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Abstract: We propose to revisit Side-channel Cryptanalysis from the point of view, for 
instance, of C. E. Shannon: The calculation of a posteriori probabilities is the generalized 
problem of cryptanalysis. So, our goal will be to provide analytic formulae for the marginal 
posterior probability mass functions for the targets of those attacks. Since we are concerned 
with the probabilities of single and perfectly determined cases, we need above all to place 
ourselves in a probabilistic system enjoying an epistemic “interpretation”. We select 
Probability as Logic, the most suitable system for our purpose. With this powerful and 
flexible system at hand, we first solve two independent problems for known, non-chosen 
messages: the determination of side-channel leakage times (generalized for high-order 
attacks) and the determination of the target, given those leakage times. The first problem 
belongs to Hypotheses Testing Theory and admits a formal solution in terms of Bayes Factors 
in the parametric framework. The calculation of those factors requires marginalizing over all 
possible values of the target, so that this new procedure has no equivalent in frequentist 
Statistics and we indicate how it could be proved to outperform previous procedures more and 
more, as the target space size increases. We present preliminary experimental results and give 
some clues on how to extend this solution to the nonparametric framework. The second 
problem is a classical Parameter Estimation problem with many hyperparameters. It also 
admits a unique maximum a posteriori solution under 0-1 loss function within Decision 
Theory. When it is not possible to solve both problems independently, we must solve them 
simultaneously in order to get general solutions for Side-channel Cryptanalysis on symmetric 
block ciphers, at least. Taking benefit of the duality between Hypotheses Testing and 
Parameter Estimation in our system of inference, we transform the determination of the 
generalized leakage times into a parameter estimation problem, in order to fall back into a 
global parameter estimation problem. Generally speaking, it appears that (marginal) side-
channel parametric leakage models are in fact averages between attack and “non-attack” 
models and, more generally between many conditional models, so that likelihoods can not be 
frequency sampling distributions. Then, we give the marginal posterior probability mass 
function for the targets of the most general known-messages attacks: “correlation” attacks, 
template attacks, high-order attacks, multi-decision functions attacks, multi-attack models 
attacks and multi-“non-attack” models attacks. Essentially, it remains to explain how to 
assign joint prior and discrete direct probability distributions by logical inspection, to extent 
this approach to the nonparametric framework and other cryptographic primitives, to deal 
with analytic, symbolic, numerical and computational implementation issues and especially to 
derive formal adaptive chosen-messages attacks. 
 
Keywords: (Side-channel) Cryptanalysis, Differential Power Analysis (DPA), Template 
Attacks, High-order Attacks, Statistical Inference, Plausible Reasoning, Probability as Logic, 
Principle of Maximum Entropy, Hypotheses Testing, Bayes Factors, Parameter Estimation, 
Maximum a posteriori Estimator, Formal Methods, Security Proofs. 
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Introduction – The Need for Some Probability Theory 
We propose to revisit Side-channel Cryptanalysis, as introduced by Kocher [47], by restarting 
from scratch with a natural, intuitive, appealing and elementary principle or guide: 
 
Principle: In order to perform a (side-channel) attack, it should be necessary and sufficient to 
compute the probability distribution for its target and to take, as our best guess, the value in 
the target space having highest probability. 
 
This Principle seems to be almost as old as the World itself. For instance, it is already stated 
as it is, in a non-cryptographic context, by Mister Aristotle himself [3]: 
 
Find out what you think is a good life and consider the probabilities of your possible actions 
to achieve this. Then follow the course of action which with highest probability results in a 
good life. 
 
We find also much stronger variations on our Principle. According to J. C. Maxwell [54], the 
great master of EMA attacks [67][72][80]: 
 
The actual science of logic is conversant at present only with things either certain, 
impossible, or entirely doubtful, none of which (fortunately) we have to reason on. Therefore, 
the true logic for this world is the calculus of probabilities, which takes account of the 
magnitude of the probability which is, or ought to be, in a reasonable man’s mind. 
 
More recently, it was recalled by C. E. Shannon in the cryptographic context [78]: 
 
The calculation of a posteriori probabilities is the generalized problem of cryptanalysis. 
 
Here we already find something intriguing. Recently, Gierlichs, Batina and Tuyls [30] and 
Aumônier [5] proposed information-theoretic differential side-channel attacks based on 
empirical Shannon Mutual Informations (i.e. Mutual Information Analysis or MIA). This 
approach is interesting as it is nonparametric: it does not require any assumption on the 
underlying side-channel leakage model(s) by contrast, for instance, to more or less implicit 
linearity and Gaussian assumptions for linear correlation coefficients (i.e. CPA [21]). But, 
astonishingly, Shannon does not tell us to compute his empirical mutual informations but a 
posteriori probabilities instead! Clearly, there is something to understand. Later, we will 
provide some clues on how to make the asymptotic link between MIA and the present 
approach explicit. 
 
So, the purpose of this paper is to provide analytic formulae for the marginal posterior 
probability mass function for the targets of standard, generic side-channel attacks, at least on 
symmetric block ciphers. 
 
The problem is that, as soon as we try to follow this Principle, we fall into trouble and draw 
quite deep and disturbing conclusions. Indeed, if we can ever conceive that the targets of 
those side-channel attacks, typically subkeys, can admit probability distributions in some 
system of probability to be determined, then we should certainly acknowledge that this system 
has essentially nothing to do with a very popular and common mathematical abstraction: 
random variables. Indeed, since the subkeys are logical constants that are perfectly 
determined, fixed and stored once and for all in our embedded devices, there is absolutely 
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nothing “random” and nothing “variable” in our story, but the opposite. The problem is that 
the theory of probability that you and me were taught at school deals essentially with random 
variables [48]: just check Chapter 2 of your favourite probabilistic textbook. In the same way, 
this theory is supposed to describe mass random phenomena or events [48][60], while we are 
here dealing with Boolean propositions such as 
 

‘the (sub)key k  stored in this microcontroller has value 0k ’ 

 
that do not really correspond to any (mass) (random) event. 
 
Similarly, we were also taught that probabilities are in fact defined as or from relative 
frequencies “in the long run” [48][60], in an extremely complex way, while there is again no 
frequency at all in our story but just THE key to be determined. 
 
So, there is clearly a deep semantic gap between the theory of “probability” we know well 
and what we need in order to be prepared to follow Shannon way to (Side-channel) 
Cryptanalysis. But does it really mean that we cannot use and “interpret” the abstract, formal, 
mathematical system that we are familiar with in a radically different, completely opposite 
context from the one for which it was originally designed? Do we really need a brand new 
formal, axiomatic system of probability for our purpose? Unfortunately, the answer is: “Yes, 
we absolutely need a new system.”. Even, the confidentiality of such suitable systems is 
probably the main reason why, to the best of our knowledge, nobody has proposed to follow 
the Principle and Shannon way so far, at least in Side-channel Cryptanalysis. 
 
This is not the purpose of the present paper to explain why, but a careful logical inspection 
that we may provide in details in a companion paper shows us that we definitely need a 
system of probability: 
 

• that deals with arbitrary Boolean propositions, not only (mass) (random) events 
[48][60]. 

• that does not apply only to repetitive events but also to single cases [12]. 

• that does not essentially deal with random variables. 

• in which probabilities are not defined as or from relative frequencies [14][48][60]. 

• whose mathematical axioms are not justified empirically [48] or by equally likely 
cases [77]. 

• that is not hypothetico-deductive [40]. 
 
Many such systems or theories of probability exist in the literature. For instance, according to 
another proponent of the Principle, the great cryptanalyst I. J. Good (assistant of Alan Turing 
during WWII) [33], at least 46656 such theories exist and perhaps infinitely many of them! 
 
However we must make a choice. In this paper we will use and apply a theory known as 
Plausibility Theory [4][24][25][26][28][36][38][46][56][70][71][77] or Probability as 
(Extended) Logic [17][18][19][20][40]. It belongs to the family of Objective (rather 
Intersubjective) Bayesian Theories [7][40][43][74]. After all, we can say that Probability as 
Logic is just Classical Probability Theory beyond the Principle of Insufficient Reason. 
 
The reader is urged to check Bretthorst [17][18] first for excellent tutorials and [20] for 
impressive applications in Spectrum Analysis. Jaynes opus magnus [40] is the absolute 
reference in this field. [39] is of historical importance. 
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From the historical point of view, first-class direct or indirect contributors to Probability as 
Logic include, in rough chronological order: Pascal [66], de Fermat, Jakob Bernoulli [8], 
Leibniz [53], de Moivre [61], Bayes, Laplace [51][52], Maxwell [54], Gibbs [29], Bertrand 
[9], Poincaré [68], Keynes [46], Borel [12][13][14], de Finetti [27], Jeffreys [43], Cox 
[24][25], Shannon [78], Pólya [69] and Jaynes [39][40][41][42]. Note that most of those 
eminent scientists were also competent physicists. This is certainly a good point, since we are 
definitely concerned with some physics here. Apart from Shannon and Good, we have been 
able to find one and only one weak connection between modern Cryptology and Probability 
as Logic: [34] by Rivest et al. 
 
Let us briefly summarize the main concepts of Probability as Logic to make this paper fairly 
self-contained without bothering the reader too much with those theoretical preliminaries: 
 

• You start with a new informal concept in Boolean Logic: when you do not have 
enough information to determine or to know if a Boolean proposition A  is true or 
false, you say that it is more or less plausible. This concept of plausibility is clearly 
relative: a Boolean proposition A  is plausible with respect to/given/conditionally 
upon another Boolean proposition I . I  has many names in the literature, for instance 
the corpus/group/system of knowledge according to Keynes and Borel [46][12] or 
simply the background information according to Jaynes [40]. This is the logical 
conjunction of all Boolean statements true or assumed to be true and relevant for 
proposition A . 

 

• You seek for the rules governing those degrees of plausibility (i.e. proto-probabilities), 

in symbols ( )A Iπ , in order to get extensions of Boolean Logic under uncertainty. 

