
Cryptanalysis of EnRUPT

Dmitry Khovratovich and Ivica Nikolić

University of Luxembourg

Abstract. In this paper we present a preimage attack on EnRUPT-
512. We exploit the fact that the internal state is only a little bit larger
than the critical security level: 1152 bits against 1024 bits. The absence
of a message expansion and a fairly simple compression function allow
us to fix the values for some state words and thus reduce the size of
birthday state space in the meet-in-the-middle attack under 1024 bits.
Equations that arise through the analysis are solved using look-up tables.
The complexity of the attack is around 2480 compression function calls
and the memory requirement is around 2384.

1 Introduction

The family of hash functions EnRUPT [10] was designed by Sean O’Neil,
Karsten Nohl, and Luca Henzen and was submitted to the SHA-3 hash function
competition [8]. EnRUPT is itself a member of a set of cryptographic primitives
first presented by O’Neil in SASC 2008 [9].

The EnRUPT hash functions work in so-called stream hashing mode follow-
ing other stream-based hash functions: RadioGatun [1], Panama [3], Grindahl [6],
LUX [7]. These hash functions have rather simple compression function with no
message expansion, which allows to exploit freedom given by the message injec-
tion and thus to maintain various attacks [11, 2, 4, 5].

The EnRUPT specification defines 7 basic hash functions with respect to
the size of produced hash value: 128–512 bit. In this paper we present a preimage
attack on ı̈rRUPT-512, EnRUPT with a 512-bit digest. We also expect that
our attack can be carried out to the other versions of EnRUPT.

The paper is organized as follows. First we recall the definition of ı̈rRUPT-
512. Then we notice that independency of message blocks inserted may be used
to reduce the state space thus allowing a shortcut meet-in-the-middle attack. We
show that the attack can be maintained due to simplicity and linearity (in some
sense) of the compression function. We conclude with a short list of weaknesses
that let the attack be performed.

2 Definition of ı̈rRUPT-512

The ı̈rRUPT-512 hash function deals with a message (appropriately padded)
divided into 64-bit blocks. A message block p is an input to the compression
function ı̈r8, which is a transformation of a 1152-bit internal state. The internal



state H consists of sixteen 64-bit words x0, x1, . . . , x15 and two 64-bit words
d0, d1.

Before the compression function starts all the internal state words are ini-
tialized with zero. A round counter r is set to zero as well. The compression
function consists of 8 iterations of the subfunction ı̈r1, each updating one of xi

and one of di.

irRUPT-512:

INPUT: message blocks p_0, p_1, ... p_n
x_j = 0, d_j =0 for all j;
r=0;
for i=0 to n do //Squeezing

ir8(p_i);

for i=0 to 199 //Blank rounds
ir8(0);

for i=0 to 7 //Output
ir8(0)
OUTPUT(d_1)

ir8:
INPUT: message block p

for k=0 to 7 do
ir1();
r++;

d_1 ^= p;

ir1:
x_{r+2} ^= 9*((2*x_{r^1} ^ x_{r+4} ^ d_{r&1} ^ r)>>>16);
d_{r&1} ^= 9*((2*x_{r^1} ^ x_{r+4} ^ d_{r&1} ^ r)>>>16) ^ x_r;

In the pseudo-code all indices are taken modulo 16, all multiplications are per-
formed modulo 264. Here also ≫ stands for cyclic rotation, ^ stands for XOR.

3 Preimage Attack on ı̈rRUPT-512

3.1 Basic Definitions and Observations

Equation invertibility. The accumulators di are updated by the non-invertible
function, which can be expressed in form x⊕ g(x⊕ y) (see pseudocode). Given
the output of the function and the value of x a solution does not always exist.
However, if we assume that the output and y are independent then the prob-
ability that the function can be inverted can be estimated by 1 − 1/e. We did
statistical tests, and they support this estimate.



Furthermore, while there is no solution for some input there are two (or more)
solutions for other inputs (one solution on average). Thus when we perform
backtracking we actually do not lose in quantity of solutions.

