
Vortex: A New Family of One Way Hash Functions based
on Rijndael Rounds and Carry-less Multiplication

Shay Gueron and Michael E. Kounavis

Intel Corporation, October, 2008

Supporting Documentation

Summary of the Contribution

We present Vortex a new family of one way hash functions that can produce message
digests of 224, 256, 384 and 512 bits. The main idea behind the design of these hash
functions is that we use well known algorithms that can support very fast diffusion in a
small number of steps. We also balance the cryptographic strength that comes from
iterating block cipher rounds with SBox substitution and diffusion (like Whirlpool)
against the need to have a lightweight implementation with as small number of rounds as
possible. We use a variable number of Rijndael rounds with a stronger key schedule. Our
goal is not to protect a secret symmetric key but to support perfect mixing of the bits of
the input into the hash value. Rijndael rounds are followed by our variant of Galois Field
multiplication. This achieves cross-mixing between 128-bit or 256-bit sets. Our hash
function uses the Enveloped Merkle-Damgård construction to support properties such as
collision resistance, first and second pre-image resistance, pseudorandom oracle
preservation and pseudorandom function preservation. We provide analytical results that
demonstrate that the number of queries required for finding a collision with probability
greater or equal to 0.5 in an ideal block cipher approximation of Vortex 256 is at least
1.18•2122.55 if the attacker uses randomly selected message words. We also provide
experimental results that indicate that the compression function of Vortex is not inferior
to that of the SHA family regarding its capability to preserve the pseudorandom oracle
property. We list a number of well known attacks and discuss how the Vortex design
addresses them. The main strength of the Vortex design is that this hash function can
demonstrate an expected performance of 2.2-2.5 cycles per byte in future processors with
instruction set support for Rijndael rounds and carry-less multiplication. We provide
arguments why we believe this is a trend in the industry. We also discuss how optimized
assembly code can be written that demonstrates such performance.

1. Introduction

Guaranteeing message and code integrity is very important for the security of
applications, operating systems and the network infrastructure of the future Internet.
Protection against intentional alteration of data is typically supported using one way hash
functions. A one way hash function is a mathematical construct that accepts as input a
message of some length and returns a digest of much smaller length. One way hash
functions are designed in such a way that it is computationally infeasible to find the input
message by knowing only the digest. One way hash functions which have been in use
today include algorithms like MD-5 and SHA1, SHA256, SHA384 and SHA512. The
problem with using these algorithms is that they are time consuming when implemented
in software. One way hash functions typically involve multiple shifts, XOR and ADD
operations which they combine in multiple rounds in order to produce message digests.
Because of this reason, one way hash functions consume a substantial number of
processor clocks when executing, which limits their applicability to high speed secure
network applications (e.g., 10 Gbps e-commerce transactions), or protection against
malware (e.g., virus detection or hashed code execution).

In this submission document we describe Vortex: a novel hash family based on an
alternative design approach. In our approach a family of one way hash functions is built
from other well known security algorithms used as building blocks, as opposed to more
primitive shift, rotate or XOR operations. The algorithms we choose in our design help
with achieving fast mixing across a large number of input bits. Using the Merkle-
Damgård [8, 15] and the Enveloped Merkle-Damgård [3] constructions as frameworks
we construct a compression function from Rijndael rounds [1] and a novel merging
technique based on Galois Field (GF(2)) multiplication. Using three or more successive
Rijndael rounds we provide mixing across 128 bits. Using a merging function based on
Galois Field (GF(2)) multiplication we provide mixing across sets of 128 bits. Perfect
mixing is accomplished through combinations of Rijndael rounds and our merging
function.

We provide analytical results that demonstrate that the number of queries required for
finding a collision with probability greater or equal to 0.5 in an ideal block cipher
approximation of Vortex 256 is at least 1.18•2122.5 if the attacker uses randomly selected
message words. We also provide experimental results that indicate that the compression
function of Vortex is not inferior to that of the SHA family regarding its capability to
preserve the pseudorandom oracle property. We have conducted experiments calculating
statistical properties such as the collision probability, hamming weight, distribution
function, and correlation matrix of outputs coming from randomly selected messages as
well as single bit differentials superimposed on random messages. Our results indicate
that there is no experimental evidence that Vortex is inferior when compared to the SHA-
2 family in terms of its security. Performance-wise, however, the difference can be
substantial. For example our SHA 256 implementation operates at 21 cycles per byte on
an Intel® Core 2 Duo processor. The Vortex family is expected to operate at a speed
between 2.2-2.5 cycles per byte in future processors with instruction set support for
Rijndael round computation and Galois Field (GF(2)) multiplication. We provide

arguments why we believe this is a trend in the industry. We also discuss how optimized
assembly code can be written that demonstrates such performance. We conclude by
listing a number of well known attacks and how the Vortex design addresses them.

The document is structured as follows: In Section 2 we describe the design methodology
of the Vortex family. In Section 3 we describe the algorithm. In Section 4, we provide
qualitative arguments as well as analytical and experimental evidence for the security of
Vortex. In Section 5 we present our performance analysis. In Section 6 we discuss related
work. Finally in Section 7 we provide concluding remarks. The constant generation
algorithm of Vortex is given in Appendix A and a list of intermediate values for a known
answer test vector is given at the Appendix B. The rather lengthy proof of Lemma 1 used
for the derivation of the main security proof is given in Appendix C.