Assuming that they can be represented by real numbers (a natural but strong 
assumption), you can prove, under some common-sense qualitative desiderata and 
some technical conditions, that for the sake of logical consistency those rules are 
necessarily, up to some isomorphism/convention 

 

( ) ( ) ( )

( ) ( )1

A B I A B I B I

A I A I

π π π

π π

 ∧ = ∧


¬ = −

 

 
that are nothing but the Product Rule and the Sum Rule of Probability Theory 
respectively. Those kind of results are known as Cox-style Theorems 
[4][24][25][26][28][36][38][77]. The result is essentially the same as de Finetti Dutch 
Book Theorem/Bets Method [12][27][40] but you do not need to introduce utilities and 
stick to probability. 

 

• Because you try to describe states of knowledge instead of (mass) (random) 
phenomena [40][48][60], the fundamental concept of independence is no longer 
reduced to causal/stochastic independence but is the logical conjunction of causal 
independence and logical independence [40]. Two Boolean propositions are said to be 
logically independent if and only if the knowledge on one of them has no influence on 
the knowledge on the other and conversely, etc. As a consequence, unconditional 
independence, iidness and random variables disappear in Probability as Logic. In this 
way, we get a predictive theory. Unconditional iidness is replaced by conditional 
iidness, which is guaranteed, for instance, for infinitely and finitely discrete 
equivalent/exchangeable propositions by Integral Representation Theorems 
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[7][27][41][45]. See also Porta Mana [56][70][71] for an alternative interpretation of 
Integral Representations. As a result we have only prior, direct (i.e. likelihoods and 
models) and posterior probability distributions, instead of random variables having 
prior and posterior probability distributions. 

 

• The conversion of the background information I  into prior and direct probability 
distributions by logical inspection still needs to be achieved. This is the very goal of 
Probability as Logic. For this purpose, a large toolbox is available. Depending on the 
situation, we can use tools such as: the good old Principle of Insufficient 
Reason/Indifference (Pascal [66], Jakob Bernoulli [8], Leibniz [53], Laplace [51][52], 
Poincaré [68], Keynes [46]) for equally likely cases, the Method of Arbitrary 
Functions (Poincaré [68], Borel [13]), the Principle of Maximum Entropy (Jaynes 
[39][40][42]), logical invariance under group transformation (Borel [13], Lhoste [55], 
Jeffreys [43], Jaynes [40]), Reference Priors (Bernardo [7]), Marginalization Theory 
(Jaynes [40]), Coding Theory (Rissanen [73]), Information Geometry (Rodriguez 
[75]), etc. In this paper we do not deal with the assignment of prior and direct 
probability distributions. Therefore we will keep both background information I  and 
models in our symbolic notations. 

 
It is absolutely essential to keep in mind that Probability as Logic describes only states of 
knowledge and not (mass) (random) events or phenomena themselves. This is the reason why 
we must and will talk about probabilities (i.e. plausibilities) for Boolean propositions and not 
“probabilities” (e.g. “relative frequencies”) of events. The confusion between epistemic and 
ontic theories is called the Mind Projection Fallacy and is known to have drastic quantitative 
consequences in applications [40]. Let us illustrate briefly the gap between both kinds of 
theories on two important examples that are highly relevant for our purpose: 
 

• The Gaussian “assumption”. In ontic theories, it is assumed that some i.i.d. events 
have a Laplace-Gauss frequency sampling distribution. This assumption can be proved 
or rather justified by applying for instance Central Limit-like Theorems or, more 
generally, Errors Theory [68]. Subsequently, we just fall on other assumptions (e.g. 
large number of small symmetric errors, etc.) that we should in any case verify a 
posteriori on our experimental data in order to justify our working hypotheses and to 
apply what we were able to deduce from them (and, in many cases, it is easier to 
verify the Gaussian assumption itself.). However, in Probability as Logic, there is no 
Gaussian assumption or hypothesis. Laplace-Gauss distributions arise just as logical 
consequences of applications of the Principle of Maximum Entropy that tells us that, 
among all probability distributions satisfying some constraints (e.g. first and second 
moments for Laplace-Gauss distributions), we must select the one having maximum 
entropy, because, Shannon (differential) entropy being the unique measure of 
uncertainty in so many regards, it is the most uncertain [39][40][42]. Thus, in 
assigning and introducing epistemic Laplace-Gauss distributions within Probability as 
Logic, we just try to be as honest as possible. And trying to be honest is not an 
assumption: it is a duty. An immediate but naïve objection is the following: “If you are 
concerned only with uncertain, “honest” epistemic probability distributions, then you 
loose all contacts with physical, empirical phenomena. So, how do you explain for 
instance that so many observable phenomena seem to have Laplace-Gauss frequency 
sampling distributions???” And the answer is: “You know, this is precisely because 
we are physicists that we focus on epistemic distributions instead of empirical or 
counterfactual ones. We do observe maximum entropic epistemic probability 
distributions such as Laplace-Gauss in Mother Nature because it appears that they are 
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exponentially more probable than any other.” This is known as the Entropy 
Concentration Phenomenon [40][42]. Then, another remarkable phenomenon appears: 
basically, when using those constrained epistemic maximum entropic distributions, all 
frequency sampling distributions satisfying the same constraints lead to the same 
inferences at the end [19][40]. So, Probability as Logic actually makes frequency 
sampling distributions almost irrelevant, while orthodox Statistics [62][63] are, by 
definition, entirely based on them! For all those reasons, (multivariate) Laplace-Gauss 
distributions would also play a central role in Side-channel Cryptanalysis (as they 
already do… as assumptions) if our poor but expensive digital instruments would not 
provide us only with drastically discretized data (typically 8 bits precision.). 

 

• The conditional independence “assumption”. Depending on our background 
information, we can assign (conditionally) logically independent epistemic probability 
distributions for (the Boolean propositions corresponding to) events whose 
(unconditional) frequency sampling distributions are dependent. Conversely, we can 
assign (conditionally) logically dependent epistemic probability distributions for 
events whose (unconditional) frequency sampling distributions are independent. For 
instance, if we apply the Principle of Maximum Entropy to get the joint (conditional) 
multivariate direct probability distribution for the noise then, as we all know, the 
entropy is maximum for mutually (conditionally) logically independent marginal noise 
distributions [19]. Again, this should not be interpreted as a drastic, arbitrary 
assumption of mutual independence but, on the contrary, as making allowance for 
every possible correlation that could be present. 

 
Now, let’s try to apply Probability as Logic to Side-channel Cryptanalysis. In section I, we 
introduce our notations and terminology. In section II, we solve two generic sub-problems of 
interest and give some examples, some preliminary experimental results and some elements 
of a theoretical analysis of those new procedures. In section III, we merge both sub-problems 
in order to get fairly general and formal solutions to generic Side-channel Cryptanalysis. 
 

I Side-channel Notations and Terminology 
Finding good symbolic notations for Side-channel Cryptanalysis is definitely a very 
significant part of the full job! As we shall see, it is very easy to get lost in all those 
dimensions. 
 

• A  the Attacker (Eve) 
 

• 

AI  the Keynes-Borel corpus/system of knowledge or background information of A  
 

• '.'  or X  Boolean propositions, ∧  the logical conjunction, ¬  the logical negation 

 

• ( )p X I  the epistemic intersubjective plausibility/probability for Boolean proposition 

X  conditional on/given background information I  
 

• *  the convolution product 
 

• 0, 1k K= −  the possible values of the subkey to be determined 
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• 0k  the actual value of the subkey to be determined 

 

• 1,i N=  the encryptions 

 

• t  the time 

 

• , 1,jt j J=  the times in the attack window (not necessarily contiguous) 

 

• 

1
, 1,

l

n
n n
j j

l
t t j J

=
= ∧ =  the generalized times for n -th order attacks (the order matters in 

the n -th order attack models so that we must consider all n -tuples. See below) 
 

• 0, 1m M= −  the possible values of the submessages 

 

• 

im  the submessage for encryption i  (plaintext or ciphertext (not exclusive)) 
 

• 

, 0, 1, 1,i lr R l n= − =  the masks for encryption i  for countermeasures against n -th 

order attacks. We have ,

1
1, , 0

n
i l

l
i N r

=
∀ = ⊗ =  ( 1n −  degrees of freedom). E.g. ⊗ = ⊕  

for Boolean Masking 
 

• , 1,
j

i
tS j J=  the side-channel signal for encryption i at time jt : discrete-time and 

discrete-value scalar or vector field (e.g. EMA attacks) stochastic processes. However, 
following a long tradition, we will nevertheless consider continuous stochastic 
processes (e.g. Gaussian processes) in a first step. But ultimately, we need to deal only 
with discrete direct probability distributions with small compact support 

 

• 

1
, 1,n

jlj

n
i i n

tt l
S S j J

=
= ∧ =  the generalized side-channel signal for encryption i  at 

generalized time n
jt  for n -th order attacks 

 

• n
j

i

t
D  the n -th order attack datum for encryption i  at generalized time n

jt . Examples: 

 

o first-order “DPA-like” attack datum: 
j j

i i i
t tD m S= ∧  

o n -th order “DPA-like” attack datum: n n
j j

i i i

t t
D m S= ∧  

o n -th-order “Template-like” attack datum: 0n n
j j

i i i

t t
D k m S= ∧ ∧  (known fixed 

subkey), 0n n
j j

i i i

t t
D k m S= ∧ ∧  (known/chosen subkeys, fixed submessage. E.g. key-

scheduling attacks) or more generally n n
j j

i i i i

t t
D k m S= ∧ ∧  

 
In this paper, we give examples for n -th order “DPA-like” attacks with datum 

n n
j j

i i i

t t
D m S= ∧ . But it shall be clear that the calculations are essentially the same for 

other kind of attacks. 
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• 

1
n n
j j

N
A i

t ti
D D

=
= ∧  the n -th order attack data at generalized time n

jt  

 

• 

1 1

n

n
j

N J
A i

ti j
D D

= =
= ∧ ∧  the n -th order attack data for attacker A  

 

• ( , ), 1,i i
dF m k d D=  the decision functions (intermediate variables of the cipher 

implementation) on which the attack is mounted. Important special cases are decision 

functions ( , )i
dF m k  for one-shot “DPA-like” attacks and ( )i

dF k  or ( )0,i
dF m k  or 

( ),i i
dF m k  for the profiling phase of some Template Attacks (e.g. ( )i i

dF k k=  for 

some key-scheduling attacks) 
 

• ' ( , ) 'n n n
j j j

iL i i

t t t
S WΜ = = Φ Θ  a n -th order parametric leakage model with 

hyperparameters/nuisance parameters n
j

i

t
Θ , describing the Attacker state of 

knowledge on the causal link between the logical word W  processed by the target 

device at generalized time n
jt  and the generalized side-channel signal n

j

i

t
S . If the 

hyperparameters n
j

i

t
Θ  are the same for all i  (e.g. first-order attacks), we note simply 

' ( , ) 'n n n
j j j

L

t t t
S WΜ = = Φ Θ . Examples: 

 
o First-order scalar Hamming-Laplace-Gauss leakage model with algorithmic 

noise and unknown constant initial state 0W  

 

( )

( ) ( )

( )

1 1 2

0

2 2
1 1 2 2 2

1 1 2 2

0

' '

0, ,  pseudo-binomial distribution

...

