
1

A Hardware Interface for Hashing Algorithms

December 17, 2008

Zhimin Chen, Sergey Morozov, Patrick Schaumont

Bradley Department of Electrical and Computer Engineering

Virginia Tech

Blacksburg, VA

{chenzm,morozovs,schaum}@vt.edu

Abstract. The submissions to the SHA-3 competition include a refer-

ence implementation in C, built on top of a standard programmer's inter-

face (API). This greatly improves the evaluation process: it enables por-

tability across platforms, and it makes performance comparison of the

algorithms easy. For hardware crypto-implementations, such a standard

interface does not exist. As a result, the evaluation and comparison of

hardware hashing algorithms becomes complex and error prone. The

first step to improve the evaluation process for hardware is the defini-

tion of an interface. This document describes a general hardware inter-

face for hashing algorithms. The operation of the interface is discussed,

and the appendix lists a SHA-256 reference implementation that uses

the interface.

1 Introduction

Standard interfaces are the key to creating reusable and composable designs, and they

decouple module designers from module users. In software design, the use of standard

interfaces is a very common and almost universal practice. In the SHA-3 contest, a

standard Application Programmers Interface1 is used as a mechanism to make the

evaluation and comparison of the submissions easy. A software benchmarking envi-

ronment such as eBASH2 relies on a standard API to automate the performance evalu-

ation process. Besides standard interfaces, the software community also relies heavily

on open-source evaluation, which allows a given design to be tested by the community

on a wide range of platforms.

Interestingly, hardware designers have a very different attitude towards perfor-

mance evaluation and comparison of competing designs. Instead of working with a

standard interface (similar to an API), hardware designers prefer to make comparisons

that largely ignore the interface used by their module. Instead, hardware designers

1 http://csrc.nist.gov/groups/ST/hash/documents/SHA3-C-API.pdf
2 http://bench.cr.yp.to/

2

make comparisons based on the implementation efficiency of a design in a given tar-

get technology (area, critical path). The resulting performance numbers ignore the

module interface, or assume that the interface has infinite bandwidth.

This is problematic. In practice, the assumption of infinite I/O bandwidth is very

hard to approximate. Moreover, when algorithms with different input/output require-

ments are compared under the assumption of ideal I/O, the practical achievable results

may even contradict the ideal performance comparison. A further complication is that

hardware designers are not used to sharing source code, and their community does not

force them to do so. The SHA-3 competition, on the other hand, can benefit from an

open-source approach in software as well as in hardware.

The purpose of this document is to describe a generic hardware interface for a

hashing algorithm. The objective is not to make the fastest possible I/O interface, but

instead an interface which would do well across a wide range of designs. We have

evaluated the interface on several hashing algorithms - the appendix lists SHA-256 as

an example - and plan to port SHA-3 candidates to this interface as well. We welcome

feedback to the interface and would like to make it as useful as possible to the com-

munity.

2 Hardware Interface

The hardware interface is a synchronous interface. Each input/output is sampled at the

rising clock edge. The interface control signals enable data transfer to and from the

hardware SHA implementation. The width of the data bus to/from the hardware SHA

implementation is unspecified, but will generally be a 'natural' wordlength for data

transfer (eg. 32 or 64 bits). It is the task of the platform encapsulation module to make

additional adjustments to this wordlength, if needed. The following signals are defined

on the low-level HW interface.

platform

CLK

RST

INIT

LOAD

FETCH

GETCONFIG

ACK

ERR

IDATA

ODATA

SHA module

CLK

RST

INIT

LOAD

FETCH

GETCONFIG

ACK

ERR

IDATA

ODATA

32

32

Figure 1: Overview of the interface signals

3

2.1 Port Signal Definition

This section contains an overview of the SHA-FPGA HW interface signals.

Table 1: HW Interface Signals

Name Source Width Description

CLK Platform 1 Clock signal. All signal timings are related to

the rising edge of CLK.

RST Platform 1 Reset signal. The RST signal is active HIGH

and is used to reset the SHA module regard-

less of the current status of the module. This

signal lasts at least for one clock cycle. RST

should be tied to the global platform reset, for

example a power-on reset of the platform.

RST can initialize SHA module registers.

However, RST should NOT be used to initial-

ize the hash algorithm; there is a separate

control signal on the interface for this purpose.

INIT Platform 1 When HIGH, the INIT signal initializes the

internal state of the SHA module regardless of

the current status of the module. This signal

lasts at least for one clock cycle.

LOAD Platform 1 When HIGH, the LOAD signal indicates a

loading of one data word into the SHA mod-

ule. This signal remains HIGH until the first

rising clock edge when ACK is HIGH, which

completes the load operation. Block-based

algorithms may require multiple successive

LOAD operations to transfer a block of data.

The SHA module must internally keep track of

the data word count to format the block. The

maximum throughput of data transfers using

this mechanism is one word per clock cycle.

FETCH Platform 1 When HIGH, the FETCH signal indicates a

fetching of one data word from the SHA mod-

ule. This signal remains HIGH until the first

rising clock edge when ACK is HIGH, which

means the fetching operation has been fi-

nished. The data fetched out can be the SHA

digest or the error code according to the status

of the SHA module. For block-based algo-

rithms, the SHA module must internally keep

track of the amount of data provided and trig-

ger execution of the SHA algorithm if needed.

The maximum throughput of data transfers

4

using this mechanism is one word per clock

cycle.

