Comments on two multi-server authentication protocols

*Yalin Chen¹, Chun-Hui Huang², Jue-Sam Chou³

¹ Institute of information systems and applications, National Tsing Hua University

 *: corresponding author
 d949702@oz.nthu.edu.tw

² Department of Information Management, Nanhua University Chiayi 622 Taiwan, R.O.C g6451519@mail.nhu.edu.tw
³ Department of Information Management, Nanhua University Chiayi 622 Taiwan, R.O.C jschou@mail.nhu.edu.tw
Tel: 886+ (0)5+272-1001 ext.56226

Abstract

Recently, Tsai and Liao *et al.* each proposed a multi-server authentication protocol. They claimed their protocols are secure and can withstand various attacks. But we found some security loopholes in each protocol. We will show the attacks on their schemes.

Keywords: multi-server, password authentication protocol, server spoofing attack, parallel session attack

1. Introduction

For password-based authentication protocols using smart cards are widely used in an open network. A two-party password authentication protocol for client-server architecture is therefore not sufficient as networks getting larger and larger. Consequently, several multi-server protocols were proposed [1-13].

In 2003, Li *et al.* [5] proposed a multi-server protocol based on ElGamal digital signature and geometric transformations on an Euclidean plane. Unfortunately, their protocol is vulnerable and has been broken by Cao and Zhong [8]. In 2004 and 2005, Tsaur *et al.* [3, 4] proposed two multi-server schemes. However, both of their schemes are based on Lagrange interpolating polynomial which is computationally intensive. In 2006 and 2007, Cao *et al.* [9] and Hu *et al.* [7] each proposed an authentication scheme for multi-server environment. Both of their schemes assume that all servers are trustworthy. Nevertheless, this assumption is not always true as stated in [1]. In 2008, Lee *et al.* [6] proposed an authenticated key agreement scheme for multi-server using mobile equipment. However, their scheme can not add a server freely. Because when a server is added, all users who want to login to this new server have to re-register at the registration center for getting a new smart card. This increases the registration center's card-issue cost. Also, in 2008, Tsai [1] proposed an efficient multi-server authentication scheme. He claims that his protocol can withstand seven

known attacks. Yet, after our analysis, we found that it is vulnerable to the server spoofing attack. Recently, in 2009, Liao and Wang [2] proposed a secure dynamic ID scheme for multi-server environment. They claim that their protocol is secure. However, we found their scheme suffers from both the server spoofing attack and the parallel session attack. In this paper, we will show the attacks on [1] and [2], respectively.

The remainder of this paper is organized as follows: In Section 2, we review both Tsai's and Liao-Wang's protocols. In Section 3, we demonstrate the vulnerabilities in their schemes, respectively. Finally, a conclusion is given in Section 4.

2. Review of Tsai's and Liao-Wang's protocols

In this section, we review Tsai's protocol in Section 2.1 and Liao-Wang's protocol in Section 2.2, respectively. Before that, the notations used throughout this paper are first defined as follows.

- RC : the registration center
- U_u : a legal user u
- S_j : a legal server j
- E(P) : an attacker E who masquerades as a peer P.
- SID_i : the identity of S_i
- ID_u : the identity of U_u
- PW_u : the password of U_u
- x,y : RC's two secret keys
- p : a large prime number
- g : the primitive element in a Galois field GF(p)
- H() : a collision-resistant one-way hash function
- (a,b): a string denotes that string *a* is concatenated with string *b*.
- \oplus : a bitwise Xor operator
- $\triangle T$: a tolerant time delay for messages transmission over network
- => : a secure channel
- \rightarrow : a common channel

2.1 Review of Tsai's protocol

Tsai's protocol contains four phases. They are: (1)user registration phase, (2)login phase, (3)authentication of server and RC phase, and (4)authentication of server and user phase. We describe the protocol as follows and also depict phases (1), (2) in Figure 1, phase (3) in Figure 2, and phase (4) in Figure 3.

Assume that there are *s* servers in the system. At the beginning, RC computes and sends $H(SID_{j},y)$ to S_{j} , for j = 1 to *s*, with S_{j} keeping it secret, via a secure channel.

Fig. 1. Registration phase and login phase of Tsai's protocol

2.1.1 Registration phase

In this phase, U_u performs the following steps for obtaining a smart card from RC.