.  Hamming weight function

j j j j j j j

j j j j j j

j j j j j j

HL
t t t t t t t

t t t t t t

H
t t t t t t

S h W W B

N N B

W

h

ε µ ξ ξ

ξ σ ξ µ σ

ε µ σ µ σ

Μ = = ⊕ + + + ∗

    
       
Θ = ∧ ∧ ∧ ∧ ∧




∼ ∼

 

 
o n -th order scalar Hamming-Laplace-Gauss leakage model with masking 

 

( ) ( )
1 1 1 1 1

,1 1 2 , 1 2' ' ... ' 'n
j j j j j j n j j jn n n nj

iL i i i i n
t t t t t t t t t tt

S h W r B S h r Bε µ ξ ξ ε µ ξ ξΜ = = ⊗ + + ∗ + ∧ ∧ = + + ∗ +  

 
o First-order bitwise scalar Laplace-Gauss leakage model without algorithmic 

noise for a C -bits logical word 
1

0

2
C

c
c

c

W b
−

=

=∑  
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( )
1

2

1

' '

0,

j j j j j

j j

j j j j

C
L c
t t t c t t

c

t t

C
c

t t t t
c

S b

N

α µ ξ

ξ σ

µ σ α

=

=


Μ = = + +




Θ = ∧ ∧ ∧


∑

∼  

 

• ( )' , , 'n n n
j j j

iA i i i i

t t t
S F m k Μ = = Φ Θ  

 the n -th order attack model for decision function 

( , )i iF m k , attack datum n n
j j

i i i i

t t
D k m S= ∧ ∧  and leakage model 

' ( , ) 'n n n
j j j

iL i i

t t t
S WΜ = = Φ Θ . 

 

• ' ( , ) 'n n n
j j j

i A i i i

t t t
S W¬Μ = = Ψ Ν  a n -th order parametric “non-attack” model describing the 

Attacker state of knowledge on the generalized side-channel signal n
j

i

t
S  at 

generalized time n
jt  if no decision function ( ),i iF m k  of interest is processed. 

Examples: 
 

o Ψ = Φ  (same underlying leakage model), constantW = : constant, noisy 
signal. E.g. Gaussian signal 

 

o Ψ = Φ , i iW m= : message processing. E.g. Gaussian signal conditional 

upon m . 
 

o Ψ = Φ , unknown logical wordiW = : algorithmic noise. E.g.: signal whose 

probability density function is equal to the convolution product of a 
Laplace-Gauss distribution and a pseudo-binomial one (for the Hamming 
weights). 
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II Preparing the General Solution: Solving Two Sub-Problems 
Let us revisit first, from our new point of view, standard, generic known-messages side-
channel attacks on symmetric block ciphers such as DPA [10][32][47][64][72][81], CPA 
[10][21][23][32][67][72][81], MIA [5][30][81], Stochastic Methods [31][76], Template 
Attacks [1][2][22][31][32][80], PCA [2][80], LDA [80], high-order attacks 
[10][32][35][44][57][65], etc. 
 
Clearly, we can identify two ubiquitous, general and generic problems: 
 

• Problem 1: find out the generalized leakage times at which one or several decision 

functions of interest is/are processed 
 

• Problem 2: find out the subkey, given generalized leakage times 
 
For example, Problem 1 corresponds typically to the profiling phase of Template Attacks 
while Problem 2 corresponds to their extraction phase [1][2][31][32][80]. 
 
So, let us first provide formal, general solutions to both problems independently. 
 

1) Problem 1 

First, let us solve this problem for a single decision function ( ),i iF m k . In section III, we will 

generalize this solution to an arbitrary number of decision functions. 
 
Problem 1 is clearly a set of Hypotheses Testing problems indexed by the generalized time. 

At each generalized time n
jt , we want to test the null hypothesis 

 

( )0 :  there exists side-channel leakage on decision function ,n
j

i i

t
H F m k  

 
against the alternative 
 

( )1 0 :  there exists no side-channel leakage on decision function ,n n
j j

i i

t t
H H F m k= ¬  

 
Generally speaking, this kind of problems can be tackled in two main statistical frameworks: 
the parametric and the non-parametric ones [74]. In the parametric framework, we are 
provided with a parametric model under both hypotheses and in the nonparametric one, we 
are not. As we said before, since Probability as Logic describes only states of knowledge, the 
parametric setting does not mean at all that we assume our data to follow those parametric 
models/distributions, but only that the corpus of knowledge/background information 
sufficiently constraints probability distributions to fall into finite-dimensional manifolds. 
 

Parametric Solution 

By contrast to some non-Bayesian, orthodox hypotheses tests (e.g. omnibus tests, Fisher P -

values.) [40][62][63], we must always specify explicitly the alternative hypothesis 1
n
jt

H  within 
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Probability as Logic. Otherwise, by the Theorem of Total Probability, the null hypothesis 0
n
jt

H  

has probability 1 and for sure there is no problem at all. 
 

So, in addition to side-channel attack models for the null hypothesis 0
n
jt

H , we must also 

provide side-channel “non-attack” models for the alternative hypothesis 1
n
jt

H , describing our 

state of knowledge on the side-channel signals if the decision function ( ),i iF m k  of interest is 

not processed. This is a first new point compared to all procedures proposed so far. 
 
We say models and not model because another key point for understanding Side-channel 
Cryptanalysis is to recognize that we have, generally speaking, one model for each particular 

side-channel attack datum n
j

i

t
D  at each generalized time n

jt , not only a single model for the 

whole attack data 
1

n n
j j

N
A i

t ti
D D

=
= ∧  at each generalized time. This is typically the case for n -th 

order attacks [10][32][35][44][57][65]: for each side-channel signal we have 1n −  new 
masks. They are unknown hyperparameters entering in our problem that we must estimate 
together with the subkey and the physical hyperparameters. So, we must plug them in our 
models. As a result, we do have a new model for each n -th order side-channel attack datum 

, 1,n
j

i

t
D i N= . 

 

So, let n
j

iA

t
Μ  and n

j

i A

t

¬Μ be the attack datum model and the “non-attack” datum model 

respectively for attack datum n
j

i

t
D  with hyperparameters n

j

i

t
Θ  and n

j

i

t
Ν . Then, we have the 

attack data model 
1

n n
j j

N
A iA

t ti=
Μ = ∧ Μ  and the “non-attack” data model 

1
n n
j j

N
A i A

t ti

¬ ¬

=
Μ = ∧ Μ  for attack 

data 
1

n n
j j

N
A i

t ti
D D

=
= ∧  with hyperparameters 

1
n n
j j

N
i

t ti=
Θ = ∧ Θ  and 

1
n n
j j

N
i

t ti=
Ν = ∧ Ν  respectively. 

 
Then, Problem 1 admits a formal solution, as a theorem of Probability as Logic. What we 
really want are the posterior probabilities for our hypotheses 
 

( ) ( )0
n n n n
j j j j

A A A i A

t t t t
p H D I p D I∧ = Μ ∧  and ( ) ( ) ( )1 01n n n n n n

j j j j j j

A A A A A A A

t t t t t t
p H D I p D I p H D I¬∧ = Μ ∧ = − ∧  

 
that are given respectively by Bayes Rule/Theorem 
 

( )
( ) ( )

( ) ( ) ( ) ( )
n n n
j j j

n n
j j

n n n n n n
j j j j j j

A A A A A

t t tA A A

t t
A A A A A A A A A A

t t t t t t

p I p D I
p D I

p D I p I p D I p I¬ ¬

Μ Μ ∧
Μ ∧ =

Μ ∧ Μ + Μ ∧ Μ
 

and 
 

( )
( ) ( )

( ) ( ) ( ) ( )
n n n
j j j

n n
j j

n n n n n n
j j j j j j

A A A A A

t t tA A A

t t
A A A A A A A A A A

t t t t t t

p I p D I
p D I

p D I p I p D I p I

¬ ¬

¬

¬ ¬

Μ Μ ∧
Μ ∧ =

Μ ∧ Μ + Μ ∧ Μ
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However, it is common practice to report rather the so-called Bayes Factors or posterior odds 
[7][40][74][83] 

( )
( )

( )
( )

( )
( )

/
n n n n n
j j j j j

n
j

n n n n n
j j j j j

A A A A A A A A

t t t t tA A

t
A A A A A A A A

t t t t t

p D I p D I p I
B

p D I p D I p I

¬

¬ ¬ ¬

Μ ∧ Μ ∧ Μ
= =

Μ ∧ Μ ∧ Μ
 

 

because we do not need to supply the prior probabilities for the models ( )n
j

A A

t
p IΜ  and 

( )n
j

A A

t
p I¬Μ . As a consequence, those Bayes Factors just quantify in what extent the data n

j

A

t
D  

support the null model against the alternative and provide us with a more “objective” 
procedure if there is ever some arbitrariness, some indeterminacy in those prior probabilities. 
 
