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Abstract. When performing a Tate pairing (or a derivative thereof)
on an ordinary pairing-friendly elliptic curve, the computation can be
looked at as having two stages, the Miller loop and the so-called final
exponentiation. As a result of good progress being made to reduce the
Miller loop component of the algorithm (particularly with the discov-
ery of “truncated loop” pairings like the R-ate pairing [18]), the final
exponentiation has become a more significant component of the over-
all calculation. Here we exploit the structure of pairing-friendly elliptic
curves to reduce to a minimum the computation required for the final
exponentiation.
Keywords: Tate pairing, addition sequences, addition chains.

1 Introduction

The most significant parameter of a pairing-friendly elliptic curve is its embed-
ding degree. For an elliptic curve over a field Fq, q = pm, p prime, there must
exist a large subgroup of points on the curve of prime order r, such that k is the
smallest integer for which r | qk−1. This integer k is then the embedding degree
with respect to r, and to be considered useful it should be in the range 2-50
[13]. In fact, this condition can be simplified to k being the smallest integer such
that r | Φk(q) [2], where Φk(.) is the kth cyclotomic polynomial. We will restrict
our attention to the case of even embedding degrees, which are more useful and
practical, as they support the important denominator elimination optimization
[2].

The Tate pairing e(P,Q) (and its variants) takes as parameters two linearly
independent points P and Q, at least one of which must be of order r, on E(Fqk),
and the pairing e(P, Q) evaluates as an element of order r in the multiplicative
group of the extension field Fqk . In many cases the points P and Q can be over
smaller extension fields, and at least one of them can be defined over Fq [4], [5].
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Pairing based cryptography on elliptic curves depends on the existence of
pairing-friendly curves. Two basic choices are available, the supersingular curves
over any finite field, and ordinary pairing-friendly elliptic curves over Fp. In the
former case we are strictly limited in terms of the available embedding degree; a
maximum of k = 6 is possible, but only on curves over fields of characteristic 3.

Note that the embedding degree relates the two types of “hard problem”
which support the security of pairing based cryptography. We need both the
elliptic curve discrete logarithm problem (ECDLP) in the subgroup of size r and
the finite field discrete logarithm problem (DLP) in the multiplicative group of
the extension field Fqk to be equivalently hard. There exist subexponential algo-
rithms to solve the DLP, but only square root algorithms to solve the ECDLP,
so to achieve 80-bit level of security (defined as requiring an attacker to perform
at least 280 operations to break), we need r ≈ 160 bits and qk ≈ 1024 bits.
For an efficient implementation we would like k = 6 ≈ 1024/160, the maximum
possible for supersingular elliptic curves; but this level of security is already
being questioned. At higher levels of security, a larger value of k would be de-
sirable. Indeed, at the standard 128-bit level of security, it has been suggested
that pairing-friendly curves with an embedding degree of k = 12 would be ideal
[9], [15].

Fortunately, ordinary pairing-friendly elliptic curves also exist, for which
(contrary to the supersingular curves) we have an unlimited choice of k. Given
that we can construct pairing-friendly elliptic curves with any embedding degree,
it seems that the long term viability of pairing-based cryptosystems is largely
dependent on the efficient use of these curves.

2 Ordinary pairing-friendly elliptic curves

One of the first suggested methods for the construction of non-supersingular
pairing-friendly elliptic curves E(Fp) was by Cocks and Pinch [6]. Their method
easily generates curves of any embedding degree k, but with one major disad-
vantage – the ratio ρ = lg(p)/ lg(r) is approximately 2. This ρ-value is a useful
yardstick for pairing-friendly curves, and we would prefer it to be closer to 1, as
this results in faster implementations. It is normal to choose one of the parame-
ters of the pairing to be a point on the base field E(Fp), and we would therefore
like p to be as small as possible in relation to r. With a Cocks-Pinch curve, how-
ever, p will have twice as many bits as necessary to support a pairing-friendly
group of order r.

If we exclude the Cocks-Pinch curves, we are left with numerous “families” of
pairing-friendly curves which have been discovered, each of which has a ρ-value
usually much closer to 1 than to 2. Many such families of ordinary pairing-
friendly elliptic curves have been suggested – see the Freeman, Scott and Teske
taxonomy for details [13]. These families have one striking feature in common
– the prime characteristic p and the group r are described as rather simple
polynomials with relatively small integer coefficients. It is our aim to exploit
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this simple form in a systematic way to speed up the final exponentiation for all
families of non-supersingular pairing-friendly elliptic curves.

3 The final exponentiation

After the main Miller loop – with which we are not concerned here, see [10] for
details – the Tate pairing (and its variants) must all carry out an extra step to
ensure a unique result of the pairing. To this end the output of the Miller loop m
must be raised to be power of (pk − 1)/r to obtain a result of order r. Note that
this exponent is determined by fixed system parameters, and therefore methods
of exponentiation optimised for fixed exponents are applicable here.