2. Design Methodology

Vortex represents a new family of one way hash functions that can produce message
digests of 224, 256, 384 and 512 bits. The main idea behind the design of these hash
functions is that we use known algorithms that can support very fast diffusion in a small
number of steps. Our intent is to allow each bit of an input block to affect all bits of a
hash after a small number of computations.

The algorithms we use in our design are:

• The Rijndael round due to its capability to perform very fast mixing across 32-bits

as a stand-alone operation and 128 bits or 256 bits if combined with at least one
more round; and:

• A variant of Galois Field (GF(2)) multiplication due to its capability to cross mix
bits of different sets (i.e., the input operands) in a manner that is
cryptographically stronger than other simpler schemes (e.g., Feistel reordering
proposed in modes like MDC-2 [23]).

We also balance the cryptographic strength that comes from iterating block cipher rounds
with SBox substitution and diffusion (like Whirlpool) against the need to have a
lightweight implementation with as small number of rounds as possible. We use a
variable number of Rijndael rounds with stronger key schedule. The number of rounds is
a tunable parameter. The best tradeoff between security and performance for the Vortex
family comes when the number of rounds is greater or equal to 3. The design threshold of
3 comes from the fact that 2 rounds is the bare minimum number needed for 128-bit wide
mixing. One more round is considered as a safety margin. The authors are aware that
fewer than 10 Rijndael round transformations can be distinguished from random
permutations in several ways. For this reason our design introduces a new key schedule
algorithm for compensating for the security lost from reducing the number of Rijndael
rounds in Vortex. In any case our design is open for introducing more rounds if proven
necessary in the future. Rijndael rounds are followed by our variant of Galois Field

multiplication. This achieves cross-mixing between 128-bit or 256-bit sets. Our
transformation is not simple carry-less multiplication but combines bit reordering
operations, XORs and additions with carries. In this way our variant of Galois Field
multiplication:

• achieves better diffusion than the straightforward carry-less multiplication
between the 128-bit or 256-bit inputs

• is a non-commutative operation protecting against attacks based on swapping the
order of the chaining variables in the processing of a message.

Our family of one way hash functions uses the Rijndael round as specified in [7]. Vortex
224 and Vortex 256 use Rijndael 128 rounds. Vortex384 and Vortex 512 use Rijndael
256 rounds. Rijndael 128 round is the round algorithm of the Advanced Encryption
Standard (AES) as specified in the standard FIPS-197.

3. Algorithm Description

Endianness and Notation

Unless stated explicitly, the Vortex algorithm specification is independent of the
endianness of the machine where Vortex is implemented. In the specification that follows
we use the term ‘least significant’ to refer to the unit of information (whether bit, byte or
word) with the smallest index. We also use the term ‘most significant’ to refer to the unit
of information with the greatest index. For example in the bit representation of a 128-bit
variable A =]...[0126127 aaa , 0a is the least significant bit whereas 127a is the most
significant bit.

Mathematical Operations

Mathematical operations used by the Vortex specification are listed below. These
operations are: (i) bit-wise exclusive OR (XOR) (ii) addition modulo-264; and (iii) carry-
less multiplication (iv) substitution box SBox() (v) Rijndael round R()

Bit-wise XOR is denoted by ‘⊕’ and defined as follows: Let the inputs to the operation
are A and B consisting of N bits each:

]...[],...[021021 bbbBaaaA NNNN −−−− == (1)

The result of the operation]...[021 cccBAC NN −−=⊕= is an N-bit number defined as:

10,
,1
,0 −≤≤





 == Ni

otherwise
baifc ii

i (2)

Addition modulo-264 is denoted by ‘⊞’ and defined as follows: Let the inputs to the
operation are A and B consisting of M 64-bit words each:

]:...::[],:...::[021021 BBBBAAAA MMMM −−−− == (3)

The result of the operation C=A⊞B =]:...::[021 CCC MM −− is an M-word number defined
as:

10,2mod)(64 −≤≤+= MiBAC iii (4)

Carry-less multiplication is denoted by ‘⊗’ and defined as follows: Let the inputs to the
operation are A and B consisting of N bits each:

]...[],...[021021 bbbBaaaA NNNN −−−− == (5)

The result of the operation]...[02222 cccC NN −−= is an 2N-1 bit number. The bits of the
output C result from the following logic functions of the bits of the inputs A and B:

10,
0

−≤≤⊕= −=
Nibac jij

i

ji (6)

and:

22,
1

1
−≤≤⊕= −

−

+−=
NiNbac jij

N

Niji (7)

The SBox() transformation is defined as in the symmetric encryption standard FIPS-
197 (AES). Let the input operand be A, defined a sequence of M bytes:

]:...::[021 AAAA MM −−= (8)

The result of the transformation on A, is C = SBox(A) =]:...::[021 CCC MM −− where