By the Theorem of Total Probability, we have 
 

( )
( )

( ) ( )

( ) ( )

1

0

n n n n n n
j j j j j j

n n ntj j j

n
j

n n n n n n n n
j j j j j j j j

nt j

K
A A A A A

t t t t t tA A A
k

t tA A

t
A A A A A A A A

t t t t t t t t

p D k I p k I d
p D I

B
p D I p D I p I d

−

= Θ
¬

¬ ¬ ¬

Ν

∧ Θ ∧ Μ ∧ ∧ Θ Μ ∧ Θ
Μ ∧

= =
Μ ∧ Ν ∧ Μ ∧ Ν Μ ∧ Ν

∑ ∫

∫
 

 

An important particular case is when subkey k  is known a priori to be equal to 0k  

( ) ( )0n
j

A A

t
p k I k kδ⇔ Μ ∧ = − , for instance in the profiling phase of some Template Attacks 

 

( )
( )

( ) ( )

( ) ( )

0n n n n n n
j j j j j j

n n ntj j j

n
j

n n n n n n n n
j j j j j j j j

nt j

A A A A A

t t t t t tA A A

t t
A A

t A A A A A A A A

t t t t t t t t

p D k I p I d
p D I

B
p D I p D I p I d

Θ
¬

¬ ¬ ¬

Ν

∧ Θ ∧ Μ ∧ Θ Μ ∧ Θ
Μ ∧

= =
Μ ∧ Ν ∧ Μ ∧ Ν Μ ∧ Ν

∫

∫
 

 
Examples: 
 

• First-order Hamming-Laplace-Gauss “DPA-like” attack with constant, noisy 
Gaussian “non-attack” model. 

 

Consider the basic first-order Hamming-Laplace-Gauss side-channel attack data model 
 

( )' , '
j j j j j

AH i i
t t t t tS h F m kε µ ξ Μ = = + +   

 

with ( )20,
j jt tNξ σ∼ . The hyperparameters are 

 

j j j j

H
t t t tε µ σΘ = ∧ ∧  

 
that are the same for all attack datum. Consider the first-order “DPA-like” attack data 
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1 1j j j

N N
A i i i
t t t

i i
D D m S

= =
= ∧ = ∧ ∧  

 
For known-messages attacks with exchangeable data, the direct probabilities for the attack 
data given the parameters and the model, or likelihood, write as 
 

( )

( )

( ) ( )

1

1

1

j j j j j j

j j j

j j j j j

N
A A A i i A A
t t t t t t

i

N
i i A A

t t t
i

N
i i A A i A A
t t t t t

i

p D k I p m S k I

p m S k I

p S m k I p m k I

=

=

=

 
∧ Θ ∧ Μ ∧ = ∧ ∧ ∧ Θ ∧ Μ ∧ 

 

= ∧ ∧ Θ ∧ Μ ∧

= ∧ ∧ Θ ∧ Μ ∧ ∧ Θ ∧ Μ ∧

∏

∏

 

 

Thus, for model 
j

AH
tΜ  and uniformly distributed known, non-chosen submessages we 

have 
 

( )
( )

( )
( )

2

2

2 2
1

1

2 21
2

1

1
2

2

i i Nt t k tj j j i i
t t k tj j j

t t ij j

j j j

t

S h
S hN N

A H AH A N N
t t t t

i t

p D k M I e M M e

ε µ
ε µ

σ σ
π σ

πσ

=

− −
− − − −

−− − −

=

∑
∧ Θ ∧ ∧ = =∏

 
where 
 

( ),i i
kh h F m k =    

 
Consider also the Gaussian “non-attack” data model for constant but noisy side-channel 
signals 
 

' ' ''
j j j j

AG i
t t t tS µ ξ¬Μ = = +  

 

with ( )2' 0, '
j jt tNξ σ∼ . The hyperparameters are 

 

' 'G
t t tµ σΝ = ∧  

 
The direct probabilities for the side-channel data given the parameters and the “non-
attack” model write as 
 

( ) ( ) ( )
1

j j j j j j j j

N
A AG A i AG A i AG A
t t t t t t t t

i

p D I p S I p m I¬ ¬ ¬

=

Ν ∧ Μ ∧ = Ν ∧ Μ ∧ Ν ∧ Μ ∧∏  

 

For model 
j

AG
t
¬Μ  and uniformly distributed submessages we have 
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( )
( )

( )
( )

2

2

2 2
1

' 1
'

2 ' 21
2

1

1
2 '

2 '

i
Nt tj j i

t tj j
t t ij j

k j j j

j

S
SN N

A G AG A N N
t t t t

i t

p D I e M M e

µ
µ

σ σ
π σ

πσ

=

−
− − −

−¬ − − −

=

∑
Ν ∧ Μ ∧ = =∏  

 
Therefore the Bayes factor writes as 
 

( ) ( )

( ) ( )

( )
( )

2

2
1

' 2

1

0

1
1

2

0

1

2
'

n
j j j j j

nt

j

n
j j j j

nt

N
i i
t t k tj j j

t ij

j j j j j j j j

t t tj j j

t j

j

K
A H AH A H AH A

t t t t t t
k

A A
t

A G AG A G AG A
t t t t t t

S hK
N AH A

t t t t t t t t
k

N
t

p D k I p k I d

B
p D I p I d

e p k I d d d

e

ε µ
σ

σ µ ε

σ

σ ε µ σ ε µ σ

σ

=

−

= Θ¬

¬ ¬

Ν

− − −−
−

=

−
−

∧ Θ ∧ Μ ∧ ∧ Θ Μ ∧ Θ

= =
Ν ∧ Μ ∧ Ν Μ ∧ Ν

∑
∧ ∧ ∧ Μ ∧

∑ ∫

∫

∑ ∫ ∫ ∫

( )
( )

2

1

'

' '

' ' ' '

N
i
t tj j

i

j j j j j

t tj j

S
AG A

t t t t tp I d d
µ

σ µ

µ σ µ σ=

−
¬

∑
∧ Μ ∧∫ ∫

 

 
We do not deal with the assignment of joint prior probability distributions for the 
parameters such as 
 

( )j j j j

AH A
t t t tp k Iε µ σ∧ ∧ ∧ Μ ∧   and  ( )' '

j j j

AG A
t t tp Iµ σ ¬∧ Μ ∧  

 
in this paper. Let us nevertheless finish the calculation only once for simple joint prior 
distributions to see what kind of solutions we can expect at the end in general. 
 
Consider the silly but fairly non-informative Bayes-Laplace-Lhoste-Jeffreys improper 

prior distribution for an ignorant Attacker A  with background information IAI  (e.g. he 
has never heard about ISO 7816, he does not even know that the static power consumption 

jtµ  is positive, etc.) 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
1 1

j j j j j j j j j

j j j j j j j

j j j j j j

j

AH IA AH IA AH IA
t t t t t t t t t

AH IA AH IA AH IA
t t t t t t t

AH IA AH IA AH IA
t t t t t t

t

p k I p I p k I

p I p I p k I

p I p I p k I

K

ε µ σ ε µ σ

µ σ ε ε

µ σ ε

σ− −

∧ ∧ ∧ Μ ∧ = ∧ ∧ Μ ∧ Μ ∧

= ∧ ∧ Μ ∧ Μ ∧ Μ ∧

= ∧ Μ ∧ Μ ∧ Μ ∧

∝

 

 

on { } *0,..., 1K +− × × ×� � � and the translation- and scale-invariant Lhoste-Jeffreys prior 

for the Laplace-Gauss distribution [7][40][43][55][74] 
 

( ) 1' ' '
j j j j

AG IA
t t t tp Iµ σ σ¬ −∧ Μ ∧ ∝  
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on *+×� � . ( ( )j j

AH IA
t tp Iε Μ ∧  should be a Gaussian and not a flat Bayes-Laplace prior 

for a fully invariant prior [58].).  
 
Using the identity  
 

2

2
1 1

42 2

b
a b ae d a eθ θ θ π

+∞
−

− +

−∞

=∫   0a >  

 

for computing both 
jtε  and 

jtµ  Gaussian integrals and the change of variable 

 
1 1

2 2

j j j

k
t t tQ xσ

−

=    2

j j j

k
t t tx Q σ −=       

1 3

2 2
1

2j j j j

k
t t t td Q x dxσ

−

= −    ( )2 2

,
ˆˆ 1

2j t k tj j

k
t S h S

N
Q σ ρ= −  

 

for computing the 
jtσ  Eulerian Γ − integral of the second kind, we find, after some 

algebra, the marginal probability distribution for attack data 
j

A
tD  conditional on the attack 

model 
j

AH
tΜ  

 

( )

( )
( )

( ) ( )

( )

2

2
1

1
1

21 1
2

0 0

2
12

21 2 1 222
,

0

2

22 1 2

,

0

2,

2

1 2
ˆˆ ˆ 1

2 2

ˆˆ ˆ 1

j j

N
i i
t t k tj j j

t ij

j j j j

t k k tj j

t k k tj j

A AH IA
t t

S hKN
N N

t t t t
k

NNN
N N

S h h S
k

N

N
S h h S

k

N p D I

M K e d d d

N
N M K

ε µ
σ

π σ ε µ σ

π σ σ ρ

σ σ ρ

=

− − −+∞ +∞ +∞−
− − − − −

= −∞ −∞

−
Κ −− −

− − − −

=

−Κ−
− −

=

∀ > Μ ∧ =

∑
=

− 
Γ − ∝ 
 

−

∑ ∫ ∫ ∫

∑

1

∑

 

 

where ˆ
t j

Sσ  stands for the empirical/sample standard deviation of the side-channel signals 

at time jt , ˆ
khσ  for the sample standard deviation of the Hamming weights of the decision 

function for subkey k  and 2

,
ˆ

k t j
h Sρ  for K. Pearson sample determination coefficient 

between those Hamming weights and the side-channel signals (the determination 
coefficient is just the square of the correlation coefficient. See below.). 
 
We can recognize a mixture of Student t  distributions over subkeys k  [17]. For 2N ≤ , 
the integrals are divergent: this is how Probability as Logic warns us that we do not have 
enough information to answer the question we asked her [40]. 
 