Look-up tables. We actively use look-up tables in order to find a solution for
the equations arising from round functions. All the tables used below refer to
functions that have space of arguments smaller than the complexity of the attack.
E.g., when we try to solve an equation f(x ⊕ C) = x (where C is one of 264

possible constants) we use the 264 precomputed tables that contain values of
f(x⊕ C)⊕ x for all C and x.

Solving a system of equations is more complicated. Below we solve systems
of form

x = f(x, y, z, C1);
y = g(x, y, z, C2);
z = h(x, y, z, C3),

where Ci are constants. We precompute for all possible x, y, z, Ci (2384 lines) the
sums x ⊕ f(x, y, z, C1), y ⊕ g(x, y, z, C2), and z ⊕ h(x, y, z, C3) and then sort it
so that it is easy to find a solution (or many) given Ci.

We can also estimate that the time needed to find a solution is given by the
complexity of the binary search which is negligible compared to the table size.

State space. A state space S of a hash function is a set of all possible values
of the internal state of the function. It is assumed that if the internal state has
s bits then the state space has 2s elements. For ı̈rRUPT-512 the state space
can be described as a set of all possible vectors with 16 ∗ 64 + 2 ∗ 64 = 1152
coordinates in F2.

Meet-in-the-middle attack. The meet-in-the-middle approach is often used to
find preimages for hash functions of a specific structure. The attack works as
follows. Let the state space S of the hash function has s bits. The attacker,
starting from the initial value builds a set S1 ∈ S of 2s/2 different intermediate
hash values. Then, the attacker, starting from the final hash value, and going
backwards, builds another set S2 ∈ S of 2s/2 different intermediate hash val-
ues. Then with overwhelming probability these two sets have at least one equal
element. The two obvious basic requirements, for this attack to work, are:

1. The hash function is invertible
2. The state space has s bits, where s < 2n.

At first sight, none of these requirements are satisfied for ı̈rRUPT-512. In the
compression function, the accumulators d0 and d1 are updated non-bijectively.
Hence, the hash function is not invertible. The state space S of ı̈rRUPT-512
has 1152 which is greater than 2∗n = 1024 and therefore the second requirement
also doesn’t hold. Further in the attack, we will describe how to overcome these
two bottlenecks.



3.2 Inverting ı̈r8(pi)

The compression function of ı̈rRUPT-512 consists of the update of the state
words x0, x1, . . . , x15, and the update of the accumulators d0 and d1. Inverting
the update of the state words x0, x1, . . . , x15 is trivial:

xold
r+2 = xnew

r+2 ⊕ f.

The accumulator d0 (similar formula holds for d1) is updated by the following
scheme:

dnew
0 = f(xr⊕1, xr+4, d

old
0 , r)⊕ dold

0 ⊕ xr

Instead of solving this equation for dold
0 , we simply use table look-up (see above).

Since arguments of f are xored, we solve an equation of form f(x⊕C1)⊕x = C2.
We spend (264)2 = 2128 memory and effort to build this table for all x and C1.

3.3 Reducing the State Space

The state space of ı̈rRUPTconsists of the state words x0, x1, . . . , x15, and the
accumulators d0 and d1 (the round index r doesn’t play important role in the
attack when the message length is predefined, as in our case). Hence this space
has 1152 bits. But, if all the elements of S1 and S2 at certain bits have the same
values than the complexity of the meet-in-the-middle attack can be decreased. If
m bits in S1 and S2 are fixed then the attack has a complexity 2

1152−m
2 . Further,

we will show how to fix x3, x11 and d1.
ı̈rRUPT-512 in one iteration of the compression function updates only one

half of the state words: either (x2, x3, . . . , x9) or (x10, x11, . . . , x1). Therefore, it
is possible to control the value of exactly one word of these halves, in each com-
pression function iteration, through the input message block pi. If (x2, x3, . . . , x9)
half is updated, then we call this iteration even, otherwise if (x10, x11, . . . , x1) is
updated then it is odd iteration. In meet-in-the-middle scenario, let us analyze
how to fix x3 and x11 to zero in both directions: starting from the IV and going
forward and starting from the target hash value and going backwards.

