1

RFID Technology. Radio Frequency Identification (RFID, for short) is a rapidly growing technology en-
abling automatic objects identification. Each object is labeled with a tiny integrated circuit equipped
with a radio antenna, called Tag, whose information content can be received by another device, called

From Weaknesses to Secret Disclosure in a Recent
Ultra-Lightweight RFID Authentication Protocol®

Paolo D’Arco and Alfredo De Santis

Dipartimento di Informatica ed Applicazioni
Universita di Salerno, 84084 Fisciano (SA), Italy

e-mail: {paodar, ads}@dia.unisa.it

November 5, 2008

Abstract

A recent research trend, motivated by the massive deployment of RFID technology, looks at
cryptographic protocols for securing communication between entities in which al least one of the
parties has very limited computing capabilities.

In this paper we focus our attention on SASI, a new Ultra-Lightweight RFID Authentica-
tion Protocol, designed for providing Strong Authentication and Strong Integrity. The protocol,
suitable for passive Tags with limited computational power and storage, involves simple bitwise
operations like and, or, exclusive or, modular addition, and cyclic shift operations. It is efficient,
fits the hardware constraints, and can be seen as an example of the above research trend.

We start by showing some weaknesses in the protocol and, then, we describe how such weak-
nesses, through a sequence of simple steps, can be used to compute in an efficient way all secret
data used for the authentication process. More precisely, we describe three attacks:

e A de-synchronisation attack, through which an adversary can break the synchronisation
between the RFID Reader and the Tag.

e An identity disclosure attack, through which an adversary can compute the identity of the
Tag.

e A full disclosure attack, which enables an adversary to retrieve all secret data stored in the
Tag.

Then we present some experimental results we have obtained by running several tests on an
implementation of the protocol, in order to evaluate the performance of the proposed attacks.
The results confirm that the attacks are effective and efficient.

Introduction

Reader, without physical contact, at a distance of several meters.

RFID Tags can perform computations. They are usually divided in passive Tags and in active
Tags. The first ones do not have a power source. They receive energy for computation from the

*A preliminary version of this paper appeared in the Proceedings of AFRICACRYPT 2008, Lecture Notes in Com-

puter Science, Vol. 5023, pp. 27-39, 2008.

readers and can perform very simple operations. The second ones are powered by small batteries and
are capable of performing more significant and computational heavy operations.

As Ari Juels [9] has recently pointed out, the RFID technology "in essence ... is a form of computer
vision ... RFID has an advantage over even the most acute eyes and brain: it is in fact a form of
X -ray vision...RFID is poised to become one of the sensory organs of our computing networks”.

An important security concern associated to the RFID technology is the privacy of the Tag content.
Indeed, it is pretty much easy for anybody with technical skills to set up a device for reading the Tag
content. Neverthless, to preserve user privacy, only authorised RFID Readers should be enabled to
access the Tag content. At the same time, legal RFID Readers would like to be sure that the Tags
they are reading are authentic and have not been counterfeit.

An authentication protocol, which grants access to the Tag content only to a legitimate Reader
and, at the same time, guarantees the Reader of the identity of the Tag, is therefore required.

Based on the computational cost and the operations supported on Tags, authentication protocols
can be divided in classes. Using the terminology of [2], the full-fledged class refers to protocols requiring
support on Tags for conventional cryptographic functions like symmetric encryption, hashing, or even
public key cryptography. The simple class refers to protocols requiring random number generation
and hashing. The lightweight class refers to protocols which require random number generation and
simple checksum functions. The Ultra-Lightweight class refers to protocols which only involve simple
bitwise operations, like and, or, exclusive or, and modular addition.

State of Art. The interested reader can find an overview of the applications of the RFID technology
and of the main security issues in [10]. Moreover, [1] contains references almost to the full body of
research papers dealing with RFID technology and its challenges.

Concerning with the design of an authentication protocol for RFID Tags, a deeply studied approach
is the one provided by the H B+ protocol [11], which builds on the former H B protocol [4], introduced
to efficiently authenticate a human to a computer. The security of these protocols is based on the
difficulty of solving the learning parity with noise (LPN) problem [4]. Unfortunately, the authors of
[7] showed that H B+ is not resistant against certain active attacks. Since then, several variants of
H B+ have been proposed in the literature but almost all of them present some problems [6]. The
lastest version of an H B-like scheme, which is secure in an adversarial model comprising passive and
certain active attacks, has been recently proposed in [5].

Another recent and very promising approach to designing an authentication protocol for RFID Tags
can be found in [19]. In this paper, a ”light” hash function which can be used in RFID authentication
has been described. The security of such an hash function is related to the security of the Rabin public
key scheme. The idea is to compute an excellent numerical approximation for a short window of bits
in the middle of the ciphertext produced by the Rabin encryption function which uses a modulus of a
particular form, in such a way that computing these bits for an adversary is as hard as breaking the
full Rabin scheme.

On the other hand, a few lightweight and ultra-lightweight authentication protocols have appeared
in the literature during the last two years. For example, a series of ultra-lightweight authentication
protocols involving only bitwise operations and modular addition have been proposed in [15, 16, 17].
Unfortunately, after few months, the vulnerabilities of these protocols have been showed [13, 12, 3].

Our Contribution. We focus our attention on a new ultra-lightweight authentication protocol, recently
proposed in [2], to provide strong authentication and strong integrity data protection. We identify
three attacks, namely, a de-synchronisation attack, through which an adversary can break the syn-
chronisation between the RFID Reader and the Tag, an identity disclosure attack, through which an
adversary can compute the identity of the Tag, and a full disclosure attack, which enables an adversary
to retrieve all secret data stored in the Tag. The attacks are effective and efficient.

2 The Authentication Protocol

Let us focus on the protocol proposed by Chien in [2] and on its claimed security properties.

2.1 Description of the protocol

Three entities are involved: a Tag, a Reader and a Backend Server. The channel between the Reader
and the Backend Server is assumed to be secure, but the channel between the Reader and the Tag is
susceptible to all the possible attacks.

Each Tag has a static identifier, ID, a pseudonym, IDS, and two keys, K1 and Ks. All of them
are 96-bit strings. A string is represented as a sequence X[95]...X[0], from the most significant bit
to the least significant bit. The pseudonym and the keys are shared with the Backend Server which,
for each Tag with static identifier ID, stores in a table the tuple (IDS, K, K5). After each successfull
execution of the authentication protocol, the Tag and the Backend Server update such values.

The authentication protocol is a four-round protocol. To simplify the description we do not
introduce explicitely the Backend Server and will say that the Reader performs some computations.
However, the Reader just forwards the values received from the Tag to the Backend Server and gets
back the output of the computation the Backend Server performs.

The computations involve the following operations: & (bitwise exclusive or), V (bitwise or),
+ mod 2, and Rot(x,y), where z and y are two 96-bit values, and the Rot(-,-) operator shifts to the
left in a cyclic way « by z = f(y) positions!.

Let us look at Figure 1. The Reader starts the authentication protocol by sending an Hello
message to the Tag. The Tag replies with the pseudonym IDS. Then, the Reader chooses, uniformly
at random, two 96-bit random values n; and no, computes

A=IDS& K; &n

B = (IDS VKQ) —+ no

E = Rot(K1 ® ne, K1)

72 = ROt(Kg @nl,KQ)

C= (K1 ®K») + (K1 © K»),

and sends to the Tag the string A||B||C, the concatenation of A, B and C. The Tag, upon receiving
A||B||C, extract ny from A, ny from B, computes its own values

K| = Rot(K; ®ng, K1)
K2 = ROt(I(i@ 1’L1,£2)
C = (K ® K+ (K1 ® K),

and verifies whether C' = C. If the equality holds, i.e., the computed value is equal to the received
value, then the Tag computes and sends to the Reader the value

D = (K> +1ID) ® (K1 ® K») V K1)

and updates its pseudonym and secret keys. Similarly, the Reader, once D has been received, computes
his own value

D = (Ky+1D) & (K1 ® K») V K1),

checks whether D = D, and if the equality holds, updates the pseudonym and the keys shared with
the Tag.
The pseudonym and the keys are updated as follows: The Tag sets

IDSgq =1DS, Kioa =K1, Kzoa= Kz, o
IDS:(IDSold-FID)EB(TLQ@Kl), K=K, K=K,

INotice that the author of [2] provided no specification on how to actually compute Rot(-,-). Hence, in analysing
the protocol, we considered z = y mod 96, since this operation has been used before in the literature with this meaning.
Later on, in [18], the authors stated that, through a personal communication, they found out that the amount of the
rotation z should be computed as the Hamming weight (i.e., z is the number of bits equal to 1) of the string y. However,
it is immediate to see that the attacks we describe work for any possible specification of z as a function of ¥.

while the Reader sets
IDS,u=1IDS

IDS = (IDSoq + ID) ® (n2 ® K1)
K1 =K, Ky=K>.

