
Converting Pairing-Based Cryptosystems from
Composite-Order Groups to Prime-Order Groups

David Mandell Freeman?

CWI and Universiteit Leiden
freeman@cwi.nl

Abstract. We develop an abstract framework that encompasses the key properties of bilinear groups
of composite order that are required to construct secure pairing-based cryptosystems, and we show how
to use prime-order elliptic curve groups to construct bilinear groups with the same properties. In partic-
ular, we define a generalized version of the subgroup decision problem and give explicit constructions of
bilinear groups in which the generalized subgroup decision assumption follows from the decision Diffie-
Hellman assumption, the decision linear assumption, and/or related assumptions in prime-order groups.

We apply our framework and our prime-order group constructions to create more efficient versions of
cryptosystems that originally required composite-order groups. Specifically, we consider the Boneh-Goh-
Nissim encryption scheme, the Boneh-Sahai-Waters traitor tracing system, and the Katz-Sahai-Waters
attribute-based encryption scheme. We give a security theorem for the prime-order group instantiation
of each system, using assumptions of comparable complexity to those used in the composite-order set-
ting. Our conversion of the last two systems to prime-order groups answers a problem posed by Groth
and Sahai.

Keywords: pairing-based cryptography, composite-order groups, cryptographic hardness assumptions.

? Research supported by a National Science Foundation International Research Fellowship, with additional support
from the Office of Multidisciplinary Activities in the NSF Directorate for Mathematical and Physical Sciences.

1 Introduction

Bilinear groups of composite order are a tool that has been used in the last few years to solve
many problems in cryptography. The concept was introduced by Boneh, Goh, and Nissim [6], who
applied the technique to the problems of private information retrieval, online voting, and universally
verifiable computation. Subsequent authors have built on their work to create protocols such as
non-interactive zero-knowledge proofs [19, 20], ring and group signatures [10, 31], attribute-based
encryption [8, 23], traitor tracing schemes [7], and hierarchical identity-based encryption [24, 33].

Bilinear groups of composite order are pairs of abelian groups (G,Gt), each of composite order
n = pq, equipped with a nondegenerate bilinear map e : G×G→ Gt. At their core, cryptosystems
using bilinear groups of composite order usually base their security on variants of the subgroup
decision assumption. Informally, this assumption says that given an element g ∈ G, there is no
efficient algorithm to determine whether g has order p. In particular, this assumption implies that
it is infeasible to factor the group order n.

While the subgroup decision assumption is a useful tool for constructing secure protocols, it
presents significant obstacles to implementing these protocols in practice. The only known instan-
tiations of composite-order bilinear groups use elliptic curves (or more generally, abelian varieties)
over finite fields. Since the elliptic curve group order n must be infeasible to factor, it must be
at least (say) 1024 bits. On the other hand, the size of a prime-order elliptic curve group that
provides an equivalent level of security is 160 bits [2]. As a result, group operations and especially
pairing computations are prohibitively slow on composite-order curves: a Tate pairing on a 1024-bit
composite-order elliptic curve is roughly 50 times slower than the same pairing on a comparable
prime-order curve [29], and this performance gap will only get worse at higher security levels.

In short, requiring that the group order be infeasible to factor negates the principal advan-
tage of elliptic curve cryptography over factoring-based systems, namely, that there is no known
subexponental-time algorithm for computing discrete logarithms on an elliptic curve, while there
is such an algorithm for factoring. Thus for efficient implementations we seek versions of protocols
that use only prime-order elliptic curve groups. Developing these protocols is the main goal of this
paper. In particular, we do the following:

• We develop an abstract framework that encompasses the key properties of bilinear groups
of composite order, and we show how to use prime-order elliptic curves to construct bilinear
groups with the same properties.
• We apply our framework and our prime-order construction to create more efficient versions

of cryptosystems that originally used composite-order groups. Specifically, we consider:
1. The Boneh-Goh-Nissim encryption scheme [6],
2. The Boneh-Sahai-Waters traitor tracing system [7], and
3. The Katz-Sahai-Waters attribute-based encryption scheme [23].

Our conversion of the last two systems to prime-order groups answers a problem posed by Groth
and Sahai [20, Section 9],1 who themselves implicitly use our framework to construct non-interactive
proof systems using either composite-order or prime-order groups.

Outline and Summary of Results. The starting point for our abstract framework is the fact
that the subgroup decision assumption defined by Boneh, Goh, and Nissim depends only on the
existence of a group G for which it is infeasible to determine if an element g ∈ G lies in a given
1 Groth and Sahai ask if such a conversion can apply to traitor tracing or “Searchable Encryption,” with references

to [7] and [10], respectively. The latter reference should in fact be [8], which gives a result that is generalized by
the construction of Katz, Sahai, and Waters [23, Section 5.2].

1

proper subgroup G1 of G. This observation gives us a more general subgroup decision assumption
in the language of abstract groups; see Section 2 for details.

Our construction using prime-order groups is based on the observation, used implicitly by
Cramer and Shoup [13] and articulated explicitly by Gjøsteen [18], that the decision Diffie-Hellman
(DDH) assumption is a generalized subgroup decision assumption. Specifically, suppose we are given
a cyclic group G and elements g, ga, gb, gc ∈ G. Then the DDH assumption for G says exactly that
it is infeasible to determine whether (gb, gc) is in the cyclic subgroup of G×G generated by (g, ga).
Thus any protocol that requires two groups G1 ⊂ G in which the generalized subgroup decision
assumption holds can be instantiated using G = G × G and G1 = 〈(g1, g2)〉, where G is a cyclic
group in which the DDH assumption holds and g1, g2 are random elements of G.

More generally, we can use G = Gn for any n ≥ 2 and let G1 be a rank-k subgroup for any
1 ≤ k < n. In this case the subgroup decision assumption in G follows from the k-Linear assumption
in G, which generalizes the DDH assumption. In particular, the 1-Linear assumption is DDH, while
the 2-Linear assumption is the decision linear assumption. This more general construction makes
explicit a relationship noticed by several previous authors (e.g., [20, 33]), namely, that functionality
that can be achieved in composite-order groups under the subgroup decision assumption can also
be achieved in prime-order groups under either the DDH or the decision linear assumption.

If the group G is equipped with a pairing ê : G×G→ Gt, then applying ê componentwise defines
a pairing on G = Gn. However, such a “symmetric” pairing (which only exists on supersingular
elliptic curves) can be used to solve DDH in G, so in this case our DDH-based construction is
not secure. To get around this problem we use the fact that on ordinary elliptic curves there
are two distinguished subgroups, denoted G1 and G2, in which DDH is believed to be infeasible
for sufficiently large group orders. We can thus apply our construction twice to produce groups
G = Gn

1 , H = Gn
2 , Gt = Gm

t (for some m), and an “asymmetric” pairing e : G ×H → Gt. If the
DDH assumption holds in G1 and G2, then the subgroup decision assumption holds in G and H.
(If we are using the d-Linear assumption with d ≥ 2, then we can remain in the symmetric setting.)

While the security of composite-order group protocols depends on (variants of) the subgroup
decision assumption, the correctness of these protocols depends on the groups having certain ad-
ditional properties. In some cases, the groups G,H,Gt must be equipped with projection maps
π1, π2, πt that map them onto proper subgroups and commute with the pairing. In other cases, the
groups must decompose into subgroups G ∼=

∏
Gi and H ∼=

∏
Hi such that the pairing restricted to

Gi×Hj is trivial whenever i 6= j. In Section 3 we define these properties in our abstract framework
and show how to instantiate them in the product groups Gn

1 , Gn
2 .

Sections 2 and 3 give us the framework and the tools necessary to convert composite-order
group protocols to prime-order groups. Section 4 analyzes the efficiency gains realized in terms of
the number of bits needed to represent group elements. For example, at a security level equivalent
to 80-bit AES, ciphertexts in the Boneh-Goh-Nissim system can be up to three times smaller when
instantiated using our prime-order construction than in the original composite-order system. At
the 256-bit security level the improvement can be as large as a factor of 12.

In Sections 5, 6, and 7, we describe in detail the conversion procedure for the Boneh-Goh-
Nissim cryptosystem, the Boneh-Sahai-Waters traitor tracing system, and the Katz-Sahai-Waters
attribute-based encryption scheme, respectively. In each case we describe the scheme in our general
framework and convert the assumptions used in the security proofs to our more general setting. We
then consider the system instantiated with our prime-order group construction and give security
theorems in this setting. If the original system is secure under a simple assumption (e.g., subgroup
decision) then the converted scheme is also secure under a simple assumption (e.g., DDH); if

2

the original system uses a complex assumption (as in the Katz-Sahai-Waters system) then the
corresponding assumption in prime-order groups is also complex.

We note that our conversion process is not “black box”: the security proof for each system must
be analyzed to determine whether it carries over to our more general setting. For example, the
recent identity-based encryption scheme of Lewko and Waters [24] uses explicitly in its security
proof the fact that the group G has two subgroups of relatively prime order. However, we expect
that our framework can be used to convert to prime-order groups other cryptosystems originally
built using composite-order groups.

2 Subgroup Decision Problems

The problem of determining whether a given element g of a finite group G lies in a specified
proper subgroup G1 was used as a hardness assumption for constructing cryptosystems long before
Boneh, Goh, and Nissim defined their “subgroup decision problem.” Gjøsteen [18] has undertaken an
extensive survey of such problems, which he calls “subgroup membership problems.” For example,
the quadratic residuosity problem is a subgroup membership problem: if we let N = pq be a product
of two distinct primes and define the group G to be the group of elements of Z∗N with Jacobi symbol
1, the problem is to determine whether a given element in G lies in the subgroup of squares in G.

Boneh, Goh, and Nissim [6] defined their problem for pairs of groups (G,Gt) of composite order
N = pq for which there exists a nondegenerate bilinear map, or “pairing,” e : G × G → Gt. The
problem is to determine whether a given element g ∈ G is in the subgroup of order p. Note that if
g′ generates G, then e(g, g′) is a challenge element for the same problem in Gt; thus if the subgroup
decision problem is infeasible in G then it is in Gt as well.

Our general notion of a subgroup decision problem extends Gjøsteen’s work to the bilinear
setting. We begin by defining an object that generates the groups we will work with. We assume
that the two groups input to the pairing are not identical (in the sense that there are no efficiently
computable isomorphisms between them); this is known as an asymmetric pairing. We write all
groups multiplicatively with identity element 1.

Definition 2.1. A bilinear group generator is an algorithm G that takes as input a security param-
eter λ and outputs a description of five abelian groups G,G1, H,H1, Gt, with G1 ⊂ G and H1 ⊂ H.
We assume that this description permits efficient2 group operations and random sampling in each
group. The algorithm also outputs an efficiently computable map e : G×H → Gt that is

• Bilinear: e(g1g2, h1h2) = e(g1, h1)e(g1, h2)e(g2, h1)e(g2, h2) for all g1, g2 ∈ G, h1, h2 ∈ H; and
• Nondegenerate: for any g ∈ G, if e(g, h) = 1 for all h ∈ H, then g = 1 (and similarly with
G,H reversed).

Our generalized subgroup decision assumption says that it is infeasible to distinguish an element
in G1 from a random element of G, and similarly for H. More precisely, we have the following
definition. (The notation x

R← X means x is chosen uniformly at random from the set X.)

Definition 2.2. Let G be a bilinear group generator. We define the following distribution:

G = (G,G1, H,H1, Gt, e)
R← G(λ), T0

R← G, T1
R← G1.

We define the advantage of an algorithm A in solving the subgroup decision problem on the left to
be

SDPL-Adv[A,G] =
∣∣∣Pr[A(G, T0) = 1]− Pr[A(G, T1) = 1]

∣∣∣.
2 i.e., polynomial-time in λ.

3

We say that G satisfies the subgroup decision assumption on the left if SDPL-Adv[A,G](λ) is a
negligible function of λ for any polynomial-time algorithm A. We define the subgroup decision
problem/assumption on the right and SDPR-Adv[A,G] analogously, with T0

R← H and T1
R← H1.

We say G satisfies the subgroup decision assumption if it satisfies both the left and right assumptions.

Boneh, Goh, and Nissim’s definition of the subgroup decision assumption does not require that
the adversary be given an element of (or a means to sample from) G1; however if G1 is cyclic then
their definition is equivalent to ours within a factor of 2 [7, Section 3].

Example 2.3 ([6, Section 2.1]). Boneh, Goh, and Nissim construct a bilinear group generator
GBGN using supersingular elliptic curves of composite order. Let E(λ) be an algorithm that outputs
a product N = p1p2 of two distinct primes greater than 2λ, a prime q ≡ −1 (mod N), and a
supersingular elliptic curve E over the finite field Fq. Then #E(Fq) is divisible by N , and we can
construct GBGN (λ) by running E(λ) and setting the output as follows:

• G = H is the order-N subgroup of E(Fq);
• G1 = H1 is the order-p1 subgroup of E(Fq);
• Gt is the order-N subgroup of F∗q2 ; and
• e : G×G→ Gt is the modified N -Tate pairing on E [14, Section 2.1].