GETCONFIG Platform 1 When HIGH, the GETCONFIG signal indi-

cates reading of the configuration word from

the SHA module. This signal remains HIGH

until the first rising clock edge when ACK is

HIGH, which means the reading operation has

been finished.

ACK SHA 1 The ACK signal is raised HIGH in response to

LOAD, FETCH, or GETCONFIG to signal

a successful data transfer is possible. The data

will be transferred at the first rising clock edge

when both ACK and one of LOAD, FETCH

or GETCONFIG are HIGH.

ERR SHA 1 When HIGH, the ERR signal indicates that an

error occurs inside the SHA module. It is the

responsibility of the SHA module to generate

an error code (one word). FETCH operation

reads out the error code when ERR signal is

HIGH. INIT and RST operations reset the

ERR signal to LOW.

IDATA Platform Var Input data word to the SHA module. IDATA

is used to transfer data from the platform to

the SHA module during LOAD operations.

The word length is 32 bits in this version. It

will be extended to allow for higher bandwidth

(64 and 128 bits) operation in the future.

ODATA SHA Var Output data word from the SHA module.

ODATA is used to transfer data from the SHA

module to the platform during FETCH and

GETCONFIG operations. The word length is

32 bits in this version. It will be extended to

allow for higher bandwidth (64 and 128 bits)

operation in the future.

5

2.2 Data Organization

2.2.1 IDATA and ODATA

The bit/byte organization of a data word will use the same conversion as for the

FIPS-197 AES standard and is summarized as follows. Bits in the input sequence are

counted right to left. Bits in a byte are numbered from left to right, ie. b7, b6, b5, …,

b1, b0. Bytes in a byte array are numbered right to left, ie. byte0, byte1, byte2, ….

Thus, a data word of 1111000011001100 will correspond to the following byte se-

quence: 0xF0, 0x66. In a block of data, words are organized right to left, i.e. word0,

word1, word2.

Byte

Word

Block

byte0 byte1 byte2 byte3

word0 word1 word2 word3 word4 word5

01234567

Figure 2: Data organization of IDATA and ODATA

2.2.2 GETCONFIG

The SHA module provides a configuration word for the platform that enables the

platform to obtain basic I/O characteristics of the SHA module. The platform will

normally request the GETCONFIG word just after reset of the SHA module. The

resulting information may be used to configure hardware and software resources in the

platform.

Figure 3 illustrates the format of the GETCONFIG word. It contains 4 fields, for-

matted in a 32-bit word.

• output streaming (bit 31): When this bit is 1, the SHA module will

ALWAYS provide a data block to ODATA using back-to-back transfers.

Once the first word of a block is transferred using FETCH, all subsequent

words of the same block will be transferred in consecutive clock cycles.

The platform must ensure that it has adequate hardware data transfer ca-

pabilities to transfer all the words of a block at this rate.

6

• input streaming (bit 30): When this bit is 1, the SHA module will

ALWAYS read data block from IDATA using back-to-back transfers.

Once the first word of a block is transferred using LOAD, all subsequent

words of the same block will be read in consecutive clock cycles. For

SHA modules with hardware padding capacity, input streaming is not sup-

ported.

• padding (bit 29): When this bit is 1, the SHA module has word-level pad-

ding capabilities in hardware. This means that the loading of a data block

through LOAD commands is incomplete when the first FETCH command

is given, the SHA module will perform automatic padding on the partially

loaded block.

• outblocksize (bit 23 .. bit 16): The number of words in the digest calcu-

lated by the SHA module. This number corresponds to the number of

FETCH commands required to transfer an output data block.

• inblocksize (bit 15 .. bit 0): The number of words in the input data block

provided to the SHA module. This number corresponds to the number of

LOAD commands required to transfer an input data block.

b31 b29 b23 .. b16 b15 .. b0

output

streaming

padding outblocksize inblocksizeinput

streaming

Figure 3: Definition of the GETCONFIG word.

2.2.3 ERROR

The SHA module provides a error word for the platform that indicates the incorrect

status inside the SHA module. When ERR is HIGH, the platform reads out error word

by means of one FETCH. The resulting information may be used to handle the error.

Currently, only one error is defined.

• incomplete block (bit 0): For the SHA module without padding ca-

pacity, when the FETCH signal goes HIGH before a complete block

is loaded, the SHA module has no way to generate HASH digest. In

such case, the SHA output ERR HIGH, in the meantime, set this bit

to HIGH.

7

2.3 Communication Protocol

2.3.1 Command Priority

There are 5 different commands from the platform to the SHA module, in-

cluding RST, INIT, LOAD, FETCH, and GETCONFIG. The priority of

these commands is defined as follows.

RST

INIT

GETCONFIGFETCHLOAD

HIGH

PRIORITY

LOW

Figure 4: Priority of commands

The platform MUST guarantee that LOAD, FETCH and GETCONFIG

will NOT be HIGH at the same time.

There are two types of command sequences to the SHA module:

• Single-phase commands use a single control signal from the platform

to the SHA module. RST and INIT are single-phase commands.

• Two-phase commands use two control signals, one from the platform

to the SHA module, and one from the SHA module to the platform.

Two-phase commands are used when the SHA module must acknowl-

edge command completion with ACK. LOAD, FETCH, and

GETCONFIG are two-phase commands.

2.3.2 RST

RST is a single-phase command used to reset the SHA module. The plat-

form keeps RST signal HIGH for at least one clock cycle and does not expect

any feedback signal from the SHA module. Since RST has the highest priority,

the SHA module should respond to it whenever RST is HIGH.

