
Cryptanalysis of the Hash Function LUX-256

Shuang Wu Dengguo Feng Wenling Wu

State Key Lab of Information Security, Institute of Software
Chinese Academy of Sciences

Beijing 100190, China
Email: {wushuang,feng,wwl}@is.iscas.ac.cn

Abstract. LUX is a new hash function submitted to NIST’s SHA-3
competition. In this paper, we found some non-random properties of LUX
due to the weakness of origin shift vector. We also give reduced blank
round collision attack, free-start collision attack and free-start preim-
age attack on LUX-256. The two collision attacks are trivial. The free-
start preimage attack has complexity of about 280 and requires negligible
memory.

Key words : hash function, pseudo-random function, pseudo-collision,
free-start preimage

1 Introduction

LUX is designed by Ivica Nikolić, Alex Biryukov, and Dmitry Khovratovich[1]
which is submitted to NIST’s SHA-3 competition. The stream-based structure of
LUX is different from MD structure. There are several stream based hash func-
tions: Radiogatun[4], Panama[5], Grindahl[6], Enrupt[2]. The structure based on
stream can resist length extension attack, herding attack, multi-collision attack
and meet-in-the-middle attack. But they also have weakness: the required buffer
size is huge compared to MD structure and they can’t be paralleled.

Section 2 of this paper is the description of LUX-256. Section 3 discussed
some non-random properties of LUX-256. Section 4 and Section 5 introduced
some collision attacks and a free-start preimage attack on LUX-256. Section 6
is the conclusion.

2 Description of LUX-256

LUX-256 has a buffer B = (B0, B1, ..., B15) and a core C = (C0, C1, ...C7). Bi

and Ci are 32-bit word. Initial values for B and C are zero. In each round a 32-
bit message block is added to B0 and C0. After all message block are processed,
there are 16 blank rounds. After the blank rounds, there are more blank output
rounds. In each output round, the fourth byte C3 of C is the output as a byte
of the hash value. Output rounds continue until output length is enough. The
state update operation of one round in LUX is shown in Figure 1.

2 Shuang Wu Dengguo Feng Wenling Wu

Fig. 1. State Update Operation of LUX

The SubBytes, ShiftRows and MixColumns operations are AES-like. ShiftRows
operation rotates cyclicly to the right and follows shift vector (0, 1, 3, 4). S box
used in SubBytes operations and matrix used in MixColumns operations are the
same as in AES. AddConstant operation adds a constant 0x2ad01c64 to C0. If we
use Φ(s,m) to denote one round operation of LUX, where m is a 32-bit message
block and s = B||C is the state value. LUX-256 can be written in pseudo-code
as follows. For t message blocks,

s=0

For i=0 to t-1 do
Φ(s,mi)
End for

For i=0 to 15 do
Φ(s, 0)
End for

For i=0 to 7 do
Φ(s, 0)
output s19 (s19 = C3)
End for

Cryptanalysis of the Hash Function LUX-256 3

3 Non-random Properties of LUX-256

3.1 Pseudo Random Distinguisher of LUX-256

Let H : S×M → R be the hash function LUX and let F : M → R be a random
function, where M = {0, 1}∗ is the set of messages, S is the domain of initial
state of LUX and R is the ranger of both H and F .

Take LUX-256 as an example, S = {0, 1}768 and R = {0, 1}256. The exper-
iment of distinguishing LUX-256 from a random function F by adversary A is
as follows:

Experiment EXPprf
H,A

b
R←− {0, 1}

F
R←− RandM→R

K
R←− S

O0(·) ← F (·),O1(·) ← H(K, ·)
d ← AOb(·)

return d

where F is randomly chosen from all functions mapping from M to R. K is
randomly chosen from S, which is used as a secret key for H. Two oracle O0(·)
and O1(·) are defined to be F (·) and H(K, ·). A random bit b determines which
oracle is provided to adversary A. And the adversary makes his guess bit d by
querying the given oracle.