Each group is described by giving a generator.
It is believed that GBGN satisfies the subgroup decision assumption when N is infeasible to

factor. The construction can be extended to produce a group G whose order is a product of three
or more primes, and the subgroup decision assumption is believed to hold in any nontrivial proper
subgroup G1 of G. Using the generic group analysis of Katz, Sahai, and Waters [23, Theorem A.2],
one can show that any efficient generic algorithm to solve the subgroup decision problem for GBGN
can be used construct an efficient algorithm to factor N .

2.1 Product Groups, DDH, and d-Linear Assumptions

The primary motivation for our abstraction of composite-order group protocols is the observation
that the decision Diffie-Hellman problem is also a subgroup decision problem [18, Section 4.5].

Let G be a finite cyclic group, and let T = (g, ga, gb, gc) be a 4-tuple of elements in G. The de-
cision Diffie-Hellman (DDH) problem is to determine whether c ≡ ab (mod |g|); if this is infeasible
then we say that G satisfies the decision Diffie-Hellman assumption. Now suppose we are given a
DDH challenge T . Define G to be G×G and G1 to be the cyclic subgroup of G generated by (g, ga).
Then the element (gb, gc) ∈ G is in G1 if and only if c ≡ ab (mod |g|) — so solving the subgroup
decision problem for G1 ⊂ G is exactly equivalent to solving DDH in G.

Now we consider the same construction in the bilinear setting: let G1,G2,Gt be finite cyclic
groups, and let ê : G1 × G2 → Gt be a nondegenerate bilinear map. Then we can define G = G2

1,
H = G2

2, and Gt = G2
t , and choose random elements of G and H to generate G1 and H1 respectively.

We can define a nondegenerate pairing e : G×H → Gt by taking any nonzero matrix A =
(
a b
c d

)
∈

Mat2(Fp) and setting

e((g1, g2), (h1, h2)) := e(g1, h1)ae(g1, h2)be(g2, h1)ce(g2, h2)d.

We can define a pairing mapping to Gt = Gm
t by choosing different coefficients a, b, c, d to define

each component of the output. With this setup, if the DDH assumption holds in G1 and G2, then
the subgroup decision assumption holds for G1 ⊂ G and H1 ⊂ H.

4

More generally, we consider a bilinear group generator Gnk that produces two groups G = Gn
1 and

H = Gn
2 and random rank-k subgroups G1 ⊂ G and H1 ⊂ H. In this situation the natural analogue

of the DDH problem is the k-Linear problem, introduced by Hofheinz and Kiltz [21] and Shacham
[30]. The 1-Linear problem is simply DDH, while the 2-Linear problem is called the decision linear
problem and was originally proposed by Boneh, Boyen, and Shacham [5] as a reasonable analogue
for DDH in a group with a bilinear map.

The following definition and theorem formalize the relationship between subgroup decision
problems and d-Linear problems. We will use the following notation: if we have a group G of order
p, an element g ∈ G, and a vector ~x = (x1, . . . , xn) ∈ Fnp , then we define g~x := (gx1 , . . . , gxn) ∈ Gn.

Definition 2.4. A bilinear group generator P is prime-order if the groups G,G1, H,H1, Gt all have
prime order p > 2λ. Then we have G = G1 and H = H1, and we denote the three distinct groups
by G1 = G, G2 = H, and Gt = Gt. We let Ĝ denote the output (p,G1,G2,Gt, e) of P(λ).

Let d ≥ 1 be an integer. If A is an algorithm that takes as input 2d + 2 elements of G1, we
define the advantage of A in solving the d-Linear problem in G1 to be

d-LinG1-Adv[A,P] =

∣∣∣∣∣Pr
[
A(Ĝ, g1, . . . , gd, gr11 , . . . , g

rd
d , h, h

r1+···+rd) = 1 : Ĝ R← P, g1, . . . , gd
R← G1,

r1, . . . , rd
R← Fp

]

− Pr
[
A(Ĝ, g1, . . . , gd, gr11 , . . . , g

rd
d , h, h

s) = 1 : Ĝ R← P, g1, . . . , gd
R← G1,

r1, . . . , rd, s
R← Fp

] ∣∣∣∣∣,
and similarly for d-LinG2-Adv[A,P]. We say that G satisfies the d-Linear assumption in G1 if
d-LinG1-Adv[A,G](λ) is a negligible function of λ for any polynomial-time algorithm A (and sim-
ilarly for G2). The decision Diffie-Hellman (DDH) assumption is the 1-Linear assumption. The
decision linear assumption is the 2-Linear assumption.

Some previous authors (e.g., [1, 20]) have called the assumption that DDH is infeasible in both
G1 and G2 the symmetric external Diffie-Hellman assumption, or SXDH. For clarity in our argu-
ments, we prefer to call the problems DDH in G1 and G2, respectively.

Theorem 2.5. Let P be a prime-order bilinear group generator. For integers n, k with n ≥ 2 and
1 ≤ k < n, define Gnk to be a bilinear group generator that on input λ does the following:

1. Let (p,G1,G2,Gt, ê)
R← P(λ).

2. Let G = Gn
1 , H = Gn

2 , Gt = Gm
t for some m.

3. Choose generators g R← G1, h R← G2.
4. Choose random ~xi, ~yi

R← Fnp for i = 1, . . . , k, such that the sets {~xi} and {~yi} are each linearly
independent.

5. Let G1 be the subgroup of G generated by {g~x1 , . . . , g~xk} and H1 be the subgroup of H generated
by {h~y1 , . . . , h~yk}

6. Choose nonzero n× n matrices A` = (a(`)
ij) for ` = 1, . . . ,m.

7. Define e : G×H → Gt by e((g1, . . . , gn), (h1, . . . , hn))` :=
n∏

i,j=1

e(gi, hj)a
(`)
ij .

8. Output the tuple Γnk = (G,G1, H,H1, Gt, e).

If P satisfies the k-Linear assumption in G1 and G2, then Gnk satisfies the subgroup decision as-
sumption. Specifically, for any adversary A that solves the subgroup decision problem on the left for
Gnk , there exists an adversary B that solves the k-Linear problem in G1 for P, with

SDPL-Adv[A,Gnk] ≤ (n− k) · k-LinG1-Adv[B,P].

5

The analogous statement holds for A solving the subgroup decision problem on the right for Gnk on
the right and B solving the k-Linear problem in G2 for P.

Proof. Let ~xi = (xi,1, . . . , xi,n) be the vectors chosen in Step (4) of Theorem 2.5. Choose g0
R← G1.

For j = 1, . . . , n, define distribution Aj to output a tuple T ∈ Gn
1 whose first j components

match those of
∏k
i=1 g

bi~xi
0 (i.e., a linear combination of the generators of G1), and whose last n− j

components are random. More precisely, we define

Dist. Aj :
{(
Γnk , T = (g

P
bixi,1

0 , . . . , g
P
bixi,j

0 , g
rj+1

0 , . . . , grn0)
)

: Γnk ← Gnk (λ); g0
R← G1; ~b, ~r R← Fnp

}
,

where each sum in the exponent runs over i = 1 to k. Now let (Ĝ, u1, . . . , uk, v1, . . . , vk, y, z) be a
k-Linear challenge in G1. Fix j with k + 1 ≤ j ≤ n. Choose random ~b, ~r

R← Fnp . Run Gnk as before,
except define G1 ⊂ G = Gn

1 to be the group generated by{
(uxi,1i , . . . , u

xi,j−1

i , v
1/bi
i , u

xi,j+1

i , . . . , u
xi,n
i)

}k
i=1

.

Since the bi are independently random, the generators G1 remain independent and uniform in Gn
1 .

Now consider the tuple

T ′ = (y
P
bixi,1 , . . . , y

P
bixi,j−1 , z, uri+1 , . . . , urn).

Write vi = usii , z = yc. If c =
∑

i si (mod p) then T ′ is distributed as the element T in distribution
Aj , whereas if c is random then T ′ is distributed as the element T in distribution Aj−1. It follows
that any algorithm that distinguishes distribution Aj from distribution Aj−1 can be used to solve
the k-Linear problem in G1.

Now observe that if j ≤ k, then the element T in distribution Aj uses j independently random
values b1, . . . , bj . Thus distributions A1, . . . , Ak are identical to an SDP challenge with a random
element T0 ∈ G. On the other hand, in distribution An the element T is equal to g

P
bi~xi

0 , and thus
distribution An is equal to an SDP challenge with a random element T1 ∈ G1. It follows that given
any A that attacks the SDP on the left for Gnk , we can construct a B solving the k-Linear problem
in G1 with

SDPL-Adv[A,Gn1] ≤ (n− k) · k-LinG1-Adv[B,P].

ut

Since the d-Linear assumption implies the d+ 1-Linear assumption for all d ≥ 1 [21, Lemma 3],
if P satisfies the DDH assumption in G1 and G2, then Gnk satisfies the subgroup decision assumption
for any n ≥ 1 and 1 ≤ k < n. The converse holds when k = 1.

Proposition 2.6. Let P be as in Theorem 2.5. If Gn1 satisfies the subgroup decision assumption,
then P satisfies the DDH assumption in G1 and G2.

Proof. Let (g1, . . . , gn) be the generator of G1 and T = (g′1, . . . , g
′
n) be the SDP challenge element.

If T R← G, then S = (g1, g2, g′1, g
′
2) is randomly distributed in G4

1, while if T R← G then S is a
Diffie-Hellman tuple. Thus an algorithm that solves DDH in G1 can solve the SDP on the left when
k = 1. ut

If we view all of the groups in the above construction as Fp-vector spaces, then we see that the
subgroup decision problem is a decisional version of the vector decomposition problem [34, 35, 17,

6

27], in which the adversary is given a decomposition G ∼= G1×G2 and an element x ∈ G and asked
to find y ∈ G1 and z ∈ G2 such that x = yz.

The vector decomposition problem was originally proposed for use in the context of a single el-
liptic or hyperelliptic curve. Okamoto and Takashima [27] proposed using products of supersingular
elliptic curves; our construction generalizes this idea to products of any bilinear group. In our con-
text, the subgroup decision problem is equivalent to the “decisional subspace problem” of Okamoto
and Takashima. However, Okamoto and Takashima do not indicate any relationship between their
decisional problem and decisional problems in the underlying groups.

3 Pairings on Product Groups

In our construction of the bilinear group generator Gnk from the prime-order bilinear group generator
P, we took the pairing e on the product groups to be any nontrivial linear combination of the
componentwise pairings on the underlying prime-order group. However, the correctness proofs for
protocols built in composite-order groups all use the fact that the pairings have some extra structure
that arbitrary linear combinations are unlikely to have. We now investigate this structure further
and determine how to replicate it in our product group context.

3.1 Projecting Pairings

The cryptosystem of Boneh, Goh, and Nissim works by taking elements g ∈ G and h ∈ G1 and
encrypting a message M as C = gMhr, where r is random. The h term is a “blinding term” used to
hide the part of the ciphertext that contains the message. Decryption is achieved by “projecting” the
ciphertext away from the blinding term and taking a discrete logarithm to recover M . Specifically,
when g has order N = p1p2 and h has order p1, the decryption can be achieved by first computing
Cp1 to remove the h term, and then taking the discrete logarithm to the base gp1 to recover M .
The functionality of the cryptosystem requires that we can do this procedure either before or after
the pairing; i.e., that we can construct and remove blinding terms in Gt. The following definition
incorporates this concept into our abstract framework.

Definition 3.1. Let G be a bilinear group generator (Definition 2.1). We say that G is projecting
if it also outputs a group G′t ⊂ Gt and three group homomorphisms π1, π2, πt mapping G,H,Gt to
themselves, respectively, such that

1. G1, H1, G
′
t are contained in the kernels of π1, π2, πt, respectively, and

2. e(π1(g), π2(h)) = πt(e(g, h)) for all g ∈ G, h ∈ H.

Example 3.2. The bilinear group generator GBGN of Example 2.3 is projecting: we let G′t be the
order-p1 subgroup of Gt, let π1 = π2 be exponentiation by p1, and let πt be exponentiation by (p1)2.

Given a prime-order bilinear group generator P, we wish to modify the bilinear group generator
Gnk constructed in Theorem 2.5 so it is projecting. To do so, we interpret the generation of G1 and
H1 in terms of matrix actions, and we define the pairing e using a tensor product of matrices.

We begin by defining the projection maps π1 and π2. Let G = Gn
1 and let g be a generator

of G1. For i = 1, . . . , n, let ~ei be the unit vector with a 1 in the ith place and zeroes elsewhere.
To construct the projection map π1, we first observe that if G′1 is the subgroup of G generated
by g~e1 , . . . , g~ek , then any element of G′1 has 1’s in the last n − k coordinates, so we can define a
projection map π′1 whose kernel is G′1 by

π′1(g1, . . . , gn) := (1, . . . , 1, gn−k+1, . . . , gn).