In the same way, we find the marginal probability distribution for data 
j

A
tD  conditional on 

the “non-attack” model 
j

AG
t
¬Μ  
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( )

( )
( )

2

2
1

1
'

2 '1
2

0

1

2 ' ' '

ˆ

j j

N
i
t tj j

t ij

j j j

t j

A AG IA
t t

SN
N N

t t t

N
S

p D I

M e d d
µ

σ
π σ µ σ

σ

=

¬

− −+∞ +∞
− − − −

−∞

−

Μ ∧ =

∑
∝∫ ∫  

 
Finally, the Bayes Factors for this ignorant Attacker and those Gaussian models writes as 
 

( )
( )

( )
2

1
21 2

,

0

ˆˆ ˆ2, 1
j j

j t k k tj j

j j

A AH IA N
t t

HG
t S h h S

A AG IA
k

t t

p D I
N B

p D I
σ σ ρ

−Κ −
−

¬
=

Μ ∧
∀ > = ∝ −

Μ ∧
∑  

 
Here are some experimental results for an unprotected software DES implementation on 

an old 8 bits microcontroller. The “DPA-like” decision function ( ),iF m k  is the 4 output 

bits of one DES S-box. 
 
With 1000 total power consumption signals, a first-order CPA attack 

[10][21][23][32][67][72][81], based on the determination coefficients for all 62  possible 
values of the subkey, gives 
 

 
 
The attack is clearly successful: we have significant correlation/determination peaks for 

one and only one particular value of the subkey (in yellow), which is the true value 0k  

(blue circles). With the same data, the Bayes Factors procedure gives, in logarithmic scale 
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The Bayes Factors peaks are similar to determination coefficients ones. But at the same 
time, the amplitude of the background correlation noise, when the decision function is not 
processed, is clearly reduced. A possible measure of the discrimination power or 
stringency of those procedures is the Signal-to-Noise-Ratio between the maximum 
amplitude of the “correlation peaks” and the average amplitude of the background 
correlation noise. For CPA, we have roughly 
 

0.11
6.5

0.017
CPASNR = =  

 
and for the Bayes Factors procedure 
 

59 6
13

4
BFSNR

−
= =  

 
The SNR for the Bayes Factors Procedure is just twice the SNR for CPA. 
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With 500 signals, CPA gives 
 

 
and the Bayes Factors procedure gives 
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The implementation is still weakly broken by CPA with only 300 signals 
 

 
 
and the Bayes Factors still show us the most leaking time: 
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With 250 signals, the CPA attack is no more successful 
 

 
 
as well as the Bayes Factors procedure 
 

 
 
Those preliminary results are encouraging and validate, in some extent, our new approach: 
if the “correlation peaks” are asymptotically roughly the same in both procedures, the 
background correlation noise is significantly reduced in the Bayes Factors one. However, 
in the present case, it seems that the Bayes Factors procedure does not allow the attacker 
to reduce significantly the number of signals he needs in order to determine the leakage 
times with significant probabilities. 
 



 21 

From now on the main point is that we have a general and automatic procedure applicable 
to any attack datum and data, any attack model, any “non-attack” model and any joint 
prior probability distributions for the parameters of both models. Clearly, the Gaussian 
“non-attack” model and the joint prior probability distributions for the parameters that we 
used in our experiments are the most non-informative, the least accurate and silliest we 
can imagine. We used them only for analytic convenience. So, it must be clear that those 
preliminary experimental results are in fact the worst ones we can get with this new 
Bayes Factors procedure. And they are already not so bad, at least not worst than CPA for 
the same underlying Hamming-Laplace-Gauss attack model (see below for details). 
 
Even in this simple, poor setting, we would need dedicated numerical algorithms in order 
to compute quickly and accurately the sums of the very high powers in the Bayes Factors. 
Clearly, since side-channel attack data are integer-valued and direct probability 
distributions are discrete in practice, we should try to work as much as possible with 
integer fractions in order to compute those very high powers exactly and to avoid round-
off errors. A full symbolic and numerical theory of Side-channel Cryptanalysis is 
therefore waiting to be developed. Because we do not know how much our naïve Bayes 
Factors calculations suffer from such numerical errors, we unfortunately stop our 
preliminary experimental investigations at this early point. 
 
Yet, let us sketch how we could compare and benchmark the Bayes Factors procedure to 
previous ones, from a theoretical point of view. This is not immediate and we find very 
interesting points on the way. 
 
Under the Hamming-Laplace-Gauss attack model, Pearson linear correlation coefficient 
between the Hamming weights of the decision function and the signals within CPA 
attacks is supposed to be a relevant statistic for inferring both leakage times and the 
subkey. But the link between this particular side-channel attack model and this particular 
statistic is in fact not direct. To make it explicit, let us first derive Fisher Profile Maximum 
Likelihood Estimator (PMLE) [15] for subkey k  that would be the standard non-Bayesian 
parametric statistic if there would be one and only one leakage time. This is the reason 
why time t  is removed below. 

 
As before, the likelihood writes as, now in Fisherian ad hoc non-probabilistic notations 
 

( ) ( )( )
( )

2

2

11
2 22

1

, , , ; , 2
i i

k
N S h

i
M

i

L k m S P m e
ε µ

σε µ σ πσ
− − −−

=

  =  ∏  

 
and the log-likelihood as 
 

( ) ( ) ( ) ( )
1

2
2 2

2
1 1

1
ln , , , ; , ln 2 ln

2

N N
i i i

k k M
i i

l L k m S N S h P mε µ σ πσ ε µ
σ

−

= =

 
 = = − − − +  

 
∑ ∑  

 

Cancelling first kl  partial derivates in ε , µ  and σ , we find classical linear regression 

results 

,

2

ˆ
ˆ

ˆ
k

k

h S
k

h

σ
ε

σ
=   ˆˆk k kS hµ ε= −   and  ( )

1

22

1

1
ˆˆ ˆ

N
i i

k k k k
i

S h
N

σ ε µ
=

 
= − − 
 
∑  
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where S  stands for the sample mean, 2ˆ
khσ  for the sample variance, ,

ˆ
kh Sσ  for the sample 

covariance and kε̂  for the linear regression coefficient. Plugging those estimates back 

into the likelihood, we get the profile likelihoods [15] 
 

( ) ( )
22

1

ˆ ˆˆ ˆ ˆ ˆ, , , ; ,

N
N

N i i
k k k k

i

L k m S S hε µ σ σ ε µ
−

−

=

 
  ∝ ∝ − −  

 
∑  

 
Using the identity for the sum of least squares 
 

( ) ( )
2

2 2

,

1

ˆ ˆˆ ˆ 1
k

N
i i

k k k S h S
i

S hε µ σ ρ
=

− − = −∑  

 

where 1 1

, ,
ˆ ˆ ˆ ˆ

k k kh S h S h Sρ σ σ σ− −=  is K. Pearson Sample Product Moment Linear Correlation 

Coefficient, Fisher Profile Maximum Likelihood Estimator of subkey k  writes as 
 

( )2 2
,

ˆ ˆarg max 1
k

N

h S
k

k ρ
−

= −  

 

For a mono-bit decision function ( ),b F m k=  (i.e. Kocher original differential attacks 

[47] or partition attacks [81]), the determination coefficient 2

,
ˆ

kb Sρ  reduces to the point-

biserial determination coefficient [84] 
 

( )
2

2 2 2 2 2 2 2 2 2

, ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ' 1' ' 0 '

k k k k kb S b S b S k k S b k S bS b S b Kρ σ σ σ σ σ σ σ− − − −= = = − = ≡  

 

where kK  is (almost) the original differential DPA statistic [47] so that the Profile 

Maximum Likelihood Estimator is 
 

( )2 2 2 2ˆ ˆ ˆarg max 1
k

N

k S b
k

k K σ σ
−

−= −
 

 

Those results link Kocher original DPA statistic kK  to Legendre-Gauss Least Squares 

Method, to K. Pearson Product Moment Linear Correlation Coefficient ,
ˆ

kh Sρ  and to 

Fisher Profile Maximum Likelihood Estimator. In particular, they show us that the 
distinction between partition (e.g. DPA) and comparison (e.g. CPA, MIA) distinguishers 
[81] is an illusion. 
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Of course, 
 

2

,
ˆ ˆarg max

kh S
k

k ρ=  

 

holds as well. But computing kK , ,
ˆ

kh Sρ  or 2

,
ˆ

kh Sρ  instead of ( )2 2
,

ˆ1
k

N

h Sρ
−

− , as done within 

DPA and CPA attacks, has a serious drawback: it misleads us to the fallacious Ghost 
Peaks Problem [21] that is easily proved to disappear asymptotically with the PMLE. 

 

So, our point is that, if we want to benchmark our new Bayes Factors procedure for the 

Hamming-Laplace-Gauss attack model (and some “non-attack” model), we should better 

not compare it directly to DPA/CPA but rather to Fisher Profile Maximum Likelihood 

Estimator because K. Pearson correlation and determination coefficients are not directly 

relevant. 

 

Let us stress also that we should in fact even not try to make such comparison: both 

procedures arise from completely different theories and reasoning. The Bayes Factors is a 

post-data procedure, providing a unique solution for each particular data we have, while 

the PMLE and CPA are pre-data procedures, providing ad hoc “solutions” (instead of 

theorems of Probability Theory) on the average for all possible data that we do not have 

[40]. Even if those procedures can be compared analytically, the underlying rationale is 

definitely not the same, rather opposed, and we should clearly not try to compare apples 

and oranges. 

 

Since this is common practice in the literature [74], let us nevertheless show how we 

could use Asymptotic Frequency Sampling Theory and Signal-to-Noise-Ratio (SNR) 

reasoning in order to compare them. 