The Reader stores the new tuple (IDS, Ky, K5). The Tag stores the two tuples, (IDS, K1, K>)
and (IDSeid, K1,01d, K2,014), because it might happen that the Tag updates the pseudonym and the
keys, while the Server does not. Such an event for example might occur if a simple communication
fault does not permit the Reader to get the value D, sent by the Tag during the 4-th round of
the authentication protocol. The old tuple is used as follows: any time the Reader gets IDS from
the Tag, the Reader/Backend Server looks for a tuple (IDS, K, Ks). If no entry is found, the
Reader sends another Hello message to the Tag and the Tag replies with IDSq19. Hence, even if the
Reader has not updated the tuple, the authentication protocol can be run by using the old one, i.e.,
(IDSo1d, K1,01d, K2,01d). Of course, if no match is found also at the second interaction, the protocol
fails.

Tag ldentification

Reader Tag

Hello

IDS

3. | Choose ni,ns

A=IDS® K1 Pdn

B = (IDS\/ K2) + no2
EIROt(K1 @’nz,K1)
EZROt(Kz@nl,Kz)

C = (K1 Kz) + (K1 ® K>)

AlBJ|C
Extract ni,ns
ﬁ = ROt(Kl D TlQ,Kl)
K> = Rot(K2 & n1, K»)
C=(K1®K2)+ (K1 @ K?2)
if C' = C then accept and send
D=(K:+1ID)® (K1 ® K2)V K1)
— —D— —_—
4. D=(K2+ID)EB((K1€BK2)\/K1)
if D = D then accept
Pseudonym and Key Update
Reader Tag

IDSo1q = IDS, K101 = K1, K2 010 = K2
IDS = (IDSo1q + ID) ® (n2 @ K1)
Ki=Ki,K; =Ko
IDSoq = IDS
IDS = (IDSo1q + ID) ® (n2 @ K1)
Ki=Ki,K:=Kz

Figure 1: SASI: Tag Identification - Pseudonym and Key Update.

2.2

Security Properties

The protocol is claimed to enjoy several security properties. In the following we briefly state such
properties and, using the wording of [2], we point out the reasons for which such security properties
should be guaranteed.

1.

Mutual authentication and data integrity. The Tag and the Reader can authenticate each other,
because only the genuine Reader who has the keys K1 and Ko can generate the consistent values
A||B||C, and only the genuine Tag who has the secret keys can derive the random numbers nq
and ns, and then generate the response D.

. Tag anonymity and resistance to tracking. The pseudonyms of each Tag is updated per suc-

cessful authentication, and the update operation involves random numbers. So the successive
pseudonyms from the same Tag look random, and the attacker cannot identify the identity of the
Tag and cannot track the Tag.

Data confidentiality. The calculation of each value of A, B, C and D involves at least two secret
values (including the keys and the random numbers); so, the static identifier and the secret
values are well protected from the eavesdroppers.

Forward security. The forward security property means to protect the past communications
from a Tag even assuming the Tag be compromised some day. [...]If an attacker compromises a
Tag and acquires the two entries of (IDS, K1, K5) some day, the attacker still cannot infer the
previous secret data and keys of the same Tag, because each of the updating equations and the
calculations of A||B||C, and D involves at least two random values. So, the attacher cannot
compromise the past communications from the same Tag.

Explicit key confirmation and resistance to de-synchronization attack. [...] The authenticity and the
integrity of random values nq, ns are ensured and the potential next keys K1, Ko are explicitely
confirmed, because the calculations of C and D explicitely involve these values. So, the attacker
cannot change the data without being noticed. [...] The attacker can intercept D sent by the Tag
to make the Tag updates its local data while the Reader does not.]...] This cannot cause trouble
to the scheme, because the Tag keeps two entries of secret data [...] and can still authenticate
with the Reader using the old value for this situation.

Resistance to replay attack. The attacker may replay the response D from the Tag. However,
the Reader will find the invalidity of the replay value, because the challenge random numbers nq
and ny from the Reader are different and independent each session. Another replay scenario is:
an attacker may intercept the data D in one session, and then replay an old message A|/B||C
(corresponding to an old IDS) from the Reader. But, this scenario will not change any internal
state of the Tag, and the attacker gains no secret information nor de-synchronise the Reader
and the Tag.

Resistance to man-in-the-middle attack. The man-in-the-middle attack does not work because
[...] any modification to the values A and B will cause, from the attacker’s point of view,
unpredictable changes on the values C and D, which makes the attacker hard to change the data
without being noticed.

Resistance to disclosure attack. [...] an attacker can slightly modify the challenge from the Reader
and then infer partial information from the response of the Tag. However, the attack does not
work [...] because any slightly modification on the trasmission will be detected.

Unfortunately, as we will show in the following sections, even if the arguments to support each of
the security property seem reasonable, an adversary can efficiently break the authentication scheme
in such a way that none of them is preserved.

3 De-synchronisation

We start by proposing, in this section, a de-synchronisation attack.

Let Adv be an adversary who controls the channel between the Reader and the Tag. Adv might
simply look at and store the messages exchanged between the parties before forwarding them cor-
rectly. Such a behaviour models passive attacks. As well as, Adv might intercept/delay/inject/modify
messages as he likes. Such a behaviour models active attacks.

In our attack, Adv, in a first stage just looks at an honest execution of the authentication protocol
and stores the messages Hello, IDS, A||B||C and D the parties send to each other.

Then, in a second stage, Adv interacts with the Tag. Roughly speaking, Adv resets the Tag to
the state in which the Tag was at the time of the interaction with the Reader and, then, by using the
transcript of the execution of the authentication protocol, induces the Tag to accept a new sequence
A’||B’||C’. Such a sequence drives the Tag to overwrite the new tuple (IDS, K, K2), computed at
the end of the honest execution. If Adv succeeds, then Tag and Reader are de-synchonised. The new
sequence A'||B’||C’ is constructed by computing C’ as a modification of C and by looking for an
appropriately chosen A’, obtained by flipping a single bit of A. The value B stays the same. The
attack is described in Figure 2.

Al

Adv's Computation. After looking the values IDS, A||B||C, and D, it performs
the following steps:

1. Computes C' = C +2° and sets j = 0.

2. Sends the Hello message to the Tag and gets back the (new) IDS, com-
puted at the end of the execution Reader-Tag of the authentication protocol.
Indeed, the Tag has updated (IDS, K1, K>).

3. Sends again the Hello message to the Tag and gets back the (old) IDS, the
one used during the execution Reader-Tag of the authentication protocol.

4. Computes A’ by flipping the j-th bit of A and sends to the Tag A’||B||C".

5. If the Tag accepts and replies with D’, the attack has succeeded and Adv
terminates. Otherwise, if j < 96 then Adv sets j = j + 1 and repeats from
step 2., else Adv sets C = C — 2% and j = 0 and repeats from step 2.

Figure 2: SASI: De-synchronisation Attack.

As we will show in a while, the procedure always halts, i.e., there is a j for which the Tag accepts
the message A’[|B||C’, where C' is computed either as C' = C + 2° or as C' = C — 2°. Moreover, it
succedes on average after 96.5 interactions. When the message has been accepted, the Tag updates
the pseudonym and the keys (IDS, K1, K2), while the old tuple (IDSoia, K1,01d, K2,014), used in the
interaction with Adv stays the same. At this point, Reader and Tag have been desynchronized. The
tuple held by the Reader has been overwritten in the Tag’s memory. Hence, they do not share a tuple
anymore!

Why does the attack work? Notice that, by definition
A =IDS ¢ K| ®ni.
By flipping a bit in A, Adv implicitly flips a bit of ny. On the other hand, n; is used to compute

E = ROt(KQ D ’I’Ll,K2>.