This final exponent can be broken down into three components. Let d = k/2.
Then

(pk − 1)/r = (pd − 1) · [(pd + 1)/Φk(p)] · [Φk(p)/r].

For example if k = 12 the final exponent becomes

(p12 − 1)/r = (p6 − 1) · (p2 + 1) · [(p4 − p2 + 1)/r].

The first two parts of the exponentiation are “easy” as raising to the power
of p is an almost free application of the Frobenius operator, as p is the field
characteristic. The first part of the exponentiation is not only cheap (although
it does require an extension field division), it also simplifies the rest of the final
exponentiation. After raising to the power of (pd − 1) the field element becomes
“unitary” [24], that is, an element α with norm NF

pk /F
pd

(α) = 1. This has impor-
tant implications, as squaring of unitary elements is significantly cheaper than
squaring of non-unitary elements, and any future inversions can be implemented
by simple conjugation [25], [24], [15], [21].

This brings us to the “hard part” of the final exponentiation, raising to the
power of Φk(p)/r. The usual continuation is to express this exponent to the base
p as λn−1 · pn−1 + ... + λ1 · p + λ0, where n = φ(k), and φ(.) is the Euler Totient
function. If the value to be exponentiated is m, then we need to calculate

mλn−1·pn−1
....mλ1·p ·mλ0 ,

which is the same as

(mpn−1
)λn−1.....(mp)λ1 ·mλ0 .

The mpi

can be calculated using the Frobenius, and the hard part of the final
exponentiation can be calculated using a fast multi-exponentiation algorithm
[16], [14], [19].

These methods, however, do not exploit the polynomial description of p and
r. It is our intention to do so, and hence obtain a faster hard-part of the final
exponentiation. Each family is different in detail, so we will proceed on a case-
by-case basis.
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4 The MNT curves

The MNT pairing-friendly elliptic curves were reported by Miyaji et al. [20]. For
the k = 6 case the prime p and the group order r parameters are expressed as:

p(x) = x2 + 1;
r(x) = x2 − x + 1;
t(x) = x + 1.

In this case the hard part of the final exponentiation is to the power of (p2−
p + 1)/r. Substituting from the above one might anticipate an exponentiation
to the power of (x4 + x2 + 1)/(x2 − x + 1) = x2 + x + 1. Expressing this to the
base p, it becomes simply (p + x). So the hard part of the final exponentiation
is mp.mx – an application of the Frobenius and a simple exponentiation to the
power of x. The advantage of deriving the hard part of the exponentiation in
terms of the family parameter x is clearly illustrated.

5 The BN curves

The BN family of pairing-friendly curves [5] has an embedding degree of 12, and
is parameterised as follows:

p(x) = 36x4 + 36x3 + 24x2 + 6x + 1;
r(x) = 36x4 + 36x3 + 18x2 + 6x + 1;
t(x) = 6x2 + 1.

In this case the hard part of the final exponentiation is to the power of
(p4 − p2 + 1)/r. After substituting the polynomials for p and r this can be
expressed to the base p as

λ3.p
3 + λ2.p

2 + λ1.p + λ0,

where

λ3(x) = 1;
λ2(x) = 6x2 + 1;
λ1(x) = −36x3 − 18x2 − 12x + 1;
λ0(x) = −36x3 − 30x2 − 18x− 2.

Now we take a new approach. BN curves are very plentiful, and it already
helps the Miller loop if we choose x to have a low Hamming weight. In fact
Nogami et al. [22] have suggested the nice choice of x = −408000000000000116

for a curve appropriate for the 128-bit level of security. Next we compute mx,
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mx2
= (mx)x and mx3

= (mx2
)x. These are simple exponentiations, and the low

Hamming weight of x ensures that each requires a minimum of multiplications
when using a simple square-and-multiply algorithm. We next calculate mp,
mp2

, mp3
, (mx)p, (mx2

)p, (mx3
)p and (mx2

)p2
using the Frobenius. Now group

the elements of the exponentiation together, and the expression becomes:

[mp · mp2 · mp3
] · [1/m]2 · [(mx2

)p2
]6 · [1/(mx)p]12 · [1/(mx · (mx2

)p)]18 · [1/mx2
]30 ·

[1/(mx3 · (mx3
)p)]36.

The individual components between the square brackets are then calculated
with just 4 multiplications (recalling that an inversion is just a conjugation),
and we end up with a calculation of the form:

y0 · y1
2 · y2

6 · y3
12 · y4

18 · y5
30 · y6

36.