- 1. U_u freely chooses his ID_u and PW_u and calculates H(PW_u). He then sends $\{ID_u, H(PW_u)\}$ to RC through a secure channel.
- 2. RC calculates $B=H(ID_u, x)\oplus H(PW_u)$ and issues U_u a smart card containing ID_u and *B* through a secure channel.

2.1.2 Login phase

When U_u wants to login to S_j , he inserts his smart card and performs the following steps.

- 1. U_u keys his ID_u and PW_u and generates a random nonce Nc. He then computes $C_I = (B \oplus H(PW_u)) \oplus Nc = H(ID_u, x) \oplus Nc$.
- 2. U_u sends { ID_u , C_I } to S_j .

2.1.3 Authentication of server and RC phase

In this phase, when receiving message $\{ID_u, C_I\}$ from U_u, S_j will run the following steps to let himself be authenticated by RC, verify U_u's legitimacy, and negotiate the session key with U_u. Let the secret key shared between S_j and RC be H(H(*SID_j*, y), *Ns*+1, *N_{RC}* +2), where *Ns* and *N_{RC}* are S_j's and RC's randomly chosen nonces respectively. To reduce the computational cost, this phase is divided into two scenarios: (A) the secret key is not generated, and (B) the secret key has been generated. We describe them below.

Fig. 2. Authentication of server and RC phase of Tsai's protocol

(A) the secret key is not generated.

- 1. S_j generates a random nonce Ns and computes $C_2 = H(SID_j, y) \oplus Ns$.
- 2. S_j sends $\{ID_u, SID_j, C_1, C_2\}$ to RC.
- 3. RC derives $Ns'=H(SID_j, y)\oplus C_2$. He then generates a random nonce N_{RC} and computes $C_3 = N_{RC} \oplus H(SID_j, y)$.

- 4. RC sends $\{C_3\}$ to S_j .
- 5. After receiving the message from RC, S_j retrieves $N'_{RC} = C_3 \oplus H(SID_j, y)$ and calculates $C_4 = H(H(SID_j, y), Ns) \oplus N'_{RC}$.
- 6. S_j sends $\{C_4\}$ to RC.
- 7. RC computes $C'_4 = H(H(SID_j, y), Ns') \oplus N_{RC}$ and checks to see if C'_4 is equal to the received C_4 . If so, S_j is authentic. He then retrieves $N'c=H(ID_u, x)\oplus C_I$ and computes $C_5 = H(H(SID_j, y), Ns', N_{RC}), C_6 = H(H(SID_j, y), Ns'+1, N_{RC}+2)\oplus$ $H(H(ID_u, x), N'c).$
- 8. RC sends $\{C_5, C_6\}$ to S_j.
- 9. After receiving the message from RC, S_j calculates C'₅ = H(H(SID_j, y), Ns, N'_{RC}) and compares to see if C'₅ is equal to the received C₅. If so, RC is authentic. Both S_j and RC will store the common secret key Auth_{S-RC}=H(H(SID_j, y), Ns+1, N'_{RC} +2) for next execution of server and RC authentication to reduce the computational cost.

(B) the secret key has been generated.

- 1. S_j sends { ID_u , SID_j , C_I } to RC.
- 2. RC derives $N'c=H(ID_u, x)\oplus C_I$ and uses his $Auth_{S-RC}$ to compute $C_6=H(H(SID_j, y), Ns'+1, N_{RC}+2)\oplus H(H(ID_u, x), N'c)$.
- 3. RC sends $\{C_6\}$ to S_j.

2.1.4 Authentication of server and user phase

After the authentication of server and RC phase, S_j and U_u perform the following steps for mutual authentication.