Hence, by flipping a bit of ni, Adv flips a bit of K, but he does not know which one, since K is
unknown. Moreover, it is easy to see that, given two different positions, ¢ and j, in ny, by flipping the
corresponding bits, the bits flipped in K> lie in two different positions i’ and j’. In other words, any
time Adv flips a bit in ny, he flips a bit in a different position of Ks. Since,

C= (K@ Ks) + (K| ® K»),

and the values of K1, K, and K» stay the same, Adv, by flipping a bit of ny, changes the value of
(K1 @ K>). If this value is modified in the i-th position, which goes from 1 to 0, then C' =C-2".0n
the other hand, if it changes from 0 to 1, then C' = C + 2. For easiness of presentation and due to
the role that the first position of the strings plays in the identity disclosure attack, we have presented
the desynchronisation attack in Figure 2 assuming that Adv computes C =C+20

Notice that, Adv does not know a-priori if, when he succeedes in changing K>[0], he gets C + 2°
or C — 20, Therefore, the attack, in order to find a sequence A’||B||C’, accepted by the Tag, needs
to be applied twice: once, let us say, during the first round, by setting C’ = C + 2° and, if going
through all possible A’ no sequence is found, one more time, during the second round, by setting
C’ = C — 29 and trying again. Eventually, the procedure halts because, as we have seen before, at
each iteraction a different position of K is flipped, and going through all possible A’ means trying all
possible variations of K in which a single bit is flipped. Hence, there exists a certain iteraction, say
the j-th one, which flips Ko [0] and produces either C + 2% or C — 2°. During the first round, when
the j-th iteraction occurs, if C has been properly set, the Tag accepts the sequence A’||B||/C’ and
replies with D’. Otherwise, the Tag will accept at the second round when the same iteraction occurs
and C' has been properly set.

Since A is a uniformly distributed random 96-bit string, Adv has to try on average % =96.5
times to find the position of A which needs to be flipped. However, the above de-synchronization
attack can be improved. Indeed, notice that,

295 mod 296 = —29 mod 2.

Hence, it holds that
C + 2% mod 2% = C — 2% mod 2.

Therefore, if Adv computes in step 1. of the procedure given in Figure 2 the value C’ = C + 2% =
C — 29, then he does not need to consider the two cases, i.e., C' = C + 2% and C' = C — 29,
Each interaction counts for two interactions and the overall number of interactions is reduced. More
precisely, Adv has to try on average 25 = 48.5 times to find a suitable sequence A’||B||C’ for the
Tag.

Another important observation, which will play a key role in the next section, is the following:
once a sequence A’||B||C’ which the Tag accepts is found, Adv discovers the value used in the rotation
Rot(Ks @ ny, K») to compute Ko. Indeed, if the sequence A’||B||C’ has been computed by flipping
the bit A[j], then the value z of the rotation is exactly 95 — j.

4 Identity Disclosure

By building on the above de-synchronisation attack, in this section we show how Adv can compute
the static I D stored in the Tag.

We start by noticing that, the same argument used before by modifying A and C, in order to
find a sequence the Tag accepts, can be applied to every position, i.e., we can compute a sequence
A’||B||C’ by working on any one of C[95],...,CJ0]. Indeed, all Adv has to do when working on the
i-th position, with i € {0,...,95}, is to set C' = C =% 2%, and then look for an A’ such that the
sequence A’||B||C’ is accepted.

Moreover, notice that, once Adv has received a reply D’ from the Tag, then he can compute a new
forged sequence by working on any position of C in 1.5 interactions on average. Indeed, Adv knows
the amount z of the rotation and, hence, he knows ezxactly in which position of A he has to flip a bit

in order to add or subtract 2¢ to C. Therefore, Adv just needs to check if, by flipping a certain bit in
A, hegets C'=C+ 2 or C'=C — 2%

Let us represent the static identifier ID as ID[95]...ID[0]. The key idea in the attack is to collect
pairs of values D, D’, where D’ is the value sent from the Tag to Adv as a reply to a forged sequence
A’||B||C’, and to analyse the differences given by D @ D’. As we will show in a while, the differences
give to Adv information about the ID and some other values used in the computation both by the
Reader and the Tag. Notice that the attack described in this section does not enable Adv to compute
the MSB of the ID, and gives two possible candidate values for the ID (and for K5).

We will proceed as follows: we first describe an identity disclosure attack which works only in
a special case. Then, we show how to turn the general case to the special case through a pre-
processing stage. The identity disclosure attack for the special case is given in Figure 3. We assume
that IDS, A||B||C,D are the transcript of an honest execution Adv has looked at, and that the
desynchronisation attack, described in Figure 2, in order to compute the amount z of the rotation
Rot(z, z) has been applied. Notice that, w.r.t. the description given in Figure 2, for the aforementioned
efficiency reasons, in step 1. Adv computes C = C + 2% instead of C = C + 2°.

Adv's Computation. After looking the values IDS, A||B||C, and D, and com-
puted the amount of the rotation z, it performs the following steps:

1. Let i =0.

2. Using the knowledge of z, computes the two sequences A’||B||C!, where
A’ is obtained by flipping in A the bit A[(i — z) mod 96] and the values
C' is either C + 2% or C — 2.

3. Interacts with the Tag and starts a section with the old IDS. Sends one
of the sequence A’||B||C? to the Tag. If it is not accepted, starts a new
section with the old IDS and sends the second one. One of them will be
accepted.

4. The Tag sends back to Adv, as a reply to one of A?||B||C!, a value, say
Di.

5. From D’ and D, the value the Tag sends to the Reader during the honest
execution of the authentication protocol Adv has looked at, Adv computes
the i-th bit of the static identifier as

ID[i] = D[i + 1] ® D'[i + 1]. (1)

6. If i <95, sets i =i + 1 and repeats from step 2.

Figure 3: SASI: Identity disclosure attack.

When (and why) does the attack of Figure 3 work? Notice that, by definition
D = (K2 + ID) ® (K1 ® K2) V K).

Let us denote with F; the value of K, obtained when the Tag accepts A’||B||C?. The value K; is
equal to K in all bits but the i-th one, which is flipped. Then, it results

D' = (K, +ID) & (K1 & K2) V EK)).

Therefore, _
Da® D’ = (Ky+ID)® (Ky+ ID).

Let us look at the i-th position. It holds that
D[] & D[i] = (Ka[i] + ID[i] + ¢;) & (K] + ID[i] + ¢b),

where, for i = 0,...,95, we denote with ¢; and c! the carries from the sum of the bits of the previous
positions, i.e., ¢; is the carry generated by the sum Ks[i — 1] + ID[i — 1] + ¢;—1 and ¢! is the carry
generated by the sum Ky [i — 1]+ ID[i — 1] 4 ¢;_1. Since there is no carry in the 0-th position, we set
co=c)=0.

In general, for 7,5 = 0,...,95, we denote with c,’ the carry generated by the sum Ko’ [0 —1] +
ID[i — 1] + cg_l and we set, for j = 1,...,95, cg, = 0. Moreover, notice that, in the i-th iteration

which aims at computing the i-th bit of ID, for s = 0,...,i — 1, since Ka[s] = K; [s], it holds that
¢s+1 = ¢, 4. In particular, observe that ¢; = cl.

Let us assume that ¢; = ¢ = 0. By definition, the bits K5[i] and ?; [i] are one the complement
of the other. Hence, either if ID[i] = 0 or ID[i] = 1, it holds that D[i] & D*[i] = 1. On the other

hand, if ID[i] = 0, it holds that ¢;31 = ¢i,; = 0 and, hence, since K»[i + 1] = E[z + 1], that
DJi + 1] ® D[i 4 1] = 0; while, if ID[i] = 1, then either (K5[i] + IDJ[i]) or (Ksi] + ID[i]) produces a
carry to the next position in the computation of D or of DY, respectively, i.e., ¢;41 # ¢t ;. Therefore,
DJ[i + 1] ® D*[i + 1] = 1. Hence, equation (1) holds.

By giving a closer look at the identity disclosure attack presented in Figure 3, it comes out that
it works surely for the LSB of the ID, i.e., to compute ID[0]. However, in general, it does not work:
for example, if ¢; = ¢! = 1 and ID[i] = 0, by computing ID[i] through equation (1), we draw a
wrong conclusion! Equation (1) can be applied successfully to compute the bits of ID if, at the i-th
iteraction, for i = 1,...,95, it holds that ¢; = ¢! = 0, i.e., there is no carry from the sum of the
previous bits. The carries are all zero if ¢; = 0 and, for j = 1,...,95, it holds that ID[j] # Ks[j].

Indeed, in this case we get, for j = 0, .. 599, ¢; = 0. Moreover, it is immediate to check that F;,
when summed up to ID, produces a carry ci(=¢;) = 0.

Besides, notice that the attack described in Figure 3, by reversing equation (1), i.e., computing
ID[i] = 1 —Dli + 1] @ D*[i + 1], can be applied when, at the i-th iteraction, for i = 1,...,95, it
holds that ¢; = ¢; = 1. Again, the carries are all one if ¢; = 1 and, for j = 1,...,95, it holds that,
ID[j] # Ks[j]. Indeed, in this case we get, for j = 1,...,95, ¢; = 1. Moreover, as before, F;, when
summed up to ID, produces a carry ci(= ¢;) = 1.

We will refer to the configuration of the strings ID and K5 in which
ID[j] # Kalj], for j =1,...,95,

as to the special case.

