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Abstract

We construct public-key cryptosystems that are secure assuming the worst-case hardness of approxi-
mating the length of a shortest nonzero vector in an n-dimensional lattice to within a small poly(n) factor.
Prior cryptosystems with worst-case connections were based either on the shortest vector problem for
a special class of lattices (Ajtai and Dwork, STOC 1997; Regev, J. ACM 2004), or on the conjectured
hardness of lattice problems for quantum algorithms (Regev, STOC 2005).

Our main technical innovation is a reduction from certain variants of the shortest vector problem to
corresponding versions of the “learning with errors” (LWE) problem; previously, only a quantum reduction
of this kind was known. In addition, we construct new cryptosystems based on the search version of LWE,
including a very natural chosen ciphertext-secure system that has a much simpler description and tighter
underlying worst-case approximation factor than prior constructions.

Keywords: Lattice-based cryptography, learning with errors, quantum computation

∗Computer Science Lab, SRI International, Menlo Park, CA, cpeikert@alum.mit.edu. This material is based upon
work supported by the National Science Foundation under Grants CNS-0716786 and CNS-0749931. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.



1 Introduction

The seminal work of Ajtai in 1996 revealed the intriguing possibility of basing cryptography on worst-case
complexity assumptions related to lattices [Ajt04]. (An n-dimensional lattice is a discrete additive subgroup
of Rn.) Since then, basic cryptographic primitives such as one-way functions and collision-resistant hash
functions (along with other notions from “Minicrypt” [Imp95]) have been based on the conjectured hardness
of important and well-studied lattice problems. Perhaps the most well-known of these, the shortest vector
problem GapSVP, is to approximate the length (typically, in the Euclidean norm) of the shortest nonzero
vector in a given lattice; another, called the short independent vectors problem SIVP, is (essentially) to find a
full-rank set of lattice vectors that are relatively short.

For public-key encryption (and related strong notions from “Cryptomania”), however, the underlying
worst-case lattice assumptions are somewhat more subtle. The ground-breaking cryptosystem of Ajtai and
Dwork [AD97] and subsequent improvements [Reg04b, AD07] are based on a special case of the shortest
vector problem, called “unique-SVP,” in which the shortest nonzero vector of the input lattice must be
significantly shorter than all other lattice vectors that are not parallel to it. Compared to other standard
problems, the complexity of unique-SVP is not as well-understood. While it does appear to be asymptotically
difficult, there is both theoretical and experimental evidence [Cai98, GN08] that it may not be as hard as
problems on general lattices, due to the extra geometric structure.

A different class of cryptosystems (and the only others known to enjoy worst-case hardness) stem from
a work of Regev [Reg05], who defined a natural intermediate problem called learning with errors (LWE).
The LWE problem is a generalization of the well-known “learning parity with noise” problem to larger
moduli. It is parameterized by a dimension n, a modulus q, and an error distribution χ over Zq; typically,
one considers a Gaussian-like distribution χ that is relatively concentrated around 0, where Zq is represented
by the integer residues d− q

2e, . . . , b
q−1

2 c. In the search version of LWE, the goal is to solve for an unknown
vector s ∈ Znq (chosen uniformly at random, say), given any desired m = poly(n) independent “noisy
random inner products”

(ai , bi = 〈ai, s〉+ xi) ∈ Znq × Zq, i = 1, . . . ,m,

where each ai ∈ Znq is uniformly random and each xi is drawn from the error distribution χ. In the decision
version, the goal is merely to distinguish between noisy inner products as above and uniform samples over
Znq × Zq. It turns out that when the modulus q is prime and polynomial in n, the search and decision variants
are equivalent via an elementary reduction (but no such equivalence is known for larger q).

The LWE problem has turned out to be amazingly versatile. In addition to its first application in a public-
key cryptosystem [Reg05], it has provided the foundation for chosen ciphertext-secure cryptosystems [PW08],
identity-based encryption [GPV08], and universally composable oblivious transfer [PVW08], as well as
for strong hardness of learning results relating to halfspaces [KS06]. We emphasize that all of the above
cryptographic applications are based on the decision version of LWE.

The main technical result of [Reg05] is a remarkable connection between lattices and the learning
with errors problem, namely: the search version of LWE is at least as hard as quantumly approximating
the problems GapSVP and SIVP on n-dimensional lattices, in the worst case. In other words, there is a
polynomial-time quantum algorithm (a reduction) that solves standard lattice problems given access to an
oracle that solves search-LWE. This is an intriguing and nontrivial result, because despite significant research
efforts, efficient quantum algorithms for the lattice problems in question have yet to be discovered. Under
the plausible conjecture that no such algorithms exist, it then follows that LWE is hard and all of the above
cryptographic constructions are secure (even against quantum adversaries).
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Due to the relative novelty of quantum computing, however, it may yet be premature to place a great deal
of confidence in such conjectures, and in any case, it is worthwhile to base hardness results and cryptographic
schemes on the weakest possible assumptions. A central question left open in [Reg05] is whether there is a
classical reduction from lattice problems to LWE. More generally, basing a public-key cryptosystem on any
“conventional” worst-case lattice assumption has remained an elusive open question.

1.1 Results

Our main result is the first public-key cryptosystem whose security is based on the conjectured worst-case
hardness of approximating the shortest vector problem on general lattices. The core technical innovation
is a classical reduction from certain lattice problems to corresponding versions of the learning with errors
problem. In more detail:

• We show that the search version of LWE, for any sufficiently large modulus q ≥ 2n, is at least as hard
as approximating GapSVP in the worst case, via a classical (probabilistic polynomial-time) reduction.
The concrete approximation factor for GapSVP has essentially the same dependence on the error
distribution as in the quantum reduction of [Reg05].

• Our main reduction additionally shows that for moduli as small as q ≥ ω(
√
n), the search version of

LWE is at least as hard as (classically) approximating a novel variant of the shortest vector problem
on general lattices in the worst case. The new problem is essentially the GapSVP problem on “higher
quality” representations of the input lattice; hence, it is no harder than standard GapSVP, yet it still
appears to be exponentially hard given the state of the art in lattice algorithms [AKS01].

By the above-mentioned equivalence between search- and decision-LWE for prime q = poly(n), our
result provides a classical (but incomparable) foundation for the hardness of decision-LWE and the
many cryptographic applications that are based upon it.

• We construct new cryptosystems based on the search version of LWE (for any modulus q), including a
simple and natural cryptosystem that is secure under chosen-ciphertext attack.

In our basic (semantically secure) system, public keys are of size O(n2 log2 q), and the expansion
factor of an n-bit plaintext can be as small as O(log q). (The chosen ciphertext-secure cryptosystem
just incurs additional nδ factors.) The underlying worst-case approximation factor for GapSVP (or its
new variant) is Õ(n2 log q), and has the potential to be reduced to Õ(n1.5

√
log q) with an improved

key-generation algorithm.1

Assuming hardness of the standard GapSVP problem (and letting q = 2O(n)), the public key size and
ciphertext expansion factor are therefore O(n4) and O(n), respectively; these quantities match the
(amortized) Ajtai-Dwork cryptosystem based on unique-SVP [AD07].

Assuming hardness of the new GapSVP variant (and letting q = poly(n)), the public key size and
ciphertext expansion can be as small as O(n2) and O(log n), respectively; these match the most
efficient known cryptosystems based on decision-LWE [PVW08, GPV08].

Our chosen ciphertext-secure cryptosystem provides an alternative to a recent construction of Peikert and
Waters [PW08] based on the decision-LWE problem. In addition to the new system’s classical worst-case
foundation, other key advantages include its tighter underlying approximation factor and its relatively simple
description and analysis (the construction in [PW08] is somewhat cumbersome in both regards).

1The Õ(·) notation hides factors that are polynomial in log n.
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1.2 Overview

1.2.1 Conceptual Summary

We start by giving a high-level description of the common design and analysis paradigm of prior cryptosystems
with worst-case connections [AD97, Reg04b, Reg05, AD07]. These works consider two types of probability
distributions over some additive domain: one is the uniform distribution, while the other type consists
of “lumpy” distributions that are periodic and concentrated around multiples of the period. As a simple
example, in [Reg04b] the domain is the real interval [0, 1) with addition modulo 1, and lumpy distributions
are concentrated around integer multiples of 1/h for some large integer h.

The cryptosystems are constructed roughly as follows: the secret key is a period chosen at random, and
the public key consists of several samples from the corresponding lumpy distribution. A 0 bit is encrypted by
letting the ciphertext be a random subset-sum of the samples in the public key; a 1 is encrypted by choosing a
uniformly random value in the domain (other slight variations are also possible). Decryption simply tests
whether the ciphertext is “relatively close” to a multiple of the secret period (to decrypt as 0) or not (to
decrypt as 1).