=iC sbox(iA) =))((iIT AMA , 10 −<≤ Mi (9)

The transformation sbox() is the AES substitution box applied on a single byte. Such
transformation consists of two stages IM (a) and TA (a). In the first stage IM (a), each
byte a is replaced by its multiplicative inverse in the finite field GF(28). This finite field
is defined by the irreducible polynomial 0x11B (or 100011011b in binary notation).
Additions and multiplications in GF(28) are carry-less and results are represented modulo

0x11B (or 100011011b). The second stage TA (a) replaces the value of each byte a with
another byte value according to a bit-linear transform plus a constant. Specifically, every
bit ai of byte a is substituted by another bit ai

+ according to the following formula:

70,8mod)7(8mod)6(8mod)5(8mod)4(≤≤⊕⊕⊕⊕⊕= ++++
+ iwaaaaaa iiiiiii (10)

where by ‘⊕’ we mean the XOR logical operation, and wi is the ith bit of the value 0x63.

The Rijndael round transformation R() applies to inputs A and B consisting of M bytes
each:

]:...::[],:...::[021021 BBBBAAAA MMMM −−−− == (11)

where M = 16 (Rijndael 128) or M = 32 (Rijndael 256). Input A denotes the round state
whereas input B denotes the round key. The result of the transformation C = R(A, B) is
defined as:

=C MC (SBox(SR (A))) B⊕ (12)

where the transformation SR(A) called ‘Shift Rows’ is a byte permutation on A. SR(A) is
defined as:

MiiiR AAS mod)4)4mod(()(⋅+= (13)

The transformation MC(A) called ‘Mix Columns’ modifies the values of sequences of 4
adjacent bytes from A of the form]:::[3424144 +⋅+⋅+⋅⋅ iiii AAAA , 0 ≤ i < 4, using matrix
multiplication in the finite field GF(28).



















•



















=



















+⋅

+⋅

+⋅

⋅

+⋅

+⋅

+⋅

⋅

34

24

14

4

34

24

14

4

2113
3211
1321
1132

)(
)(
)(
)(

i

i

i

i

iC

iC

iC

iC

A
A
A
A

AM
AM
AM
AM

 (14)

where the irreducible polynomial defining GF(28) is the same as the one used in the
SBox() transformation (0x11B or 100011011b).

Block Length and Padding

Vortex processes an input stream as a sequence of blocks. A block is defined as a
sequence of bits of specific length. The length of all blocks but the last is N bits. The
length of the last block is N/2 bits. For Vortex 224 and Vortex 256 N=512. For Vortex
384 and Vortex 512 N=1024. The stream is padded with a bit value equal to‘1’ following
the most significant bit of the input stream. The stream may be further padded with bits

of value equal to ‘0’ so that its length becomes equal to (k+0.5)•N - N/8 for some non-
negative integer k. If the length of the stream is already equal to (k+0.5)•N - N/8 for
some k, the stream is not padded with zeros. Finally, the stream is padded with N/8 bits
indicating the length of the stream. The length of the stream is expressed in bits and
denoted using the little endian format. This means that the bit following the previous
padding stages is the least significant bit of the value of the stream length.

Tunable Parameters

The tunable parameters of the Vortex algorithm include: (i) the number of rounds NR
used by an internal block cipher based on the Rijndael round R() transformation (see
below); (ii) the degree of the diffusion DF which affects the number of times each bit of
the input stream is diffused over all bits of the output digest; and (iii) the type of
multiplication algorithm MT employed the Vortex merging function)()(aV A

M described
below. If MT = 0 then multiplication is carry-less, else if MT = 1, multiplication is integer.

Other tunable parameters include an initial value of the chaining variable 00 || BA of the
algorithm and a final tweak value BA TT || both of which are explained below. By ‘||’ we
mean concatenation. 00 || BA and BA TT || are of size N/2 bits. The user of the Vortex
algorithm can either set 00 || BA and BA TT || to some constants like the ones specified in
the Appendix or to some randomly generated values. In this case Vortex operates as a
pseudorandom function family, where for a different random pair of 00 || BA and BA TT ||
one obtains a different cryptographic hash function (which should ideally not be
distinguishable from a random function). What is important in the specification of

00 || BA and BA TT || is that the chaining variable value 00 || BA should always be
different from the final tweak BA TT || .

Domain Extension Transform

Vortex operates on a chaining variable resulting from the concatenation of two N/4-bit
variables A and B initialized to 00 || BA . Vortex also uses a tweak value consisting of the
concatenation of variables TA and TB. TA and TB are N/4 bits long. To support collision
resistance as well as pseudorandom function and pseudorandom oracle preservation,
Vortex uses the Enveloped Merkle-Damgård construction as its domain extension
transform. The Enveloped Merkle-Damgård construction is shown in Figure 1.