- 1. S_j generates a random nonce N_{SU} and uses his $Auth_{S-RC}$ to compute $C_7 = C_6 \oplus$ H(H(SID_j, y), $Ns+1, N'_{RC}+2$)=H(H(ID_u, x), N'c). He then calculates $C_8 = C_1 \oplus C_7$, $V_2 = C_7 \oplus N_{SU}$, and $C_9 =$ H(C_7, N_{SU}) $\oplus C_8$.
- 2. S_j sends $\{V_2, C_9\}$ to U_u .
- 3. After receiving the message, U_u computes $C'_7 = H(H(ID_u, x), Nc)$, retrieves $N'_{SU} = C'_7 \oplus V_2$, and calculates $C'_8 = C'_7 \oplus C_1$, $C'_9 = H(C'_7, N'_{SU}) \oplus C'_8$. He then checks to see if the newly computed C'_9 is equal to the received C_9 . If so, S_j is authentic. U_u continues to calculate $C_{10} = H(C'_7, C'_8, N'_{SU})$.
- 4. U_u sends $\{C_{10}\}$ to S_j .
- 5. After receiving $\{C_{10}\}$, S_j computes $C'_{10} = H(C_7, C_8, N_{SU})$ and compares to see if C'_{10} is equal to the received C_{10} . If so, U_u is authentic. They then have the same session key SK= $H(C'_7+1, C'_8+2, N'_{SU}+3) = H(C_7+1, C_8+2, N_{SU}+3)$.

Fig. 3. Authentication of server and user phase of Tsai's protocol

2.2 Review of Liao-Wang's protocol

In this section, we review Liao-Wang's protocol. Their protocol consists of four phases: (1) registration phase, (2) login phase, (3) mutual verification and session key agreement phase, and (4) password change phase. In their protocol, y is a secret number shared among RC and all servers. We describe their protocol as follows and also depict it in Figure 4.

2.2.1 Registration phase

In this phase, U_u performs the following steps to register at RC for obtaining a smart card so that he can access the resources of all servers.

- 1. Chooses his ID_u , PW_u and sends $\{ID_u, PW_u\}$ to RC through a secure channel.
- 2. RC computes $B=H(ID_u, x)$, $B_I=B \oplus H(ID_u, PW_u)$, $B_2=H(PW_u) \oplus H(x)$, and $B_3=H(B)$. He then issues U_u a smart card containing B_1 , B_2 , B_3 , and y through a secure channel.

Fig. 4. Liao-Wang's protocol

2.2.2 Login phase

- 1. U_u keys his ID_u , PW_u and SID_j to the smart card. The smart card computes $B'=B_1$ \oplus H(ID_u , PW_u), $B'_3=$ H(B'), and compares to see if B_3 stored is equal to the computed B'_3 . If so, smart card knows U_u is the real card holder. It then generates a random nonce Nc and calculates $CID_u=$ H(PW_u) \oplus H(B', y, Nc), $C_1=B'\oplus$ H(y, Nc, SID_j), and $C_2=$ H(B_2 , y, Nc).
- 2. U_u sends {*CID_u*, *C₁*, *C₂*, *Nc* } to S_j.

2.2.3 Mutual verification and session key agreement phase

After receiving the login message from U_u , S_j executes the following steps together with U_u to authenticate each other and compute a common session key.

- 1. S_j computes $B^*=C_1 \oplus H(y, Nc, SID_j)$, $H_{PW}=CID_u \oplus H(B^*, y, Nc)$, and $B_2^*=H_{PW} \oplus H(x)$. He then computes $H(B_2^*, y, Nc)$ and checks to see if it is equal to the received C_2 . If so, S_j then generates a random nonce Ns and calculates $C_3=H(B_2^*, Nc, y, SID_j)$.
- 2. S_j sends $\{C_3, Ns\}$ to U_u.
- 3. U_u computes H(B_2 , Nc, y, SID_j) and compares to see if it is equal to the received C_3 . If it is, S_j is authentic. U_u then calculates $C_4 = H(B_2, Ns, y, SID_j)$.
- 4. U_u sends $\{C_4\}$ to S_j .
- 5. After receiving the message from U_u , S_j computes $H(B_2^*, Ns, y, SID_j)$ and checks to see if it is equal to the received C_4 . If so, U_u is authentic.
- 6. After finishing mutual authentication, U_u and S_j can compute the common session key SK= H(B_2 , Nc, Ns, y, SID_j) = H(B_2^* , Nc, Ns, y, SID_j), respectively.

2.2.4 Password change phase

When U_u wants to change his password from PW_u to PW_u^{new} , he executes the following steps.