Semantic security is proved by a thought experiment in which the public key is instead made up of
samples drawn from the uniform distribution. It so happens that encrypting under such a key hides the
message bit statistically (i.e., information-theoretically), because random subset sums are distributed almost
uniformly. It follows that an adversary capable of breaking the semantic security of the cryptosystem can
likewise distinguish between the uniform and lumpy distributions.

Finally, the core technical component is a reduction demonstrating that the two kinds of distributions are
computationally indistinguishable, assuming the worst-case hardness of some lattice problem. Essentially, the
reduction takes a lattice as input and produces samples from one of the two kinds of distributions, depending
on the geometric properties of the lattice. Crucially, in order to guarantee that the reduction produces samples
from the specific kinds of structured lumpy distributions that are used in the cryptosystem, it has so far been
necessary to impose additional geometric constraints on the reduction’s input. This is why prior works have
relied on specialized assumptions, e.g., relating to unique-SVP.

Our Approach. We retain the use of uniform and (a certain kind of) lumpy distributions, and give a
reduction that samples from one of the two types. Our cryptosystems, on the other hand, depart substantially
from the previous design and analysis paradigm: public keys in our systems are instead drawn from the
uniform distribution, whereas lumpy distributions are used only in the security proof to show statistical hiding.
The principal advantage of this approach is that it significantly relaxes the structural properties required
of the lumpy distributions: first, because they no longer need to support decryption, and more importantly,
because they never need to be sampled in the “real world” at all! This makes additional geometric constraints
on the reduction’s input unnecessary, and allows for a security proof under worst-case assumptions on general
lattices.

Several natural questions immediately arise about this approach, such as: What is the supporting secret
key for a uniformly-distributed public key? How does one encrypt and decrypt? And how do the lumpy
distributions induce statistically secure encryption? We address these issues in the following more technical
overview.
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1.2.2 New Cryptosystems

Here we describe new cryptosystems based on the search-LWE problem. At their heart is a certain collection
of injective (i.e., one-to-one) trapdoor functions. This collection appeared in a recent work of Gentry, Peikert,
and Vaikuntanathan [GPV08], and is closely related to an earlier proposal by Goldreich, Goldwasser, and
Halevi [GGH97]. In this work, we prove that the collection is one-way under classical worst-case assumptions,
and we establish additional properties that are useful in constructing cryptosystems.

The description of a function gA from the collection is a matrix A ∈ Zn×mq made up of m uniformly
random and independent columns ai ∈ Znq , for some large enough m. A random input to gA comes in two
parts: a uniformly random s ∈ Znq , and an error vector x ∈ Zmq whose entries xi are chosen independently
from the error distribution χ of the LWE problem. The function is defined simply as

b = gA(s,x) = Ats + x ∈ Zmq .

Note that in the output vector b, each entry bi = 〈ai, s〉 + xi, so inverting the function is syntactically
identical to solving search-LWE given m noisy inner products (note that x is easily computed once s is
known, and vice versa). Moreover, if gA is one-way, then there is a generic hard-core predicate h(s) for
gA(s,x) [GL89].

As shown in [GPV08], the function gA has a trapdoor that enables efficient recovery of the input s from
b, so long as the error distribution χ is sufficiently concentrated. Concretely, the trapdoor T is a “good”
basis for a certain lattice defined by A, which can be generated together with an A having the desired
(almost-)uniform distribution [Ajt99, AP08]. The inversion algorithm uses the trapdoor basis T in a simple
rounding algorithm to recover s.

Using this collection of trapdoor functions, it is straightforward to construct a basic semantically secure
cryptosystem. The secret and public keys are T and A (respectively), as above. An encryption of a message
bit µ consists of b = gA(s,x) for random s and x as above, as well as µ⊕ h(s). The decryption algorithm
uses the trapdoor T to recover s from b, recomputes the predicate h(s), and recovers the message µ.

Improved efficiency and chosen-ciphertext security. One of our technical results is that the function gA
actually admits a very simple hard-core predicate, namely, the parity of any coordinate si ∈ Zq of s (when
q is even). Moreover, we show how to extend this hard bit into ` simultaneously hard bits, by lifting the
LWE problem from dimension n to n+ `− 1 via an elementary reduction. This results in an “amortized”
cryptosystem that can encrypt messages of length, say, ` = n bits using public keys and ciphertexts that are
only a constant factor larger than in the basic system. (Similar amortization techniques for other lattice-based
cryptosystems were also recently proposed in [PVW08, AD07].) As a further optimization, we also show
that the output of gA can be represented in a “coarser” group Zmq′ for some modulus q′ = poly(n), which
reduces the ciphertext size by an almost-linear factor in n when q is large (e.g., q = 2n).

To construct cryptosystems that are secure under chosen-ciphertext attacks, we rely on a recent approach
of [PW08] and additional perspectives of Rosen and Segev [RS08]. The key observation is that k indepen-
dently chosen functions gA1 , gA2 , . . . , gAk

remain one-way even when evaluated on the same input s (but
independent error vectors x1, . . . ,xk), assuming the hardness of search-LWE given k ·m samples. (This fact
was also observed independently by Goldwasser and Vaikuntanathan [GV08], for the same purpose.) For in-
jective trapdoor functions, one-wayness under such “correlated inputs” immediately yields chosen-ciphertext
security, as shown in [RS08]. At the same time, our proof of one-wayness under correlation follows by
showing that the functions have “lossy” counterparts a la [PW08], as we now explain.

4



1.2.3 Classical Hardness of LWE

Here we give a simplified description of our worst-case GapSVP to LWE reduction, which conveys all the
essential ideas (we refer the reader to Section 3 for full details). The input to the reduction is some arbitrary
n-dimensional lattice Λ (represented by a basis), and the goal is to approximate GapSVP given access to
an oracle that solves the search-LWE problem on m samples. That is, the reduction should determine if the
minimum distance of Λ (i.e., the length of its shortest nonzero vector) is “small” or “large,” where these
quantities are separated by some poly(n) multiplicative gap (and in between, any answer is acceptable).

Abstractly, the reduction first invokes a certain sampling procedure over the dual lattice Λ∗ to generate
independent a1, . . . ,am ∈ Znq according to some (unknown) distribution. Concretely, the procedure samples
vectors yi ∈ Λ∗ from a Gaussian-like distribution (as first used in [Reg04b], and refined in subsequent
works [MR07, Reg05, GPV08]), and lets ai identify the residue class of (Λ∗/qΛ∗) ≡ Znq containing yi. The
reduction then chooses a random secret s ∈ Znq and error terms xi from χ, and gives the noisy inner products
(ai, bi = 〈ai, s〉 + xi) to the LWE oracle. If the oracle correctly produces s as its solution, the reduction
outputs “large,” otherwise it outputs “small.”

When the minimum distance of Λ is large, the ai are distributed essentially uniformly over Znq ; this
follows by a bound on the smoothing parameter of Λ∗ due to Micciancio and Regev [MR07]. Therefore, the
input provided to the oracle is faithful to the LWE distribution, the oracle solves for s by hypothesis, and the
reduction outputs “large” as desired.

The case of small minimum distance is more interesting, and constitutes the chief novelty of our approach
and analysis. In this case, the distribution of the ai is lumpy, in the following sense: there is some (unknown)
nonzero s′ ∈ Znq such that the distribution of 〈ai, s′〉 mod q is relatively concentrated around 0. (Concretely,
s′ is the coefficient vector, reduced modulo q, of a short vector in Λ). For a sufficiently wide error distribution
χ over Zq, the noisy inner products then statistically hide the reduction’s choice of s, i.e., it is about as
likely to be s + s′, conditioned on the view of the oracle. The oracle must therefore guess incorrectly with
noticeable probability, and the reduction outputs “small” as desired. (Using a more technical argument, we
also show that a particular predicate on s is essentially uniform, hence hard-core, conditioned on the view.)

Additional details. The modulus q must be large enough so that in the lumpy case, the distribution of
〈ai, s〉 is well-concentrated relative to the size of q. The degree of concentration is dictated by the tightness of
the reduction’s main sampling algorithm, which in turn is governed by the “quality” of the input basis. Using
an LLL-reduced basis [LLL82] (which may be computed in polynomial time), the value q = 2n suffices.
However, if the reduction is given a basis of better quality, then a smaller q may be used; this is where the
new variant of GapSVP comes into play.

The reduction we have outlined above, while technically correct, is still not quite as strong as we would
like. This is because in the lumpy case, the amount of noise required to hide s grows with the number
of samples m that the oracle uses, whereas ideally it should be independent of m. This is important for
optimizing the underlying worst-case approximation factors (especially for chosen-ciphertext security, which
uses more samples), and is also needed for the LWE search/decision equivalence for prime q = poly(n).