7

Next we observe that the elements g~x1 , . . . , g~xk produced by Gnk can be viewed as coming from a
(right) action of an n×nmatrix on the elements g~e1 , . . . , g~ek . More precisely, for g = (g1, . . . , gn) ∈ G
and a matrix M = (aij) ∈ Matn(Fp), we define gM by

gM := (
∏n
i=1 g

ai1
i , . . . ,

∏n
i=1 g

ain
i) .

With this definition, we have (g~x)M = g(~xM).
Now let M be an invertible matrix whose first k rows are the vectors ~xi. Then g~xi = g~eiM . If

we define Uk to be the matrix with 1’s in the last n− k diagonal places and zeroes elsewhere, then
the map π′1 is given by π′1(g) = gUk . Thus we can construct a projection map π1 on G1 by applying
M−1 to map to G′1, using π′1 to project, and acting by M to map back to G1; that is,

π1(g) = gM
−1UkM .

We define π2 analogously on H by computing an invertible matrix M ′ whose first k rows are the
~yi produced by Gnk .

To define the pairing e, the subgroup G′t, and the projection map πt, we use the tensor product
from multilinear algebra. Recall that the tensor product of two n-dimensional vectors ~x, ~y is

~x⊗ ~y = (x1~y, . . . , xn~y) = (x1y1, . . . , x1yn, x2y1, . . . , x2yn, . . . , xny1, . . . , xnyn).

We define e : G × H → Gt := Gn2

t by e(g~x, h~y) := ê(g, h)~x⊗~y. That is, to pair g ∈ G and h ∈ H
we take all the n2 componentwise pairings e(gi, hj) and write them in lexicographical order. In this
case the A` of Theorem 2.5 are the n2 matrices with a 1 in entry (i, j) and zeroes elsewhere.

Defining the pairing in this manner allows us to define the map πt abstractly as the tensor
product of the maps π1 and π2. In terms of the matrices we have defined, we have

πt(gt) = g(M−1⊗M ′−1)(Uk⊗Uk)(M⊗M ′)
t ,

where ⊗ indicates the tensor product (or Kronecker product) of matrices: if A = (aij) and B = (bij)
are two n× n matrices, then A⊗ B is the n2 × n2 matrix which, when divided into n× n blocks,
has the (i, j)th block equal to aijB [22, Section 4.2].

Given this framework, we see that the constructions of Groth and Sahai [20, Section 5] are
exactly the above with (n, k) = (2, 1) and (3, 2). We now give explicit details for the first case. This
is the setup we will use to implement the Boneh-Goh-Nissim cryptosystem in prime-order groups.

Example 3.3. Let P be a prime-order bilinear group generator. Define GP to be a bilinear group
generator that on input λ does the following:

1. Let (p,G1,G2,Gt, ê)
R← P(λ).

2. Let G = G2
1, H = G2

2, Gt = G4
t .

3. Choose generators g R← G1, h R← G2, and let γ = e(g, h).
4. Choose random a1, b1, c1, d1, a2, b2, c2, d2

R← Fp, such that a1d1 − b1c1 = a2d2 − b2c2 = 1.
5. Let G1 be the subgroup of G generated by (ga1 , gb1), let H1 be the subgroup of H generated by

(ha1 , hb1), and let G′t be the subgroup of Gt generated by

{γ(a1a2,a1b2,b1a2,b1b2), γ(a1c2,a1d2,b1c2,b1d2), γ(c1a2,d1b2,c1a2,d1b2)}.

6. Define e : G×H → Gt by e((g1, g2), (h1, h2)) := (ê(g1, h1), ê(g1, h2), ê(g2, h1), ê(g2, h2)).

8

7. Let A =
(
−b1c1 −b1d1
a1c1 a1d1

)
, B =

(
−b2c2 −b2d2
a2c2 a2d2

)
, and define

π1((g1, g2)) := (g1, g2)A = (g−b1c11 ga1c1
2 , g−b1d11 ga1d1

2)
π2((h1, h2)) := (h1, h2)B = (h−b2c21 ha2c2

2 , h−b2d21 ha2d2
2)

πt((γ1, γ2, γ3, γ4)) := (γ1, γ2, γ3, γ4)A⊗B

8. Output the tuple (G,G1, H,H1, Gt, G
′
t, e, π1, π2, πt).

It is easy (though tedious) to check that GP is a projecting bilinear group generator. We note that
the groups output by GP can be described simply by giving G1,G2,Gt and the pairs (ga1 , gb1),
(ha2 , hb2). In particular, the group G′t is generated by elements of the form e(g,h1) and e(g1,h)
with g ∈ G, g1 ∈ G1, h ∈ H, and h1 ∈ H1. This is important since in our application the maps
π1, π2, πt will be “trapdoor” information used as the system’s secret key.

Proposition 3.4. If P satisfies the DDH assumption in G1 and G2, then GP satisfies the subgroup
decision assumption.

Proof. Since g is uniform in G1 and a1, b1, c1, d1 are uniformly random in Fp, imposing the condition
a1d1 − b1c1 = 1 does not introduce any deviations from uniformity in the generation of G1 (and
similar for G2). We can thus apply Theorem 2.5. ut

3.2 Cancelling Pairings

The traitor-tracing scheme of Boneh, Sahai, and Waters [7], the predicate encryption scheme of
Katz, Sahai, and Waters [23], and many other schemes based on bilinear groups of composite order
use in an essential manner the fact that if two group elements g, h have relatively prime orders,
then e(g, h) = 1. This property implies, for example, that we can use the two subgroups generated
by g and h to encode different types of information, and the two components will remain distinct
after the pairing operation. The following definition incorporates this concept into our framework.

Definition 3.5. Let G be a bilinear group generator (Definition 2.1). We say that G is r-cancelling
if it also outputs groups G2, . . . , Gr ⊂ G and H2, . . . ,Hr ⊂ H, such that

1. G ∼= G1 × · · · ×Gr and H ∼= H1 × · · · ×Hr,
2. e(gi, hj) = 1 whenever gi ∈ Gi, hj ∈ Hj , and i 6= j.

Example 3.6. The bilinear group generator GBGN of Example 2.3 is 2-cancelling: we set G2 = H2

to be the order-p2 subgroup of E(Fp). An analogous r-cancelling generator can be built by making
the group order N a product of r distinct primes.

Given a prime-order bilinear group generator P, we now show how to modify the bilinear group
generator Gn1 constructed in Theorem 2.5 so it is n-cancelling. We begin by defining the pairing
e : G×H → Gt := Gt to be

e((g1, . . . , gn), (h1, . . . , hn)) :=
∏n
i=1 ê(gi, hi),

so in particular we have e(g~x, h~y) = e(g, h)~x·~y, where · indicates the vector dot product.
If Gn1 is n-cancelling, then the subgroups Gi, Hi are all cyclic of order p. Thus we need to choose

generators g~xi of Gi and h~yi of Hi such that ~xi · ~yj = 0 if and only if i = j. This is straightforward:
we first choose any set of n linearly independent ~xi; then the equation ~xi · ~yj = 0 for all i 6= j gives

9

a linear system n variables of rank n− 1, so there is a one-dimensional solution space in Fnp . If we
choose ~yj in this space then with high probability we have ~xj · ~yj 6= 0; if this is not the case then
we can start again with a different set of ~xi. We illustrate with concrete examples for n = 2 and 3.
We use the notation 〈X〉 to indicate the cyclic group generated by X.

Example 3.7. Let P be a prime-order bilinear group generator. Define G3C to be a bilinear group
generator that on input λ does the following:

1. Let (p,G1,G2,Gt, ê)
R← P(λ).

2. Let G = G3
1, H = G3

2, Gt = Gt.
3. Choose generators g1, g2, g3

R← G1, h1, h2, h3
R← G2.

4. Choose random x, y, z, u, v, w
R← Fp, such that

{−xv−xw−yu+yw+zu+zv 6=0,

xv−xw−yu+yw+zu−zv 6=0.

5. Define the subgroups

G1 = 〈(g1, gx1 , gu1)〉, G2 = 〈(g2, gy2 , g
v
2)〉, G3 = 〈(g3, gz3 , gw3)〉,

H1 = 〈(hzv−yw1 , hw−v1 , hy−z1)〉, H2 = 〈(hzu−xw2 , hw−u2 , hz−x2)〉, H3 = 〈(hyu−xv3 , hv−u3 , hx−y3)〉.

6. Define e : G×H → Gt by e((g, g′, g′′), (h, h′, h′′)) := ê(g, h)ê(g′, h′)ê(g′′, h′′).
7. Output the tuple (G,G1, G2, H,H1, H2, Gt, e).

It is straightforward to show that G3C is a 3-cancelling bilinear group generator. The inequalities in
Step (4) guarantee that the Gi and Hi are linearly independent. Note that choosing the elements
g1, g2, g3 independently uniform allows us to scale the vectors ~x1 = (1, x, u), ~x2 = (1, y, v), ~x3 =
(1, z, w) so their first components are 1 without losing uniformity.

Example 3.8. We define a 2-cancelling bilinear group generator G2C by restricting the construction
in Example 3.7 to the first two components. Explicitly, we have G = G2

1, H = G2
2, Gt = G2

t and we
set u = 0, v = 0, w = 1 to obtain

G1 = 〈(g1, gx1)〉, G2 = 〈(g2, gy2)〉, H1 = 〈(h−y1 , h1)〉, H2 = 〈(h−x2 , h2)〉.

We define e : G × H → Gt by e((g, g′), (h, h′)) := ê(g, h)ê(g′, h′)), and we output the tuple
(G,G1, G2, H,H1, H2, Gt, e).

Example 3.9. We can obtain an alternative 2-cancelling bilinear group generator GL from the con-
struction in Example 3.7 by letting G1 be the subgroup spanned by the first two vectors produced.
More precisely, we choose additional a, b, c, d R← Fp and set

G1 = 〈(g1, gx1 , gu1), (g2, g
y
2 , g

v
2)〉, G2 = 〈(gbc−ad3 , gd−b3 , ga−c3)〉,

H1 = 〈(h1, h
a
1, h

b
1), (h2, h

c
2, h

d
2)〉, H2 = 〈(hyu−xv3 , hv−u3 , hx−y3)〉.

Proposition 3.10. If P satisfies the DDH assumption in G1 and G2, then G3C , G2C , and GL
satisfy the subgroup decision assumption. If P satisfies the decision linear assumption in G1 and
G2, then GL satisfies the subgroup decision assumption.

Proof. Recall that an SDP adversary is given only G,G1, H,H1, and not a description of any Gi
or Hi for i ≥ 2. Since in each case the generators of G1 and H1 are independent and uniform, the
result of Theorem 2.5 applies to G3C , G2C , and GL. ut

Remark 3.11. We observe that since the subgroup decision assumption for the generator GL of
Example 3.9 follows from the decision linear assumption for the prime-order group generator P, we
can use GL to instantiate systems with a symmetric pairing e : G×G→ Gt.

10

4 Performance Analysis

Our primary motivation for converting composite-order group protocols to prime-order groups is to
improve efficiency in implementations. As discussed in the introduction, this improvement results
from the fact that we can use smaller prime-order groups than composite-order groups at equivalent
security levels. We now examine this improvement concretely. Specifically, we compare the sizes of
the groups G, H, and Gt produced by the bilinear group generator GBGN (Example 2.3) with the
four examples from Section 3 of bilinear group generators built from prime-order generators.

For the generators GP (Example 3.3), G3C (Example 3.7), and G2C (Example 3.8) we take the
prime-order bilinear group generator P to be an algorithm that produces a “pairing-friendly” ordi-
nary elliptic curve E over a finite field Fq. On such curves there are two “distinguished” subgroups
G1 and G2 of order p in which the DDH problem is presumed to be infeasible, and such that the
Tate pairing ê : G1 ×G2 → Gt ⊂ F∗

qk
is nondegenerate. Here k is the embedding degree, defined to

be the smallest integer such that p divides the order of F∗
qk

.
The ordinary elliptic curves E that give the best performance while providing discrete log

security comparable to three commonly proposed levels of AES security are as follows. The group
sizes follow the 2007 NIST recommendations [2]; further details can be found in Appendix A.

80-bit security: A 170-bit Miyaji-Nakabayashi-Takano curve [26] with embedding degree 6;
128-bit security: A 256-bit Barreto-Naehrig curve [3] with embedding degree 12.
256-bit security: A 640-bit Brezing-Weng curve [11] with embedding degree 24.

The advantage of the generator GL is that we can use a prime-order group with a symmetric
pairing, which only exists on supersingular elliptic curves. Thus in this case we take P to produce a
supersingular curve over F3m with embedding degree k = 6 (the maximum possible k for supersin-
gular curves [25]). The fields that provide the best “match” for group orders at our three security
levels are F3111 , F3323 , and F31615 . The restriction to embedding degree k ≤ 6 means that at high
security levels the group G1 will be much larger than the group G1 on an equivalent ordinary curve.

Table 1 compares the sizes of the groups produced by all five bilinear group generators at each
of the three security levels. In all cases the groups G and H built using products of prime-order
groups are much smaller than the groups G and H built using composite-order groups. The group
Gt for the projecting generator GP is twice as large as the composite-order Gt, due to the fact that
elements of Gt are four elements of Fqk . However, the groups Gt for the cancelling generators G2C ,
G3C , GL are half as large as the composite-order Gt.