8

2.3.3 INIT

INIT is a single-phase command used to initialize the SHA module by the

platform. The platform keeps INIT signal HIGH for at least one clock cycle

and does not expect any feedback signal from the SHA module. Since INIT

has the higher priority than LOAD, FETCH, and GETCONFIG, INIT can

interrupt these three command operations and also interrupt the calculation

inside the SHA module.

2.3.4 LOAD

LOAD is a two-phase command used to write one word into the SHA

module. LOAD is used in conjunction with the ACK control signal, and the

IDATA data signal. The communication protocol of LOAD is similar to that

of the ‘write’ operation in a Bus. Figure 5 shows a simple transfer, one with

no wait states.

CLK

LOAD

ACK

IDATA data loaded

Figure 5: LOAD transfer with no wait states

In a simple transfer with no wait states:

1) The platform drives LOAD HIGH after the first rising clock edge;

2) The SHA module responds to LOAD by driving ACK HIGH before the

second rising clock edge;

3) The platform samples ACK on the second rising clock edge;

4) The SHA module then samples IDATA on the second rising clock edge;

5) The platform drives LOAD LOW after the second rising clock edge, if

there no back-to-back LOAD after this one.

6) The SHA module responds to LOAD (LOW) by driving ACK LOW

before the third rising clock edge.

9

The SHA module could insert several wait states into a load transfer. Sup-

pose the SHA module wants to insert two wait states, as shown in Figure 6.

data loaded

CLK

LOAD

ACK

IDATA

Figure 6: LOAD transfer with two wait states

1) The platform drives LOAD HIGH after the first rising clock edge;

2) The SHA module keeps ACK LOW on the second and third rising clock

edge;

3) The platform keeps LOAD HIGH until the fourth rising clock edge since

it does not sample a HIGH ACK on the second and the third rising clock

edge;

4) The SHA module drives ACK HIGH after the third rising clock edge;

5) The platform samples ACK on the fourth rising clock edge;

6) The SHA module then samples IDATA on the fourth rising clock edge;

7) The platform drives LOAD LOW after the fourth rising clock edge, if

there no back-to-back LOAD after this one.

8) The SHA module responds to LOAD (LOW) by driving ACK LOW

before the fifth rising clock edge.

2.3.5 FETCH

FETCH is a two-phase command used to retrieve data from the SHA mod-

ule. FETCH is used in conjunction with the ACK control signal and the

ODATA data signal. When ERR is LOW, FETCH is used to read one word

of the SHA digest from the SHA module; when ERR is HIGH, FETCH reads

out the error code. The communication protocol of FETCH is similar to that

of the ‘read’ operation in a Bus. Figure 7 shows a simple transfer, one with no

wait states.

10

CLK

FETCH

ACK

ODATA data fetched

Figure 7: FETCH transfer with no wait states

In a simple transfer with no wait states:

1) The platform drives FETCH HIGH after the first rising clock edge;

2) The SHA module responds to FETCH by driving ACK HIGH and

putting the output data to ODATA before the second rising clock edge;

3) The platform samples ACK and ODATA on the second rising clock edge;

4) The platform drives FETCH LOW after the second rising clock edge, if

there no back-to-back FETCH after this one.

5) The SHA module responds to FETCH (LOW) by driving ACK LOW

before the third rising clock edge.

The SHA module could insert several wait states into a fetch transfer. Sup-

pose the SHA module wants to insert two wait states, as shown in Figure 8.

CLK

FETCH

ACK

ODATA data fetched

Figure 8: FETCH transfer with two wait states

1) The platform drives FETCH HIGH after the first rising clock edge;

2) The SHA module keeps ACK LOW on the second and third rising clock

edge;

3) The platform keeps FETCH HIGH until the fourth rising clock edge

since it does not sample a HIGH ACK on the second and the third rising

clock edge;

11

4) The SHA module drives ACK HIGH and puts the output data to ODATA

after the third but before the fourth rising clock edge;

5) The platform samples ACK and ODATA on the fourth rising clock edge;

6) The platform drives FETCH LOW after the fourth rising clock edge, if

there no back-to-back FETCH after this one.

7) The SHA module responds to FETCH (LOW) by driving ACK LOW

before the fifth rising clock edge.

The platform also supports streaming data transfer. For some SHA modules,

once the output transfer is triggered, the HASH digest will be output in a

stream that is a back-to-back output sequence. This characteristic including

the number of words in a stream transfer should be indicated in the configura-

tion code (see Section 1.2.2). Figure 9 presents an example of streaming out-

put with one wait state.

CLK

FETCH

ACK

ODATA data[1] fetcheddata[0] fetched

Figure 9: Two-word streaming FETCH transfer with one wait state

2.3.6 GETCONFIG

GETCONFIG is used to read the configuration word from the SHA mod-

ule. It is a two-phase command that works together with the ODATA and

ACK signals. The communication protocol of GETCONFIG is exactly the

same as that of the FETCH operation. Figure 10 shows a simple transfer, one

with no wait states.

12

CLK

GETCONFIG

ACK

ODATA data read

Figure 10: GETCONFIG transfer with no wait states

In a simple transfer with no wait states:

1) The platform drives GETCONFIG HIGH after the first rising clock edge;

2) The SHA module responds to GETCONFIG by driving ACK HIGH and

putting the output data to ODATA before the second rising clock edge;

3) The platform samples ACK and ODATA on the second rising clock edge;

4) The platform drives GETCONFIG LOW after the second rising clock

edge, if there no back-to-back GETCONFIG after this one.