To address this issue, our reduction actually generates each pair (ai, bi) together at once for any desired
number of samples, by adding noise a priori to a known vector v ∈ Λ in the input lattice, rather than a
posteriori to the inner products 〈ai, s〉. When the minimum distance is large, the LWE oracle can be used to
recover v, whereas when the minimum distance is small, v is statistically hidden. In the end, our reduction
relies heavily upon the classical component of Regev’s reduction [Reg05], though in our case the ai are
generated by a classical sampling algorithm of [GPV08] rather than by a quantum step, and we follow a
different approach for solving GapSVP.
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1.3 Discussion and Open Problems

Note that the (simplified) reduction above essentially chooses a function gA under an unknown distribution
on A, evaluates it on a known input, and checks whether the oracle recovers that same input. The uniform
distribution on A induces an injective (trapdoor) function, whereas a lumpy distribution induces a function
that statistically hides its input. This is essentially the notion of a lossy trapdoor function from [PW08], but in
a slightly relaxed sense: in our case, there is no single, fully-specified (and efficiently-sampleable) distribution
that induces a lossy function — but any lattice with small minimum distance does so.

It is worth pointing out explicitly how our reduction avoids quantum computation. Recall that the
LWE oracle solves for a secret s (alternately, a vector v in the input lattice) that the reduction chooses itself.
In [Reg05], this allowed the quantum part of the reduction to “uncompute” s and create a useful quantum state,
but it was unclear whether such an oracle was of any use classically. Here we avoid quantum computation
by introducing, as a complementary case, a lattice with small minimum distance that statistically hides the
reduction’s random choices. In this case, the inputs provided to the oracle (in particular, the ais) are not
faithful to the LWE distribution, but this is of absolutely no consequence! We mention that related forms
of statistical hiding via small minimum distance have also appeared in the context of interactive proofs for
lattice problems [GG00, MV03] and algorithms for the shortest vector problem [AKS01].

Currently, our core reductions are non-adaptive (all queries to the LWE oracle can be prepared in
advance), and seem to be limited to solving the decision version GapSVP of the shortest vector problem.
It would be very interesting if the reductions could be made “iterative” and/or extended to solve search
problems such as SIVP, like the quantum reduction of [Reg05] and prior reductions for “Minicrypt” primitives
(e.g., [Ajt04, MR07]). Another open problem is to design a reduction that solves the search version of the
shortest vector problem; such a result would be quite surprising, because even the prior reductions mentioned
above have also been limited to the decision version.

Finally, we believe that it may be very fruitful to study the complexity of our new variant of GapSVP
(and related lattice problems), in which a gap of intermediate quality is already promised and a tighter
approximation is desired.

2 Preliminaries

We denote the set of real numbers by R and the set of integers by Z. For a positive integer n, define
[n] = {1, . . . , n}. We extend any real function f(·) to any countable set A by defining f(A) =

∑
x∈A f(x).

The main security parameter throughout the paper is n, and all other quantities are implicitly functions
of n. We use standard O(·), o(·), Ω(·), and ω(·) notation to describe the growth of functions, and write
f(n) = Õ(g(n)) if f(n) = O(g(n) · logc n) for some fixed constant c. We let poly(n) denote an unspecified
polynomial function f(n) = O(nc) for some constant c. A function f(n) is negligible, written negl(n), if
f(n) = o(n−c) for every constant c. We say that a probability is overwhelming if it is 1− negl(n).

Vector spaces. By convention, all vectors are in column form and are named using bold lower-case letters
(e.g., x), and xi denotes the ith component of x. Matrices are named using bold capital letters (e.g., X),
and xi denotes the ith column vector of X. We identify a matrix X with the (ordered) set of its column
vectors. For a set S ⊆ Rn, point x ∈ Rn, and scalar c ∈ R, we define S + x = {y + x : y ∈ S} and
cS = {cy : y ∈ S}.

The Euclidean (or `2) norm on Rn is ‖x‖ =
√∑

i x
2
i . The open unit ball Bn ⊂ Rn (in the `2 norm) is

defined as Bn = {x ∈ Rn : ‖x‖ < 1}.
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For any (ordered) set S = {s1, . . . , sn} ⊂ Rn of linearly independent vectors, let S̃ = {s̃1, . . . , s̃n}
denote its Gram-Schmidt orthogonalization, defined iteratively as follows: let s̃1 = s1, and for each
i = 2, . . . , n, let s̃i be the projection of si onto span⊥(s1, . . . , si−1), i.e., s̃i = si −

∑i−1
j=1 µi,j s̃j , where

µi,j = 〈si, s̃j〉/〈s̃j , s̃j〉. Observe that ‖s̃i‖ ≤ ‖si‖ for all i.

Probability. For a probability distribution X over a domain D, let fX : D → R denote its density function.
Let Xn denote the n-fold product distribution over Dn, which has density function fXn(x) = fnX(x) :=
fX(x1) · · · fX(xn). The statistical distance between two distributions X and Y over D (or two random
variables having those distributions) is defined as ∆(X,Y ) = maxA⊆D |fX(A)− fY (A)|. Statistical
distance is a metric on probability distributions; in particular, it obeys the triangle inequality. Applying a
(possibly randomized) function g cannot increase the statistical distance: ∆(g(X), g(Y )) ≤ ∆(X,Y ). The
uniform distribution over D is denoted U(D).

Let X and Y be two distributions, and let D be a probabilistic algorithm. We say that the advantage of D
in distinguishingX from Y is |Pr[D(X) = 1]− Pr[D(Y ) = 1]|. We say that two ensembles {Xn} and {Yn}
of distributions indexed by n are computationally indistinguishable if every probabilistic polynomial-time D
has negligible advantage negl(n) in distinguishing Xn from Yn.

For any r > 0, define the one-dimensional Gaussian function ρr : R→ R with parameter r as

ρr(x) = exp(−π(x/r)2).

(We take r = 1 when it is omitted.) The total measure associated to ρr is
∫

Rn ρr(x) dx = r, so we can define
a continuous Gaussian probability distribution over R by its density function Dr(x) = ρr(x)/r (as before,
we may omit r). These extend to Rn in the usual way as ρnr (x) = ρr(x1) · · · ρr(xn) = exp(−π(‖x‖/r)2)
and Dr(x) = ρr(x)/rn. We also define the Gaussian norm distribution S(n)

r , which is obtained by sampling
a vector x ∈ Rn from Dn

r and outputting ‖x‖.
The Gaussian distribution Dn

r is spherically symmetric, so for x distributed according to Dn
r and any unit

vector u ∈ Rn, 〈u,x〉 is distributed according to Dr. For x ∈ R distributed according to Dr and any t ≥ 1,
a standard tail inequality says that |x| < r · t except with probability at most exp(−πt2). In addition, for
x ∈ Rn distributed according to Dn

r , we have ‖x‖ < r
√
n except with probability at most 2−n.

It is possible to sample efficiently from Dr (hence Dn
r ) to within any desired level of precision. It is

possible to sample efficiently from U(Bn) by first choosing an x according toDn to select a random direction,
then scaling x to have (Euclidean) norm r ∈ [0, 1) with probability proportional to rn−1. For simplicity, we
use real numbers in this work and assume that we can sample from Dn

r exactly; all the arguments can be
made rigorous by using a suitable amount of precision.

To prove the hardness of search-LWE, we need the following lemma about the statistical distance between
the uniform distributions over two n-dimensional balls whose centers are relatively close.

Lemma 2.1 ([GG00]). For any constants c, d > 0 and any z ∈ Rn with ‖z‖ ≤ d and d′ = d ·
√
n/(c log n),

we have ∆(U(d′ · Bn), U(z + d′ · Bn)) ≤ 1− 1/ poly(n).

2.1 Learning with Errors

Let T = R/Z be the additive group on the real interval [0, 1) with modulo 1 addition. For positive integers
n and q ≥ 2, a vector s ∈ Znq , and a probability distribution φ on T, define As,φ to be the distribution on
Znq × T obtained by choosing a vector a ∈ Znq uniformly at random, choosing an error term e ∈ T according
to φ, and outputting (a, 〈a, s〉/q + e), where the addition is performed in T.
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We are primarily concerned with error distributions φ over T that are derived from Gaussians. For α > 0,
define Ψα to be the distribution on T obtained by taking a sample from the one-dimensional Gaussian D(1)

α

and reducing modulo 1. At times we consider an error distribution φ that is itself a random variable, e.g., Ψβ

for β chosen according to some distribution. We point out such cases explicitly when they arise, but retain
the same notation as when φ is a fixed distribution.

Definition 2.2. For an integer function q = q(n) and an error distribution φ on T, the goal of the learning
with errors problem LWEq,φ in n dimensions is to find s ∈ Znq (with overwhelming probability) given access
to any desired poly(n) number of samples from As,φ for some arbitrary s.