Each padded input stream consists of k blocks of size N bits for some non-negative
integer k and a last block of size N/2 bits. Each block Bi (except for the last) consists of 4
words of size N/4 bits:]:::[4142434 iiiii WWWWB ⋅+⋅+⋅+⋅= , 0 ≤ i ≤ k-1. The last block Bk

consists of 2 words:]:[414 kkk WWB ⋅+⋅= . The compression function used by the
Enveloped Merkle-Damgård construction, called ‘Vortex block’ works as follows: It

accepts as input the previous value of a chaining variable ii BA || and an input block Bi,
0 ≤ i ≤ k-1. It returns an updated value of the chaining variable 11 || ++ ii BA .

Figure 1: Vortex as an Enveloped Merkle-Damgård construction

The processing done on the last block differs from the processing done on other blocks.
For the last block, the compression function uses the tweak value BA TT || as a chaining
variable and the concatenation of]:[kk BA and]:[414 kk WW ⋅+⋅ as input block. For Vortex
256 and Vortex 512, the message digest resulting from the input stream is equal to the
final value of the chaining variable]:[11 ++ kk BA . For Vortex 224 and Vortex 384, the
message digest resulting from the input stream is equal to the 224 and 284 least
significant bits of]:[11 ++ kk BA respectively.

Vortex Block

The Vortex block algorithm incorporates two repetitions of an algorithm called ‘Vortex -
sub-block’. Such structure is shown in Figure 2. The first repetition of Vortex sub-block
accepts as input the chaining variable ii BA || and two least significant input block words

144 , +⋅⋅ ii WW . It returns an intermediate value for the chaining variable BA || . The second
repetition of Vortex sub-block accepts as input the intermediate value of the chaining
variable BA || and two most significant input block words 3424 , +⋅+⋅ ii WW . It returns an
update on the chaining variable 11 || ++ ii BA . The Vortex block algorithm is:

Vortex block(3424144 ,,,,, +⋅+⋅+⋅⋅ iiiiii WWWWBA)
begin
 ←BA || Vortex sub-block(144 ,,, +⋅⋅ iiii WWBA) // uses 144 , +⋅⋅ ii WW
 ←++ 11 || ii BA Vortex sub-block(3424 ,,, +⋅+⋅ ii WWBA) // uses 3424 , +⋅+⋅ ii WW
 return 11 || ++ ii BA
End

A || B0 0

…

W0, W1 ,
W2, W3

W4k-4 W4K -3
W4 W4k -1

4 4k +1

||

TA || TB

A || Bk k

k-2

kW W message
digest

Figure 2: Structure of Vortex block

Vortex Sub-block

With the exception of the last sub-block (see below), the algorithm for processing a
Vortex sub-block is the following:

Vortex sub-block(A, B, W0, W1)
begin
 ; W0 is the first word of the current sub-block to be processed

),(

)(~
)(~

)(

00

00

BAVBA

WWAB

WWAA

A
M

B

A

←

⊕←

⊕←

 ;W1 is the second word of the current sub-block to be processed

),(

)(~
)(~

)(

11

11

BAVBA

WWAB

WWAA

A
M

B

A

←

⊕←

⊕←

 return BA ||
end

Vortex
sub-block

Vortex
sub-block

W4i , W4i+1

W4i+2 , W4i+3

Ai||Bi

Ai+1 ||Bi+1

Figure 3: Vortex sub-block

The structure of the Vortex sub-block is shown in Figure 3. The Vortex sub-block is built
upon two mathematical functions: The transformation)(~ xAK called ‘A-Rijndael’, which
is a block cipher based on Rijndael rounds, and the merging function),()(BAV A

M . There

are four instances of the transformation)(~ xAK in the Vortex sub-block. Each instance is
wrapped using a Matyas-Meyer-Oseas structure to make the transformation non-
reversible. The first two instances process input word W0. The other two instances
process the input word W1. W0 is the least significant word of the current sub-block to be
processed. Instances of)(~ xAK that accept the same input word processes a different
variable from among A, B. Each instance treats its input variable A or B as a key and its
input word, which is one from W0 or W1 as plaintext, as it is the norm in the a Matyas-
Meyer-Oseas structure. The merging function),()(BAV A

M combines the outputs of the
two instances of),()(BAV A

M into a new value of A||B.

A-Rijndael Transformation

The A-Rijndael transformation)(~ xAK is a high performance block cipher based on
Rijndael rounds that encrypts x, which is N/4 bits long, using the key K which is also N/4
bits long.)(~ xAK uses a tunable number of Rijndael rounds which we symbolize as NR.
For N/4=128 rounds are as specified in AES, FIPS-197 [1]. Each Rijndael round R()
consists of an SBox() substitution phase, a ‘Shift Rows’ transformation, a ‘Mix Columns’

VM
(A)(A, B)

AA(W0)~AA(W0)~AA(W0)~ AB(W0)~AB(W0)~AB(W0)~

⊕ ⊕

W0

A B

VM
(A)(A, B)

AA(W1)~AA(W1)~AA(W1)~ AB(W1)~AB(W1)~AB(W1)~

⊕ ⊕

W1

A B

transformation and a round key addition in GF(2). The key schedule algorithm used by
)(~ xAK is different from that of Rijndael.)(~ xAK uses a variable number NR of N/4-bit

wide Rcon values RC1, RC2 … RCNR to derive NR round keys RK1, RK2 … RKNR as
follows:

RK1 ← Perm(SBox(K ⊞ RC1))
RK2 ← Perm(SBox(RK1 ⊞ RC2))
…
RKNR ← Perm(SBox(RKNR-1 ⊞ RCNR))

where Perm() is a byte permutation and by ‘⊞’ we mean addition modulo 264. In this
specification and prototype implementation Perm() is equal to the identity function. Other
byte permutations can be considered though if deemed necessary. The SBox()
transformation in the key schedule is applied on N/32 bytes, i.e., N/4 bits (i.e., 128 bits or
16 bytes for Vortex 256 and 256 bits or 32 bytes for Vortex 512). A single Rijndael round
performs diffusion across 32 bits. This is accomplished through the combination of the
SBox() and Mix Columns transformations. Two Rijndael rounds diffuse across 128 bits.
This is accomplished through the combination of the subsequent Shift Rows and Mix
Columns transformations. Three or more rounds further strengthen the diffusion
performed. The Rcon values are set to constant values. The algorithm for generating
these constants is described in Appendix A.

Merging Function),()(BAV A

M

The merging function),()(BAV A

M is shown in Figure 4. If the multiplication type MT is 0
(carry-less multiplication)),()(BAV A

M operates as follows:

),()(BAV A
M

begin
 let A = [A1: A0] // A1, A0 are N/8 bit words
 let B = [B1: B0] // B1, B0 are N/8 bit words

01

10

BAI
BAO

⊗←
⊗←

 let I = [I1, I0] // I1, I0 are N/8 bit words
 let O = [O1, O0] // O1, O0 are N/8 bit words
 return [B1 ⊞ I1: B0 ⊞ O0: A1 ⊕ O1: A0 ⊕ I0]
end

where by ‘⊞’ we addition modulo 264, and ‘⊗’ we mean carry-less multiplication.

If the multiplication type MT is 1 (integer multiplication)),()(BAV A

M operates as follows:

),()(BAV A

M
begin
 let A = [A1: A0] // A1, A0 are N/8 bit words
 let B = [B1: B0] // B1, B0 are N/8 bit words

01

10

BAI
BAO

⋅←
⋅←

 let I = [I1, I0] // I1, I0 are N/8 bit words
 let O = [O1, O0] // O1, O0 are N/8 bit words
 return [B1 ⊞ I1: B0 ⊞ O0: A1 ⊕ O1: A0 ⊕ I0]
end

Figure 4: The Merging Function of Vortex (MT=0)

The merging function is based on multiplication (carry-less or integer). Our merging
function makes sure that the bits of A impact the bits of B and vice versa. In fact, each bit
of one variable affects a significant number of the bits of the other variable in a non-
linear manner. This makes our design better than a straightforward XOR or other simple
mathematical operation.

Setting Mt = 0 (carry-less multiplication) is the default configuration of Vortex. The
reason why Vortex uses carry-less multiplication by default is because it is easier to
assert analytically about the collision resistance and pre-image resistance of the hash as
explained in the next section. On the other hand using an integer multiplier in the
merging function increases the performance of the hash (not all processor architectures

B1 B0 A1 A0

I1 I0

O1 O0

new B1 new B0 new A1 new A0

have a carry-less multiplier), increases the non-linearity of merging, but makes the
security of the scheme more difficult to prove.

Last Vortex Sub-block

One can also observe that even though our merging function is strong cryptographically
due to the mixing it provides, it does not accomplish perfect mixing by itself. This is
because each bit of A or B affects a large number of bits of the other variable but not all
of them. Perfect mixing is accomplished by the Rijndael rounds that follow our merging
function. So, for a pair of input words W0, W1 perfect mixing is accomplished after a
sequence of Rijndael rounds (mix across N/4 bits), merging using Galois Field
multiplication (cross-mix across N/4 bit sets but not perfect mixing) and another set of
Rijndael rounds as part of the sub-block processing to follow.

The total number of times every bit is diffused over all bits of the hash is determined by
the number of sequences of Rijndael rounds and merging found in the last Vortex sub-
block; This is another tunable parameter of the hash called ‘degree of diffusion’ DF. The
algorithm for the last Vortex sub-block is given below:

Last Vortex sub-block(A, B, W0, W1, DF)
begin
 ; W0 is the first word of the last sub-block to be processed

),(

)(~
)(~

)(

00

00

BAVBA

WWAB

WWAA

A
M

B

A

←

⊕←

⊕←

 for i←1 to DF do
 ; DF is the degree of diffusion
 ;W1 is the second word of the current sub-block to be processed

),(

)(~
)(~

)(

11

11

BAVBA

WWAB

WWAA

A
M

B

A

←

⊕←

⊕←

 return A||B
}

4. Security Analysis

The security of the Vortex family was investigated both analytically and experimentally
by computing or measuring the collision probability, hamming weight, mean value,
distribution and other statistical properties of outputs from random messages as well as
single bit output differentials. For these experiments we compared the numbers we got
from Vortex with numbers we got from the SHA family. No collision occurred in our

experiments. Our initial results indicate that there is no experimental evidence that
Vortex is inferior in terms of its security properties when compared to the SHA family.