The SHA module responds to GETCONFIG (LOW) by driving ACK

LOW before the third rising clock edge.

The SHA module could insert several wait states into a fetch transfer. Sup-

pose the SHA module wants to insert two wait states, as shown in Figure 11.

CLK

GETCONFIG

ACK

ODATA data read

Figure 11: GETCONFIG transfer with two wait states

1) The platform drives GETCONFIG HIGH after the first rising clock edge;

2) The SHA module keeps ACK LOW on the second and third rising clock

edge;

3) The platform keeps GETCONFIG HIGH until the fourth rising clock

13

edge since it does not sample a HIGH ACK on the second and the third

rising clock edge;

4) The SHA module drives ACK HIGH and puts the output data to ODATA

after the third but before the fourth rising clock edge;

5) The platform samples ACK and ODATA on the fourth rising clock edge;

6) The platform drives GETCONFIG LOW after the fourth rising clock

edge, if there no back-to-back GETCONFIG after this one.

7) The SHA module responds to GETCONFIG (LOW) by driving ACK

LOW before the fifth rising clock edge.

14

Appendix A: SHA-256 module in Verilog

/*

sha256 implementation
Designer: Sergey Morozov

no data on init

non-streaming fetch
getconfig implemented needs to be defined

digest_ready internal only

10/02 - altered the busy signal to go high on the 15-16 round

 transition, as long as load was high

10/17 - fixed blocking assignments, synthesized

 Timing constraint: Default period analysis for Clock 'clk'

 Clock period: 17.085ns (frequency: 58.531MHz)
 Total number of paths / destination ports: 2687166063 / 2202

 Device utilization summary:

Selected Device : 3s500eft256-5

 Number of Slices: 1322 out of 4656 28%

 Number of Slice Flip Flops: 1101 out of 9312 11%
 Number of 4 input LUTs: 2456 out of 9312 26%

 Number of IOs: 71

 Number of bonded IOBs: 71 out of 190 37%
 Number of GCLKs: 1 out of 24 4%

 10/21 - added in an additional round to do the addback of hash value

 in order to reduce the overall critical path

 10/27 - removed arrays+bit-subvectors combination

 10/30 - making the change to make the command valid on busy

 11/05 - the module is now matches the new testbench protocol (ack
 signal)

*/

module sha256 (clk, rst, init, load, fetch, ack, idata, odata, getconfig,

error);

 // preload constants

 reg [31:0] K_ROUND_CONSTANTS [0:63];

 initial

 begin

 $readmemh("k_constants.txt",K_ROUND_CONSTANTS, 0, 63);

 end

 reg [31:0] H_INITIAL_CONSTANTS [0:7];

 initial

 begin

 $readmemh("h_constants.txt",H_INITIAL_CONSTANTS, 0, 7);

 end

 input clk;

 input rst;

15

 input init;

 input load;

 input fetch;

 input getconfig;

 output ack;

 reg busy;

 reg digest_ready, data_valid, getconfig_responce;

 integer count; //used in for loops

 input [31:0] idata;

 output reg [31:0] odata;

 output error;

 reg error_reg;

 assign error = error_reg;

 //stores the round of the hashing process

 reg [7:0] round;

 //store intermediate values during hash

 reg[31:0] a, b, c, d, e, f, g, h;

 // stores the input words from idata, and also the extended words for

 // rounds 16-64

 reg[31:0] word [0:15];

 reg[31:0] hash [0:7];

 wire [31:0] main_s0, main_s1, main_maj,

 main_t1, main_t2, main_ch,

 k_constant, word_s0, word_s1;

 wire [31:0] word1, word14;

 wire [31:0] extended_word, current_word;

 reg [3:0] digest_display;

 // acknowledge signals

 wire master_ack;

 assign fetch_ack = fetch & data_valid & (|digest_display);

 assign load_ack = load & (~busy);

 assign getconfig_ack = getconfig & getconfig_responce;

 assign master_ack = fetch_ack | load_ack | getconfig_ack;

 assign ack = master_ack;

 // main loop functions

 // (a rightrotate 2) xor

 // (a rightrotate 13) xor
 // (a rightrotate 22)

 assign main_s0 = {a[1:0],a[31:2]} ^

 {a[12:0],a[31:13]} ^

 {a[21:0],a[31:22]};

 // (a and b) xor (a and c) xor (b and c)

 assign main_maj = (a & b) ^ (b & c) ^ (a & c);

 // s0 + maj

 assign main_t2 = main_s0 + main_maj;

 // (e rightrotate 6) xor

16

 // (e rightrotate 11) xor

 // (e rightrotate 25)

 assign main_s1 = {e[5:0],e[31:6]} ^

 {e[10:0],e[31:11]} ^

 {e[24:0],e[31:25]};

 // (e and f) xor ((not e) and g)

 assign main_ch = (e & f) ^ (~e & g);

 assign k_constant = K_ROUND_CONSTANTS[round%64];

 assign main_t1 = h + main_s1 + k_constant + current_word + main_ch;

 assign word1 = word[1];

 assign word14 = word[14];

 // (word[1] rightrotate 7) xor

 // (word[1] rightrotate 18) xor

 // (word[1] rightshift 3)

 assign word_s0 = {word1[6:0],word1[31:7]} ^

 {word1[17:0],word1[31:18]} ^
 {3'b000,word1[31:3]};