 

On the one hand, for the PMLE/CPA procedure, the signal is 

 

( ) ( )
0 0

2 22 2
, 0 ,

0, 1

ˆ ˆ1 arg max 1
k k

N N

h S h S
k K

kρ ρ
− −

= −

− = −
 

 
while the background correlation noise at non-leakage times is 
 

( )2 2
,

0, 1
ˆmax 1

k

N

h S
k K

ρ
−

= −
−  

 
because we compute the profile likelihood for each possible value of subkey k . On the 
other hand, for the Bayes Factors procedure, the signal is 
 

( ) ( )
0 0

21
1 2 1 2 22

, ,
0

ˆ ˆˆ ˆ ˆ ˆ1 1
t k k t k kj j

NNK

S h h S S h h S
N

k

σ σ ρ σ σ ρ
−− −

− −

→+∞
=

− −∑ �  
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So, if we consider that the empirical standard deviations ˆ
khσ  are roughly the same for all 

possible values of subkey k  (due, precisely, to the cryptographic properties of the 

decision function) and that the sample standard deviations ˆ
t j

Sσ  are also roughly the same 

over time (i.e. homoscedasticity), then the signals are asymptotically the same in both 
procedures, as we saw in the pictures. But now, the background correlation noise is 
asymptotically 
 

( ) ( )
21 1

2 22 2
, ,

0 0

ˆ ˆ1 1
k k

N NK K

h S h S
N

k k

ρ ρ
−− − −

→+∞
= =

− −∑ ∑�  

 
So, in order to compare the SNR for both procedures, we should basically compare the 
moments of the respective frequency sampling distributions of the background correlation 
noises 
 

( )2 2
,

0, 1
ˆmax 1

k

N

h S
k K

ρ
−

= −
−   and  ( )

1
2 2

,
0

ˆ1
k

NK

h S
k

ρ
− −

=

−∑  

 
This is interesting from a pure mathematical point of view because we have the Additive 
Theory of Random Variables versus Extreme Values Theory. 
 
The asymptotic frequency sampling distribution of the sample correlation coefficients 

,
ˆ

kh Sρ  should be available, for instance in Fisher works. From it, we would get the 

asymptotic distribution of the profile likelihoods ( )2 2
,

ˆ1
k

N

h Sρ
−

−  by a change of variable. If 

we neglect their weak mutual dependency and regard those profile likelihoods as i.i.d. 

random variables over the subkey space, with common p.d.f. ( )f x  and c.d.f. ( )F x , we 

would get on the one hand the p.d.f. of 
 

( )
1

2 2
,

0

ˆ1
k

NK

h S
k

ρ
− −

=

−∑  

 

as the K -th convolution power of ( )f x  and, on the other hand, the c.d.f. of 

 

( )2 2
,

0, 1
ˆmax 1

k

N

h S
k K

ρ
−

= −
−  

 

as the K -th power of ( )F x . Then, we could derive their respective moments. Our 

experiments and toy simulations make us conjecture that we should find something like 
 

( ) ( )
1

2 22 2
, ,

0, 1
0

ˆ ˆ1 max 1
k k

N NK

h S h S
k K

k

E Eρ ρ
− − −

= −
=

   
− −   

   
∑ �  

 
and that this inequality should get stronger and stronger as K  increases. 
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From this point of view, our experimental results on the DES with 62K =  may be again 
the worst results we can get with the Bayes Factor procedure compared to PMLE/CPA. 
For example, we would have, in increasing order of relative power: mono DES S-box 
attacks (6 bits), mono AES S-box attacks (8 bits), double DES S-box attacks (12 bits) and 
double AES S-box attacks (16 bits). 
 
It remains to study also the small sample properties of the Bayes Factors, in particular the 
effect of the strong intrinsic mutual dependence of the decision functions 

( ), , 0, 1F m k k K= −  over the submessages space inducing, by transitivity, a strong 

mutual dependence of the profile likelihoods (i.e. the “Ghost Peaks Problem” for small N  
[21].) at leakage times. At a first glance, the situation could be also favourable to the 
Bayes Factors procedure, because we sum over significant, non-zero determination 
coefficients of the same magnitude at leakage times, while we consider only maxima in 
PMLE/CPA attacks. However, this hypothetical effect has not yet been detected in our 
basic preliminary experiments. 

 

• Second- and high-order Hamming-Laplace-Gauss “DPA-like” attacks with 
constant, noisy Gaussian “non-attack” model. 

 
Consider the second-order “DPA-like” attack datum 
 

1 2 1 2j j j j

i i i i
t t t tD m S S∧ = ∧ ∧  

 
and its second-order “DPA-like” Hamming-Laplace-Gauss attack datum model 
 

( ) ( )
1 2 1 2 1 1 1 1 2 2 2 2

' , ' ' '
j j j j j j j j j j j j

iH iH iH i i i i
t t t t t t t t t t t tS h F m k r S h rε µ ξ ε µ ξ∧

 Μ = Μ ∧ Μ = = ⊗ + + ∧ = + +   

 
with hyperparameters 
 

1 2 1 2j j j j

iH H H i
t t t t r∧Θ = Θ ∧ Θ ∧   

1 1 1 1j j j j

H
t t t tε µ σΘ = ∧ ∧   

2 2 2 2j j j j

H
t t t tε µ σΘ = ∧ ∧  

 
Note that we could add some hyperparameters in order to take a possible mutual 

dependence of 
1j

i
tS  and 

2j

i
tS  conditionally upon 

1 2
j j

iH
t tk ∧∧ Θ  into account (but keep in mind 

what we said about the independence “assumption”). 
 

The second-order attack data at generalized time 
1 2j jt t∧  are 

 

1 2 1 21j j j j

N
A i
t t t t

i
D D∧ ∧

=
= ∧  

 
and their joint second-order Hamming-Laplace-Gauss attack data model is 
 

1 2 1 21j j j j

N
AH iH
t t t t

i
∧ ∧

=
Μ = ∧ Μ  

 

with joint hyperparameters 
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1 2 1 2 1 21 1j j j j j j

N N
H iH H H i
t t t t t t

i i
r∧ ∧

= =
Θ = ∧ Θ = Θ ∧ Θ ∧ ∧  

 
because A A A∧ =  in Boolean Logic. The direct probabilities of exchangeable “DPA-
like” attack data given the parameters and the models write as, if we regard 

1j

i
tS  and 

2j

i
tS  

as independent conditionally upon parameters 
1 2j j

i
t tk ∧∧ Θ  (again, the conditional 

independence “assumption”): 
 

( ) ( ) ( )

( ) ( ) ( )
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For model 
1 2j j

AH
t t∧Μ  and uniformly distributed known, non-chosen submessages, we have: 
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( ) ( )
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where 
 

( ),
,i

i i

k r
h h F m k r = ⊗    and  ( )i

i

r
h h r=  

 
In the same way, for the second-order Gaussian “non-attack” datum and data model 
 

1 2 1 2 1 1 1 2 2 2

' ' '' ' ' ''
j j j j j j j j j j

AG AG AG i i
t t t t t t t t t tS Sµ ξ µ ξ¬ ¬ ¬
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we get the direct probabilities 
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Therefore the Bayes Factors writes as 
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From this we get immediately the Bayes Factors for n -th order attacks based and the same 
Gaussian models. Using operator-like notations such as 
 

, 1,1 1, 1 ,1 , 1

1 1 1 1 1 1

1 1 0 0 0 0 0

... ... ...
i l n N N n

N n R R R R R
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we can write in “compact” form 
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Generally speaking, nested sums such as 
 

1,1 1, 1 ,1 , 1

1 1 1 1

0 0 0 0

... ... ...
n N N n

R R R R

r r r r− −

− − − −

= = = =

∑ ∑ ∑ ∑  

 

have exponential computational complexity in the sample size N  (and also n !). If this were 
true in the present case, this would be a good point for security managers: those attacks would 

be absolutely intractable even for small N . But each mask/hyperparameter ,i l
r  enters only 

into a single side-channel signal and model, not all of them, so that the situation may be quite 
different. We postpone the analysis of those radically new n -th order attacks for future 
works. 
 
We hope that those examples are clear enough to let the reader formally derive the Bayes 

Factors for his own n -th order models, attacks and joint prior probability distributions, in 
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particular for the profiling phase of Template Attacks [1][2][22][31][32][80] with decision 

functions such as ( )iF k  or ( )0,iF m k , etc. 

 

Nonparametric Solution 

In the nonparametric framework, we are no longer provided with side-channel attack and 
“non-attack” (parametric) models. Even if Probability as Logic is fundamentally parametric 
(due, in particular, to Integral Representation Theorems for discrete propositions that ensure 
conditional iidness [27][41][45] and the Principle of Maximum Entropy [39][40][42].), so that 
it is in fact not clear whether we really need to deal with this case or not, let us just point out 
that we can nevertheless derive nonparametric solutions to Problem 1 by following Wolf 
works [85]. Basically, we would just compute other Bayes Factors. 
 
This would enable us to explicit the asymptotic link between the MIA approach [5][30][81], 
and the present one, which we mentioned in the introduction. But, by definition, we would 

still need to marginalize the subkey (when 0k  is not known) and to deal with the “non-attack” 

logically necessary alternative hypothesis. 
 

2) Problem 2 

Problem 2 also admits a formal general solution within Probability as Logic. 
 

So, assume that L  generalized leakage times , 1,n
lt l L=  are known or given a priori. Then we 

have, for instance for “DPA-like” attacks, the n -th order joint attack datum 
 

1
n
l

L
i i i
J tl

D m S
=

= ∧ ∧  

 
“Non-attack” models disappear here and we have only a n -th order attack datum model for 

each datum i
JD  

1
n
l

L
i iA
J tl=

Μ = ∧ Μ  

with joint hyperparameters i
JΘ  

1
...n

l

L
i i
J tl=

Θ = ∧ Θ ∧  

 

Again, we could add some hyperparameters, for instance a covariance matrix Σ  in order to 

take the mutual dependence of the signals n
l

i

t
S  conditionally upon i

Jk ∧ Θ  into account (still 

the conditional independence “assumption”). 

Then, we have the n -th order joint attack data 

 

1

N
A i
J J

i
D D

=
= ∧  
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and the joint attack model 

 

1

N
A i
J J

i=
Μ = ∧ Μ  

 

with joint hyperparameters A
JΘ  

1

N
A i
J J

i=
Θ = ∧ Θ  

 

The marginal posterior probability mass function for subkey k  writes as 
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( ) ( )
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or simply 

 

( ) ( ) ( )
A
J

A A A A A A A A A A A
J J J J J J J Jp k D I p D k I p k I d
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Choosing as our best candidate 

 

( )ˆ arg max A A A
J J

k

k p k D I= ∧ Μ ∧  

 

we get Aristotle Maximum a Posteriori Estimator (MAP) for subkey 0k . This is the unique 

solution under 0-1 loss function ( )0k̂ kδ −  within Decision Theory [40][74] (but k  being a 

discrete parameter, this loss function is unique so that we do not really need Decision 
Theory). 