We give an adversary A0 here:

Adversary A
O(·)
0

m
R←− {0, 1}∗

(h0, h1, h2, h3, h4, h5, h6, h7) ← O(m)
If B(hi, hi+1) = 1 for all i ∈ {0, 1, 2, 3, 4, 5, 6} return 1
else return 0

where m can be any message with arbitrary length. Returned value h is split
into 8 32-bit word hi. The Boolean function B is defined as:

Boolean Function B(V0, V1)
(a0, b0, c0, d0) ← V0,(a1, b1, c1, d1) ← V1

If
f7 · a1 ⊕ 4c · b1 ⊕ f4 · c1 ⊕ d1 = 4e · S(a0)

return 1 else return 0

where S(·) is the s-box used in AES and the calculations in the equations are all
on F28 which are the same as in AES. The modular polynomial for multiplication
is x8 + x4 + x3 + x + 1.

Proposition 1. The prf-advantage of LUX-256 is at least 1− 2−56.

4 Shuang Wu Dengguo Feng Wenling Wu

Proof. Obviously, when b = 0, for a random function F,

P [EXPprf
H,A0

= 1|b = 0] =
6∏

i=0

P [B(hi, hi+1) = 1] =
6∏

i=0

2−8 = 2−56

When b = 1, it is the case of LUX-256, the output value is (h0, h1, h2, h3, h4, h5, h6, h7).
Split hi into 8-bit strings (ai, bi, ci, di). Considering the MixColumn operations
of the i-th word of output value, for all i ∈ {0, 1, 2, 3, 4, 5, 6},




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 ·




S(ai)
xi

yi

zi


 =




ai+1

bi+1

ci+1

di+1




for some xi, yi, zi. We have,




02 03 01 01
01 02 03 01
01 01 02 03


 ·




S(ai)
xi

yi

zi


 =




ai+1

bi+1

ci+1


 (1)

and

(
03 01 01 02

) ·




S(ai)
xi

yi

zi


 = di+1 (2)

From equation (1), we can calculate (xi, yi, zi) as follows,



xi

yi

zi


 =




03 01 01
02 02 01
01 02 03



−1

·



ai+1 ⊕ 02 · S(ai)
bi+1 ⊕ S(ai)
ci+1 ⊕ S(ai)


 =




f6 24 49
f6 9f 24
f6 f6 f6


·




ai+1 ⊕ 02 · S(ai)
bi+1 ⊕ S(ai)
ci+1 ⊕ S(ai)




From equation (2), we have,

di+1 ⊕ 03 · S(ai) =
(
01 01 02

) ·



xi

yi

zi


 =

(
f7 4c f4

) ·



ai+1 ⊕ 02 · S(ai)
bi+1 ⊕ S(ai)
ci+1 ⊕ S(ai)




It turns out to be

f7 · ai+1 ⊕ 4c · bi+1 ⊕ f4 · ci+1 ⊕ di+1 = 4e · S(ai)

So, P [B(hi, hi+1) = 1] = 1 for all i. Now we can see that

P [EXPprf
H,A0

= 1|b = 1] = 1

which implies,

Advprf
H,A0

= P [EXPprf
H,A0

= 1|b = 1]− P [EXPprf
H,A0

= 1|b = 0] = 1− 2−56

so,
Advprf

H = max
A
{Advprf

H,A} ≥ Advprf
H,A0

= 1− 2−56.

Cryptanalysis of the Hash Function LUX-256 5

Clearly, LUX-256 is not a good pseudo-random function. The consecutive
words in the hash value of LUX-256 have certain relations, which help our ad-
versary to distinguish LUX-256 from a random function with only one query to
the oracle. For other versions of LUX, this problem also exists. Especially for
the versions whose core C is square, all shift vectors have zero in them.

3.2 Study of the Shift Vector

Our adversary works because there is a zero in this vector which implies that
S(ai) involves in the calculation of (ai+1, bi+1, ci+1, di+1) directly. In order to fix
this problem, maybe a new shift vector should be found to replace (0, 1, 3, 4).
There should be no zero in the vector.