The above definition of LWE is for a “worst-case” search problem. As shown in [Reg05], it is equivalent
(up to a polynomial factor in the number of samples used) to an “average-case” version in which the goal is
to find a uniformly random s ∈ Znq with non-negligible probability given As,φ (where the probability is taken
over all the randomness in the experiment). This equivalence follows by a simple reduction from arbitrary
s to uniformly random s′ ∈ Znq [Reg05, Lemma 4.1], and the ability to verify a correct value of s′ once it
is found [Reg05, Lemma 3.6]). Specifically, suppose W is an oracle that solves the average-case version
of LWE. To find an arbitrary s with overwhelming probability given As,φ, we transform it into As′,φ for a
uniformly random s′ = s + t by choosing random t ∈ Znq and mapping pairs (a, b) to (a, b+ 〈a, t〉/q). By
invoking W , we obtain a candidate solution s̃, check whether s̃ = s′, and output s = s̃− t if so. By repeating
a polynomial number of times, we find s with overwhelming probability.

For a function π : Znq → {0, 1}`, we say that π is hard-core for LWEq,φ (in n dimensions) if, given
access to As,φ for uniformly random s ∈ Znq , π(s) is computationally indistinguishable from U({0, 1}`).
When ` = 1, this is equivalent (via standard reductions) to saying that no probabilistic polynomial-time
algorithm computes π(s) with probability better than 1/2 + negl(n). We are interested in a particular
candidate collection of hard-core functions for LWE. For even q and any ` ≥ 1, define

h` : Z≥`q → {0, 1}` as h`(s) = h(s1) ◦ · · · ◦ h(s`),

where h(s) for s = s̄+ qZ ∈ Zq denotes the parity of the integer residue s̄ ∈ Z, and ◦ denotes concatenation.
(Note that because q is even, any choice of residue s̄ for s has the same parity.)

2.2 Lattices

An n-dimensional lattice is a discrete additive subgroup of Rn. Equivalently, let B = {b1, . . . ,bn} ⊂ Rn

consist of n linearly independent vectors; the lattice Λ generated by the basis B is

Λ = L(B) = {Bc =
∑

i∈[n]
ci · bi : c ∈ Zn}.

(Technically, this is the definition of a full-rank lattice, which is all we will be concerned with in this work.)
The minimum distance λ1(Λ) of Λ (in the `2 norm) is the length of its shortest nonzero vector: λ1(Λ) =

min0 6=x∈Λ‖x‖. It is well-known (and easy to prove) that for any basis B of Λ, the minimum distance
λ1(Λ) ≥ mini‖b̃i‖.

The dual lattice of Λ, denoted Λ∗, is defined as Λ∗ = {x ∈ Rn : ∀ v ∈ Λ, 〈x,v〉 ∈ Z}. By symmetry,
it can be seen that (Λ∗)∗ = Λ. If B is a basis of Λ, it can be seen that the dual basis B∗ = (B−1)t is in fact a
basis of Λ∗. The following standard fact relates the Gram-Schmidt orthogonalizations of a basis and its dual
(a proof can be found in [Reg04a, Lecture 8]).

Lemma 2.3. Let {b1, . . . ,bn} be an (ordered) basis, and let {d1, . . . ,dn} be its dual basis in reversed
order (i.e., di = b∗n−i+1). Then d̃i = b̃i/‖b̃i‖2 for all i ∈ [n]. In particular, ‖d̃i‖ = 1/‖b̃i‖.
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Computational problems. We are mainly interested in the shortest vector problem on lattices.

Definition 2.4 (Shortest Vector Problem). For a function γ(n) ≥ 1, an input to GapSVPγ is a pair (B, d),
where B is a basis of an n-dimensional lattice Λ = L(B) and d > 0 is a real number. It is a YES instance if
λ1(Λ) ≤ d, and is a NO instance if λ1(Λ) > γ(n) · d.

Note that given an oracle for GapSVPγ , the minimum distance λ1 of any lattice can be computed to
within a factor of (say) 2γ by binary search on the value d.

We now define a variant of the shortest vector problem, which is the problem that our main worst-case to
average-case reductions will be based upon.

Definition 2.5. For functions ζ(n) ≥ γ(n) ≥ 1, an input to GapSVPζ,γ is a pair (B, d), where:

• B is a basis of an n-dimensional lattice Λ = L(B) for which λ1(Λ) ≤ ζ(n),

• mini‖b̃i‖ ≥ 1, and

• 1 ≤ d ≤ ζ(n)/γ(n).

It is a YES instance if λ1(Λ) ≤ d, and is a NO instance if λ1(Λ) > γ(n) · d.

A few remarks about this definition are in order. First, note that the second condition min‖b̃i‖ ≥ 1
implies that λ1(Λ) ≥ 1, and is without loss of generality by scaling the basis B. Similarly, the last condition
1 ≤ d ≤ ζ(n)/γ(n) is without loss of generality, because the instance is trivially solvable when d lies outside
that range.

The first condition is the interesting one. For any ζ(n) ≥ 2(n−1)/2, GapSVPζ,γ is actually equivalent to
the standard GapSVPγ problem, because an arbitrary basis B′ of Λ can be reduced in polynomial time using
the LLL algorithm [LLL82] to another basis B of Λ so that λ1(Λ) ≤ ‖b1‖ ≤ 2(n−1)/2 ·mini‖b̃i‖. (In fact,
alternate parameters and analysis of the LLL algorithm imply that we can even take ζ(n) ≈ (2/

√
3)n.) For

smaller functions ζ(n), particularly ζ(n) = poly(n), the condition is nontrivial and more interesting. The
nature of the problem is to approximate the minimum distance to within a gap γ(n), given a promise that it
lies within a looser range having a gap ζ(n). The promise could be made efficiently verifiable by restricting
to “high quality” bases that contain (or guarantee the existence of) a vector of length at most ζ(n), though this
could potentially make the problem easier. To our knowledge, none of the lattice algorithms in the literature
are able to solve GapSVPζ,γ for γ(n) < ζ(n) = poly(n) in time better than exponential 2Ω(n), even when
the promise is verifiable efficiently, and even when, say, ζ(n) = 2γ(n).

Gaussians on lattices. Micciancio and Regev [MR07] introduced a lattice quantity called the smoothing
parameter, and related it to the minimum distance of the dual lattice.

Definition 2.6. For an n-dimensional lattice Λ and positive real ε > 0, the smoothing parameter ηε(Λ) is
defined to be the smallest r such that ρ1/r(Λ∗\{0}) ≤ ε.

Lemma 2.7 ([MR07, Lemma 3.2]). For any n-dimensional lattice Λ, we have η2−n(Λ) ≤
√
n/λ1(Λ∗).

For an n-dimensional lattice Λ, real r > 0, and c ∈ Rn, define the discrete Gaussian probability
distribution over Λ (with parameter r, centered at c) as:

∀x ∈ Λ, DΛ,r,c(x) =
ρr(x− c)
ρr(Λ− c)

.
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(As above, r and c are taken to be 1 and 0, respectively, when omitted.) Note that the denominator in the
above expression is merely a normalization factor.

Our reductions use, as a subroutine, an efficient algorithm that generates samples from discrete Gaussian
distributions.

Proposition 2.8 ([GPV08, Theorem 4.1]). There is a probabilistic polynomial-time algorithm that, given any
n-dimensional lattice basis B, any r ≥ maxi‖b̃i‖ · ω(

√
log n), and an arbitrary c ∈ Rn, outputs a sample

from a distribution that is within negl(n) statistical distance of DL(B),r,c.

To demonstrate a particular hard-core predicate for LWE, we also need the following simple (but new, to
our knowledge) fact about discrete Gaussians.

Lemma 2.9. Let B be a basis of an n-dimensional lattice Λ = L(B), and let v = Bz ∈ Λ be a nonzero
lattice vector whose ith coefficient zi is odd. Let r ≥ ‖v‖ · ω(

√
log n), let c ∈ Rn be arbitrary, and let

x = Bz′ be a random variable having distribution DΛ,r,c. Then the parity of coefficient z′i (i.e., z′i mod 2) is
negligibly close to uniform over {0, 1}.

We remark that the lemma easily generalizes to any prime modulus p, where for zi 6= 0 mod p and
r ≥ p · ‖v‖ · ω(

√
log n), we have that z′i mod p is negligibly close to uniform over Zp.

Proof. Define a basis B′ of a sublattice Λ′ = L(B′) ⊂ Λ as b′i = 2bi and b′j = bj for all j 6= i. Then we
have v = Bz 6∈ Λ′, and Λ = Λ′ ∪ (Λ′ + v). Observe that for x = Bz′ ∈ Λ, the parity of z′i is zero if x ∈ Λ′,
and is one if x ∈ Λ′ + v.