 

A very interesting special case is the following. We could know a priori or we could assume 

that the physical hyperparameters at each generalized leakage time , 1,n
lt l L=  are all identical 

and equal to 0Θ . For n -th order attacks 

 

1
,

0
1 1 1 1

n
l

N L N n
A i i l
J ti l i l

r
−

= = = =
Θ = ∧ ∧ Θ = Θ ∧ ∧ ∧  
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with, for instance, 

0 0 0 0ε µ σΘ = ∧ ∧  

 

for the Hamming-Laplace-Gauss leakage model. This could happen if the same electronics, 
the same hardware logic, is involved each time the decision function(s) under attack is/are 
processed by the device. In this case, the problem dimension and the computational burden 
would be drastically reduced and we would be certainly provided with pretty powerful 
attacks, if this hypothesis is confirmed a posteriori: they would be equivalent to attacks with 

only one generalized leakage time and LN  side-channel signals. More generally, in assigning 
joint prior probability distributions for the physical hyperparameters, we could try to take 
their intra-model and inter-time mutual logical dependences into account. 

 

Minka [58][59] is an excellent starting point for calculations with multivariate Gaussian direct 
distributions. See also [11]. 
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III General Solution: Merging Both Sub-Problems 
When it is not possible (e.g. sequential attacks with upper bounded sample size N ) or when 
we do not want to solve both sub-problems independently, we must solve them 
simultaneously, in one shot. After all, this is nothing but the original, genuine 
DPA/CPA/MIA-like attacks by contrast to Template Attacks or stochastic methods. 
 
But we saw that Problem 1 belongs to Hypotheses Testing Theory while Problem 2 belongs 
to Parameter Estimation Theory. So, how to solve both of them at the same time, within a 
single theory? 
 
Fortunately, there is in fact a trivial and perfect duality between Hypotheses Testing and 
Parameter Estimation in our system of inference, Probability as Logic,… and only in our 
system of inference [40]: 
 

Estimating a discrete (resp. a continuous) parameter is nothing but testing a 

finite (resp. an uncountable infinite) number of hypotheses. 

 

In fact, testing the hypotheses { },qH q ∈ Ω  is nothing but estimating the parameter/index q  

itself. 
 
While this is really trivial in our system, we would like to take the time to show that it is not 
at all in non-Bayesian, orthodox Statistics [62][63], because it is important to appreciate the 
simple general solution to come in full extent. 
 
To make it simple, consider the most basic statistical binary hypotheses test that we can find 
in the security field: the so-called Monobit Test for random bits generators [64]. We want to 

test that the RBG is balanced, i.e. that its binomial proportion ( )Pr 1bitθ =�  [49] is equal to 

1

2
: 

0

1
:

2
H θ =  

 
against the omnibus, unspecified alternative 
 

1 0

1
:

2
H H θ= ¬ ≠  

 

Under the null hypothesis and the iidness of the RBG output bits, the Hamming weight of N  

such bits follows a binomial 
1

,
2

B N
 
 
 

 distribution. From this we can get easily a confidence 

interval for a given significance level α  and sample size N . At a first glance, this procedure 

is very simple and straightforward. 
 
But now, please remember that this kind of tests was introduced by people like K. Pearson, J. 
Neyman and E. S. Pearson (Karl son) in order to overcome the alleged arbitrariness in the 
prior probabilities of the hypotheses. According to Neyman [63] (author translation): 
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We know that the problems of verifying hypotheses were treated by Thomas Bayes. The 
solutions depended on prior probabilities. Those ones being unknown in general, we were 
forced to make arbitrary hypotheses about them that rendered the results inapplicable to 
practical problems. 
 
35 years ago, Karl Pearson published a method for verifying a particular statistical 
hypothesis, a method known as the 2χ . There was nothing about a priori probabilities in this 
Memoir that played a remarkable role… 
 
So, basically those tests are supposed to allow us not to use (Bayesian) Probability Theory 
just because it was, at least more than 70 years ago, incomplete and/or perhaps corrupted by 
subjectivity. Let us nevertheless examine the Monobit problem from the point of view of 

Probability as Logic. As usual, we would like to compute to posterior probability for 0H  

given RBG output data D . By Bayes Rule 
 

( ) ( )
( )

( )0 0

p D H I
p H D I p H I

p D I

∧
∧ =  

 
According to Neyman, the potential trouble would lie in the arbitrariness of the prior 

probability ( )0p H I . But elementary Measure Theory tells us (at least the author) that this 

probability is not arbitrary but in fact exactly equal to 0  (the set 
1

2

 
 
 

 having Lebesgue 

Measure zero). As a consequence, whatever the data D  we may get, 
 

( ) ( )0 0 0p H D I p H I∧ = =  

 
Now, the elementary Monobit problem itself appears to be at best trivial… unless we are 
ready to assign non-zero probabilities to negligible sets. So, it is not easy to understand how 
those who were precisely educated in Measure-theoretic “probability” (i.e. “relative 
frequency”) [48][60] are nevertheless not reluctant to apply Neyman-Pearson point-null 
hypotheses testing on continuous parameters instead of relying on (Bayesian) Probability 
Theory. See [6] for recent and more sophisticated examples in Linear Cryptanalysis (the 
question is: why don’t the authors even try to follow Shannon, a reasonable man according to 

Maxwell?). Moreover, why should we partition the natural parameter/hypotheses space [ ]0,1  

into [ ]
1 1

, 0,1 \
2 2

    
   
    

 and damage it? 

 
But what would be a more meaningful problem, according to Probability as Logic? As usual, 

we would simply estimate parameter θ  by computing “its” (marginal) posterior probability 
distribution 
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whose existence is proved for infinitely and finitely exchangeable bits sequences 
[27][40][41][45], which is precisely a much weaker and much more applicable “assumption” 
than iidness in the Monobit Test. Then we would take, for instance, the first moment of this 
distribution (i.e. Laplace Rule of Succession) for point estimation under quadratic loss 
function or derive Highest Posterior Density Regions (HPDR) for interval estimation 
[40][74]. This is a Parameter Estimation problem that we could also interpret, on request even 
if it is less natural, as testing a continuum of hypotheses 
 

[ ]: 0,1Hλ θ λ λ= ∈  

 
Of course, we could also estimate parameter θ  without using Probability as Logic, for 
instance as the empirical relative frequency of 1’s if we select Fisher popular and standard 
Maximum Likelihood point Estimator (but see [50] for a very disturbing consequence of this), 
or we could derive confidence intervals, etc. 
 
Let’s summarize the situation: non-probabilistic methods were introduced in order to 
overcome some alleged defects of (Bayesian) Probability Theory. As a result, we get two 
completely different theories: Hypotheses Testing Theory and Estimation Theory. Those 
theories are so different that we can find elementary problems that are tackled by one theory 
while they should better be by the other. 
 
In our case, we definitely need to deal with one (many) hypotheses testing problem (Problem 

1), and one parameter estimation problem (Problem 2) simultaneously. Due to the drastic 
lack of (mutual) logical consistency between orthodox Hypotheses Testing and Parameter 
Estimation (e.g. Fisher Estimation-theoretic Maximum Likelihood Estimator is mixed up with 
Neyman-Pearson Hypotheses Testing-theoretic Lemma in [6]. But Neyman and Fisher could 
not agree on Testing (NP-Lemma versus P -values) as well as on Estimation (frequentist 
versus fiducial inferences)), we are absolutely unable to see how we could achieve our 
objective in those frameworks. 
 
Fortunately, we have a single theory for both kinds of problems within Probability as Logic. 
In fact, there is even no need for any special ad hoc theory for those problems: we just need to 
compute probabilities and nothing else, as stated by Shannon. 
 
Anyway, in order to solve Problem 1 and Problem 2 in one shot, we just have to transform 
Problem 1 into a parameter estimation problem. In this way, we will fall into a global, even 
bigger parameter estimation problem to be solved just as we formally solved Problem 2 by 
marginalizing all hyperparameters. 
 

So, let us introduce first new auxiliary hyperparameters { }0,1n
jt

q ∈ , with 1n
jt

q =  if 0
n
jt

H  is true 

and 0n
jt

q =  if 1
n
jt

H  is true in Problem 1. By definition, we have 
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or simply 
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if we allow ourselves to identify models and direct probability distributions. 

 
For instance, for first-order “DPA-like” attacks with Hamming-Laplace-Gauss attack datum 
model 

j

AH
tΜ , Gaussian “non-attack” datum model 

j
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t
¬Μ  and uniformly distributed 

submessages, we have 
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Then, by the Theorem of Total Probability, it follows that 
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Thus it appears that, unless generalized leakage times are known or given a priori (i.e. 
Problem 2. E.g. extraction phase of Template Attacks.), original, genuine, elementary 
(marginal) side-channel datum and data models must be averages between attack and “non-
attack” models. This is known as Bayesian Model Averaging [37][74][83]. Since we do not 
known them a priori (e.g. by collusion) most of the time, as in Kocher original DPA [47] and 
one-shot attacks, we regard this fact, this logical necessity as the very essence of Side-channel 
Cryptanalysis. 
 
In other words, side-channel direct probability distributions/likelihoods cannot be frequency 
sampling distributions. As a consequence it appears that basic, original side-channel problems 
cannot be tackled at all in frequentist, orthodox Statistics [62][63] because, by definition, they 
conceive only frequency sampling distributions, but only, a posteriori, by (Bayesian) 
Probability Theory and Probability as Logic. As far as we know, this is the first concrete, 
real-world example of this kind of problems in Cryptanalysis. The problem is that all 
statistical procedures proposed so far were picked up from non-Bayesian Statistics and signal 
processing techniques. As a consequence, we know from now on that they miss the very 
point, which is the logical conjunction of Problem 1 and Problem 2, and that the general 
solution and attack to come is fundamentally, logically and practically different from any of 
them. 
 