Table 1. Estimated bit sizes of group elements for bilinear group generators at three different security levels.

80-bit AES 128-bit AES 256-bit AES
Bilinear group generator G H Gt G H Gt G H Gt
GBGN (Example 2.3) 1024 1024 2048 3072 3072 6144 15360 15360 30720
GP (Example 3.3) 340 680 4080 512 1024 12288 1280 5120 61440
G3C (Example 3.7) 510 1020 1020 768 1536 3072 1920 7680 15360
G2C (Example 3.8) 340 680 1020 512 1024 3072 1280 5120 15360
GL (Example 3.9) 528 528 1056 1536 1536 3072 7680 7680 15360

The pairings e for G2C ,G3C ,GL each require two pairing computations on the curve E and the
pairing e for GP requires four pairings on E; the pairing e for GBGN requires only one pairing on the
curve. However, the sizes of the elliptic curve groups in the prime-order case are so much smaller
that the pairings will be far more than four times faster. Indeed, the Tate pairing on a 1024-bit
supersingular curve runs ≈ 50 times slower than the Tate pairing on a 170-bit MNT curve [29].

11

5 Application 1: The BGN Cryptosystem

Our first application of the framework developed above is to the public-key encryption scheme of
Boneh, Goh, and Nissim [6]. This scheme has the feature that given two ciphertexts, one can create
a new ciphertext that encrypts either the sum or the product of the corresponding plaintexts. The
product operation can only be carried out once; the system is thus “partially doubly homomorphic.”

Step 1 of the conversion process is to write the scheme in the abstract framework and transfer
it to asymmetric groups. In the original BGN protocol any ciphertext may be paired with any
other ciphertext, so in the asymmetric setting each computation in G must be duplicated in H. We
must use a projecting pairing, as the decryption algorithm requires projection away from a certain
subgroup. (Indeed, we defined the projecting property by using the BGN scheme as our model.)

KeyGen(λ): Let G be a projecting bilinear group generator (Definition 3.1). Compute (G,G1, H,
H1, Gt, G

′
t, e, π1, π2, πt) ← G(λ). Choose g R← G, h R← H, and output the public key PK =

(G,G1, H,H1, Gt, e, g, h) and the secret key SK = (π1, π2, πt).

Encrypt(PK,M): Choose g1
R← G1 and h1

R← H1. (Recall that the output of G allows random
sampling from G1 and H1.) Output the ciphertext (CA, CB) = (gM · g1, hM · h1) ∈ G×H.

Multiply(PK,CA, CB): This algorithm takes as input two ciphertexts CA ∈ G and CB ∈ H. Choose
g1

R← G1 and h1
R← H1, and output C = e(CA, CB) · e(g, h1) · e(g1, h) ∈ Gt.

Add(PK,C,C ′): This algorithm takes as input two ciphertexts C,C ′ in one of G, H, or Gt. Choose
g1

R← G1 and h1
R← H1, and do the following:

1. If C,C ′ ∈ G, output C · C ′ · g1 ∈ G.
2. If C,C ′ ∈ H, output C · C ′ · h1 ∈ H.
3. If C,C ′ ∈ Gt, output C · C ′ · e(g, h1) · e(g1, h) ∈ Gt.

Decrypt(SK,C): The input ciphertext C can be an element of G, H, or Gt.
1. If C ∈ G, output M ← logπ1(g)(π1(C)).
2. If C ∈ H, output M ← logπ2(h)(π2(C)).
3. If C ∈ Gt, output M ← logπt(e(g,h))(πt(C)).

It is clear that if C,C ′ are encryptions of M,M ′ respectively, then the Add algorithm gives a
correctly distributed encryption of M+M ′. Furthermore, it follows from the bilinear property of the
pairing that if CA ∈ G, CB ∈ H are the left and right halves of encryptions of M,M ′ respectively,
then the Multiply algorithm gives a correctly distributed encryption of M ·M ′. Since there is no
pairing on Gt we can only perform the multiplication once.

Correctness of decryption of ciphertexts in G and H follows from the fact that G1, H1 are in
the kernels of π1, π2, respectively. Correctness of decryption of ciphertexts in Gt follows from both
“projecting” properties of G; for example, we have πt(e(g, h1)) = e(π1(g), π2(h1)) = e(π1(g), 1) = 1.

Step 2 of the conversion process is to translate the security assumptions to asymmetric bilinear
groups. In this case, semantic security of ciphertexts in G follows from the subgroup decision
assumption on the left for G. Intuitively, if G satisfies the subgroup decision assumption on the
left, then an adversary cannot distinguish the real system from a “fake” system in which g ∈ G1.
Semantic security then follows from the fact that in the fake system the ciphertext element CA will
be a uniformly random element of G1 and thus will contain no information about the message M .
The same argument holds for ciphertexts in H, and semantic security of ciphertexts in Gt follows
from semantic security in G and H. For further details see [6, Theorem 3.1].

Step 3 is to translate the assumption to prime-order groups. Since the security proof uses no
intrinsic properties of the groups G and H, it carries over to our more general setting. This is the

12

main result of our construction, so we record it as a theorem; the proof follows directly from [6,
Theorem 3.1] and Proposition 3.4.

Theorem 5.1. Let P be a prime-order bilinear group generator, and let GP be the projecting bi-
linear group generator constructed from P in Example 3.3. If P satisfies the DDH assumption in
G1 and G2, then the BGN cryptosystem instantiated with G = GP is semantically secure.

When instantiated with either GBGN or GP , decryption in the BGN system requires taking
discrete logarithms in a group of large prime order. Thus to achieve efficient decryption the message
space must be small (i.e., logarithmic in the group size). It is an open problem to find a bilinear group
generator G for which the subgroup decision assumption holds and for which discrete logarithms
can be computed in a subset of π1(G) whose size is a constant fraction of the full group order.

If we carry out the tensor product construction described in Section 3.1 for any k and n ≥
k + 1, we obtain an instantiation of the BGN cryptosystem whose security depends on the k-
Linear assumption. Since ciphertexts will consist of n elements of G1 or G2 or n2 elements of Gt,
these systems will in general be less efficient than the system constructed using GP , which has
(n, k) = (2, 1). We do note, however, that if k ≥ 2 we can use a group with a symmetric pairing, in
which case the Encrypt algorithm needs only to output the ciphertext CA.

Okamoto and Takashima [27, Section 5] also suggest instantiating the BGN system using prod-
ucts of cyclic groups, but their system does not provide the product functionality on ciphertexts.

6 Application 2: Traitor Tracing

Traitor tracing systems, introduced by Chor, Fiat, and Naor [12], allow content distributors to
identify pirates. In such a system, the distributor broadcasts encrypted content to N legitimate
users, each of whom has a secret key that allows the user to decrypt. If an unauthorized user creates
a “pirate decoder” that can decrypt content, the distributor can identify (or “trace”) which user’s
key was compromised simply by attempting to decrypt certain messages with the pirate decoder.

Boneh, Sahai, and Waters [7] devised a traitor tracing system that is fully collusion resistant (i.e.,
even a pirate with all but one secret key can be traced) and has ciphertext length O(

√
N), where

N is the number of users in the system. They build the system from a new primitive called private
linear broadcast encryption system (or PLBE). Formal definitions of the syntax and security of a
PLBE scheme appear in Appendix B. After reducing the construction of a traitor tracing scheme
to the construction of a PLBE scheme, Boneh et al. devise a PLBE scheme using bilinear groups
of composite order and show it secure under three assumptions in bilinear groups.

In this section we apply our framework to convert the Boneh et al. PLBE scheme to prime-order
groups. When we instantiate the scheme using the bilinear group generator G2C of Example 3.8, we
obtain a system that is secure under the DDH assumption in G1 and G2 and an assumption called
the “3-party Diffie-Hellman assumption” in G1.

6.1 Construction

Step 1 is to write the original system in a general context. In the system users are indexed as
entries in an m × m matrix. In the symmetric setting ciphertexts contain three group elements
Rx, R̃x, Ax ∈ G and Bx ∈ Gt for each row x in the matrix, and two group elements Cy, C̃y ∈ G for
each column y in the matrix. User (x, y) has a key Kx,y ∈ G and decrypts by computing

M = Bx · e(Cy, Rx) · e(Kx,y, Ax)−1 · e(C̃y, R̃x)−1.

13

When we convert to the asymmetric situation, we must take one argument of each of the three
pairings to be in G and the other argument to be in H. We choose to assign the first argument
of each pairing to G and the second argument to H. We note that the correctness properties of
the system depend on cancellation between different subgroups when paired, so we must use a
cancelling pairing. The scheme is as follows.

Setup(λ, n): The Setup algorithm takes as input a security parameter λ and a positive integer
n = m2 that is the number of users in the system. Let G be a 2-cancelling bilinear group
generator (Definition 3.5) such that each output group Gj , Hj is cyclic of prime order pj for
j = 1, 2. Do the following.
1. Compute (G,G1, G2, H,H1, H2, Gt, e)

R← G(λ). Let N = lcm(p1, p2).
2. Choose g1

R← G1, f2, g2
R← G2, h1

R← H1, and h2, k2
R← H2 for i = 1, 2.

3. Choose r1, . . . , rm, c1, . . . , cm, α1, . . . , αm, β, γ
R← ZN .

4. Set f1 = gγ1 , k1 = hγ1 , h = h1h2, k = k1k2.
5. Output the public parameters (G,H,Gt, e,N), along with

PK =
[
f = f1f2, g = g1g2, E = hβ1 , E1 = hβr11 , . . . , Em = hβrm1 , F1 = kβr11 , . . . , Fm = kβrm1 ,

P1 = e(g1, h1)βα1 , . . . , Pm = e(g1, h1)βαm , Q1 = gc1 , . . . , Qm = gcm

]
.

The private key for user (x, y) is Kx,y = gαx+rxcy ∈ G. The master secret key SK consists of
the elements chosen in Step (2) and the exponents chosen in Step (3) above.

TrEncrypt(SK,M, (i, j): This algorithm encrypts the message M ∈ Gt to the subset of receivers
(x, y) with either x > i or x = i and y ≥ j. Choose t, w1, . . . , wm, s1, . . . , sm, z1, . . . , zj

R← ZN
and (v1,1, v1,2, v1,3), . . . , (vm,1, vm,2, vm,3) R← Z3

N .
For each row x output four ciphertext components Rx, Rx, Ax ∈ H and Bx ∈ Gt as follows:

if x > i: Rx = hsxrx1 , R̃x = ksxrx1 , Ax = hsxt1 , Bx = Me(g1, h)αxsxt

if x = i: Rx = hsxrx , R̃x = ksxrx , Ax = hsxt, Bx = Me(g, h)αxsxt

if x < i: Rx = hvx,1 , R̃x = kvx,1 , Ax = hvx,2 , Bx = Me(g, h)vx,3

For each column y output two ciphertext components Cy, C̃y ∈ G as follows:

if y ≥ j: Cy = gcytfwy , C̃y = gwy

if y < j: Cy = gcytg
zy
1 f

wy , C̃y = gwy

Encrypt(PK,M): This algorithm encrypts message M ∈ Gt to all recipients. Choose t, w1, . . . , wm,
s1, . . . , sm

R← ZN . For each row x output four ciphertext components Rx, Rx, Ax ∈ H and
Bx ∈ Gt as follows:

Rx = Esxx , R̃x = F sxx , Ax = Esxt, Bx = MP sxtx .

For each column y output two ciphertext components Cy, C̃y ∈ G as follows:

Cy = Qtyf
wy , C̃y = gwy .

Decrypt((x, y),Kx,y, C, PK): Output

Bx ·

(
e(Cy, Rx)

e(Kx,y, Ax)e(C̃y, R̃x)

)
.

The cancelling property of the pairing implies that if the ciphertext was created from the tracing
algorithm TrEncrypt with parameters (i, j) then the result of decryption with key Kx,y is M if x > 1
or x = 1 and y ≥ j. If the ciphertext was created using Encrypt then all parties can decrypt with
their secret key to recover M .

14

6.2 Security Assumptions

Step 2 is to convert the assumptions used in proving security of the Boneh et al. PLBE scheme to
our more general framework. There are three assumptions: the subgroup decision assumption, the
3-party Diffie-Hellman assumption, and the bilinear subgroup decision assumption.

The subgroup decision assumption we have discussed previously (see Section 2). In examining
Boneh et al.’s security proof, we see that the challenge element T in the subgroup decision problem
is used only to construct ciphertext elements Rx, R̃x, Ax ∈ H. Thus the assumption needs to hold
only in H.

In the symmetric version of the 3-party Diffie-Hellman assumption the adversary is given
g, ga, gb, gc, T in a certain subgroup of G and asked to determine whether T = gabc or T is ran-
dom. The fixed challenge elements g, ga, gb, gc are used in the simulations to form all ciphertext
components, so we need to duplicate them in G and H. The “variable” element T is only used to
construct one component, but the proof involves a number of hybrid games and T may appear in
different groups in different games. Thus we define a “left” and a “right” version of the assumption
in the asymmetric setting.