Fixing x3 and x11: forward. Assume that after even number of iterations we
have an internal state with any values of the state words and accumulators. By
the definition of x3 (notice that x3 is updated second in the iteration but does
not depend on x2 and d0, which has been updated before) we have:

xnew
3 = 9[(2x0 ⊕ x7 ⊕ d1) ≫ 16]⊕ xold

3

We want to fix the value of x3 to zero. Hence we require:

0 = 9[(2x0 ⊕ x7 ⊕ d1) ≫ 16]⊕ xold
3

In this equation the value of d1 can be chosen freely. Simply, in the previous
iteration of the compression function, the message word p, which is added to d1



(dnew
1 = dold

1 ⊕ p) can be changed without affecting the values of the state words
and d0.

Therefore, by using a predefined table for this equation, we can find the
necessary value of d1 so that the equation holds. For building this table, we
spend (264)4 = 2256 memory and effort1. Notice that after the value of x3 is
fixed then, in the odd iteration that follows, this value is not changed. In this
odd iteration, we fix the value of x11 using exactly the same method. Hence, in
two sequential rounds, even and odd, we can fix the value of exactly two state
words: x3 and x11.

Fixing x3 and x11: backwards. Going backwards in the compression function
is more complex when we want to set the values of x3 and x11 because they are
updated first in the iteration, which means last in the inverted iteration. We will
explain how the value of x3 can be set to zero in an even round. The same can
be applied to x11 in an odd round.

Let (xnew
0 , xnew

1 , xnew
2 , xnew

3 , . . ., xnew
15 , dnew

0 , dnew
1 ) be our starting state. We

want to invert backwards one even iteration of the compression function. Hence,
we want to obtain the previous state (xnew

0 , xnew
1 , xold

2 , xold
3 , . . . , xnew

15 , dold
0 , dold

1 )
where xold

3 = 0. From the description of ı̈rRUPT-512 we get:

xnew
2 = f(xnew

1 , xold
6 , d0

0, r)⊕ xold
2 (1)

xnew
3 = f(xnew

0 , xold
7 , d1

1, r + 1)︸ ︷︷ ︸
f3

⊕xold
3 , d3

1 = f3 ⊕ d1
1 ⊕ xnew

1 (2)

xnew
4 = f(xnew

3 , xold
8 , d2

0, r + 2)⊕ xold
4 (3)

xnew
5 = f(xnew

2 , xold
9 , d3

1, r + 3)︸ ︷︷ ︸
f5

⊕xold
5 , d5

1 = f5 ⊕ d3
1 ⊕ xnew

3 (4)

xnew
6 = f(xnew

5 , xnew
10 , d4

0, r + 4)⊕ xold
6 (5)

xnew
7 = f(xnew

4 , xnew
11 , d5

1, r + 5)︸ ︷︷ ︸
f7

⊕xold
7 , d7

1 = f7 ⊕ d5
1 ⊕ xnew

5 (6)

xnew
8 = f(xnew

7 , xnew
12 , d6

0, r + 6)⊕ xold
8 (7)

xnew
9 = f(xnew

6 , xnew
13 , d7

1, r + 7)︸ ︷︷ ︸
f9

⊕xold
9 , dnew

1 = f9 ⊕ d7
1 ⊕ xnew

7 ⊕ p (8)

With di
1 we denote the value of the accumulator d1 used in the update of the

state word xi. We need to fix xold
3 to zero. Hence, from (2), we get the equation:

xnew
3 =f3 = f(xnew

0 , xold
7 , d1

1, r + 1) =

=9 · ((2xnew
0 ⊕ r ⊕ (xold

7 ⊕ d1
1)) ≫ 16).