New vector should make sure the state in core C receives a full diffusion after
three rounds and make sure the feedback block from B to C influence output
part C3 after two rounds as the origin vector (0, 1, 3, 4) does. Figure 2 shows the
diffusion process of one byte difference from message in several rounds.

Fig. 2. Diffusion Process of LUX-256 with Origin Shift Vector

The feedback operation from B15 to C7 can always influence the output part
C3 in at most two rounds with the origin vector as shown in Figure 3. New
vector should do the same thing, or we can construct free-start near-collisions
more efficiently and the civ-prf distinguisher’s advantage will increase to 1−272.
We will talk about the civ-prf distinguisher in section 3.3.

Another property of the shift vector is each two of the value should be differ-
ent. With all restrictions above, we can search for the new shift vector. It turns
out that there are only 8 vectors which satisfy all conditions without consider-
ation of order: (1, 2, 3, 6), (1, 2, 4, 5), (1, 2, 6, 7), (1, 4, 5, 6), (2, 3, 4, 7), (2, 3, 5, 6),
(2, 5, 6, 7), (3, 4, 6, 7). Which of them is the best? We need more study to answer
this question.

6 Shuang Wu Dengguo Feng Wenling Wu

Fig. 3. Influence of Feedback Operation on Output with Origin Shift Vector

3.3 CIV-PRF Distinguisher of LUX-256

If the shift vector is changed to a new one without zero, the structure of LUX
is still not of good randomness. In this section, we will show you a special dis-
tinguisher. If the adversary is given the right to chose initial state value instead
of the message, he can still distinguish LUX-256 from a random function.

Let H : S × M → R be the hash function LUX and let F : S → R be a
random function, where we limit M = {0, 1}32 to be only 32-bit. The reason
of the limitation will be explained later. S and R follow the same definitions in
section 3.1. The experiment of civ(chosen initial value)-prf distinguishing LUX-
256 from a random function F by adversary A is as follows:

Experiment EXPciv−prf
H,A

b
R←− {0, 1}

F
R←− RandS→R

K
R←− M = {0, 1}32

O0(·) ← F (·),O1(·) ← H(·,K)
d ← AOb(·)

return d

We give an adversary A1 here:

Cryptanalysis of the Hash Function LUX-256 7

Adversary A
O(·)
1

s0 ← 0768,s1 ← 0511||1||0256

(h0, h1, h2, h3, h4, h5, h6, h7) ← O(s0)
(h′0, h

′
1, h

′
2, h

′
3, h

′
4, h

′
5, h

′
6, h

′
7) ← O(s1)

(4a0,4b0,4c0,4d0) ← h0 ⊕ h′0
(4a1,4b1,4c1,4d1) ← h1 ⊕ h′1
If

03 · 4a0 = 06 · 4b0 = 06 · 4c0 = 02 · 4d0

and (4c1

4d1

)
=

(
f7 f4
f6 f4

)
·
(4a1

4b1

)

return 1 else return 0
Proposition 2. The civ-prf-advantage of LUX-256 is at least 1− 2−40.

Proof. Obviously, when b = 0, for a random function F,

P [EXPciv−prf
H,A1

= 1|b = 0] = (2−8)3 · (2−8)2 = 2−40

When b = 1, it is the case of LUX-256. We use (B0, B1, ..., B14, B15) and
(C0, C1, ..., C6, C7) to denote the buffer B and the core C. So in the beginning,
since s = B||C, with the choices of the adversary, we have a difference in only
B15, which is 4B15 = 1. Now let’s track the propagation of the difference 4B15.
It will propagate to the first output byte h0 = β as shown in Table 1, but we don’t
know the value of β.

Table 1. Differential Path for CIV-PRF Adversary

round 4B 4C

0 ---- ---- ---- ---1---- ----

1 1--- ---- ---- -------- ----

blank-1 -1-- ---- ---- -------- ----

blank-2 --1- ---- ---- -------- ----

...

blank-14---- ---- ---- --1----- ----

blank-15---- ---- ---- ---1---- ---1

blank-161--- ---α ---- -------α ----

output-1-1-- ---β ξ-δε -------β γ-δε

output-2--1- ???? ???? ε--- ???θ ????