Definition 6.1 (3-party decision Diffie-Hellman assumption). Let G be a 2-cancelling bi-
linear group generator such that for i = 1, 2 the output groups Gi and Hi are of prime order pi.
We define the following distribution:

G = (G,H,Gt, e,N := lcm(p1, p2)) R← G(λ), g2
R← G2, h2

R← H2, a, b, c
R← Zp2 ,

Z ←
(
g2, g

a
2 , g

b
2, g

c
2, h2, h

a
2, h

b
2, h

c
2

)
,

T0 ← gabc2 , T1
R← G2.

We define the advantage of an algorithmA in solving the 3-party decision Diffie-Hellman assumption
on the left to be

3DDHL-Adv[A,G] =
∣∣∣Pr[A(G, Z, T0) = 1]− Pr[A(G, Z, T1) = 1]

∣∣∣.
We say that G satisfies the 3-party decision Diffie-Hellman assumption on the left if 3DDHL-Adv[A,G](λ)
is a negligible function of λ for any polynomial-time algorithm A.

We define the 3-party decision Diffie-Hellman assumption on the right and 3DDHR-Adv[A,G]
analogously, with T0 ← habc2 and T1

R← H2.

In the symmetric setting the bilinear subgroup decision problem is to distinguish an element of
the subgroup e(G2, G) from a random element in Gt when given generators for G1 and G2. Since
we require Gi and Hi to have the same order in the asymmetric case, the assumption translates
directly to the asymmetric setting.

Definition 6.2 (Bilinear subgroup decision assumption). Let G be a 2-cancelling bilinear
group generator such that for i = 1, 2 the output groups Gi and Hi are of prime order pi. We define
the following distribution:

G = (G,H,Gt, e,N := lcm(p1, p2)) R← G(λ), f1, g1
R← G1, f2, g2

R← G2, h1
R← H1, h2

R← H2,

Z ←
(
g1, g2, h1, h2

)
,

T0 ← e(f2, h1h2), T1 ← e(f1f2, h1h2).

15

We define the advantage of an algorithm A in solving the bilinear subgroup decision assumption to
be

BSD-Adv[A,G] =
∣∣∣Pr[A(G, Z, T0) = 1]− Pr[A(G, Z, T1) = 1]

∣∣∣.
We say that G satisfies the bilinear subgroup decision assumption if BSD-Adv[A,G](λ) is a negligible
function of λ for any polynomial-time algorithm A.

The reason the BSD assumption does not reduce to the ordinary subgroup decision assumption
(with G1, G2 switched) is that in the latter the challenger is not given generators of both G1 and
G2.

With these definitions, we can now state the security theorem for the generalized Boneh-Sahai-
Waters scheme. The original proof applies in our more general context.

Theorem 6.3. Suppose that G satisfies the subgroup decision assumption on the right, the bilinear
subgroup decision assumption, and the 3-party Diffie-Hellman assumptions on the left and right.
Then the generalized Boneh-Sahai-Waters PLBE scheme is secure.

6.3 Security in Prime-Order Groups

Step 3 in the conversion procedure is to translate the security assumptions to prime-order groups;
here we use the 2-cancelling bilinear group generator G2C of Example 3.8. The subgroup decision
assumption holds for G2C by Proposition 3.10. The challenge element for the bilinear subgroup
decision assumption is e(g, h) ∈ Gt with h

R← H and either g R← G or g R← G1. Since the group
Gt produced by G2C is cyclic, this assumption holds unconditionally for G2C . The 3-party DDH
assumption has a natural analogue in prime-order groups, which we record here.

Definition 6.4. Let P be a prime-order bilinear group generator that outputs three groups G1,G2,Gt

and a pairing ê. If A is an algorithm that takes as input five elements of G1, we define the advantage
of A in solving the 3-party decision Diffie-Hellman problem in G1 to be

3DDHG1-Adv[A,P] =
∣∣∣Pr[A(Ĝ, g, ga, gb, gc, gabc) = 1 : Ĝ R← P, g R← G1, a, b, c

R← Fp]

− Pr[A(Ĝ, g, ga, gb, gc, gd) = 1 : Ĝ R← P, g R← G1, a, b, c, d
R← Fp]

∣∣∣,
and similarly for 3DDHG2-Adv[A,P]. We say that G satisfies the 3-party DDH assumption in G1

if 3DDHG1-Adv[A,G](λ) is a negligible function of λ for any polynomial-time algorithm A (and
similarly for G2).

In Appendix D we show that the 3-party DDH assumption holds in the generic group model. The
security theorem for PLBE in prime-order groups is as follows.

Theorem 6.5. Let P be a prime-order bilinear group generator, and let G2C be the 2-cancelling
bilinear group generator constructed from P as in Example 3.8. If P satisfies the DDH assumption
in G2 and the 3-party DDH assumptions in G1 and G2, then the Boneh-Sahai-Waters PLBE system
is secure when instantiated with G = G2C .

Proof. It suffices to show that the three assumptions listed in Theorem 6.3 hold for G2C . First, by
Proposition 3.10, since P satisfies the DDH assumption in G2, the generator G2C satisfies the SDP

16

assumption on the right. Next, we observe that the bilinear subgroup decision assumption (Defini-
tion 6.2) holds unconditionally. To see this, we write the f1, f2, h1, h2 generated in the assumption
as

f1 = (α1, α
x
1), f2 = (α2, α

y
2), h1 = (β−y1 , β1), h2 = (β−x2 , β2)

for α1, α2
R← G1 and β1, β2

R← G2. Then e(f2, h1h2) = ê(α2, β2)(y−x), while e(f1f2, h1h2) =
ê(α1, β1)(x−y)ê(α2, β2)(y−x). Since the αi, βi are chosen uniformly at random, both e(f2, h1h2) and
e(f1f2, h1h2) are uniformly distributed in Gt = Gt, so no adversary A can have a nonzero advantage
in solving the BSD problem.

Now suppose we are given a 3-party DDH challenge for P; that is, a tuple (g, ga, gb, gc, h, ha, hb, hc, T)
with g, T ∈ G1 and h ∈ G2. We wish to create a properly distributed 3-party DDH challenge for
G2C . We choose g1

R← G1, h1
R← G2, and x, y

R← Fp. If we set

G1 = 〈(g1, gx1)〉, G2 = 〈(g, gy)〉, H1 = 〈(h−y1 , h1)〉, H2 = 〈(h−x, h)〉,

then these groups are distributed exactly as in the construction of G2C . Furthermore, if γ = (g, gy)
then we can construct γa, γb, γc ∈ G, and similarly for η = (h−x, h), ηa, ηb, ηc ∈ H. Finally, the
challenge element τ ∈ G is constructed as (T, T y). Thus we have constructed a properly distributed
3-party DDH challenge on the left for G2C , so any adversary A that solves the 3-party DDH problem
on the left for G2C can be used to solve the 3-party DDH problem in G1 for P. An identical analysis
holds on the right. ut

7 Application 3: Predicate Encryption

In a predicate encryption scheme, a ciphertext CI is associated with an attribute I and each user
has one or more keys Kf corresponding to predicates f . The key Kf can be used to decrypt the
ciphertext CI if and only if f(I) = 1. The scheme is secure if an adversary holding key Kf and
ciphertext CI with f(I) = 0 learns nothing about either the plaintext corresponding to CI or the
attribute I. (Formal definitions of syntax and security are in Appendix C.)

Katz, Sahai, and Waters [23] construct a predicate encryption scheme using bilinear groups
whose order is a product N of three distinct primes. In the system both predicates and attributes
correspond to vectors of length n over ZN . Predicates are evaluated using dot products: the predicate
vector ~v evaluates to 1 on the attribute vector ~x if and only if ~x•~v = 0.3 The security of the system
is based on two complex (though constant-size) assumptions in composite-order bilinear groups. To
support their assumptions, Katz et al. show that breaking either assumption in the generic group
model reveals the factorization of the group order N .

In this section, we translate the predicate encryption scheme of Katz et al. into our more general
framework. The security assumptions translate into similarly complex assumptions; however, when
instantiated using prime-order bilinear groups they also hold in the generic group model.

7.1 Construction.

Step 1 is to write the procedure using a bilinear group generator with an asymmetric pairing. We
note that the decryption algorithm requires pairing ciphertexts with keys. Thus we may streamline
the setup by computing ciphertexts in G and keys in H. Since public key elements are used to form
ciphertexts, they will also be in G. Here the correctness properties depend on cancellation between
various subgroups; specifically, we need to choose a bilinear group generator G that is 3-cancelling.
3 Here we use a large • to indicate vector dot product and a small · to indicate multiplication in a group.

17

We now give a detailed description of the “full-fledged” predicate encryption scheme of Katz et al.
[23, Appendix C] in our framework.

Setup(λ, n): The Setup algorithm takes as input a security parameter λ and a positive integer n
that is the length of vectors that represent predicates and attributes. Let G be a 3-cancelling
bilinear group generator (Definition 3.5) such that each output group Gj , Hj is cyclic of prime
order pj for j = 1 to 3. Do the following.
1. Compute (G,G1, G2, G3, H,H1, H2, H3, Gt, e)

R← G(λ).
2. Choose gi

R← Gi and hi
R← Hi for i = 1, 2, 3.

3. Choose R0
R← G3, γ R← Zp1 , h0

R← H1.
4. For i = 1, . . . , n, choose u1,i, u2,i

R← Zp1 and R1,i, R2,i
R← G3.

5. Output the public parameters (G,H,Gt, e,N := lcm(p1, p2, p3)), along with

PK =
(
g1, g3, Q = g2R0, P = e(g1, h0)γ , {L1,i = g

u1,i

1 R1,i, L2,i = g
u2,i

1 R2,i}ni=1

)
.

The master secret key is SK = (h1, h2, h3, h
−γ
0 , {u1,i, u2,i}ni=1).

KeyGen(SK,~v): Let ~v = (v1, . . . , vn) ∈ ZnN be a predicate. Choose r1,i, r2,i
R← ZN for i = 1 to n,

choose f1, f2
R← ZN , and choose S R← H2×H3. Output the secret key corresponding to predicate

~v as

SK~v =

(
K0 = S · h−γ0 ·

n∏
i=1

h
−r1,iu1,i−r2,iu2,i

1 ,
{
K1,i = h

r1,i
1 · hf1·vi2 , K2,i = h

r2,i
1 · hf2·vi2

}n
i=1

)
.

Encrypt(PK, ~x,M): Let ~x = (x1, . . . , xn) ∈ ZnN be an attribute, and M ∈ Gt be a message. Choose
s, α, β

R← ZN and random t1,i, t2,i
R← ZN for i = 1, . . . , n. Output the ciphertext

C =
(
C ′ = M · P s, C0 = gs1,

{
C1,i = Ls1,i ·Qα·xi · g

t1,i
3 , C2,i = Ls2,i ·Qβ·xi · g

t2,i
3

}n
i=1

)
.

Decrypt(SK~v, C): Output

C ′ · e(C0,K0) ·
n∏
i=1

e(C1,i,K1,i) · e(C2,i,K2,i).

The cancelling property of the pairing implies that when the ciphertexts and secret keys are
formed correctly, the decryption algorithm outputs M · e(g1, h1)(αf1+βf2)(~x•~v). If ~x • ~v = 0 then we
obtain M as required; otherwise we obtain M multiplied by e(g1, h1) raised to a random power.
As in the original scheme, we can restrict the message space to some efficiently recognizable set of
negligible density in Gt and output an error when the decryption does not lie in this space.

7.2 Security

Step 2 is to translate the assumptions used to prove the scheme secure into our more general
context. There are two assumptions, which we call Assumptions 1 and 2. Both can be seen as
variants of the subgroup decision problem: the adversary is given a set of elements Z ⊂ G with
some specified relationship, and is asked to determine whether a challenge element T is in a proper
subgroup of G.

The following two assumptions, stated in symmetric groups, are used to prove the security of
the Katz-Sahai-Waters predicate encryption scheme.

18

Assumption 1. Let G be a 3-cancelling bilinear group generator such that for i = 1, 2, 3 the
output groups Gi and Hi are equal to each other and of prime order pi. We define the following
distribution:

G = (G,Gt, e,N := lcm(p1, p2, p3)) R← G(λ), g1
R← G1, g2

R← G2, g3
R← G3,

Q1, Q2, Q3
R← G2, R1, R2, R3

R← G3, a, b, s
R← Zp1 ,

Z ←
(
g1, g3, g2R1, g

b
1, g

b2

1 , g
a
1g2, g

ab
1 Q1, g

s
1, g

bs
1 Q2R2

)
,

T0 ← gb
2s

1 R3, T1 ← gb
2s

1 Q3R3.

We define the advantage of an algorithm A in breaking Assumption 1 to be

A1-Adv[A,G] =
∣∣∣Pr[A(G, Z, T0) = 1]− Pr[A(G, Z, T1) = 1]

∣∣∣.
We say that G satisfies Assumption 1 if A1-Adv[A,G](λ) is a negligible function of λ for any
polynomial-time algorithm A.