So, if the present approach is proved to be successful by real-world experiments and more 
powerful attacks, as we can expect since it is a theorem of Probability Theory, it could have 
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some impact on other areas of Cryptography and Cryptanalysis as we would know that we 
should better not interpret and regard probability distributions as frequency sampling 
distributions. This would be no more a matter of obscure “philosophy” but of concrete results 
in practical attacks and security. As a consequence, for the sake of logical consistency, we 
may like not to rely on the Monobit Test anymore but rather to estimate the RBG binomial 

proportion or we may like to replace, in 2χ  Cryptanalysis [82], K. Pearson 2χ  test by Jaynes 

ψ  test [40], which is, on the contrary, a theorem of Probability Theory, if we ever need to 

perform hypotheses tests. And so on and so forth. After all, Side-channel Cryptanalysis may 
be much more important and fundamental from a conceptual and theoretical point of view 
than expected. 
 

Equivalently but more generally, we can simply index n
jt

Q  mutually exclusive and exhaustive 

datum models and their hyperparameters themselves by n
jt

q  
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For instance, for one attack datum model and one “non-attack” datum model, we write 
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Now, as before, we have the n -th order attack data 
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and the n -th order side-channel attack and “non-attack” model 
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with hyperparameters 
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As an example, the joint direct probability distribution for n -th order exchangeable “DPA-
like” attack data  
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with uniformly distributed known, non-chosen submessages writes as, if we regard the side-
channel signals over generalized time as mutually logically independent conditionally upon 
all parameters (again, remember the conditional independence “assumption”) 



 36 

( )
1

1 1 1 1 0 1

1

1 1 0 1
1

1 1

nn n nt j

n n
nj jtn jt j

nn n nt j

n n
nj jtn jt j

n n

n
j

t j

A A A A A A

Q
N J N J J

i i i A A A
qt ti j i j q j

Q
N J J J

i i i A A A
qt tj j q j

i

J J
i i

tj j q

p D k I

p m S k q I

p m S k q I

p S m k

¬ ¬

−

¬

= = = = = =

−

¬

= = = =
=

= =

∧ Θ ∧ Μ ∧ =

 
 ∧ ∧ ∧ ∧ ∧ ∧ ∧ Θ ∧ ∧ ∧ Μ ∧ =
 
 

 
 ∧ ∧ ∧ ∧ ∧ Θ ∧ ∧ ∧ Μ ∧ =
 
 

∧ ∧ ∧ ∧ ∧

∏

1 1

0 1 1 0 1
1

1 1

0 0
1 1

n nn n nt tj j

n n
n nj jt tn nj jt j

n n nt tj j

n n
n nj jt tn nj jt tj j

Q Q
N J J J

i A A A i i A A A
q qt tj j q j

i

Q Q
N J

N i i i i A
q qt tq q

i j

q I p m k q I

M p S m k q I

− −

¬ ¬

= = = = =
=

− −

−

= =
= =

   
   Θ ∧ ∧ ∧ Μ ∧ ∧ ∧ ∧ Θ ∧ ∧ ∧ Μ ∧ =
   
   

 
 ∧ ∧ ∧ Θ ∧ ∧ ∧ Μ ∧
 
 

∏

∏∏

 
 

Then, the marginal posterior probability mass function for subkey k  writes as, as usual 
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Finally, we are provided with fairly general attacks! 
 
An important special case is the following. We may like to use all decision functions 

( ), , 1,i
dF m k d D=  available at the same time, instead of a single one (as we did in Problem 

1): multi-decision functions attacks. How does it work? Those decision functions induce the 

side-channel attack datum models , 1,d
n
j

iA

t
d DΜ =  respectively, with common underlying side-

channel leakage model n
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iL

t
Μ  and hyperparameters n

j

i

t
Θ . If at most one decision function is 
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processed at each generalized time n
jt , then we have mutually exclusive and exhaustive 

hypotheses and the side-channel models conditional on index n
jt

q  write as 
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Then, the marginal posterior probability mass function for subkey k  reduces to 
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Of course, we could also introduce one leakage model for each decision function and/or 
several “non-attack” models, and/or we could use additive total power consumption attack 
models if several decision functions can be processed in parallel: all that is already included in 
our general analytic formula for the posterior probability mass function for subkey k . 
 
But because we are precisely able from now on to solve Problem 1 and Problem 2 
simultaneously in a unified logical framework, let us show that this formula is in fact even 
more general than what we can expect at a first glance. 
 
As an example, consider a basic desynchronisation issue: each side-channel signal 
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i
tS i N=  is translated by an unknown discrete lag iτ  with respect to the reference signal 
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jtS  (this is always more or less the case in practice). The standard way would be to find those 

lags (using well-known signal processing techniques such as intercorrelation functions 

( )xyR τ ) and to resynchronize those signals before performing the attack itself. But in our 

approach, we do not need to perform any signal processing by itself: we just have new 

hyperparameters , 2,i i Nτ =  entering into our global problem and we can just write down 
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and perform the calculation with more complex, desynchronized, contaminated models. But if 
we write  
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we see that our general formula still holds as it is. 
 
We see no reasons why it would not be the same story with more complex pre-signal 
processing issues. On the contrary, it would be extremely interesting if we could ever find 
exceptions to this. In any case, we should be able to do the full job in one shot just by 
plugging our ignorance and knowledge into the equations. So our formula should encapsulate 
pre-signal processing issues as well. However, for computational complexity concerns, we 
acknowledge that we may like to pre-process the signals once and for all! But, for this 
purpose, it would be nice to use Probability as Logic instead of ad hoc signal processing 
methods that may destroy a significant amount of useful information in an uncontrolled way 
[40]. 
 
Anyway, what we have here is something like the hardcore logical structure of generic Side-
channel Cryptanalysis, at least on symmetric block ciphers, and we regard 
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as its Fundamental Equation because it encapsulates (and corrects) all generic parametric 
attacks known so far, including “correlation attacks”, template Attacks, high-order attacks, 
stochastic methods, multi-decision functions attacks, multi-models attacks, signal processing 
issues, etc., for arbitrary attack and “non-attack” models, joint prior probability distributions 
and order. In particular, it should allow us to answer the question raised at the beginning of 
[79]. The trick was just to solve Problem 1 and Problem 2 simultaneously by introducing 

auxiliary hyperparameters n
jt

q . 

 
So, Probability as Logic has enabled us to translate many conceptual issues (e.g. designing 
one more ad hoc attack or distinguisher for a new attack scenario) into analytic, symbolic, 
numerical and computational ones. In engineering words, we can say that we have something 
like the High Level Design of a nice “SCA (parametric) Machine”. For sure there is a long but 
exciting way before converting this HLD into practical implementations in order to fulfil 
completely Shannon programme. 
 
Problem 1, Problem 2 and their logical conjunction being of general interest, we hope that it 
should be quite straightforward to extend this formal approach, if needed, to other targets, 
such as stream or asymmetric ciphers and special attacks. 
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Conclusions 
We have undertaken to follow Shannon way to (Side-channel) Cryptanalysis, restarting with 
known, non-chosen messages attacks on symmetric block ciphers. Since we must deal with 
probabilities of single and determined cases, first of all we had to place ourselves in a suitable 
Bayesian system of epistemic probability, logically independent of (mass) (random) events, 
random variables or relative frequencies. Our favourite one is known as Probability as Logic. 
 
This powerful and flexible system has allowed us, in a first step, to get general solutions to 
two independent generic problems in the parametric framework: the determination of 
generalized leakage times and the determination of the target, given such generalized leakage 
times. The recipe is always the same: write down the joint direct probability distribution 
conditional on the parameters and the models, assign the joint prior probability distribution 
for those parameters, apply Bayes Rule to get the joint posterior distribution and marginalize, 
(dis)integrate out all hyperparameters to get the marginal posterior probability distribution for 
the attack data or the target. 
 
The solution to the first problem was found to be fundamentally different from all approaches 
proposed so far as we must introduce “non-attack” models and as we must marginalize the 
targets of those attacks. Preliminary experimental results and theoretical analysis indicate that 
we can expect this new exact procedure to perform well compared to the State-of–the-Art 
especially for large target spaces, but more works are required in order to quantify this 
improvement accurately. In addition, we were able to get formal solutions for high-order 
attacks in a straightforward way, as theorems of Probability as Logic, for arbitrary side-
channel models. 
 
But the essence of Side-channel Cryptanalysis is precisely to be able to solve both problems 
simultaneously. This was also easy to achieve in our system of inference and only in our 
system of inference since we have a single logically consistent theory for both Hypotheses 
Testing and Parameter Estimation problems. 
 
At this point, it appeared that (marginal) side-channel models are, generally speaking, 
averages between attack and “non-attack” models and, more generally, between several 
conditional models, so that direct distributions/likelihoods cannot be frequency sampling 
distributions. As a consequence, we do not see, a priori and also a posteriori, how generic 
side-channel problems could even be attacked properly in non-Bayesian Hypotheses Testing 
and Estimation theories because, by definition, they recognize only frequency sampling 
distributions. As far as we know, this is the first (counter)example of such problems in 
Cryptanalysis. 
 
If analytic, symbolic, numerical and computational implementation issues can be well 
managed, we can expect very interesting results and phenomena with this new approach. For 
instance, it should be possible to predict a target with high probability without knowing the 
generalized leakage times themselves with significant probabilities. But clearly, there is a 
long but exciting way before going from the HLD to practical implementations of such “SCA 
Machine” and finally fulfilling Shannon programme. 
 
Essentially, it remains to explain how to get honest discrete side-channel models by logical 
inspection and how to assign joint prior probability distributions for their parameters, to 
extend this approach to the nonparametric framework, to apply it to other cryptographic 
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primitives such as stream or asymmetric ciphers and especially to derive formal adaptive 
chosen-messages attacks. Again, we believe this can be achieved only within this framework. 
 
Ultimately, if this new approach to Side-channel Cryptanalysis is found to be successful, as it 
should be, it could have some impact on completely different areas of Cryptography and 
Cryptanalysis because we would finally acknowledge that probability distributions should 
better not be regarded mainly as frequency sampling distributions. This would be no longer a 
matter of obscure “philosophy” but a matter of practical results in real-world attacks and 
security. As a consequence, for the sake of logical consistency, we may like to reinterpret 
and/or to reformulate a couple of concepts accordingly and to replace some statistical 
procedures by their Bayesian, probabilistic counterparts. 
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