We have identified a method, which we present in the following, to reduce the general case to the
special case. Once the special case has been reached, we compute, up to the MSB, two possible values
for ID (and, resp., K2). The first one is obtained assuming that ¢; = 0 (and, hence, ¢; = ¢! = 0,
for i = 1,...,95) and applying the procedure described in Figure 3. The second one is computed
assuming that ¢; = 1 (and, hence, ¢; = ¢t = 1, for i = 1,...,95) and simply flipping the bits of 1D
(and, resp., K2) obtained in the previous case. Actually, some more details have to be taken into
account, but we will deal with them in the following parts of the paper.

Roughly speaking our reduction works as follows: in the attack described in Figure 3, Adv eaves-
drops an execution and stores A, B, C and D. Then, he sends A%, B, C° and gets D from the Tag.
To retrieve ID[0], Adv computes D @ D°. As we will show in a while, Adv, from this string also gets

o
information about the condition ID[j] # Ks[j], for j = 1,...,95. If D @ D° says that the condition
is not met yet, Adv, starting from A,B, C, constructs a new pair of forged sequences, let us say
A, B, C, and AY, BY, CY gets back Dy and DY, respectively, and checks Dy & DY. Adv repeats the
process by constructing new pairs of forged sequences, starting from the ones used at the previous

iteration, as long as the condition is not met. We will show that, in the worst case, the process requires
94 iteractions but, on average, it ends after 47.5 iteractions.

Let us start by presenting a lemma which characterizes the structure of D@®D?, if certain conditions
are satisfied. Let denote by 096—71" a 96-bit string composed of 96 — r bits equal to 0 followed by

bits equal to 1. We remind the reader that D and D° are such that K and fg differ only in the least
significant bit, i.e., 72[0] =1 — K3[0]. The following result holds:

Lemma 1 D@ D0 = 0%-"1", where 1 < r < 96, if and only if the following conditions hold:
1. ID[0] = 1.
2. Forj=1,...,r—2, K5[j] # ID[j].
3. Ifr <96, then Kolr — 1] = ID[r — 1].

Proof. (Only if part). The condition D & DY = 091" can be graphically depicted as follows:

D . (Ka[r] + ID[r] + cr) (Kolr =1+ IDr — 14+ cp_q) ... (Ko[l]+ID[1]+ec1) (K2[0] + ID[0])
® ® ® ®

Do . (Kol + 100 + %) (Kolr— 1+ 1Dr—1+0_) ... (Kol+1Dal+cQ) (Ka[0] + 1D[0)
pDeD= 0...0 0 1 1 1

Concerning with point 1., by definition K»[1] = Fg[l] and by assumption D[1] & D°[1] = 1. The
latter result is possible only if one (and only one) of the two strings D and D?, in the 0-th position,
has generated a carry to the next position, i.e. ¢; #). Since K»[0] # fg [0], then ¢; # ¢ implies
ID[0] = 1.

Point 2. can be shown arguing by contradiction. For j = 1,...,95, by definition it holds that
Rslj] = Kalj]. If were Ka[j] = ID[j] = 0 for some j € {1,...,r — 2}, then it would be ¢;4; =
9,1 = 0 and, hence, D[j + 1] ® D°[j + 1] = 0, which contradicts the assumption. Similarly, if
were Ks[j] = ID[j] = 1 for some j € {1,...,r — 2}, then it would be ¢;11 = cJ,; = 1 and, again,
D[j +1]®D%j +1] =0.

Finally, point 3. follows from the same argument we have used to prove point 2. The equalities
D[r—1]@®Dr —1] = 1 and D[r] @ D°[r] = 0 hold only if K5[r — 1] = ID[r —1]. Indeed, Ko[r — 1] #
ID[r — 1] would keep propagating the carry to position » and would result D[r] & D°[r] = 1.

Hence, if D @ D? = 09717, with 1 < r < 96, then points 1.,2. and 3. hold. By using a similar
reasoning, we prove the ”if part” of the lemma.

(If part). Let us assume that ID[0] = 1, that for j = 1,...,r — 2, K»[j] # ID[j], and that, if
r < 96, then Ks[r — 1] = ID[r — 1]. Then, the following holds:

Since by assumption Ko[0] # Fg[O], then D[0] ® D°[0] = 1. Moreover, ¢; # cJ.

Then, since for j = 1,...,r — 2, by assumption K»[j] # ID[j], by definition K5[j] = Kg[j], and
we have shown that c¢; # ¢}, then, for j = 2,...,r — 1, it holds that ¢; # c?. This implies that, for
j=1,...,7 — 2, it results D[j] ® D°[j] = 1.

By assumption Ks[r — 1] = fg [r —1]. If Ks[r — 1] = ID[r — 1] = 0, then the propagation of the
carry to the next position ends, i.e., ¢, = ¢2 = 0, and it holds that D[r — 1] @ D°r — 1] = 1 and
D[r] ® D°[r] = 0; else, i.e., Ko[r — 1] = ID[r — 1] = 1, in both D and D° the (r — 1) — th position
generates a carry to the next position, i.e., ¢, = ¢? = 1, and, again, it holds that D[r—1]&D%[r—1] = 1
and D[r] ® D[r] = 0.

Finally, it is immediate to see that, for j = r +1,...,95, it holds that ¢; = CS-. Indeed, ¢, = ¥
and by definition, for j = r + 1,...,95, Ks[j] = fg[j]. Therefore, for j = r +1,...,95, it results
DIj] & DOJj] = 0.

In conclusion, if points 1.,2. and 3. are satisfied, then D @ D% = 09-71", with 1 < r < 96. [

10

We point out that the above characterization is independent of the value of K2[0].

In order to reduce the general case to the special case, we need to change in a suitable way the
form of the strings we get back from the Tag. To this aim, notice that, interacting with the Tag in a
certain way, we can extend the substring of 1s in D @ DP. Indeed, by flipping in K and fg the r-th
bit, the equalities Ks[r — 1] = ID[r — 1] and 72 [r — 1] = ID[r — 1] are broken. Hence, it is extended
the substring of D or D° which propagates the carry ¢; or ¢?, generated in the 0-th position, and it
holds that D @ D® = 095—%1%, where ¢ > r. More precisely, the following result holds:

Lemma 2 Let D and D° such that D @ D° = 09717, with 1 < r < 96. Let D, = (Ko, + ID) ®
(K; @ Ka) V Kp) and DY = (F;r +ID) & (K1 @ Ka) V K1) such that Ko, (resp., Fgm) is equal
in every position to Ko (resp., fg) but in position r — 1, in which the bit has been flipped, i.e.,
Ko [r—1]=1— Ka[r — 1] (resp., fgw[r —1]=1- Fg[r —1]). Then,

D, ® D? = 096_t1t, where r < t < 96.

Proof. We show that D, and D9 satisfy conditions 1.,2. and 3. of Lemma 1 for a certain integer
t > r. Hence, the result follows. More precisely:

Since D @ D° = %17, with 1 <7 < 96, due to the ’only if part’ of Lemma 1, it holds that
ID[0]=1,for j=1,...,r —2, K5[j] # ID]j], and Ks[r — 1] = ID[r —1].

By definition, K» . is equal in every position to Ky but in the (r :1)—th one, in which the bit has
been flipped. Therefore, for j = 1,...,7 — 2, it holds that K ,[j] = K2[j]. Since for j =1,...,r —2,
Ks[j] # ID[j], it follows that, for j =1,...,7 — 2, Ko ,[j] # ID[j].

Then, by definition, Ko ,[r —1] # ID[r —1]. Finally, either there exists an integer r < t < 96 such
that Ko [t —1] = ID[t — 1] or let us set ¢ = 96 and it holds that Ko ,[j] # ID[j], for j =r,...,t — 1.

Applying the ’if part’ of Lemma 1, we get that D, & DY = 09~¢1¢ for r < ¢ < 96. [

4.1 A Simplified Attack

We are now ready to describe the whole attack. To simplify the analysis and the description, w.l.o.g.,
let us assume that D @ D® = 0%-"1", with » > 1. We will remove such an assumption in subsection
4.3. The attack works in two phases: Pre-processing Stage and Disclosure Stage.

Pre-processing Stage. Adv gets efficiently a pair of sequences A,||B||Cs, D and A?||B||C?, D° such
that Dy @ D? = 196, To this aim, he proceeds as described in Figure 4.