Assumption 2. Let G be as in Assumption 1. We define the following distribution:

G = (G,Gt, e,N := lcm(p1, p2, p3)) R← G(λ), g1
R← G1, g2

R← G2, g3
R← G3,

P
R← G1, Q1, Q2

R← G2, γ
R← Zp1 , s

R← Zp2 ,
Z ←

(
g1, g2, g3, P, g

s
1, P

sQ1, g
γ
1Q2, e(g1, P)γ

)
,

T0 ← e(g1, P)γs, T1
R← Gt.

We define the advantage of an algorithm A in breaking Assumption 2 to be

A2-Adv[A,G] =
∣∣∣Pr[A(G, Z, T0) = 1]− Pr[A(G, Z, T1) = 1]

∣∣∣.
We say that G satisfies Assumption 2 if A2-Adv[A,G](λ) is a negligible function of λ for any
polynomial-time algorithm A.

To translate these assumptions to the asymmetric setting with a pairing e : G ×H → Gt, we
must look into the “guts” of the reductions in the original security proof. In particular, we must
determine whether each group element in a challenge (Z, T) is used by the simulator to produce
a key element in G, a ciphertext element in H, or both. We do not repeat the details of the
simulations, but give our conclusions in Table 2 below.

Table 2. Allocation of group elements in asymmetric versions of Assumptions 1 and 2.

used to produce ciphertext elements in G used to produce key elements in H in Gt

Assumption 1 g1, g3, g2R1, g
b
1, g

b2

1 , g
s
1, g

bs
1 Q2R2, T g1, g3, g2R1, g

b
1, g

b2

1 , g
a
1g2, g

ab
1 Q1

Assumption 2 g1, g2, g3, P, g
s
1, P

sQ1 g1, g2, g3, g
γ
1Q2 e(g1, P)γ , T

Thus to modify Assumption 1 for the asymmetric setting, we must also choose hi
R← Hi,

Q′1
R← H2, and R′1

R← H3, and set

Z ←
(
g1, g3, g2R1, g

b
1, g

b2

1 , g
s
1, g

bs
1 Q2R2, h1, h3, h2R

′
1, h

b
1, h

b2

1 , h
a
1h2, h

ab
1 Q

′
1

)
. (7.1)

To modify Assumption 2 for the asymmetric setting, we choose hi
R← Hi and Q′2

R← H2, and set

Z ←
(
g1, g2, g3, P, g

s
1, P

sQ1, h1, h2, h3, h
γ
1Q
′
2, e(P, h1)γ

)
. (7.2)

19

7.3 Security in Prime-Order Groups

Step 3 of the conversion procedure is to instantiate the scheme using prime-order groups. We use
the 3-cancelling bilinear group generator G3C of Example 3.7. Let P be the prime-order group
generator from which we construct G3C . We now translate the asymmetric versions of Assumptions
1 and 2 explicitly to this setting, obtaining two (constant-size) assumptions for P. For the first
assumption, the set of challenge elements in the general setting is given by (7.1).

Assumption 3. Let P be a prime-order bilinear group generator. We define the following distri-
bution:

G = (p,G1,G2,Gt, ê)
R← P(λ), g1, g2, g3

R← G1, h1, h2, h3
R← G2,

x, y, z, u, v, w, a, b, s, c1, c2, c3, d1, d2, d3
R← Fp,

Z ←
(
(g1, gx1 , g

u
1), (g3, gz3 , g

w
3), (g2gd13 , g

y
2g
zd1
3 , gv2g

wd1
3), (gb1, g

xb
1 , g

ub
1), (gb

2

1 , g
xb2

1 , gub
2

1), (gs1, g
xs
1 , g

us
1),

(gbs1 g
c2
2 g

d2
3 , g

xbs
1 gyc22 gzd23 , gubs1 gvc22 gwd23), (hzv−yw1 , hw−v1 , hy−z1), (hyu−xv3 , hv−u3 , hx−y3),

(hzu−xv2 h
(yu−xv)d1
3 , hw−u2 h

(v−u)d1
3 , hzu−xw2 h

(yu−xv)d1
3), (h(zv−yw)b

1 , h
(w−v)b
1 , h

(y−z)b
1),

(h(zv−yw)b2

1 , h
(w−v)b2
1 , h

(y−z)b2
1), (h(zv−yw)a

1 hzu−xw2 , h
(w−v)a
1 hw−u2 , h

(y−z)a
1 hz−x2),

(h(zv−yw)ab
1 h

(zu−xw)c1
2 , h

(w−v)ab
1 h

(w−u)c1
2 , h

(y−z)ab
1 h

(z−x)c1
2)

)
.

T0 ← (gb
2s

1 gd33 , g
xb2s
1 gzd33 , gub

2s
1 gwd33), T1 ← (gb

2s
1 gc32 g

d3
3 , g

xb2s
1 gyc32 gzd33 , gub

2s
1 gvc32 gwd33).

We define the advantage of an algorithm A in breaking Assumption 3 to be

A3-Adv[A,G] =
∣∣∣Pr[A(G, Z, T0) = 1]− Pr[A(G, Z, T1) = 1]

∣∣∣.
We say that G satisfies Assumption 3 if A3-Adv[A,G](λ) is a negligible function of λ for any
polynomial-time algorithm A.

For the second assumption, the set of challenge elements in the general setting is given by (7.2).

Assumption 4. Let P be a prime-order bilinear group generator. We define the following distri-
bution:

G = (p,G1,G2,Gt, ê)
R← P(λ), g1, g2, g3

R← G1, h1, h2, h3
R← G2, x, y, z, u, v, w, a, s, γ, c1, c2

R← Fp,
Z ←

(
(g1, gx1 , g

u
1), (g2, g

y
2 , g

v
2), (g3, gz3 , g

w
3), (ga1 , g

xa
1 , gua1), (gs1, g

xs
1 , g

us
1), (gas1 g

c1
2 , g

xas
1 gyc12 , guas1 gvc12),

(hzv−yw1 , hw−v1 , hy−z1), (hzu−xw2 , hw−u2 , hz−x2), (hyu−xv3 , hv−u3 , hx−y3),

(h(zv−yw)γ
1 h

(zu−xw)c2
2 , h

(w−v)γ
1 h

(w−u)c2
2 , h

(y−z)γ
1 h

(z−x)c2
2), e(g1, h1)(xw−xv+yu−yw−zu+zv)aγ

)
.

T0 ← ê(g1, h1)(xw−xv+yu−yw−zu+zv)aγs, T1
R← Gt.

We define the advantage of an algorithm A in breaking Assumption 4 to be

A4-Adv[A,G] =
∣∣∣Pr[A(G, Z, T0) = 1]− Pr[A(G, Z, T1) = 1]

∣∣∣.
We say that G satisfies Assumption 4 if A4-Adv[A,G](λ) is a negligible function of λ for any
polynomial-time algorithm A.

We obtain the following security theorem.

20

Theorem 7.1. Let P be a prime-order bilinear group generator, and let G3C be the 3-cancelling
bilinear group generator constructed from P in Example 3.7. If P satisfies Assumptions 3 and 4,
then the Katz-Sahai-Waters predicate encryption scheme is secure when instantiated with G = G2C .

In Appendix D we show that Assumptions 3 and 4 hold in the generic group model. This result
does not necessarily mean that the assumptions hold when instantiated with any specific group;
however, it does suggest that we should favor these assumptions neither more nor less than the
assumptions in composite-order groups from which they are derived.

8 Further Work

We expect that our framework can be used to create prime-order group instantiations of other
cryptosystems that use composite-order bilinear groups. However, since our construction is not
black box, the security proof of each cryptosystem will need to be checked to ensure that it is still
valid in our more general framework. For example, the zero-knowledge proofs of Groth, Ostrovsky,
and Sahai [19] use in an essential manner the fact that a group element can be paired with itself,
so we cannot instantiate this system using an asymmetric pairing. However, we do expect that the
system can be instantiated with a symmetric pairing under the decision linear assumption using
the bilinear group generator GL of Example 3.9.

As another example, the proof of the Lewko-Waters identity-based encryption system [24] uses
in an essential way the fact that G has two subgroups with relatively prime order; thus our prime-
order construction does not apply in this case. Lewko and Waters do give a version of their system
in prime-order groups, with a different security proof under new assumptions. It remains an open
problem to find a framework that incorporates the security proofs of both versions of the system.

Acknowledgments

The author thanks Dennis Hofheinz, Eike Kiltz, and Brent Waters for helpful discussions.

References

1. L. Ballard, M. Green, B. de Medeiros, and F. Monrose. “Correlation-resistant storage via keyword-searchable
encryption.” Cryptology ePrint Archive, Report 2005/417 (2005). Available at http://eprint.iacr.org/2005/
417.

2. E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. “Recommendation for key management — Part 1:
General (revised).” National Institute of Standards and Technology (2007). Available at http://csrc.nist.

gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf.
3. P. Barreto and M. Naehrig. “Pairing-friendly elliptic curves of prime order.” In Selected Areas in Cryptography

— SAC 2005, Springer LNCS 3897 (2006), 319–331.
4. D. Boneh, X. Boyen, and E.-J. Goh. “Hierarchical identity based encryption with constant size ciphertext.” In

Advances in Cryptology — Eurocrypt 2005, Springer LNCS 3494 (2005), 440–456.
5. D. Boneh, X. Boyen, and H. Shacham. “Short group signatures.” In Advances in Cryptology — CRYPTO 2004,

Springer LNCS 3152 (2004), 41–55.
6. D. Boneh, E.-J. Goh, and K. Nissim. “Evaluating 2-DNF formulas on ciphertexts.” In Theory of Cryptography

— TCC 2005, Springer LNCS 3378 (2005), 325–341.
7. D. Boneh, A. Sahai, and B. Waters. “Fully collusion resistant traitor tracing with short ciphertexts and private

keys.” In Advances in Cryptology — Eurocrypt 2006, Springer LNCS 4004 (2006), 573–592. Full version available
at http://eprint.iacr.org/2006/045.

8. D. Boneh and B. Waters. “Conjunctive, subset, and range queries on encrypted data.” In Theory of Cryptography
— TCC 2007, Springer LNCS 4392 (2007), 535–554.

9. W. Bosma, J. Cannon, and C. Playoust. “The Magma algebra system. I. The user language.” Journal of Symbolic
Computation 24 (1997), 235–265.

21

10. X. Boyen and B. Waters. “Full-domain subgroup hiding and constant-size group signatures.” In Public Key
Cryptography — PKC 2007, Springer LNCS 4450 (2007), 1–15.

11. F. Brezing and A. Weng. “Elliptic curves suitable for pairing based cryptography.” Designs, Codes and Cryp-
tography 37 (2005), 133–141.

12. B. Chor, A. Fiat, and M. Naor. “Tracing traitors.” In Advances in Cryptology — CRYPTO 1994, Springer LNCS
839 (1994), 257–270.

13. R. Cramer and V. Shoup. “Design and analysis of practical public-key encryption schemes secure against adaptive
chosen ciphertext attack.” SIAM Journal on Computing 33 (2003), 167–226.

14. S. Duquesne and T. Lange. “Pairing-based cryptography.” In Handbook of Elliptic and Hyperelliptic Curve
Cryptography. Chapman & Hall/CRC, Boca Raton, FL (2006), 573–590.

15. D. Freeman, M. Scott, and E. Teske. “A taxonomy of pairing-friendly elliptic curves.” To appear in Journal of
Cryptology (2009). Available at http://eprint.iacr.org/2006/372.

16. S. Galbraith. “Pairings.” In Advances in Elliptic Curve Cryptography, London Math. Soc. Lecture Note Ser.
317. Cambridge University Press, Cambridge (2005), 183–213.

17. S. Galbraith and E. Verheul. “An analysis of the vector decomposition problem.” In Public Key Cryptography
— PKC 2008, Springer LNCS 4939 (2008), 308–327.

18. K. Gjøsteen. Subgroup membership problems and public key cryptosystems. Ph.D. dissertation, Norwegian
University of Science and Technology (2004). Available at http://ntnu.diva-portal.org/smash/get/diva2:

121977/FULLTEXT01.
19. J. Groth, R. Ostrovsky, and A. Sahai. “Perfect non-interactive zero knowledge for NP.” In Advances in Cryptology

— Eurocrypt 2006, Springer LNCS 4004 (2006), 339–358.
20. J. Groth and A. Sahai. “Efficient non-interactive proof systems for bilinear groups.” In Advances in Cryptology

— Eurocrypt 2008, Springer LNCS 4965 (2008), 415–432.
21. D. Hofheinz and E. Kiltz. “Secure hybrid encryption from weakened key encapsulation.” In Advances in Cryp-

tology — CRYPTO 2007, Springer LNCS 4622 (2007), 553–571.
22. R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge University Press, Cambridge (1991).
23. J. Katz, A. Sahai, and B. Waters. “Predicate encryption supporting disjunctions, polynomial equations, and

inner products.” In Advances in Cryptology — Eurocrypt 2008, Springer LNCS 4965 (2008), 146–162. Full
version available at http://eprint.iacr.org/2007/404.

