalences above so that Fp2 can be constructed as
Fp(
√
−1) and the tower for Fp12 can be constructed using one of Constructions

6 or 7, though these fields would not have originally been considered pairing-
friendly. Given that BN curves are so plentiful, this restriction would not impede
finding curves appropriate for use.

KSS Towers When k = 18 the parameterisation of p(x) can also be written
in the form a(x)2 + 3b(x)2 = p(x) where a(x) and b(x) have integer coefficients.
In these cases we are also able to give the tower construction if the value x0

satisfies some easily checked conditions.

KSS k = 18 The polynomial parameterisation of p for a KSS k = 18 curve is
given by

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401)/21.

We also know that x ≡ 14 mod 42 so substituting x = 42x′ + 14 we obtain the
equation

p(x′) =
461078666496x′8 + 1284433428096x′7 + 1564374047040x′6 + 1088278335648x′5 +
473078255328x′4+131624074008x′3+22896702948x′2+2277529014x′+99213811.

Using Euclid’s algorithm and interpolation we find

a(x′) = 444528x′4 + 629748x′3 + 333396x′2 + 78321x′ + 6908,

and
b(x′) = 296352x′4 + 407484x′3 + 209916x′2 + 48091x′ + 4143,

such that a(x′)2 + 3b(x′)2 = p(x′). Using Euler’s Conjectures we see that:

– If x′0 ≡ 1, 4, 5, 8 mod 12 then x18 − 2 is irreducible over Fp;
– If x′0 6≡ 2, 3, 4 mod 9 then x18 − 3 is irreducible over Fp;
– If x′0 ≡ 7, 9, 12, 14 mod 15 then x18 − 5 is irreducible over Fp;
– If x′0 ≡ a mod 42 then x18 − 6 is irreducible over Fp,

where a = {2, 3, 4, 9, 10, 11, 12, 13, 18, 20, 21, 22, 27, 28, 30, 31, 35, 36, 37, 38,
38, 40, 44, 45, 46, 48, 49, 53, 54, 55, 56, 57, 58, 62, 63, 64, 65, 66};

– If x′0 ≡ 2 mod 7 then x18 − 7 is irreducible over Fp.

7 Twists and choosing α

When choosing a particular value of α to construct the tower we may find that
there are more than one potential values we could use. In this case we must decide
which value α is best for implementation. This is illustrated in the following
example.
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Example 1 The value x0 = 400880400000000916 generates suitable parameters
for a BN curve. Using this x0 we see that p ≡ 3 mod 4 and we first need a base
tower Fp2 = Fp(

√
−1) before we use the general construction method. We see

also that x0 ≡ 3 mod 15 and x0 is odd so, as shown in section 6.2, we know
immediately that 5 is a cubic and quadratic non-residue in Fp and so x6 − (1 +
2
√
−1) is irreducible over Fp2 = Fp(

√
−1). Using the same reasoning, however,

we also know that x6 − (2 + 1
√
−1), x6 − (2 − 1

√
−1), x6 − (−2 − 1

√
−1) and

x6− (−2 + 1
√
−1) are all irreducible over Fp2 = Fp(

√
−1). Using this particular

value of x0 we also see that a2 + b2 is neither a square nor a cube for the
(unordered and unsigned) pairs (a, b) = (1, 3), (1, 5), (2, 3) as well as for (1, 2).
This example raises an important question:

How do we decide which value will be the best for implementation?

A simple analysis indicates that the optimal choice is the one which minimises
ω(a) + ω(b), where ω(n) is the number of additions required to perform a mul-
tiplication by n. There is another important point to take into account when
choosing α and that is the construction of the twists of the elliptic curve used
when computing the pairing.

In §3 it was mentioned that twists are used to improve the efficiency of the
pairing computation. To construct a twist of degree d and the isomorphism from
the twist to the curve we need an element i ∈ Fpk/d which is a qth non-residue
for all divisors q of k/d. Clearly, for the tower construction we already have such
an element. In fact, it would make sense to use the same element to define the
twist as we use to construct the tower; though we will have to be slightly more
careful in our selection of the element α. An elliptic curve with a twist of degree
d actually has φ(d) twists of degree d, with different numbers of points. The
twists used for the curves specified above are of degrees d = 4 or 6, both having
φ(6) = φ(4) = 2 possible twists.

For E(Fp) : y2 = x3 + Ax, the quartic twists are given by E′1(Fpk/t) : y2 =
x3 +Ax/i and E′2(Fpk/t) : y2 = x3 +Ax/i3, the twist used for the pairing is the
twist with the correct number of points. The respective isomorphisms are given
as [20]:

E′1 → E : (x, y)→ (i1/2x, i3/4y)

and
E′2 → E : (x, y)→ (i1/2x/i, i1/4y/i).

Similarly, for E(Fp) : y2 = x3 +B, the sextic twists are given by E′1(Fpk/t) :
y2 = x3 + B/i and E′2(Fpk/t) : y2 = x3 + B/i5, the twists must then be tested
to find the one with the correct number of points. The respective isomorphisms
are given as:

E′1 → E : (x, y)→ (i1/3x, i1/2y)

and
E′2 → E : (x, y)→ (i2/3x/i, i1/2y/i).
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We see here how important it is to choose the element i to be of the simplest
form as the isomorphism will be effected. If we select α such that i = α(1/e),
where e = k/d, then the isomorphism is basically a free computation [8]. If the
curve defined choosing i = α(1/e) does not give the correct number of points,
then we must take i = α(3/e) if E′ is a quartic twist or i = α(5/e) if E′ is a sextic
twist. In these cases the isomorphism will be slightly more expensive. This is
also discussed in [13].

To summarise, when selecting the element α to define the tower, both ω(α)
and the structure of the twist should be taken into account.

8 Conclusion

In this paper we proved a theorem which leads to a method to determine if a bi-
nomial defined over an extension field is irreducible by performing a few tests on
one element of the base field. This results in an efficient method of construction
for fields which occur in pairing-based cryptography and which were not orig-
inally considered to be “pairing-friendly” and could not be constructed using
general method discussed in [15]. Using Theorem 5 along with the general con-
struction method we are now able to automatically construct towers of extensions
for the implementation of the finite fields used in pairing-based cryptography by
performing a few cubic and quadratic non-residue tests on elements of Fp. The
resulting constructions are efficient and can contribute to the development of a
cryptographic compiler specialised for pairing-based cryptography as described
in [9]. We have used our results, Euclid’s conjectures and an observation by Shi-
rase [22] to give immediate constructions for a large class of towering-friendly
fields used with BN curves. Using Euclid’s conjectures we have also given an
immediate construction for a large group of towering-friendly fields used with
KSS k = 18 curves. We are confident that these methods can be extended to
other families of pairing-friendly elliptic curves and other embedding degrees to
generate automatic tower structures for these curves.
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