Notice that step 2. takes on average 1.5 iteractions. Indeed, Adv, before sending the sequence
A°||BJ|CY, has computed the amount z of the rotation. Hence, he knows exactly which bit of A has
to flip in each iteraction. On the other hand, step 4. takes almost 1 interaction. More precisely, only
the first time, to compute AY||B||C%, Adv has to check whether C? has to be set equal to C,. + 2° or
equal C,. — 29, Then, for any other sequence A?||B||CY, constructed from A;||B||C;, Adv has to use
the same operation used to set C2, i.e., sum by 2° or subtraction by 2°. Indeed, it is not difficult to see
that Adv, moving from A,||B||C, to A;||B||C;, does not modify the first r bits of C,, in constructing
C; from C,. Overall the procedure requires £-1.5+ (¢ — 1) - 14 1.5 interactions, where the parameter
¢ represents the number of positions in which K5 and ID are equal. Since the strings are uniformly
distributed, it holds that, on average, £ = 94/2. Indeed, by assumption, D®D° = 09717 with r > 1.
Let us assume that r = 2 (worst case). Then, the preprocessing routine could flip every position j,
where 1 < j < 94, in case the event ID[j] = K»[j] occurs. Overall such positions are 94. Notice that
we do not consider position 95 because the procedure of Figure 3 cannot determine the MSB.

Disclosure Stage. Once Adv has a pair of sequences A,||B||/Cs, Ds and AY||B||C?, DY such that
D, ® DY = 1%, he assumes that ¢c; = 0 and mounts the identity disclosure attack described in Figure
3. More precisely, Adv, fori = 1,...,94, waits for D’ from the Tag as a reply to a sequence A’||B||C%,

11

Adv's Computation. Adv has eavesdropped and stored the values IDS, A|/B||C,
and D. He has constructed A°||B||C?, sent the sequence to the Tag, and got
back D such that D @ D% = 09717, with 1 < r < 96. Hence, he applies the
following steps:

1. Let F = {r}.

2. Constructs and sends to the Tag a new sequence A, ||B||C,, modifying
A and C, in order to flip the r-th bit of Ks.

3. The Tag replies with a value D,..

4. Then, Adv sends to the Tag a new sequence A?||B||CY, constructed from
A,|B||C,, in order to flip the first bit of the new Ko, i.e., K2[0].

5. The Tag replies with D?.

6. Adv computes D, ® D? = 096-11¢, where t > r. If t = 96, then Adv has
finished; otherwise, Adv repeats from step 2. working on the ¢-th bit, that
is, setting r = ¢, A||B||C = A,||B||C,, D =D,, and F = F U {t}.

Figure 4: Pre-processing for the identity disclosure attack.

constructed from A,||B||Cs. Once received D%, he computes the bit in the i-th position of ID using
equation (1), i.e., ID[i] = Dy[i + 1] @ D[i + 1].

Notice that, due to Lemma 1, it holds that ID[0] = 1. Hence, if ¢; = 0, then K5[0] = 0. Through
the pre-processing stage the string Ko has been turned in the string Ko s such that, Ko s[0] = K2[0] =
0, and for j = 1,...,95, the value Ko ,[j] # ID[j]. Applying the identity disclosure attack of Figure
3, Adv computes (up to the MSB) ID; and, as a consequence, f%. The procedure requires 95 - 1.5
interactions to compute the first 95 bits of the ID.

Then Adv assumes that ¢; = 1. Lemma 1 implies that K2[0] = 1 and, due to the configuration of D
and K 4, the carry is propagated until position 95. Hence, Adv computes the second pair of possible

values by flipping the bits of ID; and K, , one by one, i.e., for j =1,...,94, ID[j] = 1 —IDq[j] and
f2,3[-]‘] :1_F2,s[j]' - -
Finally, notice that, K» has been modified in the pre-processing stage, in order to get K s, such

that, for j = 0,...,95, ID[j] # K»[j], i.e., some bits of Ko have been flipped. However, we know
exactly in which positions the bits have been flipped. Such positions have been collected in F' during

the preprocessmg stage Hence, from the two strmgs K 2. and K, ,, we compute the two possible
strings K 5 and K 9, by reversing the flipped bits in K 2.5 and K 2.5

We stress that the above method does not enable Adv to compute the MSB of the possible ID
(and of K5). Therefore, Adv has to guess such bits.

Remark. The whole attack is effective and efficient. It requires (on average) 48.5 interactions with
the Tag to find out the amount z of the rotation, 118 interactions (on average) for the pre-processing
stage, and 142.5 interactions to compute the first 95 bits of the ID. Therefore, summing up, the
whole identity disclosure attack requires, on average, 48.5 + 118 + 142.5 = 309 interactions.

12

4.2 A Toy Example: Part One

To make things clearer, let us present a toy example. It works on 7-bit strings. All sum operations
are performed mod 27. The left cyclic rotation is given by Ky mod 7. Let

ID =1011011, IDS =1001110, K; =1100101, and K = 1001101.

Eavesdropping an execution. Assume that the Reader chooses uniformly at random n; = 1010111 and
ny = 1101001. It follows that:

A = 1111100, B = 0111000, K; = 1100000, K5 = 0011010, and C = 0101100.
Hence, the sequence the Reader sends to the Tag is
A||BJ||C = 111110010111000}|0101100,

and gets back from the Tag the string D = 0011101.

Computing the amount of the rotation. Adv, by using the transcript of the above execution, tries
to compute a new sequence A’||B||C’ which is accepted by the Tag. Adv attacks the most significant
bit of C. Hence he sets C’ = 1101100 and looks for the correct A’. It starts by modifying the bit
in the 0-th position of A, i.e., computes A’ = 1111101. Unfortunately, the sequence is not accepted.
Therefore, it keeps going and, at the 7-th interaction it sends the sequence

A’||B||C’ = 0111100][0111000||1101100,

which is accepted by the Tag. Hence, Adv deduces that the amount of the left cyclic rotation is equal
to 0.

Pre-processing stage. Then, Adv starts working in order to retrieve the ID. He focuses on the first
bit. He sets C° = C + 2° = 0101101 and A° = 1111101 but the sequence is not accepted by the Tag.
Hence, he tries with C° = C — 2% = 0101011. In this case, the sequence

A%||BJ||C® = 1111101[0111000/|0101011,
is accepted and the Tag replies with the string D® = 0011110. Then, Adv computes
D & D = 0000011,

Since the string is different from 17, then Adv executes the procedure given in Figure 4.

Adwv, in order to extend the substrings of 1’s, implicitely flips the second bit of K. More precisely,
starting from A||B||C, he constructs a new sequence by flipping the second bit of A to get As and
computing Cs = C £ 2'. The sequence

A,||B||Ce = 1111110]|0111000|0101010

with Cy = C — 2! is accepted. The Tag replies with Dy = 0011011. Therefore, Adv, using Az||B||Ca,
constructs a new sequence AY||B||CY, by flipping the first bit of A and computing C§ = C5 — 2°.
The sequence

AS||BJ|CS = 1111111//0111000//0101001

is accepted. The Tag replies with DS = 0011100. Hence, Adv computes
D, @ DJ = 0000111.

Since the string is still different from 17, then Adv repeats the procedure starting from the sequence
A;||B||Cs and flipping the third bit of As. The transcript of the next successful executions is given
Figures 5 and 6.

13

A;||B||C3 = 1111010(|0111000/[0100110 and D3 = 0011111
AJ||B||CY = 1111011]|0111000//0100101 and D% = 0010000
A,4||B||C4 = 1110010||0111000//0011110 and D4 = 0000111
AY||B||CY = 1110011||0111000/|0011101 and DY = 0011000
A;||B||C5 = 1100010||0111000//0001110 and Djs = 0110111
A?||BJ||CY = 1100011]|0111000/|0001101 and D = 0001000
Ag||B||Cs = 1000010[|0111000[|1101110 and Dg = 0010111
AJ||B||CY = 1000011|[0111000/|1101101 and DY = 1101000

Figure 5: Pre-processing in the toy example.

D, @ DY = 0000111
D3 @ D§ = 0001111
D, DY =0011111
D; ® DY = 0111111
D¢ & DY = 1111111

Figure 6: Pre-processing in the toy example.

Disclosure stage. At this point, Adv can mount the identity disclosure attack given in Figure 3 by
using as starting sequence Ag||B||Cg = 1000010]|0111000||1101110. The transcript of the successful
execution is given in Figures 7 and 8.

Using the values listed in Figure 8 and the set of positions F' = {2,3,4,5,6} in which K5 has been
flipped, Adv gets the 8 pairs of values defined by

(IDy, K,) = (x011011, 011010),
and)
(IDy, K,) = (¥100101, ¥100101),

where * denotes the unknown value of the bit and can be 0 or 1. It is immediate to check that the
pair (1011011,0011010) is the right one.