In the upper equation we can denote by X = xold
7 ⊕ d1

1. Since, all the other
variables are already known, a table can be built for this equation, and solution
1 Another way is to solve the equation directly, which can be done almost for free but

requires a bit more explanation.



for X can be found. Let C1 = X = xold
7 ⊕d1

1. If we express the value of xold
7 from

(6) then we get the following equation:

xnew
7 ⊕ f7 ⊕ d1

1 = C1. (9)

Further, from (2), (4), (6), and (8), this equation can be rewritten as:

xnew
7 ⊕ f7 ⊕ f3 ⊕ f5 ⊕ f7 ⊕ f9 ⊕ xnew

1 ⊕ xnew
3 ⊕ xnew

5 ⊕ xnew
7 ⊕ p = C1.

Since, xnew
1 , xnew

3 , xnew
5 , xnew

7 , and f3 are all constant (the value of f3 is equal
to xnew

3 ), the upper equation can be rewritten as:

f5 + f9 + p = K, (10)

where K = xnew
3 ⊕xnew

5 ⊕ f3⊕C1. So given the values of f5 and f9 from (10) we
can easily find the value for the message word p such that xold

3 = 0 holds. Let
us try to find the values of f5 and f9.

The value of f5 (from (4)) depends, in particular, on xold
9 and d3

1. From (8)
we get that xold

9 = f9 ⊕ xnew
9 . From (2) and (9) we get:

d3
1 = f3 ⊕ xnew

1 ⊕ d1
1 = f3 ⊕ xnew

1 ⊕ xnew
7 ⊕ f7 ⊕ C1. (11)

Therefore, for the value of f5 we get:

f5 = 9 · ((2xnew
2 ⊕ (r + 3)⊕ xold

9 ⊕ d3
1) ≫ 16) =

= 9 · ((K1 ⊕ f7 ⊕ f9) ≫ 16), (12)

where K1 = 2xnew
2 ⊕ (r + 3)⊕ xnew

9 ⊕ f3 ⊕ xnew
1 ⊕ xnew

7 ⊕ C1.
Similarly, for f7 from (6), we can see that depends on d5

1. For this variable,
from (11) and (4), we get:

d5
1 = f5 ⊕ xnew

3 ⊕ d3
1 = f5 ⊕ xnew

3 ⊕ f3 ⊕ xnew
1 ⊕ xnew

7 ⊕ f7 ⊕ C1. (13)

Hence, for f7 we get:

f7 = 9 · ((2xnew
4 ⊕ (r + 5)⊕ xnew

11 ⊕ d5
1) ≫ 16) =

= 9 · ((K2 ⊕ f5 ⊕ f7) ≫ 16), (14)

where K2 = 2xnew
4 ⊕ (r + 5)⊕ xnew

11 ⊕ xnew
3 ⊕ f3 ⊕ xnew

1 ⊕ xnew
7 .

Finally, for f9 from (6)), we get that it depends on d7
1. From (13) and (6),

for the value of d7
1 we get the following:

d7
1 = f7 ⊕ xnew

5 ⊕ d5
1 =

= f7 ⊕ xnew
5 ⊕ f5 ⊕ xnew

3 ⊕ f3 ⊕ xnew
1 ⊕ xnew

7 ⊕ f7 ⊕ C1 =
= xnew

5 ⊕ f5 ⊕ xnew
3 ⊕ f3 ⊕ xnew

1 ⊕ xnew
7 ⊕ C1.

For the value of f9 we get:

f9 = 9 · ((2xnew
6 ⊕ (r + 7)⊕ xnew

13 ⊕ d7
1) ≫ 16) = 9 · ((K3 ⊕ f5) ≫ 16), (15)



where K3 = 2xnew
6 ⊕ (r + 7)⊕ xnew

13 ⊕ xnew
5 ⊕ xnew

3 ⊕ f3 ⊕ xnew
1 ⊕ xnew

7 ⊕ C1.
As a result, we get a system of three equations ((12),(14), and (15)) with

three unknowns f5, f7, and f9:
f5 = 9 · ((K1 ⊕ f7 ⊕ f9) ≫ 16);
f7 = 9 · ((K2 ⊕ f5 ⊕ f7) ≫ 16);
f9 = 9 · ((K3 ⊕ f5) ≫ 16).