For x distributed according to DΛ,r,c, the probability that z′i is even or odd is therefore proportional to
P0 = ρr(Λ′ − c) or P1 = ρr(Λ′ + v− c), respectively. A routine argument (using techniques from [MR07])
shows that for r ≥ ‖v‖ · ω(

√
log n), the quantities P0 and P1 are within a (1± negl(n)) factor of each other,

which proves the claim. We defer a complete proof to the full version.

3 Classical Hardness of LWE

In this section we show that certain versions of the learning with errors problem are at least as hard as
classically solving corresponding versions of the shortest vector problem. In Section 3.1 we give a reduction
establishing the hardness of LWE in its search version. This proves that the injective trapdoor functions
from [GPV08] are indeed one-way, hence have a generic hard-core predicate that can be used to encrypt a
single bit at a time. In Section 3.2 we give a more technical proof showing that LWE admits a specific natural
hard-core predicate, which has the advantage that it can be easily extended into many simultaneously hard
bits (as shown in Section 4.1); this leads to more efficient multi-bit cryptosystems.

3.1 Hardness of Search-LWE

Theorem 3.1. Let α = α(n) ∈ (0, 1) be a real number and γ = γ(n) ≥ n/(α
√

log n). Let ζ = ζ(n) ≥ γ
and q = q(n) ≥ (ζ/

√
n) · ω(

√
log n).

There is a (classical) probabilistic polynomial-time reduction from solving GapSVPζ,γ in the worst case
(with overwhelming probability) to solving LWEq,Ψα with non-negligible probability (for uniformly random
s ∈ Znq ) using a polynomial number of samples.
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Note that GapSVPζ,γ is potentially hard in the worst case whenever ζ > γ, so Theorem 3.1 allows for a
choice of q as small as

q > (γ/
√
n) · ω(

√
log n) = ω(

√
n/α).

We also mention that using results from [Pei08], Theorem 3.1 can easily be generalized to work for GapSVPζ,γ
in any `p norm, 2 ≤ p ≤ ∞, for essentially the same approximation factor γ.

Our proof of Theorem 3.1 relies on the core classical component of Regev’s reduction.

Proposition 3.2 ([Reg05, Lemma 3.4]). Let ε = ε(n) be a negligible function, q = q(n) ≥ 2 be an integer,
α = α(n) ∈ (0, 1) and φ = Ψα, and Λ be any n-dimensional lattice. There is a classical probabilistic
polynomial-time reductionR that solves CVPαq/(

√
2r) on Λ in the worst case (with overwhelming probability),

given:

1. an oracle W that solves LWEq,φ with non-negligible probability (for uniformly random s ∈ Znq ) using
a polynomial number of samples, and

2. an oracle that samples from DΛ∗,r for a given number r ≥
√

2q · ηε(Λ∗).

For completeness, we give a brief description of the reduction claimed in Proposition 3.2 (however, this
is not required to understand the proof of Theorem 3.1 and may be safely skipped). It is given a basis B of
Λ and a point x ∈ Rn within distance αq/(

√
2r) of some vector v ∈ Λ. Suppose s = B−1v mod q is the

coefficient vector of v reduced modulo q. To generate a sample from As,φ, the reduction obtains a sample y
from DΛ∗,r, lets a = (B∗)−1y = Bty mod q, and outputs

(a , b = 〈y,x〉/q + e) ∈ Znq × T,

where e ∈ R is a small extra error term chosen from a continuous Gaussian. Omitting many details, this
faithfully simulates the LWE distribution for two reasons: first, a is essentially uniform over Znq since
r ≥ q · ηε(Λ), and second,

〈y,x〉 ≈ 〈y,v〉 = 〈Bty,B−1v〉 = 〈a, s〉 mod q.

The oracle W solves for s = B−1v mod q by hypothesis, and the entire vector v can be obtained by iterating
the procedure as described in [Reg05, Lemma 3.5].

We stress that the precise error distribution in the 〈y,x〉 term requires some care to analyze precisely; the
exact distance between x and v and the extra error term e both play an important role. The details are not
relevant at this point, though they will be more important later on in Section 3.2 when we analyze specific
hard-core predicates.

Proving the theorem. We are now ready to prove Theorem 3.1. Essentially, the reduction works as follows:
given a lattice Λ, it perturbs a point v ∈ Λ, invokes the reduction R from Proposition 3.2 on the perturbed
point, and checks whether R successfully recovers v. When λ1(Λ) is large, R must indeed recover v
by hypothesis. When λ1(Λ) is small, v is statistically hidden and R must guess incorrectly with some
non-negligible probability. (The same basic principle underlies the interactive proofs of Goldreich and
Goldwasser [GG00], where here the reduction R is playing the role of the unbounded prover.)

Proof of Theorem 3.1. The input to our reduction is an instance of GapSVPζ,γ , i.e., a pair (B, d) where
min‖b̃i‖ ≥ 1, the minimum distance λ1(L(B)) ≤ ζ, and 1 ≤ d ≤ ζ/γ. Let Λ = L(B).

The reduction runs the following procedure some large number N = poly(n) times.
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1. Choose a point w uniformly at random from the ball d′ · Bn where d′ = d ·
√
n/(4 log n), and let

x = w mod B.

2. Invoke the reduction R from Proposition 3.2 on Λ and x with parameter

r =
q ·
√

2n
γ · d

,

where the required oracle for sampling from DΛ∗,r is implemented by the algorithm from Proposi-
tion 2.8 on the reversed dual basis D of B. Let v be R’s output.

If v 6= x−w in any of the N iterations, then accept. Otherwise, reject.
We now analyze the reduction. First recall that maxi‖d̃i‖ = 1/mini‖b̃i‖ ≤ 1, and the parameter

r =
q ·
√

2n
γ · d

≥ q ·
√

2n
ζ

≥ ω(
√

log n)

by hypothesis on d and q, so the algorithm from Proposition 2.8 correctly samples from a distribution that is
within negligible statistical distance of DΛ∗,r.

Now consider the case when (B, d) is a NO instance, i.e., λ1(Λ) > γ · d. Then by Lemma 2.7, we have

ηε(Λ∗) ≤
√
n

γ · d

for ε(n) = 2−n = negl(n). Therefore r ≥
√

2q · ηε(Λ∗) as required by Proposition 3.2. Now because
x−w ∈ Λ, the distance from x to Λ is at most

d′ = d ·
√

n

4 log n
≤ α · γ · d√

4n
=

αq√
2r
,

by hypothesis on γ and the definition of r. Moreover, λ1(Λ) > γ · d > 2d′, therefore the reduction from
Proposition 3.2 must return v = x−w in each of the iterations (with overwhelming probability), and the
reduction rejects as desired.

Finally, consider the case when (B, d) is a YES instance, i.e., λ1(Λ) ≤ d. Let z ∈ Λ have norm
‖z‖ = λ1(Λ). Consider an alternate experiment in which of w is replaced by w′ = z + w for w chosen
uniformly from d′ · Bn, so x′ = w′ mod B and R is invoked on x′. Then by Lemma 2.1 and the fact that
statistical distance cannot increase under any randomized function, we have

Pr[R(x) = x−w] ≤ 1− 1/ poly(n) + Pr[R(x′) = x′ −w′]
≤ 2− 1/ poly(n)− Pr[R(x′) = x′ −w].

But now notice that x′ = z + w = w mod B, so x′ is distributed identically to x in the real experiment, and
can replace x in the above expression. Rearranging, it follows that Pr[R(x) = x−w] ≤ 1− 1/ poly(n).
Then for a sufficiently large N = poly(n), we have v 6= x−w in at least one iteration and the reduction
accepts, as desired.
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3.2 Hard-Core Predicate

Here we demonstrate a particular hard-core predicate for LWE (assuming the worst-case hardness of GapSVP),
namely, the parity of the first entry s1 of the secret s ∈ Znq . (By symmetry, it follows that the parity of any
single entry si is hard-core).

Our strategy is similar to the one used above in the proof of Theorem 3.1, but is more technically involved.
Given a lattice Λ, the reduction perturbs a point v ∈ Λ (this time using a sufficiently wide Gaussian), uses the
perturbed point to simulate an LWE distribution to an oracle P that predicts the predicate, and checks whether
P ’s output matches a corresponding predicate on v. When λ1(Λ) is large, the simulation is faithful to an
LWE distribution and P ’s prediction is correct (with non-negligible advantage over 1/2) by hypothesis. When
λ1(Λ) is small, the predicate on v is (almost) uniform conditioned on P ’s input, hence P has essentially no
advantage over 1/2.

For technical reasons, we need to impose two extra conditions on the LWEq,φ problem in order to make
the proof work. The first is that q must be an even integer; otherwise, the notion of parity in Zq is ill-defined.
The second is that the noise distribution φ = Ψβ is itself is a random variable; more precisely, the parameter
β is chosen from a certain distribution and kept secret (and fixed). This condition is an artifact of the main
proof technique in the context of hard-core predicates; we elaborate below.