Let α
S−→ α′ = (α′0, α

′
1, α

′
2, α

′
3)

T , which means difference α changes to α′ after
it went through S box, then from Mixcolumn operation we have,

β =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 ·




α′0
0
0
0


 =




02 · α′0
α′0
α′0

03 · α′0




8 Shuang Wu Dengguo Feng Wenling Wu

So the difference in the first output byte follows the pattern of β. When b = 1,
the adversary makes two queries and calculate (4a0,4b0,4c0,4d0), the differ-
ences satisfy

03 · 4a0 = 06 · 4b0 = 06 · 4c0 = 02 · 4d0

with probability of 1.

Let β
S−→ β′ = (β′0, β

′
1, β

′
2, β

′
3)

T and ε
S−→ ε′ = (ε′0, ε

′
1, ε

′
2, ε

′
3)

T . We have,




4a1

4b1

4c1

4d1


 = θ =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 ·




β′0
0
0
ε′3




So,

(4c1

4d1

)
=

(
01 03
03 02

)
·
(

β′0
ε′3

)
=

(
01 03
03 02

)
·
(

02 01
01 01

)−1

·
(4a1

4b1

)
=

(
f7 f4
f6 f4

)
·
(4a1

4b1

)

with probability of 1, too.
Now we can see that,

P [EXPciv−prf
H,A1

= 1|b = 1] = 1

which implies,

Advciv−prf
H,A1

= P [EXPciv−prf
H,A1

= 1|b = 1]− P [EXPciv−prf
H,A1

= 1|b = 0] = 1− 2−40

so,

Advciv−prf
H = max

A
{Advciv−prf

H,A } ≥ Advciv−prf
H,A1

= 1− 2−40.

You can see that if length of the message is less than 32 bit, we need only
one round before the blank rounds, so the difference in the last bit of B will not
receive full diffusion.

In order to fix this problem, we could add two more blank rounds or always
use two more padding message blocks. In other word, if there are two more
rounds before output, this attack would not work any more.

4 Collision Attacks on LUX-256

Apparently, LUX has very good collision resistance. Once the difference goes
into middle part of the core C, it’s out of control, which brings chaos to buffer
B. Since we can only control the first and the last byte in C, there are two kinds
of trivial collisions.

Cryptanalysis of the Hash Function LUX-256 9

Table 2. Differential Path for Reduced Blank Round Collision

round 4m 4B 4C

0 ---- ---- ---- ---- ---- ----

1 α -α-- β--- ---- ----β--- ----

2 β βα-- -β-- ---- -------- ----

blank-1 -βα- --β- ---- -------- ----

blank-2 --βα ---β ---- -------- ----

blank-3 ---β α--- β--- -------- ----

output-1 ---- βα-- -β-- -------- ----

output-2 ---- -βα- --β- -------- ----

output-3 ---- --βα ---β -------- ----

output-4 ---- ---β α--- β------- ----

output-5 ---- ---- βα-- -β------ ----

output-6 ---- ---- -βα- --β----- ----

output-7 ---- ---- --βα ---β---- ---β

output-8 β--- γ-δε ---η α--- γ-δε ---ζ

4.1 Reduced Blank Round Collision

In this section we will talk about the blank rounds. If there are not enough blank
rounds we can easily construct collision messages. See Table 2 for the differential
path.

where α = (α0, 0, 0, 0) has only difference in the first byte. We choose differ-
ence of the second message word to be β which is pre-calculated from α. Before
the difference goes into C, we have several steps to go. If there are only 3 blank
rounds, we have collision pairs for LUX-224 or a near collision for LUX-256. One
more blank round, we have one less colliding byte in the near-collision pair.

Difference stays in the first byte of C after one round, due to the zero in the
origin shift vector, which provide us a chance to offset it. So, if we use a new
shift vector which has no zero, this attack will no longer work.