4.3 The General Attack

To simplify the description, in presenting our attack, we have assumed that D @ D% = 09-"1", for an
integer 1 < r < 96. Due to Lemma 1, such an assumption implies that 7D[0] = 1. If D @ D° = 0%°1,
then it holds that ID[0] = 0. We can prove similar results to the ones given in Lemma 1 and Lemma

Ag||B||Cg = 1000010//0111000[[1101110 and Dg = 0010111
AY||B||C§ = 1000011[0111000[1101101 and DY = 1101000
Al||B||C} = 1000000(|0111000|[1110000 and D} = 1101001
A2||B||C2 = 1000110(|0111000|[1110010 and D32 = 0010011
A}||B||CE = 1001010|/0111000|[1110110 and D = 1101111
A}||B||C¢ = 1010010|/0111000|[1111110 and Dg = 1100111
A2||B||Cg = 1100010|/0111000|[0001110 and Dg = 0110111

Figure 7: Identity disclosure in the toy example.

14

Dg @ DY = 1111111
Dg & D = 1111110
D¢ @ DZ = 0000100
Dg & D = 1111000
D¢ ® D¢ = 1110000
D¢ @ D2 = 0100000

Figure 8: Identity disclosure in the toy example.

2, and, as pointed out before, the attack just needs a small refinement in the pre-processing stage.
More precisely, it holds:

Lemma 3 D @ D° = 091 if and only if ID[0] = 0.

Proof. (Only if part) Since D[1] @ D°[1] = 0 and, by definition, K»[1] = fg[l], then it must be
c1 = . But, by definition, K»[0] # fg[O]. Hence, c¢; = ¢?(= 0) only if ID[0] = 0.

(If part) Let ID[0] = 0. Since, by definition, K»[0] # fg[O], then D[0] & D°[0] = 1. Moreover,
c1 = ¢ = 0. Then, by definition, for j = 1,...,95, Ka[j] = FS[J] Therefore, for j = 1,...,95, it
holds that D[j] ® D°[j] = 0.

| |

Notice that Lemmas 1 and 3 imply that D @ D is a sequence of 0’s followed by a sequence of 1’s,
that is, D ® D% = 09°~71" with 1 < r < 96. Indeed, if ID[0] = 0, then D & D® = 0%°1. On the other
hand, if ID[0] = 1, then D @ D® = 0%5~"1", where the number > 1 of bits equal to 1 on the right
side of the string depends on properties 2. and 3. of Lemma 1.

It is easy to see that D @ D7 has a similar form. More precisely, for 5 = 1,...,95, it holds that
D@DI = 097791707 where 1 < r < 96 — j. Indeed, for £ = 0,...,j — 1, by definition K[¢] = K[/].
Hence, for £ = 0,...,7 — 1, it holds that D[¢] ® D’[¢] = 0. Then, for £ = j,...,96, we apply exactly
the same arguments we have used to prove Lemmas 1 and 3, i.e., just set the 0-th position in those
cases to the j-th position in these ones.

Moreover, the generalisation of Lemma 2 we need is the following:

Lemma 4 Let D and D7 such that D @ DI = 097791707, for 0 < j <94 and 1 < r < 96 — j. Let
— —— —0 —
D'r’+j = (K277~+j + ID) @ ((Kl @KQ) \/Kl) and D2+j = (K277‘+j + ID) ©® ((Kl D K2) \/Kl) such that
Kgmﬂ (resp., fgmﬂ) is equal in every position to Ko (resp., Kg) but in position r+j—1, in which the
bit has been flipped, i.e., Ko pyjlr+j—1] = 1—Kalr+j—1] (resp., K;rﬂ [r+ji—1] = 1—?3[7“—}—]’—1]).
Then, o
D, ® D9+j = 0961771107, where r <t < 96 — j.

The above lemma, for j = 0, coincides with Lemma 2. For j > 0 it can be shown applying the
same technique used to prove Lemma 2.

The pre-processing routine for the general case is given in Figure 9.

Roughly speaking, Adv, if ID[0] = 0, once got D @ D° = 01, moves to the second position.
In other words, Adv ”does not care” about the first position and starts again the attack from the
next position by sending to the Tag another sequence A'||B||C!, constructed from A||B||C, where
C' = C +£2!. Adv keeps going from the current position to the next one until, let us say at the j-th
iteraction, he gets the string D @ D7 = 096-7-71707, with » > 1. At this point, Adv, in order to get
D @ D7 = 197707, applies the same pre-processing steps described before in Figure 4. Actually, it is
immediate to check that, if j = 0, then the procedure given in Figure 9 coincides with the procedure
given in Figure 4.

15

Adv's Computation. Adv has eavesdropped an execution and stored the values
IDS, A||B||C, and D. Hence, he applies the following steps:

1. Sets j = 0.

(a) Constructs and sends AJ||B||C’ to the Tag and gets back DJ.
(b) Let D ® D’ = 096-7=7170J,
(¢) If r =1, sets j = j + 1 and repeats from step (a).

Lo

T.of :Ifr_l_a‘l
i | Y

Fa

3. Constructs and sends to the Tag a new sequence A,;|[B|[C;;, modi-
fying A and C, in order to flip the (7 + j)-th bit of Ko, i.e., Kao[r+j —1].

4. The Tag replies with a value D, ;.

5. Then, Adv sends to the Tag a new sequence A, ;|/BJ|C}, ;, constructed
from A, ;[|B||Cry;, in order to flip the first bit of the new Ko, ie.,
K5[0].

6. The Tag replies with Dg 4

7. Adv computes Dy ; ® DO, ; = 097791107, where ¢t > r. If t = 96 — j,
then Adv has finished; otherwise, Adv repeats from step 3. working on

the (¢ + j)-th bit of Ko, that is, setting r = ¢, A[|B||C = A,4;(|B||Cy+;,
D =D, j,and F = FU{t+ j}.

Figure 9: Pre-processing: General case.

Let us assume that the preprocessing stage ends when Adv sends A, B, Cs and A%, B?, C?, gets
back D, and DY, respectively, and it holds that Dy @ D9 = 196-707,

At this point, Adv (partially) runs the identity disclosure attack given in Figure 3, using the
sequence Ay, By, C,, instead of A,B,C, and starting from position j instead of position 0, i.e.,
setting in step 1. of the procedure i = j. Indeed, Adv already knows that, for £ =0...5 — 1, it holds
that ID[¢] = 0. Notice that, for £ =0...j — 1, he knows nothing about Ko [(].

Due to the preprocessing routine, for £ = j...95, it holds that ID[{] # Ko s[f]. Hence, assuming
that ¢; = 0, the identity disclosure attack yields the first possible sequence of bits ID[94]... D[]
(and K24[94] ... K2 4[j]). Then, assuming that ¢; = 1 and flipping the bits computed before, Adv
obtains the second possible sequence of bits ID[94]...ID[j] (and K2[94] ... K2 s[j]).

At the end, by considering all possibilities for 7D[95] and K2 [95], Adv gets 8 different pairs

(ID[95]...IDJ[§]0...0,K2[95]... Ka[j] *...%),

where the values K5[j—1] ... K>[0] need to be determined. Such bits should be exaustively computed.

Hence, the number of possible pairs (ID, K3) Adv gets, compared to the number in the case
ID[0] = 1, grows from 8 to 8-27. However, if the I Ds are chosen uniformly at random, the probability
that the I D has a long sequence of Os as least significant bits is low.

Remark. The attack still requires, on average, 48.5 interactions with the Tag to find out the amount
z of the rotation and £- 1.5+ (¢ —1) -1+ 1.5 interactions for the pre-processing stage. The parameter
¢ in this case represents the number of positions in which K5 and ID are different plus the number
of least significant bits of ID equal to zero. It can be computed as follows: since the strings are
uniformly distributed, it holds that

16

93

94—i 1
(=) (5 +i) gy = 47.50.
i=0

Notice that the above formula considers the different forms of the I.D and the probabilities with
which they occur. More precisely, the index i represents the number of bits equal to 0 as least
significant bits of ID. For example, when ¢ = 0, then ID[0] = 1 and, as we have seen before, the
number of positions in which 7D and K5 could be equal, starting from position 1, is, on average, 2
However, this event occurs with probability 1. Similarly, when i = 1, then ID[1]ID[0] = 10. In this
case the number of positions in which ID and K» could be equal, starting from position 2, is, on
average, { = %. However, this event occurs with probability %. The formula takes into account all

possible configurations. Finally, the identity disclosure procedure requires, on average,

94

9B—i .~
D S =141
i=0

interactions to compute the first 95 bits of the I D. Therefore, the whole identity disclosure attack
requires, on average, 48.5 + 119.25 + 141 = 308.75 interactions.

5 Full Disclosure

In this section we show how Adv can efficiently extract all secret data®. Notice that, in the following,
for ¢ = 1,2, 3, we denote each value with a superscript index ¢, e.g., K3 instead of K3, to indicate the
protocol execution in which the value is sent, used or computed.