We can build a table that solves this system. There are six columns in the table:
three unknowns and three constants: K1, K2, and K3.

After we find the exact values of f5 and f9 we can easily compute the value
of p from (10).

3.4 Meet-in-the-middle attack on ı̈rRUPT-512

Now that we explained how the compression function can be inverted and the
state space can be reduced let us try to launch the attack itself. Notice that we
have reduced the attack space only by two message words, x3 and x11, though
we claimed that we can also fix d1.

The final phase of the attack is outlined in Figure 1. Further we will explain
how this is done.

Meet-in-the-middle: starting from the IV. Starting from the initial value,
by changing the input message words, we create 2480 different internal states
Si, i = 1, . . . , 2480. This can be done in 8 iterations, hence the input message
words for an internal state Si can be denoted as (pi

−7, p
i
−6, . . . , p

i
0). Then, for

each state, in one iteration we fix the value of x3 to zero, by changing the
previous input message word p0. In the second iteration, we fix the value of x11

by setting the value of p1. As a result, we have obtained a set S1 of 2480 different
states that have zero values in x3 and x11. Notice we haven’t fixed the value of
p2 yet.

Meet-in-the-middle: backwards from the hash value. When going back-
wards we have to take into account two things: 1)the output hash value is pro-
duced in 8 iterations, and 2)the input message words in the last 17 iterations
are fixed. Let us first address 1). When the hash value is given (as in a preimage
attack), it is still hard to reconstruct the whole state of ı̈rRUPT-512. This is
made more difficult by outputting small chunk of state (the value of d1) in each
of the 8 final iterations (and not at once). So, not only we have to guess the value
of the rest of the state, but we have to guess it so that in the following iterations
the required values of d1 will be output. Yet, this is possible to overcome.

Let the hash value be H = (dt
1, d

t+1
1 , . . . , dt+7

1 ). We take an empty state,
and set a value of d1 = dt

1. Then, we take 2448 different values for the rest of
the state and iterate forward for 7 rounds, while producing an output at each
round. With overwhelming probability, one of these outputs will coincide with



ir8

p1

ir8

p2

ir8

p3

ir8

p4

p0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 10 1

d
x

2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1
d x

0 1

Meet-in-the-Middle

Start Down

Start Up

— zero

— collide by p2

10 11 12 13 14 15 0 1

10 11 12 13 14 15 0 1

2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9

Fig. 1. Outline of the attack.



(dt+1
1 , . . . , dt+7

1 ). After we find the state that produces the required output, we go
backwards through the blank iterations and the message length iteration. In total
there are 17 iterations which is 136 rounds. The accumulators are updated non-
bijectively. Therefore one may argue that the cost of inverting the accumulators
through these rounds should be (1 − 1/e)136. Yet, if in some cases solution for
the accumulator doesn’t exist in other cases there is more then one solution.
Hence, if we start with two internal states, we can pass these iterations with a
cost of two times hashing in forward direction.

Now after we have passed the output, blank rounds and message length
iterations, and obtained one state, we can start building the set of different
internal states. We go backwards 8 rounds, and by injecting different message
words we produce 2480 different internal states. Then, in two backward iteration
we fix the values for x3 and x11 as explained before. As a result we obtain 2480

a set S2 of different states with x3 and x11 set to zero.
We have two sets S1 and S2 each of 2480 elements. With high probability

there are two element, s1 ∈ S1 and s2 ∈ S2, in each of these sets that have the
same values for x0, x1, x2, x4, . . . , x8, x10, . . . , x15, d0 (in total 960 bits). But the
values of x3 and x11 also coincide because we set them to zero for all elements in
the both sets. Hence, the only difference between s1 and s2 can be in their ds1

1

and ds2
1 . Therefore we change the last message input block p9 for s1 and set it to

p9 = ds1
1 ⊕ ds2

1 . The message addition is at the end of the compression function,
so no other values, besides ds1

1 , will change. As a result, we obtained the same
internal state, by going forward from the initial values and backwards from the
target hash value, and therefore a preimage of the target hash value.