24. A. B. Lewko and B. Waters. “Fully secure HIBE with short ciphertexts.” Cryptology ePrint Archive, Report
2009/482 (2009). Available at http://eprint.iacr.org.

25. A. Menezes, T. Okamoto, and S. Vanstone. “Reducing elliptic curve logarithms to logarithms in a finite field.”
IEEE Transactions on Information Theory 39 (1993), 1639–1646.

26. A. Miyaji, M. Nakabayashi, and S. Takano. “Characterization of elliptic curve traces under FR-reduction.” In
Information Security and Cryptology — ICISC 2000, Springer LNCS 2015 (2001), 90–108.

27. T. Okamoto and K. Takashima. “Homomorphic encryption and signatures from vector decomposition.” In
Pairing-Based Cryptography — Pairing 2008, Springer LNCS 5209 (2008), 57–74.

28. K. Rubin and A. Silverberg. “Using abelian varieties to improve pairing-based cryptography.” Journal of
Cryptology 22 (2009), 330–364.

29. M. Scott. Personal communication (17 February 2009).
30. H. Shacham. “A Cramer-Shoup encryption scheme from the Linear assumption and from progressively weaker

Linear variants.” Cryptology ePrint Archive, Report 2007/074 (2007). Available at http://eprint.iacr.org/

2007/074.
31. H. Shacham and B. Waters. “Efficient ring signatures without random oracles.” In Public Key Cryptography —

PKC 2007, Springer LNCS 4450 (2007), 166–180.
32. V. Shoup. “Lower bounds for discrete logarithms and related problems.” In Advances in Cryptology — Eurocrypt

1997, Springer LNCS 1233 (1997), 256–266.
33. B. Waters. “Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions.” In

Advances in Cryptology — Crypto 2009, Springer LNCS 5677 (2009), 619–636.
34. M. Yoshida. “Inseparable multiplex transmission using the pairing on elliptic curves and its application to water-

marking.” Proc. Fifth Conference on Algebraic Geometry, Number Theory, Coding Theory and Cryptography,
University of Tokyo, 2003 (2003). Available at http://www.math.uiuc.edu/~duursma/pub/yoshida_paper.pdf.

35. M. Yoshida, S. Mitsunari, and T. Fujiwara. “Vector decomposition problem and the trapdoor inseparable mul-
tiplex transmission scheme based the problem.” In Proceedings of the 2003 Symposium on Cryptography and
Information Security (SCIS) (2003), 491–496.

22

A Pairing-Friendly Elliptic Curves

To describe pairing-friendly elliptic curves we first review some notation. If E is an elliptic curve
over a finite field Fq, then E(Fq) denotes the Fq-rational points of E. We let E[n] denote all points
of E with order dividing n, defined over any extension of Fq; if n is prime to q then E[n] ∼= Z2

n.
If r is a prime dividing #E(Fq) and not dividing q, the embedding degree of E with respect to r is
the smallest integer such that qk ≡ 1 (mod r). If E has embedding degree k with respect to r then
E(Fqk) has two linearly independent subgroups of order r and the modified Tate pairing on E[p]
takes values in F∗

qk
[14, Section 2.1]. A “pairing-friendly” curve is one that has a small embedding

degree (e.g., k ≤ 50) with respect to a large prime-order subgroup (e.g., p > 2160).
If E is has embedding degree k > 1 with respect to r then there are two distinguished order-r

subgroups of E(Fqk): namely, the group G1 of rational points of order r, i.e., E(Fq)∩E[r], and the
group G2 of points of order r in the trace-zero subgroup of E(Fqk)., i.e.,

E[r] ∩
{

(x, y) ∈ E(Fqk) :
∑k

i=1(xq
i
, yq

i
) = O

}
,

where
∑

indicates addition on the elliptic curve and O is the identity element.
Equivalently, we can define G1 and G2 as the subgroups of E[r] on which the q-power Frobenius

endomorphism acts as multiplication by 1 and q, respectively.
If E is ordinary (i.e., #E(Fq) 6= q + 1), then there is no known efficient algorithm for solving

the DDH problem in either G1 or G2. In particular, the Weil and Tate pairings are trivial when
restricted to either G1 or G2 [16, Lemma IX.16], so we cannot use the pairing to solve DDH in either
group. If we let Gt be the order-p subgroup of F∗

qk
and ê be the modified Tate pairing, then we set

the output of the bilinear group generator P to be (r,G1,G2,Gt, ê). (Of course, in an application
the roles of G1 and G2 could be switched in order to make the group of Fq-rational points the one
in which the most computation is done.)

An elliptic curve E as above not only provides an example of a bilinear groups in which DDH is
hard, but also admits arbitrary embedding degree k, which allows us to scale the sizes of the groups
E(Fq) ⊃ G1 and F∗

qk
⊃ Gt independently, providing maximum efficiency for any desired security

level (see e.g. [15]). By contrast, symmetric pairings are restricted to embedding degree k = 2 over
prime fields and to k ≤ 6 in general.

The three ordinary elliptic curves we choose to match our specified levels of AES security are
as follows:

80-bit security: We use a Miyaji-Nakabayashi-Takano elliptic curve E over a 170-bit field Fq with
a prime group order p = #E(Fq) and embedding degree 6 [26]. We can represent elements of
G2 as points in the trace-zero subgroup of the quadratic twist of E over Fq. This group has
order roughly q2, so if we use the compression method of Rubin and Silverberg [28, Section 10],
we can represent elements in G2 using 340 bits.

128-bit security: We use a Barreto-Naehrig elliptic curve E over a 256-bit field Fq with a prime
group order p = #E(Fq) and embedding degree 12 [3]. We can represent elements of G2 as
points on the sextic twist of E over Fp2 . This group has order roughly q2, so we can represent
elements in G2 using 512 bits.

256-bit security: We use a Brezing-Weng elliptic curve E over a 640-bit field Fq that has a 512-
bit prime-order subgroup and embedding degree 24 [11]. We can represent elements of G2 as
points on the sextic twist of E over Fq4 . This group has order roughly q4, so we can represent
elements in G2 using 2560 bits.

23

B Private Linear Broadcast Encryption: Definitions and Construction

In this section we give the formal definition of a private linear broadcast encryption system and
define what it means for the system to be secure. This material appears in [7, Section 2] and is
duplicated here for ease of reference.

B.1 Syntax

Formally, a PLBE system is comprised of four probabilistic polynomial-time algorithms:

Setup(λ, n): Takes as input a security parameter λ and a positive integer n that is the number of
users in the system. The algorithm outputs a public key PK, a secret key SK, and private keys
K1, . . . ,Kn, where key Ki is given to user i.

Encrypt(PK,M): Takes as input a public key PK and a message M and outputs a ciphertext C.
This algorithm is used to encrypt a message to all N users.

TrEncrypt(SK, i,M): Takes as input a secret key SK, an integer i with 1 ≤ i ≤ n + 1, and a
message M , and outputs a ciphertext C. This algorithm encrypts a message to a set {i, . . . , N}
and is primarily used for traitor tracing. We will require below that TrEncrypt(SK, 1,M) out-
puts a distribution on ciphertexts that is indistinguishable from the distribution generated by
Encrypt(PK,M).

Decrypt(j,Kj , C, PK): Takes as input a private key Kj for user j, a ciphertext C, and the public
key PK. The algorithm outputs a message M or the symbol ⊥.

The system must satisfy the following correctness property for all i, j ∈ {1, . . . , N+1}, with j ≤
N , and all messagesM : Let (PK,SK, (K1, . . . ,Kn) R← Setup(λ, n), and let C R← TrEncrypt(SK, i,M).
If j ≥ i then Decrypt(j,Kj , C, PK) = M .

B.2 Security

Security of a PLBE system is defined using three games. The first game captures a consistency
property which says that TrEncrypt(TK, 1,M) outputs a distribution on ciphertexts that is indis-
tinguishable from the distribution generated by Encrypt(PK,M). The second game is a “message
hiding” game and says that a ciphertext created using index i = n + 1 is unreadable by anyone.
The third game is an “index hiding” game and captures the intuition that a broadcast ciphertext
created using index i reveals no non-trivial information about i. We consider all these games for a
fixed number of users n.

Game 1 — Indistinguishability. The first game says that the output of TrEncrypt(SK, 1,M) is
indistinguishable from Encrypt(PK,M). The game proceeds as follows:

• Setup: The challenger runs the Setup algorithm and gives the adversary PK and the set of all
private keys {K1, . . . ,Kn}.
• Challenge: The adversary gives the challenger a message M . The challenger chooses β R← {0, 1}

and computes

C
R←
{

TrEncrypt(TK, 1,M) if β = 0,
Encrypt(PK,M) if β = 1.

It gives C to the adversary.
• Guess: The adversary returns a guess β′ ∈ {0, 1} for β.

We define the advantage of adversary A as CG-Adv[A] = |Pr[β′ = β]− 1/2|.

24

Game 2 — Message Hiding. The second game says that an adversary cannot break semantic
security when encrypting using index i = N + 1. The game proceeds as follows:

• Setup: The challenger runs the Setup algorithm and gives the adversary PK and the set of all
private keys {K1, . . . ,Kn}.
• Challenge: The adversary outputs two equal-length messages M0,M1. The challenger chooses
β

R← {0, 1} and sets C R← TrEncrypt(TK, n+ 1,Mβ). The challenger gives C to the adversary.
• Guess: The adversary returns a guess β′ ∈ {0, 1} for β.

We define the advantage of adversary A as MH-Adv[A] = |Pr[β′ = β]− 1/2|.

Game 3 — Index Hiding. The third game says that an adversary cannot distinguish between
an encryption to index i and one to index i + 1 without the key Ki. The game takes as input
a parameter i ∈ {1, . . . , N} which is given to both the challenger and the adversary. The game
proceeds as follows:

• Setup: The challenger runs the Setup algorithm and gives the adversary PK and the set of all
private keys {Kj : j 6= i}.
• Challenge: The adversary gives the challenger a message M . The challenger chooses β R← {0, 1}

and computes C R← TrEncrypt(TK, i+ β,M). The challenger returns C to the adversary.
• Guess: The adversary returns a guess β′ ∈ {0, 1} for β.

We define the advantage of adversary A as IH-Adv[A, i] = |Pr[β′ = β]− 1/2|.
Now that the three games are established we are ready to define secure PLBE.

Definition B.1. We say that an n-user Private Linear Broadcast Encryption (PLBE) system
is secure if for all polynomial-time adversaries A we have that CG-Adv[A], MH-Adv[A], and
IH-Adv[A, i] for i = 1, . . . , n are all negligible functions of λ.

C Predicate Encryption: Definitions and Construction

In this section we give the formal definition of a predicate encryption scheme and define what it
means for the system to be secure. This material appears in [23, Section 2] and is duplicated here
for ease of reference.

C.1 Syntax.

Formally, a predicate encryption scheme for the class of predicates F over the set of attributes Σ
consists of four probabilistic polynomial-time algorithms:

Setup(λ): Takes as input a security parameter λ and outputs a (master) public key PK and a
(master) secret key SK.

KeyGen(SK, f): Takes as input the master secret key SK and a (description of a) predicate f ∈ F .
It outputs a key SKf .

Encrypt(PK, I,M): Takes as input the public key PK, an attribute I ∈ Σ, and a message M in
some associated message space. It returns a ciphertext C.

Decrypt(SKf , C): Takes as input a secret key SKf and a ciphertext C. It outputs either a message
M or the distinguished symbol ⊥.

For correctness, we require that for all λ, all (PK,SK) generated by Setup(λ), all f ∈ F , any key
SKf ← KeyGen(SK, f), and all I ∈ Σ, the following hold:

• If f(I) = 1 then Decrypt(SKf ,Encrypt(PK, I,M)) = M .
• If f(I) = 0 then Decrypt(SKf ,Encrypt(PK, I,M)) = ⊥ with all but negligible probability.

25

C.2 Security.

The Katz et al. construction produces a predicate encryption scheme where the set of attributes
in Σ = ZnN and the class of predicates is F = {f~x : ~x ∈ ZnN}. Security of such a system is defined
using the following game. (Compare with [23, Definition 2.2 and Definition B.1].) As before, we use
a large • to denote the dot product of vectors over ZN .

1. Setup(λ, n) is run to generate keys PK,SK. This defines a value N which is given to A.
2. A outputs ~x, ~y ∈ ZnN , and is then given PK.
3. A may adaptively request keys corresponding to the vectors ~v1, . . . , ~v` ∈ ZnN , subject to the

restriction that for all i, we have ~vi • ~x = 0 if and only if ~vi • ~y = 0. In response, A is given the
corresponding keys SK~vi ← KeyGen(SK,~vi).

4. A outputs two equal-length messages M0,M1. If there is an i for which ~vi • ~x = ~vi • ~y = 0, then
it is required that M0 = M1.