 Qualitative Analysis

We argue that the Vortex family is at least as secure as the SHA family even though it
uses smaller number of processing steps. There are several reasons for this. First Rijndael
round is a good mixing function. The key used results from the current value of the
chaining variable and hence is in most cases data dependent. Hence our scheme does not
suffer from known attacks on compression functions that use a small set of keys [5]. The
key schedule transformation of Vortex is stronger than Rijndael due to the fact that the
SBox() transformation is applied across each 128- or 256-bit round key as opposed to 32
bits only and that round constants are added using integer addition modulo 264 as opposed
to XOR. It is the combination of two independent sources of non-linearities in the key
schedule, i.e., addition with carries and inversion in GF(28) that strengthen the mixing
performed by Vortex. We have investigated experimentally whether the security obtained
by strengthening the key schedule of A-Rijndael can compensate for reducing its number
of rounds (to increase performance). Our initial results indicate that, even with a 3 round
A-Rijndael transformation, Vortex outputs message digests with satisfactory statistical
properties.

Vortex uses a Matyas-Meyer-Oseas transformation, where they key is obtained from the
chaining variable and not the message. Because of this reason Vortex is more secure
against related key attacks. This is because the attacker can be in control of the message
supplied as input to A-Rijndael but not the key. The merging function of Vortex
combines linear (XORs) and non-linear (adds with carries) transformations with 64-bit or
128-bit multiplication building blocks. This operation is non-commutative and when
combined with previous and subsequent Rijndael rounds and Galois Field multiplication
achieves perfect mixing across N/2 bits. By designing the merging function to be non-
commutative we destroy any symmetry in the computation of the Vortex sub-block that
could be a potential source of collision. If Vortex was designed such that its merging
function is commutative, then an attacker could create a collision by generating a
message that swaps the position of chaining variables A and B as compared to another
given message.

A more thorough analytical study on the security of the Vortex family is described in the
next section. Specifically, we show that the number of queries required for finding a
collision with probability greater or equal to 0.5 in an ideal block cipher approximation of
A-Rijndael is at least 1.18•2122.5 . A part of this work we developed a methodology for
computing the collision resistance and the first pre-image resistance of our construction
based on the divide-and-conquer approach that was first used in the study of the MDC-2
mode by Steinberger [23]. Such approach helps with reasoning about the collision and
pre-image resistance of specific components of hash functions. Components of hash
functions include adders, shifters, XORs, S-Boxes, linear diffusers, bit permutations etc.
Whereas our merging function is more complex than the MDC-2 mode of operation it can
be analyzed due to the fact that it combines relatively simple building blocks (i.e.,

multipliers adders and XORs). In addition when MT = 0 multipliers are carry-less
accepting small size input operands (i.e., 64 or 128 bits). These facts make the collision
and pre-image resistance of our construction easier to compute than MDC-2.

The current design choices have been made to balance the security of Vortex with
performance. There are several possible extensions that can be made to the Vortex design
though. As part of future work, we need to determine whether the presence of simple
carry-less or integer multiplication is sufficient in the merging function or not. Any non-
zero operand multiplied with zero results in zero. Such fact marginally increases the
collision probability associated with our merging function as explained below (we obtain
122 bits of collision resistance as opposed to128). If this is proven to be a design
deficiency, it can be potentially corrected with simple modifications to the algorithm. For
example, a single multiplication can be replaced by two multiplications. In each of the
two multiplications, operands are XOR-ed with a correcting constant and the results of
the multiplications are merged with each other.

A careful observer can also see that when the multiplication type is 0 (carry-less) the
most significant bit of A is not affected by the merging function whereas the most
significant bit of B is only changed by the carry value, and so it remains the same with
probability 0.5. Diffusion in the most significant bit position of A is completed by
subsequent stages of Rijndael rounds and merging. This is one of the reasons why the last
Vortex sub-block executes several times.

Theoretical Analysis

In what follows we provide an analytical argument for the collision and pre-image
resistance of the Vortex algorithm. For our analysis we replace the A-Rijndael
transformation with an ideal block cipher. An ideal block cipher is computationally
indistinguishable from a random permutation given a secret randomly chosen key. The
rationale behind such replacement is that the number of rounds NR of A-Rijndael can be
se to any appropriate value since it is a tunable parameter of the algorithm. Once the
number of rounds is sufficiently large, A-Rijndael does approximate an ideal block
cipher, hence we can safely do the replacement. We also restrict our analysis for merging
functions with carry-less multiplication (MT = 0). The reason why is because it is much
easier to analyze the behavior of a carry-less multiplier as compared to an integer due to
the absence of carry propagation.

In what follows we define a ‘query’ as a sequence of A-Rijndael transformations
followed by merging. A query is part of the Vortex sub-block algorithm.

Query(A, B, W0)
begin
 ; W0 is the word of the current sub-block to be processed

),(

)(~
)(~

)(

00

00

BAVBA

WWAB

WWAA

A
M

B

A

←

⊕←

⊕←

 return BA ||
end

Theorem 1: The number of queries required for finding a collision with probability
greater or equal to 0.5 in an ideal block cipher approximation of A-Rijndael is at least
1.18•2122.5 for Vortex 224 and Vortex 256, if the attacker uses randomly chosen message
words for the queries.