4.2 Free-start Collision

If we can choose initial value, we can easily construct free-start collision for LUX.
See Table 3 for the differential path.

This is pretty much the same as reduced blank round collision. We introduce
some differences in the initial value. After two rounds all differences have gone,
then we move on to the blank rounds and output rounds and get a collision.

Also, if we change the shift vector to a new one without zero, this attack will
no longer work.

5 Free-Start Preimage Attack on LUX-256

Notice that the state update operation of LUX is invertible. If we have all the
values in C and in part of B as the state just before the output rounds and the

10 Shuang Wu Dengguo Feng Wenling Wu

Table 3. Differential Path for Free-Start Collision

round 4m 4B 4C

0 α--β ---- ---- ---β---- ----

1 α β--- ---- ---- ----β--- ----

2 β ---- ---- ---- ---- ---- ----

blank-1 ---- ---- ---- ---- ---- ----

...

output-1 ---- ---- ---- ---- ---- ----

...

output calculated from them turns out to be the one we choose, we can calculate
backwards to the initial value to get free-start preimages.

The question is, given hash value, how to decide the value in the buffer and
core to make sure the output is exactly what we want. If we remove buffer
B and let all rounds be blank, the sequence C0 → C1 → ... → C6 → C7

is determined by any one of the Ci. But our problem is, what is the relation
between (C0

3 , C1
3 , ..., C6

3 , C7
3) and C0, where (C0

3 , C1
3 , ..., C6

3 , C7
3) equals the given

hash value

(h0, h1, ..., h6, h7) =




a0 a1 a2 a3 a4 a5 a6 a7

b0 b1 b2 b3 b4 b5 b6 b7

c0 c1 c2 c3 c4 c5 c6 c7

d0 d1 d2 d3 d4 d5 d6 d7




From section 3.1, we know there are certain relations between hi and hi+1, so
we assume the given hash value follows the pattern. Now we will try to find C0

which will generate part of the hash value we want.
First, randomly choose B0 and C0 and let C0

3 be h0. Now we can modify
some bytes to make sure C1

3 , C2
3 and the first byte of all Ci

3 be the same as the
hash value. This attack consists of three phases.

5.1 Phase I-C1
3

In phase I, we will modify C1
3 to h1. The Mixcolumn operation of the second

output round is, 


a1

b1

c1

d1


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 ·




S(a0)
S(b)
S(c)
S(d)




where b, c and d are located in C0 as shown in Table 4. We can call them as the
control bytes for C1

3 . Solve the equation group above to get the value of S(b),
S(c), S(d). Since we assumed that the given hash value follows certain pattern,
there will be no contradiction while solving a 3-variable equation group of four
equations. Then use inverted S box to calculate b, c and d. This is an easy phase.

Cryptanalysis of the Hash Function LUX-256 11

5.2 Phase II-C2
3

Phase II is more complicated. The mixcolumn operation for the third output
round is, 



a2

b2

c2

d2


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 ·




S(a1)
S(e)
S(f)
S(g)




where e, f and g is located in C1, which are also shown in appendix table. The
value of e, f and g can also be easily found by solving the equation group, but
we can modify them directly. We must find their control bytes first. Control
bytes for e ,f and g are denoted as ei ,fi and gi. Unfortunately, g3 is located in
C0

3,3 = d0 which can not be modified. But we can used the feedback operation
to modify it.

First, we calculate C1 from C0 without input of message and feedback. Sec-
ond, we calculate the value of e,f and g. Now our goal is to change eold, fold and
gold to e, f and g, which means we need to bring difference (0, 0, f ⊕ fold, 0),
(0, e⊕ eold, 0, 0) and (0, 0, 0, g ⊕ gold) to C1

0 , C1
2 and C1

7 .
We have two equation groups,




0
0

f ⊕ fold

0


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 ·




S(f0)⊕ S(fold
0)

S(f1)⊕ S(fold
1)

S(f2)⊕ S(fold
2)

S(f3)⊕ S(fold
3)







0
e⊕ eold

0
0


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 ·




S(e0)⊕ S(eold
0)

S(e1)⊕ S(eold
1)

S(e2)⊕ S(eold
2)

S(e3)⊕ S(eold
3)




Solve them to get the values for all control bytes ei and fi, then modify them
to get exact value of e and f in C1

2,1 and C1
0,2.