- 1. Keys his ID_u , PW_u .
- 2. The smart card computes $B'=B_1 \oplus H(ID_u, PW_u)$, $B'_3=H(B')$ and compares to see if B_3 in the smart card is equal to the computed B'_3 . If so, U_u is the real card holder.
- 3. The smart card allows U_u to submit a new password PW_u^{new} .
- 4. The smart card computes $B_1^{new} = B' \oplus H(ID_u, PW_u^{new})$, $B_2^{new} = B_2 \oplus H(PW_u) \oplus H(PW_u^{new})$ and replaces B_1, B_2 with B_1^{new}, B_2^{new} , respectively.

3. Security loopholes in Tsai's and Liao-Wang's protocols

After analysis, we found Tsai's protocol suffers server spoofing attacks in both scenarios and Liao-Wang's protocol suffers server spoofing attack and parallel session

attack. In this section, we will show the security loopholes in Section 3.1 and Section 3.2, respectively.

3.1 Server spoofing attack by an insider server on Tsai's protocol

Assume that S_i is a legal server registered at RC. He also has his $H(SID_i, y)$ and keeps it secret. He can then masquerade as a legal server to cheat a remote user on Tsai's protocol. It is because in the authentication of server and user phase, a user doesn't examine if the message is indeed sent from the correct server. In the following, we present server spoofing attacks on the two mentioned scenarios, (A) and (B), and also illustrate them in Figure 5 and 6, respectively.

(A) the secret key is not generated.

- 1. When U_u wants to communicate with S_j , he starts the protocol and sends $\{ID_u, C_l\}$ to S_i who masquerades as S_j .
- S_i generates a nonce Ns, computes C₂ = H(SID_i, y)⊕Ns, and sends {ID_u, SID_i, C₁, C₂} to RC. For the subsequent messages C₃, C₄, C₅ and C₆, except C₆, sent between RC and S_i to authenticate each other are independent on U_u's secrecy H(H(ID_u, x), Nc) as depicted in scenario (A) of Figure 2. RC and S_i will thus achieve mutual authentication successfully.
- 3. RC and S_i then negotiate to establish the common secret key Auth_{S-RC}=H(H(SID_i, y), Ns+1, N'_{RC}+2)=H(H(SID_i, y), Ns'+1, N_{RC}+2) in the phase of server and RC authentication. After that, S_i and U_u will perform the following steps for the authentication of server and user phase.
- 4. S_i generates a random nonce N_{SU} and uses his $Auth_{S-RC}$ to compute $C_7 = C_6 \oplus Auth_{S-RC} = H(H(ID_u, x), N'c)$. He then calculates $C_8 = C_1 \oplus C_7$, $V_2 = C_7 \oplus N_{SU}$, and $C_9 = H(C_7, N_{SU}) \oplus C_8$.
- 5. S_i sends $\{V_2, C_9\}$ to U_u.
- 6. After receiving the message, U_u computes $C'_7 = H(H(ID_u, x), Nc)$, retrieves $N'_{SU} = C'_7 \oplus V_2$, and calculates $C'_8 = C'_7 \oplus C_1$, $C'_9 = H(C'_7, N'_{SU}) \oplus C'_8$. He then checks to see if C'_9 is equal to the received C_9 . If so, U_u confirms that the message is from the sender who had received his C_1 in the login phase. S_i disguising as S_j is thus regarded as authentic. U_u continues to calculate $C_{10} = H(C'_7, C'_8, N'_{SU})$.
- 7. U_u sends $\{C_{10}\}$ to S_i .
- 8. S_i computes $C'_{10} = H(C_7, C_8, N_{SU})$ and compares to see if C'_{10} is equal to his received C_{10} . If so, U_u is authentic. They then compute the common session key SK= $H(C'_7+1, C'_8+2, N'_{SU}+3) = H(C_7+1, C_8+2, N_{SU}+3)$.

From the above-mentioned steps, we can see that a server spoofing attack can be successfully launched by insider attacker S_i .

(B) the secret key has been generated.

For this case, we describe the attack as follows and also illustrate it in Figure 6.