Note that the exponents here are simply the coefficients that arise in the
λi equations above. Now how best to evaluate this expression?

In fact there is a well known algorithm to evaluate expressions of this
form, which minimizes the number of required multiplications. See Olivos [23],
and also [1, Section 9.2] for a nice worked example. The starting point is to find
an addition sequence: an addition chain which includes within it the elements
of the set of integers which occur as exponents. In this case it is not hard to see
that an optimal addition sequence (the shortest sequence containing all values)
is given by:

{1, 2, 3, 6, 12, 18, 30, 36}.

Note that 3 is the only member of the addition chain which is not a
member of the set of exponents. This is certainly serendipitous, as it means less
work to do the evaluation. Observe here that an addition-subtraction chain is
also a possibility (as divisions are as cheap as multiplications as a consequence
of the unitary property). But we don’t require one here. Application of the
Olivos algorithm results in the following vectorial addition chain:
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(1 0 0 0 0 0 0)
(0 1 0 0 0 0 0)
(0 0 1 0 0 0 0)
(0 0 0 1 0 0 0)
(0 0 0 0 1 0 0)
(0 0 0 0 0 1 0)
(0 0 0 0 0 0 1)
(2 0 0 0 0 0 0)
(2 0 1 0 0 0 0)
(2 1 1 0 0 0 0)
(0 1 0 1 0 0 0)
(2 2 1 1 0 0 0)
(2 1 1 0 1 0 0)
(4 4 2 2 0 0 0)
(6 5 3 2 1 0 0)

(12 10 6 4 2 0 0)
(12 10 6 4 2 1 0)
(12 10 6 4 2 0 1)
(24 20 12 8 4 2 0)
(36 30 18 12 6 2 1)

which in turn allows us to evaluate the expression as follows, using just two
temporary variables:

T0 ← (y6)2

T0 ← T0 · y4

T0 ← T0 · y5

T1 ← y3 · y5

T1 ← T1 · T0

T0 ← T0 · y2

T1 ← (T1)2

T1 ← T1 · T0

T1 ← (T1)2

T0 ← T1 · y1

T1 ← T1 · y0

T0 ← (T0)2

T0 ← T0 · T1

The final result is in T0. This part of the calculation requires only 9 multi-
plications and 4 squarings. We find this approach to the hard part of the final
exponentiation for the BN curves to be about 4% faster than the rather ad hoc
method proposed by Devegili et al. [9] (7156 modular multiplications/squarings
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over Fp compared to 7426 for the choice of x suggested above). Moreover our
more general method is applicable to all families of pairing-friendly curves.

6 Freeman Curves

In [12] a construction is suggested for pairing-friendly elliptic curves of embed-
ding degree 10. The parameters for this family are as follows:

p(x) = 25x4 + 25x3 + 25x2 + 10x + 3;
r(x) = 25x4 + 25x3 + 15x2 + 5x + 1;
t(x) = 10x2 + 5x + 3.

These curves are much rarer than the BN curves, and unfortunately it is not
feasible to choose x to have a particularly small Hamming weight. Nevertheless
proceeding as above we find:

λ3(x) = 1;
λ2(x) = 10x2 + 5x + 5;
λ1(x) = −5x2 − 5x− 3;
λ0(x) = −25x3 − 15x2 − 15x− 2.

In this case the coefficients form a perfect addition chain:

{1, 2, 3, 5, 10, 15, 25}.
The optimal vectorial addition chain in this case requires 10 multiplications

and 2 squarings.

7 KSS Curves

Recently Kachisa et al. [17] described a new method for generating pairing-
friendly elliptic curves.

7.1 The k = 8 family of curves

Here are the parameters for the family of k = 8 KSS curves:

p(x) = (x6 + 2x5 − 3x4 + 8x3 − 15x2 − 82x + 125)/180;
r(x) = (x4 − 8x2 + 25)/450;
t(x) = (2x3 − 11x + 15)/15.
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For these curves ρ = 3/2. As in the case of the BN curves, x can be chosen
to have a low Hamming weight. Proceeding as above we find:

λ3(x) = (15x2 + 30x + 75)/6;
λ2(x) = (2x5 + 4x4 − x3 + 26x2 − 55x− 144)/6;
λ1(x) = (−5x4 − 10x3 − 5x2 − 80x + 100)/6;
λ0(x) = (x5 + 2x4 + 7x3 + 28x2 + 10x + 108)/6.