When reducing to the search problem LWEq,Ψα , the main step in the reduction from Proposition 3.2
above actually generates samples from a distribution As,Ψβ for some unknown β ≤ α. The reduction then
emulates As,Ψβ′ for many different values of β′ ≥ β by adding different amounts of extra noise to As,Ψβ . In
at least one of these instances, β′ is sufficiently close to α that the oracle for LWEq,Ψα is obliged to return the
correct solution s. Because candidate solutions to the LWE problem can be checked efficiently, the reduction
can therefore recognize the correct s and continue on.

When attempting to prove that a predicate π is hard-core for LWEq,Ψα , however, this kind of strategy
breaks down. Here we have an oracle that predicts π(s) given As,Ψα , but it appears that the correct value
of π(s) cannot be recognized efficiently on its own. So even though the reduction may emulate different
instances of As,Ψβ′ , it has no way of checking which of the oracle’s predictions is correct (and the oracle may
intentionally give bad predictions under noise distributions other than Ψα). Our solution to this difficulty is to
strengthen the hypothesis by requiring the oracle to predict π(s) under error distribution Ψβ , where β itself
is a random variable that emerges from the main reduction technique. The distribution of β is somewhat
unnatural, but presents no problems in usage.

Theorem 3.3. Let α = α(n) ∈ (0, 1) be a real number and γ = γ(n) ≥ ω(n
√

log n/α). Let ζ = ζ(n) ≥ γ
and q = q(n) ≥ (ζ/

√
n) · ω(

√
log n) be an even integer.

There is a classical probabilistic polynomial-time reduction from solving GapSVPζ,γ in the worst case
(with overwhelming probability) to distinguishing h1(s) from U({0, 1}) (with non-negligible advantage)
given As,Ψβ , for s ∈ Znq chosen uniformly at random and (secret) β =

√
α2/2 + l2, where l is distributed

according to S(n)

α/
√

2n
.

In other words, h1 is hard-core for LWEq,Ψβ assuming that GapSVPζ,γ is hard in the worst case.

We start with a couple of elementary reductions that make the proof of Theorem 3.3 simpler. First, define a
variant problem GapSVP′ζ,γ whose input, just as for GapSVPζ,γ , is a pair (B, d) such that λ1(L(B)) ≤ ζ(n),
mini‖b̃i‖ ≥ 1, and 1 ≤ d ≤ ζ(n)/γ(n). It is a YES instance if there exists a z ∈ Zn such that z1 is odd and
‖Bz‖ ≤ d; it is a NO instance if λ1(L(B)) > γ(n) · d.

Lemma 3.4. For any ζ(n) ≥ γ(n) ≥ 1, there is a deterministic polynomial-time Cook reduction from
GapSVPζ,γ to GapSVP′ζ,γ .
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Proof. Given an input instance (B, d) of GapSVPζ,γ , the reduction generates n instances (B(i), d) for i ∈ [n]
as described below, and invokes the GapSVP′ζ,γ oracle on each of them. If the oracle accepts any of the
instances, the reduction accepts, otherwise it rejects.

The instances (B(i), d) are defined as follows: for i = 1, let B(1) = B. For i = 2, . . . , n, let b(i)
i =

bi + b1, and let b(i)
j = bj for all j 6= i. Observe that L(B(i)) = L(B) and that the Gram-Schmidt

orthogonalizations of B and B(i) are identical, for every i ∈ [n]. Therefore, the instances (B(i), d) satisfy
the requirements of the GapSVP′ problem.

If (B, d) is a NO instance of GapSVP, then by the first observations above, every (B(i), d) is a NO
instance of GapSVP′.

If (B, d) is a YES instance of GapSVP, then there exists some z ∈ Zn such that Bz is a shortest
nonzero vector in L(B) (i.e., ‖Bz‖ ≤ d) and an i ∈ [n] such that zi is odd; for if not, then z ∈ (2Z)n and
Bz/2 ∈ L(B) is nonzero and shorter than Bz, a contradiction. We claim that (B(i), d) is a YES instance of
GapSVP′. If z1 is odd, then we may take i = 1 and the claim holds trivially. Now suppose that z1 is even.
Letting z′ ∈ Zn be such that B(i)z′ = Bz, we have z′1 = z1 − zi, which is odd, and the claim follows.

Next, observe that As,φ for an arbitrary s ∈ Znq can be transformed into As′,φ for a uniformly random
s′ = s + t ∈ Znq , simply by choosing t ∈ Znq uniformly at random and mapping each pair (a, b) to
(a, b + 〈a, t〉/q) ∈ Znq × T. Moreover, h1(s′) = h1(s) ⊕ h1(t) when q is even. Therefore, if we have an
oracle D that distinguishes h1(s) from uniform with advantage δ given As,φ for uniform s ∈ Znq , then we
have an efficient predictor P that computes h1(s) with probability 1/2 + δ given As,φ for arbitrary s ∈ Znq .

The final tool we need is a technical lemma relating to the generation of samples from an LWE distribution.

Lemma 3.5 ([Reg05, Proof of Lemma 3.8]). Let ε = ε(n) be a negligible function, q = q(n) ≥ 2 be an
integer, and α = α(n) ∈ (0, 1) be a real number. Let B be a basis for an n-dimensional lattice Λ = L(B),
let r ≥

√
2q · ηε(Λ), and let x ∈ Rn be at distance d′ from some v ∈ Λ.

Consider the following experiment: let y be drawn from DΛ∗,r and let e ∈ R be drawn from D1
α/
√

2
.

Then the distribution of
(a = Bty mod q , b = 〈y,x〉/q + e) ∈ Znq × T

is within negligible statistical distance of As,Ψβ , where s = B−1v mod q and β =
√
α2/2 + (d′r/q)2.

We are now ready to prove the theorem.

Proof of Theorem 3.3. By Lemma 3.4, we can say that the input to our reduction is an instance of GapSVP′ζ,γ ,
i.e., a pair (B, d) where min‖b̃i‖ ≥ 1, the minimum distance λ1(L(B)) ≤ ζ, and 1 ≤ d ≤ ζ/γ. Let
Λ = L(B).

By the discussion above, we may hypothesize a predictor P that computes h1(s) with probability 1/2 + δ
for some non-negligible δ = δ(n) given As,Ψβ for arbitrary s ∈ Znq , and β chosen as described in the
theorem statement.

The reduction runs the following procedure some large number N = poly(n) times.

1. Choose a point w ∈ Rn from distribution Dn
d·ω for

ω =
α · γ
2n

= ω(
√

log n),

let x = w mod B, and let v = x−w ∈ Λ.
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2. Invoke the hypothesized predictor P , simulating each desired sample from the LWE distribution as
follows: using the algorithm from Proposition 2.8 on the reversed dual basis of B, sample y from
DΛ∗,r for

r =
q ·
√

2n
γ · d

.

Next, sample e ∈ R from D1
α/
√

2
and give P the pair

(a = Bty mod q , b = 〈y,x〉/q + e) ∈ Znq × T.

3. When P outputs a prediction, check whether the prediction equals h1(s), where s = B−1v mod q.

If P ’s prediction is correct in at least (1/2 + δ/2)N of the iterations, then reject, otherwise accept.
We now analyze the reduction. Just as in the proof of Theorem 3.1, for the definition of r above, the

algorithm from Proposition 2.8 correctly samples from a distribution that is within negligible statistical
distance of DΛ∗,r.

Now consider the case when (B, d) is a NO instance of GapSVP′, i.e., λ1(Λ) > γ · d. Just as in the proof
of Theorem 3.1, we have r ≥

√
2q · ηε(Λ∗) as required by Lemma 3.5. Now because v = x−w ∈ Λ, the

distance between x and v is d′ = ‖w‖, which means that d′r/q is distributed according to S(n)
t , where

t = d · ω · r/q = α/
√

2n.

By Lemma 3.5, it follows that the reduction simulates As,Ψβ (up to negligible statistical distance), where

s = B−1v mod q and β =
√
α2/2 + l2, and l is distributed according to S(n)

α/
√

2n
. By hypothesis, P predicts

h1(s) with probability negligibly close to 1/2 + δ, so by a standard application of the Chernoff bound (for
sufficiently large N = poly(n)), P predicts correctly in at least (1/2 + δ/2)N iterations, and the reduction
rejects as desired.