3.5 Complexity of the Attack

We spend at most 2384 effort to build pre-computation tables so it is not a
bottleneck. To compose two valid state after blank rounds that give the desired
hash we need about 2448 trials. We also pass blank rounds for free since the
absence of solutions for some states is compensated by many of them for other
ones.

Thus the most time-consuming part is the preparation of two sets for the
meet-in-the-middle, each of 2480 states. However, each state is produced with
negligible complexity since we use pre-computation tables to find a suitable
message block to be injected. Thus we estimate the time and memory complexity
of our attack as about 2480 simple hash queries, which is smaller than a brute-
force attack (2512).

4 Conclusions

We presented a preimage attack on EnRUPT-512. Though being a shortcut
attack only (it requires about 2480 operations), it points out a weak structure of
EnRUPT. Let us detail the weaknesses that we discovered.



First, there is no message scheduling in EnRUPT. While this is not a weak-
ness in itself (RadioGatun is a counterexample), this usually requires a bigger
state in order to compensate actual freedom given by the message injection. The
EnRUPT internal state is only 128 bits larger than the hash digest. Thus ex-
ploiting only three message injections (3 ∗ 64 = 192) might provide a successful
attack, which was demonstrated in our paper.

Secondly, message injection affects only a part of the internal state. Giving
more freedom from message injections this fact was highly exploited not only in
this paper but also in previous attacks on hash functions with similar design [5,
11]. Again, this might be counteracted by expanding the internal state.

Thirdly, the internal round function (̈ır8) as well as its inversion allows easy
manipulation with its output. This significantly simplified the cryptanalysis and
allowed us to solve many arising equations with precomputations.

References

1. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Radiogatun,
a belt-and-mill hash function, 2006, available at http://radiogatun.noekeon.org/.

2. Joan Daemen and Gilles Van Assche. Producing collisions for Panama, instanta-
neously. In FSE’07, volume 4593 of LNCS, pages 1–18. Springer, 2007.

3. Joan Daemen and Craig S. K. Clapp. Fast hashing and stream encryption with
PANAMA. In FSE’98, volume 1372 of LNCS, pages 60–74. Springer, 1998.

4. Dmitry Khovratovich. Cryptanalysis of hash functions with structures. In
Hash Function Workshop, Leiden, 2008, 2–6 June, slides also available at
http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Khovratovich.pdf .

5. Dmitry Khovratovich. Two attacks on Radiogatun. In Indocrypt, 2008, to appear.
6. Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The Grindahl

hash functions. In FSE’07, volume 4593 of LNCS, pages 39–57. Springer, 2007.
7. Ivica Nikolić, Alex Biryukov, and Dmitry Khovratovich. Hash function family

LUX, 2008, submitted to the SHA-3 competition.
8. National Institute of Standards and Technology. Announcing Request for Can-

didate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA3)
Family, volume 72, No. 212 of Federal Register. November 2007.

9. Sean O’Neil. EnRUPT: First all-in-one symmetric cryptographic primitive. SASC
2008, avalaible at http://www.ecrypt.eu.org/stvl/sasc2008/.

10. Sean O’Neil, Karsten Nohl, and Luca Henzen. EnRUPT hash function specifica-
tion, 2008, available at http://enrupt.com/SHA3/.

11. Thomas Peyrin. Cryptanalysis of Grindahl. In ASIACRYPT’07, volume 4833 of
LNCS, pages 551–567. Springer, 2007.