At last, modify B0
14 = B0

14 ⊕ g ⊕ gold to get g in C1
7,3.

5.3 Phase III-the first byte of all remaining Ci
3

Now we have what we want in C0
3 , C1

3 and C2
3 , for the remaining Ci

3, we modify
Bi−1

14 to make one byte Ci
3,0 be the same as the given hash value. From Bi−1

14 ,
we can only modify Ci

7,3. We modify them round by round like this.
For round i + 1, we calculate Ci+1 from Ci without input and feedback to

get an output of hi+1 = (aold
i+1, b

old
i+1, c

old
i+1, d

old
i+1)

T . We need difference 4ai+1 to
be ai+1 ⊕ aold

i+1, and



4ai+1

4bi+1

4ci+1

4di+1


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 ·




0
0
0
4B


 =




4B
4B

03 · 4B
02 · 4B




12 Shuang Wu Dengguo Feng Wenling Wu

So 4B = 4ai+1 = ai+1 ⊕ aold
i+1. We can modify Bi−1

14 = Bi−1
14 ⊕ ai+1 ⊕ aold

i+1 to
make ai+1 be the same as given hash value.

5.4 Complexity of this attack

By modification, we have changed 136 bits to the given value. We use brute
force to match remaining bits. Since the consecutive output words of LUX have
relations between each other, we only need probability of 2−16 for each remaining
step. The complexity of this attack is 216×5 = 280 and requires a fixed size of
memory which is negligible.

If a new shift vector is used to remove relations between the output words, we
can still apply similar attack with a lower probability of 2−24 for each remaining
step. The total complexity turns out to be 2120.

6 Conclusion

In this paper, we have introduced a new kind of distinguishing experiment called
civ-prf (chosen-initial-value pseudo-random function) and modification techniques
for free-start preimage attack. We can say that:

– LUX is not a good PRF nor a good civ-PRF, which can be fixed by changing
a shift vector and adding two more rounds before output.

– LUX has good collision resistance except for reduced blank round colli-
sion and free-start collision attakcs. Since the structure of LUX is based
on stream, these attacks won’t affect the collision resistance of LUX.

– LUX has good preimage resistance except for free-start preimage attack.
Preimage attack might work by improving the modification techniques and
using partial-matching meet-in-the-middle techniques.

Open problems:

– The origin shift vector is not good, we need a new one without zeros. Which
of them is the best?

– We have a lot of unused degrees of freedom in C0 during the modification. Is
there any way to improve the modification techniques to control more bytes?

– The state size is huge, and that’s the main problem for meet-in-the-middle
techniques. Can we apply the partial-matching techniques used in [3] to
LUX?

References

1. Ivica Nikolić, Alex Biryukov, and Dmitry Khovratovich. Hash function family LUX,
2008, submitted to the SHA-3 competition

2. Sean O’Neil, Karsten Nohl, and Luca Henzen. EnRUPT hash function specification,
2008, available at http://enrupt.com/SHA3/

Cryptanalysis of the Hash Function LUX-256 13

3. Dmitry Khovratovich and Ivica Nikolić. Cryptanalysis of EnRUPT, 2008, available
at http://ehash.iaik.tugraz.at/uploads/9/9b/Enrupt.pdf

4. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Radiogatun,
a belt-and-mill hash function, 2006, available at http://radiogatun.noekeon.org/

5. Joan Daemen and Craig S. K. Clapp. Fast hashing and stream encryption with
PANAMA. In FSE’98, volume 1372 of LNCS, pages 60-74. Springer, 1998.

6. Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The Grindahl hash
functions. In FSE2007, volume 4593 of LNCS, pages 39-57. Springer, 2007.

Appendix

Table 4. Control Bytes For Modification Phase