- 1.U_u starts the protocol and sends $\{ID_u, C_I\}$ to S_i who masquerades as S_i.
- 2. When S_i runs the authentication of server and RC phase, he simply sends $\{ID_u, SID_i, C_I\}$ to RC. RC deduces $N'c=H(ID_u, x)\oplus C_I$ and computes $C_6=H(H(SID_i, y), Ns'+1, N_{RC}+2)\oplus H(H(ID_u, x), N'c)$.
- 3. RC sends $\{C_6\}$ to S_i as depicted in scenario (B) of Figure 2. S_i then proceeds the following steps with U_u for the authentication of server and user phase.
- 4. S_i generates a random nonce N_{SU} and uses the generated common secret key $Auth_{S-RC}$ to compute $C_7 = C_6 \oplus Auth_{S-RC} = H(H(ID_u, x), N'c)$. He then calculates $C_8 = C_1 \oplus C_7$, $V_2 = C_7 \oplus N_{SU}$, and $C_9 = H(C_7, N_{SU}) \oplus C_8$.
- 5. S_i sends $\{V_2, C_9\}$ to U_u .
- 6. After receiving the message, U_u computes $C'_7 = H(H(ID_u, x), Nc)$, retrieves $N'_{SU} = C'_7 \oplus V_2$, and calculates $C'_8 = C'_7 \oplus C_1$, $C'_9 = H(C'_7, N'_{SU}) \oplus C'_8$. He then checks to see if C'_9 is equal to the received C_9 . If so, U_u confirms that the message is

Fig. 6. Server spoofing attack by an insider server on Tsai's protocol:(B) the secret key has been generated.

from the sender who has received his C_I in the login phase; and S_i disguising as S_j is therefore regarded as authentic. U_u then proceeds to calculate $C_{I0} = H(C'_7, C'_8, N'_{SU})$.

- 7. U_u sends $\{C_{10}\}$ to S_i .
- 8. After obtaining the message, S_i computes $C'_{10} = H(C_7, C_8, N_{SU})$ and compares to see if C'_{10} is equal to his received C_{10} . If so, U_u is authentic. They then can compute the common session key SK= $H(C'_7+1, C'_8+2, N'_{SU}+3) = H(C_7+1, C_8+2, N_{SU}+3)$.

From the above-mentioned steps, we can see that a server spoofing attack launched by insider attacker S_i has been successfully accomplished.

3.2 Attack on Liao-Wang's protocol

In Liao-Wang's protocol, it can easily be seen that an insider peer (either a server or a user) can launch an off-line password guessing attack by eavesdropping on the transmitted message { CID_u , C_1 , C_2 , Nc } and comparing C_2 with his computation H(H(PW') \oplus H(x), y, Nc), where y is the value stored in his smart card and shared with RC, *PW*' is his guessing password, and H(x) is shared by all legal servers in their protocol and also can be derived by all legal users by computing $H(x) = B_2 \oplus H(PW)$, where B_2 is the value stored in the smart card and *PW* is the user's password.

In addition, it also can be seen that anyone who has got U_u 's smart card can launch a password guessing attack by comparing B_3 with his computation $B_1 \oplus H(ID_u, PW')$, where B_3 , B_1 are the values stored in U_u 's smart card and PW' is his guessing password.

Besides, in this section, we will show two server spoofing attacks on Liao-Wang's protocol in section 3.2.1 and section 3.2.2, respectively. Then, we also show a parallel session attack on their scheme in section 3.2.3.

3.2.1 Server spoofing attack by an insider server

Assume that S_i is a legal server who has registered at RC. He also has his secrets H(x), y to authenticate users. We will show that S_i can masquerade as any server (Here, we assume S_j .) to cheat a remote user. It is because each server has the same secret data, H(x) and y, for faking messages to cheat users. We describe the server spoofing attack below and also depict it in Figure 7.

- 1. U_u starts the protocol and sends { CID_u , C_1 , C_2 , Nc} to S_i, where $C_1 = B' \oplus H(y, Nc, SID_i)$, as in the login phase of Figure 4.
- 2. After receiving the message { CID_u , C_1 , C_2 , Nc} from U_u , S_i runs the mutual verification and session key agreement phase with U_u . He uses his secret data, H(x) and y, and the public parameter SID_j to compute $B^*=C_1 \oplus H(y, Nc, SID_j)$, $H_{PW}=CID_u \oplus H(B^*, y, Nc)$, and $B_2^*=H_{PW} \oplus H(x)$. He then generates a random nonce Ns and calculates $C_3=H(B_2^*, Nc, y, SID_j)$.
- 3. S_i sends $\{C_3, N_s\}$ to U_u.
- 4. U_u computes H(B_2 , Nc, y, SID_j) and compares to see if it is equal to the received C_3 . If so, U_u confirms that S_i is authentic. U_u then calculates $C_4 = H(B_2, Ns, y, SID_j)$.
- 5. U_u sends $\{C_4\}$ to S_i .
- 6. After obtaining the message, S_i computes $H(B_2^*, Ns, y, SID_j)$ and checks to see if it is equal to the received C_4 . If so, U_u is authentic.
- 7. After finishing the mutual authentication, U_u and S_i can compute the common session key SK= H(B_2 , Nc, Ns, y, SID_j) = H(B_2^* , Nc, Ns, y, SID_j).