Finally, consider the case when (B, d) is a YES instance of GapSVP′, i.e., there exists a z ∈ Zn such that
z1 is odd and ‖Bz‖ ≤ d. Observe that Step 2, which provides all the input to the predictor P , depends only
on the fixed value of x and additional randomness that is independent of w. Also observe that conditioned on
the fixed value of x, the random variable v = x−w ∈ Λ is distributed according to DΛ,d·ω,x. By Lemma 2.9,
the parity of the first entry of B−1v is negligibly close to uniform, conditioned on the entire fixed input to P .
Because q is even, the predicate h1(s) is also negligibly close to uniform, and P ’s prediction is correct with
probability at most 1/2 + negl(n). By the Chernoff bound, P predicts correctly in fewer than (1/2 + δ)N
iterations, and the reduction accepts as desired.

4 Public-Key Cryptosystems

Here we construct public-key cryptosystems (for multi-bit messages) that are based on the search version of
LWE. We start in Section 4.1 by showing how to extend the particular hard-core predicate for LWE (shown
in Section 3.2) into many simultaneously hard bits. Then in Section 4.2 we construct a semantically secure
cryptosystem, followed in Section 4.3 by an extension that enjoys chosen-ciphertext security.
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4.1 Simultaneous Hard-Core Bits for LWE

Lemma 4.1. Let ` = poly(n), q = q(n) ≥ 2 be even, and φ be a distribution (itself possibly a random
variable) on T. If h1 is hard-core for LWEq,φ in n dimensions, then h` is hard-core for LWEq,φ in n+ `− 1
dimensions.

More precisely, there is an efficient reduction from distinguishing h1(s) from U({0, 1}) (with non-
negligible advantage) given As,φ for uniformly random s ∈ Znq to distinguishing h`(s′) from U({0, 1}`)
(with non-negligible advantage) given As′,φ for uniformly random s′ ∈ Zn+`−1

q .

Proof. We proceed by a hybrid argument. If some D distinguishes between h`(s′) and U` given As′,φ

(for uniform s′ ∈ Zn+`−1
q ) with non-negligible advantage δ = δ(n), then there is some j ∈ [`] such that

D distinguishes between hj−1(s′) ◦ U`−j+1 and hj(s′) ◦ U`−j given As′,φ with non-negligible advantage
δ′(n) = δ(n)/`.

We describe a reduction that, given As,φ for uniformly random s ∈ Znq and an input bit h, uses D to
distinguish whether h is h1(s) or U1. The reduction chooses sl ∈ Zj−1

q and sr ∈ Z`−jq uniformly at random,
and lets h′ = hj−1(sl) ◦ h ◦ U`−j ∈ {0, 1}`. It invokes D on h′, simulating As′,φ in the manner described
below, and copies D’s output.

Letting s′ = sl ◦ s ◦ sr, we see that s′ is distributed uniformly over Zn+`−1
q . It is also apparent that if

the reduction’s input bit h is uniform, then h′ is distributed as hj−1(s′) ◦ U`−j+1, whereas if h = h1(s),
then h′ is distributed as hj(s′) ◦ U`−j . Therefore the reduction distinguishes between these two cases with
non-negligible advantage δ′.

The reduction simulates As′,φ using As,φ as follows. Given a pair (a, b = 〈a, s〉/q + x) ∈ Znq × T from
As,φ, it chooses al ∈ Zj−1

q and ar ∈ Z`−jq uniformly at random and outputs the pair

(al ◦ a ◦ ar , 〈al, sl〉/q + b+ 〈ar, sr〉/q) = (a′, b′ = 〈a′, s′〉/q + x) ∈ Zn+`−1
q × T.

It is apparent that a′ is distributed uniformly over Zn+`−1
q , thus, the simulation is faithful to As′,φ.

4.2 Trapdoor Functions and Basic Cryptosystem

Here we recall the collection of LWE-based injective trapdoor functions given in [GPV08], which build on
ideas due to Goldreich, Goldwasser, and Halevi [GGH97]. For completeness, and due to some modifications
and enhancements, we present a full description of the collection along with proofs of correctness and security.
We then design a semantically secure cryptosystem around these trapdoor functions.

For consistency and simplicity of notation, we continue use n as the main parameter and hypothesize
` ≥ 1 simultaneous parity bits for LWE in n dimensions, with the understanding that this is based on a single
parity predicate for the LWE problem in n− `+ 1 dimensions by Lemma 4.1.

4.2.1 Generation

The first component is a special algorithm for generating a (nearly) uniform matrix A ∈ Zn×mq that serves
as the index of the public function gA, together with a trapdoor T made up of vectors whose lengths are
bounded by some relatively small L.2 Ajtai [Ajt99] gave the first such generation algorithm for odd q, which
yielded a bound L = m2.5; recently, Alwen and Peikert [AP08] improved the algorithm to yield a tighter

2As described in more detail in [Ajt99, GPV08], T can be seen as a full-rank set of short vectors in a certain lattice defined by A;
however, that interpretation is not too important for this work.
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bound L ≈ m for arbitrary q (recall that we use an even q in Theorem 3.3 and Lemma 4.1 for our particular
choice of hard-core functions).

Proposition 4.2 ([Ajt99, AP08]). For any positive integers n and q ≥ 3, any δ > 0 and m ≥ (2 + δ)n lg q,
there is a probabilistic polynomial-time algorithm that outputs a pair (T ∈ Zm×m,A ∈ Zn×mq ) such that:
the distribution of A is within negligible statistical distance of uniform over Zn×mq , T is nonsingular (over
the rationals), ‖ti‖ ≤ L = O(m logm) for every i ∈ [m], and AT = 0 mod q.

4.2.2 Evaluation

On index A and inputs s ∈ Znq , x ∈ Tm, compute

b = Ats/q + x ∈ Tm.

Round each entry of b to the nearest multiple of 1/q′ modulo 1, i.e., let b′ = bq′ · be/q′ ∈ Tm. Output
gA(s,x) = b′, which may alternately be represented as q′ · b′ ∈ Zmq′ .

Lemma 4.3. Let π : Znq → {0, 1}` be a function (e.g., π = h`) and φ be a distribution (itself possibly a
random variable) over T. If π is hard-core for LWEq,φ, then π is hard-core for the collection {gA} under the
input distribution where s ∈ Znq is uniformly random and x is drawn from φm.

Proof. The proof follows immediately from the fact that A is negligibly close to uniform, and that an
adversary given samples (ai, bi) from As,φ can round off each bi ∈ T to the nearest multiple of 1/q′ to
simulate the output b′ of gA(s,x).

4.2.3 Inversion

A standard counting argument reveals that a uniformly random matrix A ∈ Zn×mq is full-rank (i.e., its rows
are linearly independent modulo q) except with probability at most qn/2m, which is negligible in n when
m ≥ (1 + δ)n lg q. For the remainder of the paper we implicitly assume that such an A is full-rank.

Observe that A+ = At(AAt)−1 ∈ Zm×nq is the right inverse of A modulo q, because AA+ = In, the
n-dimensional identity matrix modulo q. (Note that the Gram matrix AAt is invertible modulo q because A
is full-rank.) Therefore, given y ∈ Tm where y = (Ats)/q mod 1 for some s ∈ Znq , we can recover s by
computing

(A+)t(q · y) = (AA+)ts = s mod q.

To invert b′ = gA(s,x) ∈ Tm given the trapdoor T, treat b′ as an element of Rm and compute

y = T−t · bTt · b′e mod 1,

and recover s from y as described above. (The exact value of x cannot always be recovered from b′ due to
rounding, but it is not needed in our applications.)

Lemma 4.4. Let q′ = q′(n) ≥ 2L
√
m and α = α(n) ≤ 1/(L · ω(

√
log n)). Then for any s ∈ Znq and

for x chosen from Ψm
β for any β ≤ α, the inversion algorithm on b′ = gA(s,x) correctly outputs s with

overwhelming probability over the choice of x.
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Proof. We start with a few facts that we later use to analyze the rounding step. First, let w ∈ Rm be such
that |wi| ≤ 1/(2q′) for all i ∈ [m]. Then for all i ∈ [m], we have

|〈ti,w〉| ≤ ‖ti‖ · ‖w‖ ≤ L ·
√
m/(2q′) ≤ 1/4

by the Cauchy-Schwarz inequality and by hypothesis on ‖ti‖ and q′. Second, suppose x′ ∈ Rm is distributed
according to Dm

β for some β ≤ α. Then for all i ∈ [m], the inner product 〈ti,x′〉 is distributed according
to Dr for r = ‖ti‖ · β ≤ 1/ω(

√
log n) by hypothesis on ‖ti‖, α, and β. By the tail bound on Gaussian

distributions, |〈ti,x′〉| < 1/4 except with probability exp(−Ω(1/r2)) = negl(n).
Now consider the inversion algorithm on b′ = gA(s,x) where x is chosen from Ψm

β . By the definition of
gA, there exist w ∈ Rm with |wi| ≤ 1/(2q′) for all i ∈ [m] and an x′ distributed according to Dm

β such that

b′ = (Ats)/q + x′ + w mod Zm.