 // (word[14] rightrotate 17) xor
 // (word[14] rightrotate 19) xor

 // (word[14] rightshift 10]);

 assign word_s1 = {word14[16:0],word14[31:17]} ^

 {word14[18:0],word14[31:19]} ^

 {10'b00_0000_0000,word14[31:10]};

 assign extended_word = word[0] + word_s0 + word[9] + word_s1;

 // for rounds 0-15 the idata is used for input word

 // for the other rounds the extended word is used

 assign current_word = ((round < 'd16) | digest_ready) ?

 idata : extended_word;

 always @(posedge clk) begin

 data_valid <= fetch;
 getconfig_responce <= getconfig;

 end

 always @(posedge clk or posedge rst) begin

 //reset operation and clear hash values

 if (rst) begin //reset operation

 digest_ready <= 'b0;
 digest_display <= 'd0;

 odata <= 'd0;

 busy <= 'b0;
 round <= 'b0;

 error_reg <= 'b0;

 // these are not strictly necessary to reset,

 // they are used "safely" in the rest of the module

 a <= 0; b <= 0; c <= 0;
 d <= 0; e <= 0; f <= 0;

 g <= 0; h <= 0;

 for(count =0; count < 8; count = count +1)

 begin

 hash[count] <= 0;

 end

17

 for(count =0; count < 32; count = count +1)

 begin

 word[count] <= 0;

 end

 end

 else begin

 if (init) begin

 digest_display <= 'd0;

 digest_ready <= 'b0;
 round <= 'd0;

 odata <= 'd0;

 error_reg <= 'b0;

 busy <= 'b0;

 for(count =0; count < 8; count = count +1)

 begin

 hash[count] <= H_INITIAL_CONSTANTS[count];

 end

 a <= H_INITIAL_CONSTANTS[0];

 b <= H_INITIAL_CONSTANTS[1];

 c <= H_INITIAL_CONSTANTS[2];
 d <= H_INITIAL_CONSTANTS[3];

 e <= H_INITIAL_CONSTANTS[4];

 f <= H_INITIAL_CONSTANTS[5];
 g <= H_INITIAL_CONSTANTS[6];

 h <= H_INITIAL_CONSTANTS[7];

 end

 else if ((~busy)) begin

 // when the module is not busy operation is

 // based input signals (init, load, fetch, getconfig)

 // will receive 16th input word on the next round and
 // go busy to calculate the hash for the block

 if (load && (round == 'd15)) begin

 busy <= 'b1;

 word[round] <= idata;

 round <= round + 1;
 digest_ready <= 'b0;

 digest_display <= 'd0;

 a <= main_t1 + main_t2;

 b <= a;

 c <= b;
 d <= c;

 e <= d + main_t1;

 f <= e;

 g <= f;
 h <= g;

 end

 // taking in input words and calculating the

 // intermediate hash value

 else if (load && (round < 'd15)) begin

 word[round] <= idata;
 round <= round + 1;

 digest_ready <= 'b0;

 digest_display <= 'd0;

18

 a <= main_t1 + main_t2;

 b <= a;
 c <= b;

 d <= c;

 e <= d + main_t1;

 f <= e;
 g <= f;

 h <= g;

 end

 // displaying the digest

 else if (digest_ready && digest_display > 'd0) begin

 if (digest_display >= 'h8) digest_display <= 'd0;

 else begin

 odata <= hash[digest_display%8];

 digest_display <= digest_display + 'b1;

 end

 end

 // trigger digest display

 else if (digest_ready && fetch) begin

 odata <= hash[0];

 digest_display <= 'd1;

 end

 else if (fetch && (~digest_ready)) begin

 busy <= 'd127;
 error_reg <= 'b1;

 digest_ready <= 'b1;

 digest_display <= 'b1;
 odata <= 32'hdeaddead; //error code

 end

 // need to put actual getconfig data into here

 // cannot recall the specific arrangement of bits

 else if (getconfig) begin

 odata <= {1'b1,1'b0, 14'd8, 16'd16};

 end

 else begin

 busy <= 'b0;

 end

 end //end if (~busy)

 else begin // if busy is high operation is based on internal

 // state, input signals are not considered

 if ((round > 'd15) && (round < 'd63)) begin

 // continuing execution after all load are done

 // downshift word[] every round to accomodate new extended_word

 for (count = 0; count < 15; count = count +1)

 begin

 word[count] <= word[count+1];

 end

 word[15] <= extended_word;
 round <= round + 1;

 h <= g;
 g <= f;

 f <= e;

19

 e <= d + main_t1;

 d <= c;
 c <= b;

 b <= a;

 a <= main_t1 + main_t2;

 end

 // last true round of operation, no need to compute the
 // extended_word or to shift word this time

 else if (round == 'd63) begin

 round <= round + 1;

 h <= g;
 g <= f;

 f <= e;

 e <= d + main_t1;
 d <= c;

 c <= b;

 b <= a;
 a <= main_t1 + main_t2;

 end

 // update the hash values with values from the previous

 // block the module is finished with the current data block

 // after this

 else if (round == 'd64) begin

 digest_ready <= 'b1;
 round <= 'd0;

 busy <= 'b0;

 hash[0] <= hash[0] + a;

 hash[1] <= hash[1] + b;

 hash[2] <= hash[2] + c;
 hash[3] <= hash[3] + d;

 hash[4] <= hash[4] + e;

 hash[5] <= hash[5] + f;
 hash[6] <= hash[6] + g;

 hash[7] <= hash[7] + h;

 a <= hash[0] + a;

 b <= hash[1] + b;

 c <= hash[2] + c;
 d <= hash[3] + d;

 e <= hash[4] + e;

 f <= hash[5] + f;

 g <= hash[6] + g;
 h <= hash[7] + h;

 end

 //not used

 else if (round == 'd127) begin

 //error condition, keep busy high

 busy <= 'b1;

 end

 end

 end

 end

endmodule

20

This is an example of how fetch is handled by the module

The FETCH signal is set HIGH sometime prior. The testbench is waiting for the

first clock edge when FETCH and master_ack are both HIGH to sample the value on

ODATA. The SHA-256 module is calculating the hash.