5. A random bit β is chosen. If β = 0 then A is given C ← Encrypt(PK, ~x,M0), and if β = 1 then
A is given C ← Encrypt(PK, ~y,M1).

6. The adversary may continue to request keys for additional predicates, subject to the same
restrictions as before.

7. A outputs a bit β′., and succeeds if β′ = β.

We define the advantage of adversary A as PE-Adv[A] = |Pr[β′ = β]− 1/2|.

Definition C.1. A predicate encryption scheme with respect to F and Σ is attribute hiding or
secure if for all polynomial-time adversaries A, we have that PE-Adv[A] is negligible in the security
parameter λ.

D Security of Predicate Encryption in Generic Prime-Order Groups

The security of the Katz-Sahai-Waters predicate encryption scheme using the bilinear generator
G3C depends on the complex (though constant-size) Assumptions 3 and 4. To determine whether
these assumptions are reasonable, we wish to determine whether they hold in the generic group
model [32]. To do this, we use the “master theorem” of Boneh, Boyen, and Goh [4, Theorem A.5].

In a group of prime order, we represent each randomly chosen group element g as a random
variable X, which indicates the exponent of g relative to some fixed group generator g0 (represented
by 1). Interdependencies of group elements are made explicit by reusing the same variables; for
example, a generic Diffie-Hellman tuple can be represented by the expression (1, X, Y,XY) in the
variables X and Y . The key concept we will use is dependence of variables, which we now define.

Definition D.1. Let P = (u1, . . . , ur), Q = (v1, . . . , vs), R = (w1, . . . , wt), S = (χ1, . . . , χm) be
tuples of polynomials in Z[X1, . . . , Xn]. Let f be a polynomial in Z[X1, . . . , Xn]. We say that f · S
is dependent on (P,Q,R) if there exist integers ai,j for 1 ≤ i ≤ r and 1 ≤ j ≤ s, integers bk for
1 ≤ k ≤ t, and integers cl with 1 ≤ l ≤ m, such that

r∑
i=1

s∑
j=1

ai,juivj +
t∑

k=1

bkwk +
m∑
`=1

c`χ`Y (D.1)

is nonzero in Z[X1, . . . , Xn, Y] but becomes zero when we set Y = f .
We say that f · S is independent of (P,Q,R) if f · S is not dependent on (P,Q,R).
We say that f is independent of (P,Q,R) if f · {1} is independent of (P,Q,R).

26

In the definition, the polynomials ui represent elements of G1, polynomials vj represent elements
of G2, and polynomials wk represent elements of Gt, while the polynomial f represents the challenge
element in the assumption. Our definition generalizes that of Boneh et al. by allowing the challenge
element to be in any of the three groups; the polynomials χ` represent the elements with which the
challenge element can be paired.

We note that Boneh et al. use polynomials over Fp to represent group elements; however,
this choice does not take into account the fact that in our assumptions the relations between the
variables remain the same while the group order p may vary. Thus we define our variables in terms
of polynomials over Z and observe that if independence holds over Z then it holds over Fp for all
sufficiently large p.

Definition D.2. Let P be a prime-order bilinear group generator, and let P,Q,R, f be as in
Definition D.1. Define the following distribution:

G = (p,G1,G2,Gt, e)
R← P(λ), g R← G1, h

R← G2, gt ← ê(g, h), ~x R← F`p
Z ←

(
gu1(~x), . . . , gur(~x), hv1(~x), . . . , hvs(~x), g

w1(~x)
t , . . . , g

vr(~x)
t

)
,

T0 ← g
f(~x)
1 , T1

R← G1.

We define the advantage of algorithm A that outputs b ∈ {0, 1} in solving the (P,Q,R, f)-decision
Diffie-Hellman problem in G1 to be

(P,Q,R, f)−DDH-Adv[A,P] =
∣∣∣Pr[A(G, Z, T0) = 1]− Pr[A(G, Z, T1) = 1]

∣∣∣.
We define the analogous problem Gt by taking T0 ← g

f(~x)
t , T1

R← Gt.

The Boneh-Boyen-Goh “master theorem” is as follows. Boneh et al. prove the theorem for the
(P,Q,R, f)-DDH problem in Gt. The same argument carries over to the statement in G1, using our
generalized definition of independence.

Theorem D.3 ([4, Theorem A.5]). Let P,Q,R be as in Definition D.1, let f ∈ Z[X1, . . . , Xn],
and let p be a prime. Let d = 2 ·max{degα : α ∈ P ∪Q∪R∪{f}}. If f is independent of (P,Q,R),
then any algorithm that solves the (P,Q,R, f)-DDH problem in Gt with advantage 1/2 in a generic
bilinear group of order p must take time at least Ω(

√
p/d− n), asymptotically as p→∞.

If f · Q is independent of (P,Q,R), then the same statement holds for the (P,Q,R, f)-DDH
problem in G1.

We now apply this theorem to Assumptions 3 and 4. The assumptions are too complex for
us to check the independence conditions by hand, so we turn to a computer. To do this, we
first note that the independence condition of Definition D.1 is equivalent to the two Z-modules
Z[{uivj}, {wk}, {χ`Y }] and Z[{uivj}, {wk}, {χ`f}] having the same rank. Thus we can determine
independence by the following procedure:

1. Let V be the free Z-module with a basis consisting of all the distinct monomials in the polyno-
mials uivj , wk, χ`Y, χ`f , listed in some fixed order.

2. Represent each polynomial p in {uivj}, {wk}, {χ`Y }, {χ`f} as an integer vector ~xp ∈ V with
respect to the above basis.

3. Let M1 be the matrix whose rows are the vectors ~xuivj , ~xwk , ~xχ`Y .
4. Let M2 be the matrix whose rows are the vectors ~xuivj , ~xwk , ~xχ`f .

27

5. Compute rank(M1) and rank(M2). If they are equal, then f · S is independent of (P,Q,R);
otherwise there is a dependence.

We begin with Assumption 4 since it fits exactly into this framework. If we use 1, A,B to
represent g1, g2, g3 and 1, E, F to represent h1, h2, h3, then we are working in the polynomial ring
Z[x, y, z, u, v, w, a, s, γ, c1, c2, A,B,E, F] in 15 variables over Z. We set

P =
(
1, x, u,A,Ay,Av,B,Bz,Bw, a, xa, ua, s, xs, us, as+Ac1, xas+Ayc1, uas+Avc1

)
,

Q =
(
zv − yw,w − v, y − z, E(zu− xw), E(w − u), E(z − x), F (yu− xv), F (v − u), F (x− y),

(zv − yw)γ + E(zu− xw)c2, (w − v)γ + E(w − u)c2, (y − z)γ + E(z − x)c2
)
,

R = ((xw − xv + yu− yw − zu+ zv)aγ),
f = (xw − xv + yu− yw − zu+ zv)aγs

We use Magma [9] to apply the above procedure with S = {1}. The space V has dimension 565
over Z, and the matrices M1 and M2 each have 218 rows (corresponding to polynomials). We find
that the ranks of M1 and M2 are both 207, so f is independent of (P,Q,R). Thus we have proven
the following.

Proposition D.4. Any algorithm that breaks Assumption 4 with advantage 1/2 in a generic bilin-
ear group of order p must take time at least Ω(

√
p), asymptotically as p→∞

On the other hand, Assumption 3 does not quite fit into the framework. First of all, in Assump-
tion 3 the “variable” part of the challenge (i.e., T0 or T1) consists of three group elements, whereas
Theorem D.3 allows only one element to vary. In addition, both T0 and T1 have a specified form,
whereas in Theorem D.3 one of these elements should be uniformly random. However, a simple
hybrid argument shows that Assumption 3 follows from a number of related assumptions that do
fit the model of Theorem D.3. Specifically, we define new variables T0i, T1i for i = 1, 2, 3, such that
T0 = (T01, T02, T03) and T1 = (T11, T12, T13). We then have

A3-Adv[A,G] ≤
∣∣∣Pr[A(G, Z, T01, T02, T03) = 1]− Pr[A(G, Z,R, T02, T03) = 1]

∣∣∣ (D.2)

+
∣∣∣Pr[A(G, Z,R, T02, T03) = 1]− Pr[A(G, Z, T11, T02, T03) = 1]

∣∣∣ (D.3)

+
∣∣∣Pr[A(G, Z, T11, T02, T03) = 1]− Pr[A(G, Z, T11, R, T03) = 1]

∣∣∣ (D.4)

+
∣∣∣Pr[A(G, Z, T11, R, T03) = 1]− Pr[A(G, Z, T11, T12, T03) = 1]

∣∣∣ (D.5)

+
∣∣∣Pr[A(G, Z, T11, T12, T03) = 1]− Pr[A(G, Z, T11, T12, R) = 1]

∣∣∣ (D.6)

+
∣∣∣Pr[A(G, Z, T11, T12, R) = 1]− Pr[A(G, Z, T11, T12, T13) = 1]

∣∣∣ (D.7)

where in each case we choose R R← G1.
Each of the terms (D.2)–(D.7) on the right hand side corresponds to an assumption that can

be modeled in the generic group framework. If all six of the terms are negligible, then G satisfies
Assumption 3. We note that the term (D.3) is equal to zero since T11 is chosen randomly and inde-
pendently of Z∪{T02, T03}. To address the other five terms, we set the variables in the generic group
framework as follows. If we again use 1, A,B to represent g1, g2, g3 and 1, E, F to represent h1, h2, h3,
then we are working in the polynomial ring Z[x, y, z, u, v, w, a, b, s, c1, c2, c3, d1, d2, d3, A,B,E, F] in

28

19 variables over Z. We define the sets

P ′ =
(
1, x, u,B,Bz,Bw,A+Bd1, Ay +Bzd1, Av +Bwd1, b, xb, ub, b

2, xb2, ub2, s, xs, us,

bs+Ac2 +Bd2, xbs+Ayc2 +Bzd2, ubs+Avc2 +Bwd2

)
Q =

(
zv − yw,w − v, y − z, F (yu− xv), F (v − u), F (x− y),
E(zu− xv) + F (yu− xv)d1, E(w − u) + F (v − u)d1, E(zu− xw) + F (yu− xv)d1,

(zv − yw)b, (w − v)b, (y − z)b, (zv − yw)b2, (w − v)b2, (y − z)b2,
(zv − yw)a+ E(zu− xw), (w − v)a+ E(w − u), (y − z)a+ E(z − x),
(zv − yw)ab+ E(zu− xw)c1, (w − v)ab+ E(w − u)c1, (y − z)ab+ E(z − x)c1

)
R = ∅

(f01, f02, f03) = (b2s+Bd3, xb
2s+Bzd3, ub

2s+Bwd3)
(f11, f12, f13) = (b2s+Ac3 +Bd3, xb

2s+Ayc3 +Bzd3, ub
2s+Avc3 +Bwd3)

We construct the matrices M1 and M2 for each of the five assumptions corresponding to equations
(D.2),(D.4)–(D.7) and determine their ranks. The set P and the polynomial f depend on the
equation we are considering; in each case we use Q as above and set S = Q. The results are
summarized in Table 3.

Table 3. Construction of matrices M1 and M2 for hybrid security assumptions (D.2),(D.4)–(D.7).

Equation P f matrix columns (monomials) matrix rows (polynomials) rank M1 rank M2

(D.2) P ′ ∪ (f02, f03) f01 1432 484 434 434

(D.4) P ′ ∪ (f11, f03) f02 1484 484 434 434

(D.5) P ′ ∪ (f11, f03) f12 1484 484 434 434

(D.6) P ′ ∪ (f11, f12) f03 1529 484 434 434

(D.7) P ′ ∪ (f11, f12) f13 1529 484 434 434

Since the ranks of M1 and M2 are equal in each case, the required independence holds, and we
have proven the following.

Proposition D.5. Any algorithm that breaks Assumption 3 with advantage 1/2 in a generic bilin-
ear group of order p must take time at least Ω(

√
p), asymptotically as p→∞

Finally, we consider the 3-party Diffie-Hellman assumption in prime-order groups (Definition
6.4). This assumption is simple enough that we can do the necessary computations by hand. We
work in the polynomial ring Z[a, b, c], and define

P = Q = (1, a, b, c), R = ∅, f = abc.

Suppose f ·Q is dependent on (P,Q,R). Then there is a nonzero expression of the form (D.1) that
is equal to zero when we set Y = f . Thus we can write∑

u∈P

∑
v∈Q

au,vu · v =
∑
χ∈Q
−cχχ · f.

Since each term on the left hand side has degree at most 2 and each term on the right hand side
has degree at least 3, the sums on each side must both be equal to zero. Furthermore, since the

29

four elements of Q are linearly independent over Z, the coefficients cχ must all be zero. But then
when we replace f with Y we get an expression that is also zero, a contradiction. Thus f · Q is
independent of (P,Q,R), and we have proven the following.

Proposition D.6. Any algorithm that breaks the 3-party decision Diffie-Hellman assumption with
advantage 1/2 in a generic bilinear group of order p must take time at least Ω(

√
p), asymptotically

as p→∞

30