Assume that we have a black box procedure, let us say BB(IDS, A||B||C, D), to recover the ID
of the Tag and the string K. Moreover, let us assume that the black box procedure does not update
the old tuple stored by the Tag after interacting with the Reader, i.e., the tuple IDS, K1, K5. Then,
Adv can extract all secret data from the Tag as described in Figure 10.

Adv's Computation.

1. Eavesdropping stage. Looks at an execution of the authentication protocol
and stores Hello, IDS', A'||B!||C!, D'.

2. Identity disclosure stage. Applies BB(IDS', A'||B!||C',D') and gets 1D
and K.

3. Re-synchronisation stage. Re-synchronise the Tag with the Reader by
sending the sequence A'||B'||C! as a reply to IDS', engaging an instance
of the authentication protocol.

4. Eavesdropping stage. Looks at two new executions of the au-
thentication protocol and stores Hello,IDS2 A2%||B2||C2,D?, and
Hello, IDS3, A3||B3||C3, D3.

5. Secret Data Extraction. Computes the secret keys.

Figure 10: Full disclosure attack.

2Notice that, the current section, clarifies and corrects the full disclosure attack described in Section 5 of the
preliminary version of this paper.

17

The Reader, at the end of the first execution of the authentication protocol, once received the value
D!, updates the old tuple (IDS!, K{, K3) to the new tuple (I1DS?, Ki, F;) Adv, using the transcript
of the execution, computes the ID and f;, re-synchronises the Tag with the Reader, and eavesdrops
a second and a third executions of the authentication protocol. At the end of the second execution

the Reader, once received the value D2, updates the old tuple (I DSQ,Fi,F;) to the new tuple

(IDS® K;,K5). After eavesdropping the third execution®, Adv has enough information to compute
everything. Indeed:

e From the equality B2 = (IDS? VV K3) + n3, since he knows B2, IDS?, and K73 (the former Fi)
he gets n3, i.e.,
n3 = B2 — (IDS? v K3).

e From the equality IDS® = (IDS2 + ID) & (n3 @ F?), since he knows IDS®, IDS?, ID and n3,
he computes K, i.e.,
K} =1IDS® @ (IDS? + ID) & n2.

e From the equality F? = Rot(K} ® n3,K?), since he knows F? and n3, then he computes

some possible values for K?. More precisely, Adv, for i = 1,...,96, rotates f? on the right for
i positions and computes the bitwise xor of the rotated string with n3. Let X be the string
obtained in such a way. At this point Adv checks whether

K; L Rot(X @ nZ, X).

If the quality holds, then X is a possible candidate for K?. Notice that in the worst case there
could be 96 candidates, but on average, just few values.

e From the equality A2 = IDS? @ K? @ n?, since he knows A2, IDS? and some possible K2, he
computes some possible n?, i.e.,

ni = A’ @ IDS” ¢ K7.

e Then, using K3 and n?, he computes some possible K; = Rot(K3 ®n?, K3).
e Finally, using the equality
—2 —2
C? = (Kia K,)+ (K| ® K3)
since he knows C2 and some sequences of the possibile four keys, Adv can check which candidates
are consistent with the equation. We refer in the following to this check as to the C-test.

The complexity of the full disclosure attack is the same complexity of the identity disclosure attack,
up to some simple computations. Moreover, it is easy to check that Adv, once computed the values
K? K2 n? n used in the second execution, can also compute the other keys. The former keys, K
and K3, can be computed through similar steps to the ones used before. More precisely:

e From the equality IDS? = (IDS' + ID) @ (n} @ fi), since he knows IDS? IDS',ID and
7} = K?, then Adv computes ni, i.e.,

n = IDS% @ (IDS! + ID) & K, .

3 Actually Adv only needs the pseudonym IDS?, sent by the Tag at the beginning of the third execution, in order to
apply the attack. However, to simplify the description we assume that he eavesdrops the whole session.

18

e From the equality f} = Rot(K} @ nd, K{), since he knows f} and n}, then Adv computes
some possible values for K{. More precisely, Adv, for i = 1,...,96, rotates Fi on the right for
i positions and computes the bitwise xor of the rotated string with nd. Let X be the string
obtained in such a way. At this point Adv checks whether

K, ~ Rot(X @ nl, X).
If the quality holds, then X is a possible candidate for K.

e Finally, from the equality C! = (K| ® Fi) + (K} @ K3J), since he knows CI,K},F; and f},
then Adv computes K3, i.e.,

—1 —1
Ky =[C'— (K{ 8 K,))| e K.

At the end of the process, some sequences of possible keys used by Reader and Tag during the
executions of the authentication protocol, are obtained.

However, notice that the above attack requires a black box procedure which uniquely com-
putes ID and Ks. Unfortunately, the attack we have described in Section 4, provides 8 - 27 pos-
sible pairs (ID, K5). For each possible pair, we can compute some different sequences of secrets
K3, K3 K? K3 K, K}. Fortunately, we can reduce the ambiguities by using the data Reader and
Tag exchange during the three honest interactions. More precisely, for each sequence of possible keys
K3} K3, K? K3, K{, Ki we can check whether the test in Figure 11, hereafter referred to as the D-test,
is satisfied.

D! L (K2+1ID)® (K{ @ K}) v K?) and D? & (K3 + ID) & (K2 & K2) vV K3).

Figure 11: D-test for reducing ambiguities.

Only the sequences of secret keys which satisfy the D-test are sequences of possible keys.

To get an idea of the number of possible ambiguities, we have implemented the protocol and the three
attacks, and we have run some tests, reported in the next section. However, before moving to the
next section, we present a simple example of the steps of the above attack.

5.1 A Toy Example: Part Two

Let us assume that the first execution Adv looks at is the same given in Subsection 4.2. Hence,
IDS! = 1001110, and the first sequence the Reader sends to the Tag is

A'BY||C! =1111100[0111000||0101100,

and gets back from the Tag the string D' = 0011101.
Applying the identity disclosure attack, Adv gets 8 possible pairs (ID, K;) (see Figure 12).

(0011011,0011010) (0011011,1011010) (1011011,0011010) (1011011,0011010)
(0100101,0100101) (0100101,1100101) (1100101,0100101) (1100101,1100101)

Figure 12: Possible pairs.

Then, Adv re-synchronises Reader and Tag by sending again the sequence A'||B!'[|C! =
1111100]|0111000/|0101100 to the Tag, and looks at other two honest executions between Reader and

19

Tag. Assume that, for the second execution, the Reader chooses uniformly at random n? = 0110100
and n3 = 1000110. Since K? = 1100000, K2 = 0011010 and IDS' = 1001110, it follows that:

IDS? = 0100000, A% = 1110100, B? = OOOOOOO,K? = 1001001,?3 = 1001011, and C? =1111110.
Hence, the sequence the Reader sends to the Tag is
A?||B?||C? = 1110100||0000000/|1111110,

and gets back from the Tag the string D? = 1011101. Then, assume that, for the third execution,
the Reader chooses uniformly at random n3 = 1011101 and nj = 1001001. Since K3 = 1001001 and
K3 = 1001011, it follows that:

IDS? = 1110100, A® = 1100000, B3 = 1001000, K, = 0000000, Ko = 1000101, and C3 = 1010111.
Hence, the sequence the Reader sends to the Tag is
A3||B3||C? = 1100000/|1001000||1010111,

and gets back from the Tag the string D3 = 0100010.

At this point, Adv for each possible pair (I D,f;) performs the computations described step by
step before. It is easy to check that, when the third pair of the first row in Figure 12 is used, i.e.,
(1011011,0011010), Adv gets the following values:

e From B2 = 0000000, since he knows also IDS? = 0100000 and K3 = 0011010, then he computes
n3 = 1000110.

e From IDS® = 1110100, since he knows also IDS? = 0100000, ID = 1011011, and n3 = 1000110,
he computes

K, =1001001.

From f? = Rot(K? @ n3, K?), since he knows fi and n3, then he computes some possible values
for K2 (see Figure 13.)

Amount of Rshift 0 1 2 3 4 5 6
1000101 1100100 0110010 0011001 1001100 0100110 0010011

) &) &)))) &)
1000110 1000110 1000110 1000110 1000110 1000110 1000110
K? 0001111 0100010 1110100 1011111 0001010 1100000 1010101

K?% mod 7 1 6 4 4 3 5 1

Figure 13: Possible values for K2.

In this case, there is only one possible K7 = 1100000. Hence, Adv has computed the keys used at the

second executions if the pair (ID,F;) = (1011011,0011010).
To recover the secret keys used during the first execution of the authentication protocol, Adv proceeds

as follows:

e From IDS? = 0100000, since he knows also IDS* = 1001110, /D = 1011011, and F} = 1100000,
he computes
nd =1101001.