• On clock edge 1 the module finishes the computation of the hash. Notice how

the hash values change after the clock edge.

• On clock edge 2 the module places the first word of the hash on the ODATA

bus. The data_valid signal (refer to previous section) is also set to HIGH, and

master_ack goes HIGH right after the clock edge as the result.

• Clock edge 3 is the first clock edge where master_ack and FETCH are both

HI. Therefore the data transfer from the SHA-256 module to the testbench occurs

here (the value transferred is 0x8ab0a57c) . Since the SHA-256 module is

streaming, the next word of hash is put on ODATA after the clock cycle.

• On clock edge 4 the value 0xc9595a3f is transferred and word on ODATA is

updated. The operation continues until all of the data is transferred (not shown in

the diagram).

21

The next example shows how load of a 2nd block is done.

In this situation the module was computing the hash of the first block. Meanwhile,

the testbench already set the FETCH signal to HIGH, indicating that the next data is

ready on the IDATA.

• On clock edge 1 the module finishes the computation of the hash. Notice how the

hash values change after the clock edge. Also note that even though master_ack

signal goes HIGH after this clock edge, it is not high prior to it, therefore no data

transfer has taken place.

• On clock edge 2 the module is acknowledging the FETCH signal. The data trans-

fer between the testbench and the module takes place here. The value transferred

is 0x206c6f6e.

• On clock edge 3 the module continues to see the HIGH fetch signal, indicating

that the next word of data is already on the IDATA bus. The master_ack remains

HIGH, so the 2nd data transfer takes place here. The value transferred is

0x67206861.

• On clock edge 4 the data transfer continues. The value transferred ix

0x73680d44. This procedure continues until the entire block is loaded (not shown

in the diagram).

22

Appendix B: SHA-256 memory-mapped PLB coprocessor in GEZEL3

The following listing illustrates how the SHA-FPGA interface can be inte-

grated into a coprocessor.

// SHA 256 kernel

dp sha256 (in init : ns(1);

 in load : ns(1);

 in fetch : ns(1);

 in getconfig : ns(1);

 out ack : ns(1);

 out err : ns(1);

 in idata : ns(32);

 out odata : ns(32)) {

 lookup k_constant : ns(32) = {

 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,

 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,

 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,

 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,

 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,

 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,

 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,

 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,

 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,

 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,

 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,

 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 };

 //reg errstate : ns(1); // error bit

 reg load_reg, fetch_reg, init_reg : ns (1);

 reg a,b,c,d,e,f,g,h : ns(32);

 reg word : ns(512);

 reg hash : ns(256);

 reg digest_display : ns(3);

 reg round : ns(8);

 reg odata_reg, idata_reg : ns(32);

 reg error_reg : ns(1);

 reg getconfig_reg : ns(1);

 reg accept_load : ns(1);

 reg odata_ready : ns(1);

 sig fetch_ack : ns(1);

 sig load_ack : ns(1);

 sig getconfig_ack : ns(1);

 sig nh0, nh1, nh2, nh3, nh4, nh5, nh6, nh7 : ns(32);

3 Gezel Homepage, http://rijndael.ece.vt.edu/gezel2

23

 sig main_s0 : ns(32);

 sig main_s1 : ns(32);

 sig main_maj : ns(32);

 sig main_t1 : ns(32);

 sig main_t2 : ns(32);

 sig main_ch : ns(32);

 sig word_s0 : ns(32);

 sig word_s1 : ns(32);

 sig word1 : ns(32);

 sig word14 : ns(32);

 sig extended_word : ns(32);

 sig hashsel : ns(32);

 sig current_word : ns(32);

 sig round_select : ns(6);

 reg ack_reg : ns(1);

 always {

 idata_reg = idata;

 odata = odata_reg;
 err = error_reg;

 fetch_reg = fetch;

 init_reg = init;
 load_reg = load;

 getconfig_reg = getconfig;
 fetch_ack = fetch & odata_ready ;

 load_ack = (round < 15) ? (load & accept_load) : 0;

 getconfig_ack = getconfig & getconfig_reg;
 ack = fetch_ack | load_ack | getconfig_ack;

 ack_reg = ack;

 hashsel = (digest_display == 0) ? hash[0: 31] :

 (digest_display == 1) ? hash[32: 63] :
 (digest_display == 2) ? hash[64: 95] :

 (digest_display == 3) ? hash[96:127] :

 (digest_display == 4) ? hash[128:159] :
 (digest_display == 5) ? hash[160:191] :