Thus,
Tt · b′ = (AT/q)t · s + Tt · (x′ + w) mod L(Tt).

Observe that (AT/q) is an integer matrix by hypothesis on T, and L(Tt) ⊆ Zm because T is an integer
matrix. Therefore,

bTt · b′e = (AT/q)t · s + bTt · (x′ + w)e = Tt(Ats/q) mod L(Tt),

where the second inequality is with overwhelming probability over the choice of x′ by the bounds established
above. Finally, we see that y = T−t · bTt · b′e = (Ats/q) mod Zm, and the inversion algorithm recovers s
from y.

We remark that the inversion algorithm presented above works in parallel by rounding each entry of
Tt · b′ independently. An iterative rounding scheme akin to the “nearest-plane” algorithm of Babai [Bab86]
can also be used, and succeeds (with overwhelming probability) whenever α(n) ≤ 1/(L̃ ·ω(

√
log n)), where

L̃ = maxi‖t̃i‖ is the norm of the longest vector in the Gram-Schmidt orthogonalization of T. (The proof is
virtually identical to the one given above.)

4.2.4 Cryptosystem and Analysis

Using the above collection of trapdoor functions, a public-key cryptosystem based on GapSVPζ,γ (for γ
determined below) is conceptually straightforward: to encrypt, evaluate gA on a suitably random input, and
mask the message by a hard-core function applied to the input. To decrypt, invert gA to recover the input and
remove the mask.

In detail, set the parameters as follows. Let q = (ζ/
√
n) · ω(

√
log n) be even, let m = (2 + δ)n lg q for

some δ > 0, let q′ = 2L
√
m = poly(n), and let α = 1/(L · ω(

√
log n)). Recall that GapSVPζγ is equivalent

to GapSVPγ when ζ(n) = 2n/2, which implies log q = O(n). The other most interesting case is when
ζ(n) = poly(n), which implies log q = O(log n).

• To generate a key pair, sample a function index A (the public key) with its trapdoor T (the secret key).

• To encrypt, choose s ∈ Znq uniformly at random and x according to Ψm
β for β =

√
α2/2 + l2, where l

is distributed according to S(n−`+1)

α/
√

2(n−`+1)
. The encryption of message µ ∈ {0, 1}` is

(b′ = gA(s,x) , c = h`(s)⊕ µ).
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• To decrypt a ciphertext (b′, c) using T, invert b′ to find s and output h`(s)⊕ c.

The size of the public key A is O(mn log q) = O(n2 log2 q) bits, and the trapdoor T has size
O(m2 logm). The size of the ciphertext is dominated by b′, which requires O(m log q′) = O(n log q log n)
bits. By taking (say) ` = n/2, the ciphertext is therefore an O(log q log n) factor larger than the plaintext.

Proposition 4.5. The cryptosystem described above is complete and semantically secure, assuming that
GapSVPζ,γ is hard in the worst case for some γ(n) = Õ(n2 log q).

Proof. Correctness of decryption (with overwhelming probability over the encryption randomness) is imme-
diate by the fact that β ≤ α with overwhelming probability, and by Lemma 4.4. Semantic security (assuming
the worst-case hardness of GapSVPζ,γ) follows directly from the fact that h` is hard-core for gA under
the input distribution used for encryption, which follows by the sequence of Lemma 4.3, Lemma 4.1, and
Theorem 3.3. We may therefore take the underlying worst-case approximation factor γ to be

γ(n) = Õ(n/α) = Õ(L · n) = Õ(n2 log q).

Note that an improved bound L (or its Gram-Schmidt counterpart L̃ as described in Section 4.2.3 above)
yields a tighter approximation factor γ. For example, if L (or L̃) were improved to the asymptotically optimal
O(
√
m), the factor γ could be reduced to Õ(n1.5

√
log q).

4.3 Chosen-Ciphertext Security

To construct a cryptosystem that enjoys security under chosen-ciphertext attacks, we use a paradigm recently
proposed by Peikert and Waters [PW08], and additional perspectives due to Rosen and Segev [RS08]. We
discuss all the important technical ideas here, but defer a complete description and proof to the full version.

The main observation is that any k = poly(n) independently chosen functions gA1 , . . . , gAk
remain

one-way (assuming LWE is hard) even when evaluated on the same input s and independent x1, . . . ,xk
(respectively) from the appropriate error distribution φ. This is because the indices A1, . . . ,Ak and outputs
b′1 = gA(s,x1), . . . ,b′k = gA(s,xk) can be assembled simply by drawing k·m samples fromAs,φ. Similarly,
the function h`(s) remains hard-core given all these values, if it was hard-core for LWE in the first place.
(We remark that these facts were also observed independently by Goldwasser and Vaikuntanathan [GV08],
who construct similar chosen ciphertext-secure cryptosystems.) Essentially, the properties described above
constitute security under “correlated inputs,” as defined in [RS08].3

There is a simple (and black-box) chosen ciphertext-secure cryptosystem based on any collection of
injective trapdoor functions that is secure under a suitable form of input correlation (including the one
described above). Crucially, the proof of security requires the functions to be injective. More precisely,
the following properties must hold with overwhelming probability over the choice of function g from the
collection:

1. Each value y in the range has at most one legal preimage x under g.

2. Given any y and any candidate preimage x (and the description of g), one can efficiently check whether
x is the legal preimage of y (without knowledge of the trapdoor).

3. Given any y and the trapdoor for g, the inverter always finds the legal preimage x of y (if it exists).
3These observations can also be used to construct a relaxed kind of “all-but-one” function as defined in [PW08], but we find the

terminology of correlated inputs to be more natural in this context.
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These properties ensure that for any y (possibly constructed adversarially), the following two algorithms
behave identically: (1) on input x, y, accept if x is the preimage of y; (2) on input y and the trapdoor, run the
inverter to get some x, and accept if x is indeed the preimage of y. This identical behavior is the crux of the
security proof.

Making our functions injective. Note that in the above description of the trapdoor functions gA, any
value s ∈ Znq is a potential preimage of b′ ∈ Tm, under the (possibly very unlikely) error vector x =
b′ − (Ats)/q ∈ Tm. Therefore, we need to restrict the notion of a legal preimage and prove that it satisfies
the three properties listed above. In particular, must carefully deal with the behavior of the inversion algorithm
on arbitrary (possibly adversarial) values b′ ∈ Tm, as opposed to those generated honestly. We stress that in
our context, the error component x of the input need not be considered as part of the preimage, because it is
not needed to check validity, nor is it used in the encryption.

We now define the notion of legal preimages for a function gA, which depends on the parameter
α = α(n) ∈ (0, 1) associated with the collection, and some arbitrary t = t(n) = ω(

√
log n). Define the

absolute value |·| on T = [0, 1) as |x| = min{x, 1− x}, and extend it coordinate-wise to Tm.

Definition 4.6. We say that s ∈ Znq is a legal preimage of b′ ∈ Tm under gA if and only if every entry of∣∣b′ − (Ats)/q
∣∣ is strictly less than α · t.

Let q′ ≥ 1/(α · t). First, we observe that s is indeed a legal preimage of an honestly-generated
b′ = gA(s,x), with overwhelming probability over the choice of x from any Ψm

β where β ≤ α (this is
required for completeness of the cryptosystem). Indeed, for every i ∈ [m], we have |xi| < α · t/2 with
overwhelming probability by the Gaussian tail bound, and after the rounding step,∣∣b′i − bi∣∣ ≤ 1/(2q′) ≤ α · t/2.

Proposition 4.7. The three properties listed above are satisfied under Definition 4.6.

Proof. Property 2 holds trivially by definition. Property 1 follows by a simple fact that holds with all but
qn/2m = negl(n) probability over the choice of A: for every nonzero s ∈ Znq , (Ats)/q mod 1 has at least
one entry with absolute value greater than 1/4. (This can be seen by analyzing the probability for any fixed
nonzero s, then invoking the union bound.) Then for α < 1/(8t), every b′ has at most one legal preimage by
the triangle inequality.

For Property 3, we observe that for any b′ that has a legal preimage s, there is a vector w ∈ Rm such that
‖w‖ ≤

√
m · α · t and

b′ = (Ats)/q + w mod Zm.

Then by following the proof of Lemma 4.4 (without the randomized component x′), we see that the inversion
algorithm always correctly recovers s as long as α ≤ 1/(L ·

√
m · t) = 1/(L ·

√
m · ω(

√
log n)). Note

that the parameter α here is smaller than the one in Lemma 4.4 by a factor of
√
m, due to the “worst-case”

inversion requirement. This allows for an underlying worst-case approximation factor

γ(n) = Õ(n/α) = Õ(L · n ·
√
m) = Õ(n2.5 log1.5 q).
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