20

Amount of Rshift 0 1 2 3 4 5 6
1100000 0110000 0011000 0001100 0000110 0000011 1000001
()]] () () ()]
1101001 1101001 1101001 1101001 1101001 1101001 1101001
K? 0001001 1011001 1110001 1100101 1101111 1101010 0101000
K?mod 7 2 5 1 3 6 1 5

Figure 14: Possible values for K7.

e Then, from K, = Rot(K} @nl, K1), since he knows K, and nl, then he computes some possible
values for K (see Figure 14.)

Also in this case, there is only one possible K{ = 1100101. Finally, from C = 0101100, K{ =
1100101, Ky = 0011010, and K, = 1100000, Adv computes

K!=[C— (Kl oK) oK, =1001101.

6 Experimental Results

We have implemented the protocol and the attacks in order to evaluate empirically their efficacy and
efficiency. The following figures report the results we have obtained running 10000 tests. The first
one, given in Figure 15, shows the distribution of the number of interactions Adv needs in order to
de-synchronise the Reader and the Tag. The average number of iterations is 48.29.

Desynchronization

140

100

&0

Tines

40

I8 T OIITIEIF TSI RS IS I N AT SUND S6 ST ST RESE B B4 &7 7OV TE VI BRI B3 §E 51 9%

Number of Interactions with the Tag

Figure 15: Desynchronisation attack: distribution.

The second one, given in Figure 16, shows the distribution of the number of interactions Adv needs
for the preprocessing. The average number of iteractions is 119.21.

The third one, given in Figure 17, shows the distribution of the number of interactions Adv needs
for the identity disclosure attack. The average number of iteractions is 140.77.

21

Preprocessing

g
£
£
e i B - R
Q& = NPT R WD OO, SN Moy WY D e
 HAR A ERERRREENBRRAR
Number of Interactions with the Tag
Figure 16: Preprocessing: distribution.
ID Disclosure
BOG
00
503
200
§ 309
E
300
00
100
&

11
16

Figure 17: ID Disclosure Attack: distribution.

22

Notice that, the average number of interactions for the whole ID disclosure attack is 308.27

Finally, Figure 18 reports the average number of keys K7 computed by Adv, the average number
of pairs (K%, K3) consistent with the C-test, the average number of keys K, and the average number
of possible sequences of keys (K3, K}, K3, K2, K3, K}), consistent with the D-test.

Full Disclosure
Avg. Num. K7 | Avg. Num. Pairs C-test | Avg. Num. K| | Avg. Num. Seq. D-test
70.11 1.01 2.01 1

Figure 18: Resolution of ambiguities.

7 Conclusions

We have analysed SASI [2], a new ultra-lightweight authentication protocol, proposed to provide
protection for RFID Tags. We have showed that the protocol presents vulnerabilities which can be
used by an adversary who can interact with the Tag. All that is needed is an illegal Reader which can
query the Tag and get replies.

We have described three attacks. A de-synchronisation attack, through which the adversary can
break the synchronisation between the RFID Reader and the Tag. An identity disclosure attack,
through which the adversary can compute the identity of the Tag. A full disclosure attack, which
enables the adversary to retrieve all secret data stored in the Tag.

We have showed, analytically and through experiments, that the attacks are effective and efficient.

All properties the protocol was claimed to enjoy are not satisfied. Indeed, it is easy to check that
properties from 1. to 5. and from 7. to 8. do not hold. Moreover, one of the scenarios described as
harmless in property 6. (Resistance to replay attacks), i.e., resending the sequence A||B||C captured
by eavesdropping an honest interaction between Tag and Reader, plays a key role in the proposed
attack, in order to reset the Tag to a previous internal state.

Other researchers have also looked at the security of the SASI protocol. In [18], the authors have
proposed two de-synchronisation attacks. Then, in [8], an identity disclosure attack which enables
an adversary to compute a certain number of bits of the ID depending on the number of sessions he
can eavesdrop, has been proposed. Finally, in [14], a probabilistic attack against the untraceability
property has been described.

The recent history shows that all ultra-lightweight authentication protocols proposed have been
broken through efficient attacks relatively soon after they have been published. Almost all of them
provide informal security arguments to support the merits of the obtained protocols. The present
paper confirms that sound security arguments should be used to support design strategies in deploying
secure communication protocols. It might be used as a simple case study to show how, sometimes,
from small vulnerabilities it is possible a full break of a cryptographic protocol.

Acknowledgement

We would like to thank Sandro Pecora for implementing the attacks.

References
[1] G. Avoine, Bibliography on Security and Privacy in RFID Systems, Massachusetts

Institute of Technology, Cambridge, Massachusetts, USA (available online at
http://lasecwww.epfl.ch/~gavoine/rfid/, last update in Jun 2007).

23

2]

[10]

[11]

[15]

[16]

[17]

[18]

H. Chien, SASI: A new Ultralightweight RFID Authentication Protocol Providing Strong Authen-
tication and Strong Integrity, IEEE Transactions on Dependable and Secure Computing, Vol. 4,
N. 4, pp. 337-340, October-December 2007.

H. Chien and C. Hwang, Security of ultra-lightweight RFID authentication protocols and its im-
provements, ACM SIGOPS Operating Systems Review, Vol. 41, Issue 4, pp. 83-86, July 2007.

N. J. Hopper and M. Blum, Secure Human Identification Protocols, Proceedings of Asiacrypt
2001, Lecture Notes in Computer Science, Vol. 2248, pp. 52-66, 2001.

H. Gilbert, M. J. B. Robshaw, and Y. Seurin, HB: Increasing the Security and Efficiency of
H B+, Proceedings of Eurocrypt 2008, Lecture Notes in Computer Science, Vol. 4965, pp. 361-
378, 2008.

H. Gilbert, M. J. B. Robshaw, and Y. Seurin, Good Variants of HB+ are Hard to Find, Pro-
ceedings of Financial Cryptography 2008, Lecture Notes in Computer Science, Vol. 5143, pp.
156-170, 2008.

H. Gilbert, M. J. B. Robshaw, and H. Sibert, An active attack against HB+ a provably secure
lightweight authentication protocol, Electronics Letters, Vol. 41, N. 21, pp. 11691170, 2005.

J. C. Hernandez-Castro, J. M. E. Tapiador, P. Peris-Lopez, and J-J. Quisquater, Cryptanalysis
of the SASI Ultralightweight RFID Authentication Protocol, private communication, submitted
for publication, Jun 2008.

A. Juels, The Vision of Secure RFID, Proceedings of the IEEE, Vol. 95, No. 8, pp. 1507-1508,
August 2007.

A. Juels, R. Pappu, and S. Garfinkel, RFID Privacy: An Quverview of Problems and Proposed
Solutions, IEEE Security and Privacy, Vol. 3, No. 3, pp. 34-43, May-June 2005.

A. Juels and S. Weiss, Authenticating pervasive devices with human protocols, Proceedings of
Crypto 2005, Lecture Notes in Computer Science, Vol. 3126, pp. 293308, 2005.

T. Li and R. Deng, Vulnerability Analysis of EMAP-An Efficient RFID Mutual Authentication
Protocol, Proceedings of the The Second International Conference on Availability, Reliability and
Security, pp. 238-245, 2007.

T. Li, and G. Wang, Security Analysis of Two Ultra-Lightweight RFID Authentication Protocols.
Proceedings of the 22-nd IFIP SEC 2007, May 2007.

R. C.-W. Phan, Cryptanalysis of a New Ultralightweight RFID Authentication Protocol - SASI,
IEEE Transactions on Dependable and Secure Computing, 19 June 2008. IEEE Computer Society
Digital Library. Available at http://doi.ieeecomputersociety.org/10.1109/TDSC.2008.33

P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador and A. Ribagorda LMAP: A
Real Lightweight Mutual Authentication Protocol for Low-cost RFID Tags, Proceedings of the
Second Workshop RFID Security, Julyl1-14, Graz University of Technology, 2006.

P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador and A. Ribagorda, EMAP: An
Efficient Mutual-Authentication Protocol for Low-Cost RFID Tags OTM 2006 Workshop, Lecture
Notes in Computer Science, Vol. 4277, pp. 352-361, 2006.

P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador and A. Ribagorda, M2AP: A
Minimalist Mutual-Authentication Protocol for Low-Cost RFID Tags, Ubiquitous Intelligence and
Computing, Lecture Notes in Computer Science, Vol. 4159, pp. 912-923, 2006.

H. Sun, W. Ting, and K. Wang, On the Security of Chien’s Ultralightweight RFID Authentication
Protocol, eprint archieve, report 83, February 25, 2008.

24

[19] A. Shamir, SQUASH - a New MAC With Provable Security Properties for Highly Constrained
Devices Such As RFID Tags, Proceedings of FSE 2008, Lecture Notes in Computer Science, Vol.
5086, pp. 144-157, 2008.

25