From the above-mentioned steps, we can see that the server spoofing attack has been successfully launched by S_i who masquerades as S_i .

3.2.2 Server spoofing attack by an insider user

Assume that U_n is a legal user who has registered at RC. He also has a smart card

Fig. 7. Server spoofing attack by an insider server on Liao-Wang's protocol

to access servers' resources. We will show that he can use his B_2' and y both stored in the smart card to masquerade as any server to cheat a remote user. It is because U_n can first uses B_2' and his password PW_n to compute $B_2' \oplus H(PW_n)$, obtaining H(x). Then he uses H(x) and y to fake desired messages to cheat the remote user. We describe this attack by using the following steps and also depict it in Figure 8.

- 1. U_u starts the protocol and sends {*CID_u*, *C₁*, *C₂*, *Nc*} to U_n who impersonates S_i.
- 2. U_n uses his PW_n and B_2' in his smart card to derive the value of H(x) by computing $B_2' \oplus H(PW_n)$. He then uses { CID_u, C_1, C_2, Nc }, H(x), y, and the public parameter SID_j to compute $B^*=C_1 \oplus H(y, Nc, SID_j)$, $H_{PWu}=CID_u \oplus H(B^*, y, Nc)$ and $B_2^*=H_{PWu} \oplus H(x)$. In addition, he also generates a random nonce Ns and calculates $C_3=H(B_2^*, Nc, y, SID_j)$.
- 3. U_n sends $\{C_3, N_s\}$ to U_u .
- 4. After receiving the message, U_u uses his stored B_2 to compute $H(B_2, Nc, y, SID_j)$ and compares to see if it is equal to the received C_3 . If it is, U_u authenticates U_n as S_j unconsciously. He then calculates $C_4 = H(B_2, Ns, y, SID_j)$.
- 5. U_u sends $\{C_4\}$ to U_n .
- 6. After obtaining the message, U_n computes $H(B_2^*, Ns, y, SID_j)$ and checks to see if it is equal to the received C_4 . If so, U_u is authentic.
- 7. After finishing the mutual authentication, U_u and U_n can compute the common session key SK= H(B_2 , Nc, Ns, y, SID_j) = H(B_2^* , Nc, Ns, y, SID_j).

From the above-mentioned steps, we can see that the insider spoofing attack, launched by U_n masquerading as S_i , has been successfully accomplished.

Fig. 8. Server spoofing attack by an insider user on Liao-Wang's protocol

3.2.3 Parallel session attack by an insider user

Assume that U_n is a legal user. He also has his smart card containing B_2 '. We will show that he can masquerade as any other user to cheat a remote server on Liao-Wang's protocol. It is because the remote server doesn't examine if the message is indeed sent from the correct user. U_n can thus use his B_2 ' and y to masquerade as any valid user. We demonstrate this attack by using the following steps and also depict it in Figure 9.

- 1. U_u starts the protocol and sends {*CID_u*, *C₁*, *C₂*, *Nc*} to U_n who masquerades as S_j . After receiving the message, U_n now masquerades as U_u to start another protocol with real S_j by sending him { *CID_u*, *C₁*, *C₂*, *Nc*}.
- 2. S_j runs the mutual verification and session key agreement phase with U_n and computes $B^*=C_1 \oplus H(y, Nc, SID_j)$, $B_2^*=H_{PW} \oplus H(x)$. He then computes $H(B_2^*, y, Nc)$ and checks to see if it is equal to the received C_2 . If so, S_j generates a random nonce Ns and calculates $C_3 = H(B_2^*, Nc, y, SID_j)$.
- 3. S_j sends $\{C_3, Ns\}$ to U_n.
- 4. U_n computes B_2 '=H(PW_n) \oplus H(x), B"= $C_1 \oplus$ H(y, Nc, SID_j), H"_{PW}= $CID_u \oplus$ H(B", y, Nc), B_2 "=H"_{PW} \oplus B_2 ', and C_4 = H(B_2 ", Ns, y, SID_j).
- 5. U_n sends $\{C_4\}$ to S_j .
- 6. After receiving the message, S_j computes $H(B_2^*, Ns, y, SID_j)$ and checks to see if it is equal to the received C_4 . If so, S_j confirms that U_n is authentic and therefore regards U_n as U_u unconsciously.