To prove the theorem above we investigate the behavior of the 64-bit carry-less
multiplier which is the main mixing component of the Vortex merging function. We
show that if the input to the carry-less multiplier is uniformly distributed then the output
is almost uniformly distributed too. Let the inputs to a 64-bit carry-less multiplier by X
and Y:

]...[],...[0626306263 yyyYxxxX == (15)

Let’s also assume that X and Y are uniformly distributed:

]12,0[~,~,2)~Pr()~Pr(6464 −∈∀==== − YXYYXX (16)

We denote the output of carry-less multiplication as [W:Z]:

YXZW ⊗=]:[(17)

where W is a 63 bit word and Z is a 64-bit word:

]...[],...[0626306162 zzzZwwwW == (18)

In what follows we state a useful Lemma regarding the probability distribution of]:[ZW

Lemma 1: Let YXZW ⊗=]:[be the result of the carry-less multiplication of quantities
X and Y defined as in Eq. (15) and distributed as in Eq. (16). Then the probability that

]:[ZW takes a specific value]~:~[ZW in the set [0, 2128-1] is bounded by:

]12,0[]~:~[,2])~:~[]:Pr([1285.122 −∈∀≤= − ZWZWZW (19)

Moreover, the probability that Z takes a specific value Z~ in the set [0, 264-1] is bounded
by:

]12,0[~,2)~Pr(6466.61 −∈∀≤= − ZZZ (20)

and the probability that W takes a specific value W~ in the set [0, 264-1] is bounded by:

]12,0[~,2)~Pr(6483.60 −∈∀≤= − WWW (21)

Proof of Lemma 1: is provided in Appendix C.

To prove Theorem 1 we further show that the output of the ‘Query’ algorithm
Query(A, B, W0) is almost uniformly distributed if at least the input word W0 is
uniformly distributed.

Lemma 2: Let]:[DC = Query(A, B, W0) be the output of the query algorithm on N/4 bit
quantities A, B, W0. Let N=512. Let also W0 be uniformly distributed and the A-Rijndael
transformation used by Query() replaced by an ideal block cipher. Then the probability
that]:[DC takes a specific value]~:~[DC in the set [0, 2256-1] is bounded by:

]12,0[]~:~[,2])~:~[]:Pr([256245 −∈∀≤= − DCDCDC (22)

Proof follows from Lemma 1. The behavior of the Query algorithm is illustrated in
Figure 5.

Figure 5: Behavior of the Query Algorithm

AA(W0)~AA(W0)~AA(W0)~AA(W0)~ AB(W0)~AB(W0)~AB(W0)~AB(W0)~

W0

A B

⊕ ⊕

F1 F0 E1 E0

I1 I0

O1 O0

D1 D0 C1 C0

F1 F0 E1 E0

I1 I0

O1 O0

D1 D0 C1 C0

Since the input word is uniformly distributed and the A-Rijndael transformation is
replaced by an ideal block cipher, the outputs]:[01 EEE = and]:[01 FFF = of the
Matyas-Meyer-Oseas structures of the Query algorithm are also uniformly distributed.
Because of this reason the probability distributions of the inner and outer products

]:[01 III = and]:[01 OOO = are bounded according to Lemma 1:

]12,0[~,2)~Pr(64
0

66.61
00 −∈∀≤= − III (23)

]12,0[~,2)~Pr(64

1
83.60

11 −∈∀≤= − III (24)

]12,0[~,2)~Pr(64
0

66.61
00 −∈∀≤= − OOO (25)

]12,0[~,2)~Pr(64

1
83.60

11 −∈∀≤= − OOO (26)

Hence Lemma 2 is proven as follows:

245

83.6064
64

66.6164
64

83.6064
64

66.6164
64

)2(mod~~~],12,0[~,~
1111

)2(mod~~~],12,0[~,~
0000

~~~],12,0[~,~
1111

~~~],12,0[~,~
0000

1100

1100

2
2

1
2
12

2
1

2
12

2
1

2
12

2
1

2
12

))~Pr()~Pr((

))~Pr()~Pr((

))~Pr()~Pr((

))~Pr()~Pr((

)~Pr()~Pr(

)~Pr()~Pr(

])~:~[]:Pr([

64
111

64
11

64
000

64
00

111
64

11

000
64

00

−

=+−∈

=+−∈

=⊕−∈

=⊕−∈

=⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅

≤=⋅=

⋅=⋅=

⋅=⋅=

⋅=⋅=

==⋅=

⋅=⋅=

==

∑

∑

∑

∑

DIFIF

DOFOF

COEOE

CIEIE

IIFF

OOFF

OOEE

IIEE

DCDD

CCCC

DCDC

(27)

Lemma 2 indicates that the Vortex 256 algorithm offers at least 245 bits of first pre-
image resistance. The reason why we do not get the ideal 256 bit security is because of
the zero accumulation point of the multiplier units employed by the Vortex merging
function. As it is shown in Appendix C (proof of lemma 1) the byte distribution
probabilities for the output of the carry-less multiplier are all bounded by 2-8 apart from
those associated with the most and least significant byte positions of the output. For these
byte positions the bounds are 2-4.83 and 2-5.68 respectively. These higher bounds come
from the probabilities that the output bytes are equal to zero. As a result the Vortex

design cannot achieve the ideal security of 256 bits. However, there are several ways by
which the design can be extended if this is deemed necessary.