A minor difficulty arises due to the common denominator of 6 which occurs
here. We suggest a simple solution – since 6 is co-prime to r – evaluate instead
the sixth power of the pairing. This does not affect the important properties
of the pairing when r is of cryptographic size, and now we can simply ignore
the denominator. We find by brute-force computer search that we can construct
the following optimal addition sequence which contains all the exponents in the
above equations:

{1, 2, 4, 5, 7, 10, 15, 25, 26, 28, 30, 36, 50, 55, 75, 80, 100, 108, 144}.
The underlined numbers are the extra numbers added in order to complete
the sequence. Proceeding as in the BN case we find that the vectorial addition
chain derived from this addition sequence requires just 27 multiplications and 6
squarings to complete the calculation of the hard part of the final exponentiation.

7.2 The k = 18 family of curves

Here are the parameters for the family of k = 18 KSS curves:

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x + 2401)/21;
r(x) = (x6 + 37x3 + 343)/343;
t(x) = (x4 + 16x + 7)/7.

In this case ρ = 4/3 but nonetheless this curve might make a good choice
for a pairing at the 192-bit level of security. Again, as for the case of the BN
curves, x can in practise be chosen with a low Hamming weight, for example
x = 15000001502A042AA16, although we are somewhat constrained here in our
choice by the extra requirement that p(x), r(x) and t(x) evaluate as integers and
x ≡ 14 mod 42 [17]. Proceeding again as above, we find:

λ5(x) = (49x2 + 245x + 343)/3;
λ4(x) = (7x6 + 35x5 + 49x4 + 112x3 + 581x2 + 784x)/3;
λ3(x) = (−5x7 − 25x6 − 35x5 − 87x4 − 450x3 − 609x2 + 54)/3;
λ2(x) = (−49x5 − 245x4 − 343x3 − 931x2 − 4802x− 6517)/3;
λ1(x) = (14x6 + 70x5 + 98x4 + 273x3 + 1407x2 + 1911x)/3;
λ0(x) = (−3x7 − 15x6 − 21x5 − 62x4 − 319x3 − 434x2 + 3)/3.
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Using the same argument as in the KSS k = 8 curves case, we evaluate the
cube of the pairing to remove the awkward denominator of 3. In this case the
coefficients again “nearly” form a natural addition chain. Our best attempt to
find an addition sequence containing all of the exponents in the above, is:

{1,2,3,4,5,7,8,14,15,16,21,25,28,35,42,49,54,62,70,87,98,112,147,245,273,294,
319,343,392,434,450,581,609,784,931,1162,1407,1862,1911,3724,4655,4802,6517}.

Proceeding as in the BN case we find that the vectorial chain derived from
this addition sequence requires just 56 multiplications and 14 squarings to com-
plete the calculation of the hard part of the final exponentiation. In fact we did
eventually find (by partial computer search) an addition sequence one element
shorter than the above, but as it required 61 multiplications and only 7 squarings,
we prefer to use the solution above as the computations are performed over an
extension field and squarings are therefore notably cheaper than multiplications.

8 Discussion

Here we make a few general observations. First, it seems that the proposed
method results in surprisingly compact addition sequences. We note also that
the coefficients in the λi tend to be “smooth” numbers, having only relatively
small factors. This may facilitate the construction of addition sequences. Other
intriguing patterns emerge – observe for example that for the KSS k = 18 curves
the three most significant coefficients of the λi are all in the same ratio 1:5:7.
Coefficients also appear to follow the same kind of distribution as numbers in a
typical addition chain.

We have also used the proposed method for other families of pairing-friendly
curves, and have observed that for example for the k = 8, ρ = 5/4 curve proposed
by Brezing and Weng [8], and the k = 12, ρ = 3/2 curve found by Barreto et al.
[3], the resulting addition sequence is often as easy as:

{1, 2, 3}.
Since squarings are significantly faster than multiplications (as our computa-

tions are over extension fields) it may, as we have seen, be sometimes preferable
to select a slightly longer addition sequence which trades additions for dou-
blings. Addition-subtraction sequences may also be an attractive alternative in
other cases.

Finding the shortest addition sequence is an NP-complete problem [11] but
since the values we obtained in each set are relatively small, and the sets them-
selves already contained some addition ‘subchains,’ it was not too difficult to
generate, either with a computer or manually, addition sequences containing
the specific entries with length close to the lower bound given for the length of
addition chains [7]. Should a particular curve result in larger or more numer-
ous coefficients to be constructed into a sequence, Bos and Coster suggest an
algorithm for that scenario in [7].
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9 Conclusions

We have suggested a general method for the implementation of the hard part
of the final exponentiation in the calculation of the Tate pairing and its vari-
ants, which is faster, generally applicable, and which requires less memory than
previously described methods. The most efficient variant of the Tate pairing is
currently the R-ate pairing [18]. An intriguing possibility is that, given only
the polynomial equations defining a pairing-friendly family of elliptic curves, it
should now be possible, and indeed appropriate, to write a computer program
which would automatically generate very efficient R-ate pairing code.
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