 (digest_display == 6) ? hash[192:223] : hash[224:255];

 main_s0 = (a[1:0] # a[31:2]) ^
 (a[12:0] # a[31:13]) ^

 (a[21:0] # a[31:22]);

 main_maj = (a & b) ^ (b & c) ^ (a & c);
 main_t2 = main_s0 + main_maj;

 main_s1 = (e[5:0] # e[31:6]) ^

 (e[10:0] # e[31:11]) ^
 (e[24:0] # e[31:25]);

 main_ch = (e & f) ^ (~e & g);

 round_select = round[5:0];
 main_t1 = h + main_s1 + k_constant(round_select) +

 current_word + main_ch;

 word1 = word[32:63];

 word14 = word[448:479];

 word_s0 = (word1[6: 0] # word1[31: 7]) ^
 (word1[17: 0] # word1[31:18]) ^

 word1[31: 3];

 word_s1 = (word14[16:0] # word14[31:17]) ^
 (word14[18:0] # word14[31:19]) ^

 word14[31:10];

 extended_word = word[0:31] + word_s0 + word[288:319] + word_s1;

24

 current_word = (round > 15) ? extended_word : idata_reg;

 nh0 = hash[0: 31] + a;

 nh1 = hash[32: 63] + b;

 nh2 = hash[64: 95] + c;
 nh3 = hash[96:127] + d;

 nh4 = hash[128:159] + e;

 nh5 = hash[160:191] + f;
 nh6 = hash[192:223] + g;

 nh7 = hash[224:255] + h;

 }

 sfg initialize{

 hash =

0x5be0cd191f83d9ab9b05688c510e527fa54ff53a3c6ef372bb67ae856a09e667;
 round = 0;

 a = 0x6a09e667;

 b = 0xbb67ae85;
 c = 0x3c6ef372;

 d = 0xa54ff53a;

 e = 0x510e527f;
 f = 0x9b05688c;

 g = 0x1f83d9ab;

 h = 0x5be0cd19;

 odata_reg = 0x12345678;

 digest_display = 0;

 accept_load = 1;
 odata_ready = 0;

 }

 sfg stop_accept_load{

 accept_load = 0;
 }

 sfg start_accept_load{

 accept_load = 1;

 }

 sfg take_in_odata {

 word = idata_reg # word[511:32];

 }

 sfg take_in_extended_word{

 word = extended_word # word[511:32];

 }

 sfg update_state{

 a = main_t1 + main_t2;

 b = a;

 c = b;
 d = c;

 e = d + main_t1;

 f = e;
 g = f;

 h = g;

 round = round + 1;
 }

 sfg update_hash{

25

 a = nh0;

 b = nh1;
 c = nh2;

 d = nh3;

 e = nh4;

 f = nh5;
 g = nh6;

 h = nh7;

 hash = nh7 # nh6 # nh5 # nh4 # nh3 # nh2 # nh1 # nh0;
 round = 0;

 }

 sfg display_odata{

 odata_reg = hashsel;
 odata_ready = 1;

 digest_display = digest_display + 1;

 }

 sfg lower_odata{

 odata_ready = 0;

 }

 sfg display_error{

 odata_reg = 0xdeaddead;

 odata_ready = 1;
 }

 sfg display_config_word{

 odata_reg = 0xffff;

 }

 sfg raise_error{

 error_reg = 1;

 }

 sfg nothing{}

}

fsm sha_ctrl (sha){

 initial S_uninit;

 state S_ready, S_loading, S_calc, S_fetch, S_error;

 @S_uninit if (init_reg) then (initialize) -> S_ready;

 else (nothing) -> S_uninit;

 @S_ready if (init_reg) then (initialize) -> S_ready;

 else if (load_reg & ack_reg) then

 (update_state, take_in_odata) -> S_loading;

 else if (fetch_reg & ~ack_reg) then (display_odata) -> S_fetch;

 else if (getconfig_reg) then (display_config_word) -> S_ready;

 else (nothing) -> S_ready;

 @S_loading if (init_reg) then (initialize) -> S_ready;

 else if ((round == 15) & load_reg) then

 (update_state, take_in_odata, stop_accept_load) -> S_calc;

 else if (load_reg) then

 (update_state, take_in_odata) -> S_loading;

 else if (fetch_reg) then (raise_error) -> S_error;

 else (nothing) -> S_loading;

26

 @S_calc if (init_reg) then (initialize) -> S_ready;

 else if (round == 64) then

 (update_hash,start_accept_load) -> S_ready;

 else (update_state, take_in_extended_word) -> S_calc;

 @S_fetch if (init_reg) then (initialize) -> S_ready;

 else if (digest_display == 0) then (lower_odata) -> S_ready;

 else if (fetch_reg) then (display_odata) -> S_fetch;

 else (nothing) -> S_fetch;

 @S_error if (init_reg) then (initialize) -> S_ready;

 else if (fetch_reg) then (display_error) -> S_error;

 else (nothing) -> S_error;

}

// Instruction decoder

 dp sha_decoder (in ins: ns(8);

 in din: ns(32);

 out status: ns(8);

 out dout: ns(32)){

 reg init : ns(1);

 reg load : ns(1);

 reg fetch : ns(1);

 reg getconfig : ns(1);

 sig ack : ns(1);

 sig err : ns(1);

 reg idata : ns(32);

 sig odata : ns(32);

 reg dout_r : ns(32);

 reg ins_reg : ns(8);

 reg st_id : ns(1);

 reg ack_r : ns(1);

 use sha (init, load, fetch, getconfig, ack, err, idata, odata);

 always {

 dout = dout_r;
 status = st_id;

 ins_reg = ins;

 ack_r = ack;
 }

 //1

 sfg idle {init = 0;

 load = 0;
 fetch = 0;

 getconfig = 0;

 idata = din;
 dout_r = odata;