Fig. 9. Parallel session attack by an insider user on Liao-Wang's protocol

7. After finishing mutual authentication, U_n and S_j have the common session key $SK = H(B_2', Nc, Ns, y, SID_j) = H(B_2^*, Nc, Ns, y, SID_j)$.

From the above-mentioned steps, we can see that the insider user U_n has successfully launched a parallel session attack.

4. Conclusion

We have analyzed the security of Tsai's and Liao-Wang's protocols. Although, they claim their protocols can resist against various attacks, we have showed that their protocols are indeed insecure against some attack that we have described in this article.

References

[1]J.L. Tsai, "Efficient multi-server authentication scheme based on one-way hash function without verification table", *Computers & Security*, Vol. 27, No. 3-4, pp. 115-121, May-June 2008.

- [2]Y.P. Liao, S.S. Wang, "A secure dynamic ID based remote user authentication scheme for multi-server environment", *Computer Standards & Interfaces*, Vol. 31, No. 1, pp. 24-29, January 2009.
- [3]W.J. Tsaur, C.C. Wu, W.B. Lee, "An enhanced user authentication scheme for multi-server Internet services", *Applied Mathematics and Computation*, Vol. 170, No. 1-1, pp. 258-266, November 2005.
- [4]W.J. Tsaur, C.C. Wu, W.B. Lee, "A smart card-based remote scheme for password authentication in multi-server Internet services", *Computer Standards & Interfaces*, Vol. 27, No. 1, pp. 39-51, November 2004.
- [5]I.C. Lin, M.S. Hwang, L.H. Li, "A new remote user authentication scheme for multi-server architecture", *Future Generation Computer Systems*, Vol. 19, No. 1, pp. 13-22, January 2003.
- [6]J. H. Lee, D. H. Lee, "Efficient and Secure Remote Authenticated Key Agreement Scheme for Multi-server Using Mobile Equipment", *Proceedings of International Conference on Consumer Electronics*, pp. 1-2, January 2008.
- [7]L. Hu, X. Niu, Y. Yang, "An Efficient Multi-server Password Authenticated Key Agreement Scheme Using Smart Cards", *Proceedings of International Conference on Multimedia and Ubiquitous Engineering*, pp. 903-907, April 2007.
- [8]X. Cao, S. Zhong, "Breaking a remote user authentication scheme for multiserver architecture", *IEEE Communications Letters*, Vol. 10, No. 8, pp. 580-581, August 2006.
- [9]Z.F. Cao, D.Z. Sun, "Cryptanalysis and Improvement of User Authentication Scheme using Smart Cards for Multi-Server Environments", *Proceedings of International Conference on Machine Learning and Cybernetics*, pp. 2818-2822, August 2006.
- [10]C.C. Chang, J.Y. Kuo, "An efficient multi-server password authenticated key agreement scheme using smart cards with access control", *Proceedings of International Conference on Advanced Information Networking and Applications*, Vol. 2, No. 28-30, pp. 257-260, March 2005.
- [11]R.J. Hwang, S.H. Shiau, "Password authenticated key agreement protocol for multi-servers architecture", *Proceedings of International Conference on Wireless Networks*, Vol. 1, No. 13-16, pp. 279-284, June 2005.
- [12]C.C. Chang, J.S. Lee, "An efficient and secure multi-server password authentication scheme using smart cards", *Proceedings of International Conference on Cyberworlds*, No. 18-20, pp. 417-422, November 2004.
- [13]W.S. Juang, "Efficient multi-server password authenticated key agreement using smart cards", *IEEE Transactions on Consumer Electronics*, Vol. 50, No. 1, pp. 251-255, February 2004.