 }

 //2

 sfg init { init = 1;

 load = 0;
 fetch = 0;

 getconfig = 0;

 idata = 0;
 dout_r = 0;

 }

27

 //3

 sfg load { init = 0;

 load = 1;

 fetch = 0;
 getconfig = 0;

 idata = din;

 dout_r = 0;
 }

 //4

 sfg fetch { init = 0;

 load = 0;
 fetch = 1;

 getconfig = 0;

 idata = 0;
 dout_r = odata;

 }

 //5

 sfg checkload { init = 0;

 load = 1;

 fetch = 0;

 getconfig = 0;

 idata = din;
 dout_r = 0;

 }

 //6

 sfg checkfetch { init = 0;

 load = 0;

 fetch = 1;

 getconfig = 0;
 idata = 0;

 dout_r = odata;

 }

 //7 the data will be ready after fetch high, so there is 1 clk delay

 sfg getdata { init = 0;

 load = 0;

 fetch = 0;
 getconfig = 0;

 idata = 0;

 dout_r = odata;

 }

 sfg sample_st {st_id = ack? 1: st_id;}

 sfg clr_st {st_id = 0;}

}

fsm fsha_decoder (sha_decoder) {

 initial s0;

 state s1, s2, s3, s4, s5, s6, s7;

 @s0 (idle) -> s1;

 @s1 if (ins_reg == 2) then (init) -> s2;

 else if (ins_reg == 3) then (load, clr_st) -> s2;

 else if (ins_reg == 4) then (fetch, clr_st) -> s2;

 else (idle)-> s1;

 @s2 if (ins_reg == 1) then (idle, clr_st) -> s1;

 else (idle, clr_st) -> s2;

}

28

ipblock myarm {

 iptype "armsystem";

 ipparm "exec=sha_driver";

}

// interface for 2 write, 2 read chip-enable channels

ipblock regipif(out Bus2IP_Data : ns(32);

 out Bus2IP_BE : ns(4);

 out Bus2IP_RdCE : ns(2);

 out Bus2IP_WrCE : ns(2);

 in IP2Bus_Data : ns(32);

 in IP2Bus_Ack : ns(1);

 in IP2Bus_Retry : ns(1);

 in IP2Bus_Error : ns(1);

 in IP2Bus_ToutSup : ns(1)) {

 iptype "xilinx_ipif_reg";

 ipparm "core=myarm";

 ipparm "regid=0x80000000"; // index for regs

 ipparm "opid =0x80000004"; // operation id

 ipparm "data =0x8000000C"; // data r/w channel

}

// Bus Interface

$option "generic user_logic C_DWIDTH integer 32"

$option "generic user_logic C_NUM_CE integer 2"

dp user_logic(in Bus2IP_Data : ns(32);

 in Bus2IP_BE : ns(4);

 in Bus2IP_RdCE : ns(2);

 in Bus2IP_WrCE : ns(2);

 out IP2Bus_Data : ns(32);

 out IP2Bus_Ack : ns(1);

 out IP2Bus_Retry : ns(1);

 out IP2Bus_Error : ns(1);

 out IP2Bus_ToutSup : ns(1)) {

 sig din, dout : ns(32);

 sig status : ns(8);

 sig ins : ns(8);

 reg rdin, rdout : ns(32);

 reg rins : ns(8);

 reg rstatus : ns(8);

 reg ip2bus_d : ns(32);

 reg ip2bus_a : ns(1);

 use sha_decoder(ins, din, status, dout);

 always {

 din = rdin;

 rdout = dout;

 ins = rins;
 rstatus = status;

 ip2bus_d = Bus2IP_RdCE[0] ? rdout :

 Bus2IP_RdCE[1] ? rstatus : 0;

 rins = Bus2IP_WrCE[1] ? Bus2IP_Data : rins;
 rdin = Bus2IP_WrCE[0] ? Bus2IP_Data : rdin;

 IP2Bus_Data = ip2bus_d;

29

 ip2bus_a = Bus2IP_WrCE[0] |

 Bus2IP_WrCE[1] |
 Bus2IP_RdCE[0] |

 Bus2IP_RdCE[1];

 IP2Bus_Ack = ip2bus_a;

 IP2Bus_Retry = 0;
 IP2Bus_Error = 0;

 IP2Bus_ToutSup = 0;

 }
}

dp top {

 sig Bus2IP_Data : ns(32);

 sig Bus2IP_BE : ns(4);

 sig Bus2IP_RdCE : ns(2);

 sig Bus2IP_WrCE : ns(2);

 sig IP2Bus_Data : ns(32);

 sig IP2Bus_Ack : ns(1);

 sig IP2Bus_Retry : ns(1);

 sig IP2Bus_Error : ns(1);

 sig IP2Bus_ToutSup : ns(1);

 use myarm;

 use regipif(Bus2IP_Data ,

 Bus2IP_BE ,
 Bus2IP_RdCE ,

 Bus2IP_WrCE ,

 IP2Bus_Data ,
 IP2Bus_Ack ,

 IP2Bus_Retry ,

 IP2Bus_Error ,
 IP2Bus_ToutSup);

 use user_logic(Bus2IP_Data ,

 Bus2IP_BE ,

 Bus2IP_RdCE ,
 Bus2IP_WrCE ,

 IP2Bus_Data ,

 IP2Bus_Ack ,
 IP2Bus_Retry ,

 IP2Bus_Error ,

 IP2Bus_ToutSup);
}

system S {

 top;

}