From Lemma 1 and Lemma 2 we can now prove theorem 1 and conclude this theoretical
analysis of our algorithm. We assume the presence of an adversary who chooses
randomly selected messages as inputs to the Query() algorithm. The values of the
chaining variables A and B are not under the explicit control of the adversary. Lemma 2
states that the probability that the output of Query(A, B, W0) is equal to a specific value

]~:~[DC is bounded by 2-245. This bound can be written as 2139/2384. This means that from
all possible 2384 triplets (A, B, W0) there exists a set of no more than 2139 resulting in the
same specific output]~:~[DC . This also means that there are at least 2245 sets of triplets (A,
B, W0) of cardinality less than or equal to 2139 where the triples of the same set result in
the same output.

The probability p̂ that the adversary has not found a collision after q queries is equal to
the probability that the adversary has used a triplet from a different set in each of the q
queries the adversary has made. To compute a lower bound for the number of queries the
adversary needs to make so that 1- p̂≥ 0.5 we proceed as in any typical birthday attack.
Considering 2245 = NT, we have:

TT N
qq

N
q

TTT

T

T

T

T

T

T

ee

N
q

NN

N
qN

N
N

N
N

p

)1(1...21

)11(...)21()11(

1
...

21
1ˆ

−
−

−+++
−

=≈

−
−⋅⋅−⋅−=








 +−
⋅⋅







 −
⋅






 −
⋅=

 (28)

Setting 1- p̂ = ½ we get that:

02ln22ln2
2
1 22

)1(

=⋅⋅−−⇔⋅⋅=−⇔=
−

−

TT
N
qq

NqqNqqe T (29)

The above equation has two roots 2/)2ln811(TNq ⋅⋅+±= of which the positive is

equal to 2/)2ln811(TNq ⋅⋅++= .

For 1>>TN , we get that TNq ⋅= 18.1 5.122218.1 ⋅= . Hence Theorem 1 is proven.

Experimental Analysis

To evaluate our algorithm we conducted a number of experiments hashing random
messages and computing the statistical properties of the resulting digests as well as single
bit output differentials. In this section we present our experimental results. The collision

resistance of the Vortex family was investigated experimentally by conducting a large
number of experiments (220) hashing the Vortex specification document with random
perturbations superimposed on it. No collision occurred in our experiments.

Another set of experiments was conducted in order to demonstrate how random the
outputs of the Vortex hash are. For this purpose we first computed the Hamming weight
of message digests resulting from the short and long message Known Answer Test
vectors (KATs) provided by NIST. Our Hamming weight analysis results are illustrated
below. For each value shown in Tables 1-5, the notation used is ‘average ± standard’
deviation.

Experiment NR=3, DF=5 NR=5, DF=5 NR=7, DF=5 NR=10, DF=5

Short Messages, Vortex 224 112.1±7.4 111.8±7.5 112.3±7.6 112.0±7.4

Long Messages, Vortex 224 112.3±7.4 111.3±7.4 112.2±8.0 111.9±7.5

Short Messages, Vortex 256 128.1±8.1 127.8±8.0 128.3±8.1 128.0±7.8

Long Messages, Vortex 256 128.6±7.9 127.2±7.8 128.2±8.4 128.0±7.9

Short Messages, Vortex 384 191.8±9.8 192.2±9.9 192.3±9.8 192.1±9.9

Long Messages, Vortex 384 191.7±9.7 191.6±10.1 192.1±10.1 192.5±10.4

Short Messages, Vortex 512 255.7±11.3 256.2±11.5 256.1±11.4 256.0±11.4

Long Messages, Vortex 512 255.5±11.4 255.6±11.7 255.8±11.5 256.0±11.8

Table 1: Hamming Weight Analysis for Carry-less Multiplication (MT=0)

Experiment NR=3, DF=5 NR=5, DF=5 NR=7, DF=5 NR=10, DF=5

Short Messages, Vortex 224 112.1±7.3 111.9±7.5 112.1±7.6 111.8±7.4

Long Messages, Vortex 224 112.5±7.4 111.9±7.7 112.6±7.3 111.9±7.9

Short Messages, Vortex 256 128.0±7.8 127.9±7.9 128.2±8.1 127.9±8.0

Long Messages, Vortex 256 128.3±7.9 128.0±8.4 128.5±7.7 127.9±8.3

Short Messages, Vortex 384 192.3±10.2 192.2±10.0 192.1±9.9 192.1±10.0

Long Messages, Vortex 384 191.4±10.2 191.8±9.4 192.7±10.1 191.1±9.9

Short Messages, Vortex 512 256.4±11.8 256.0±11.4 256.1±11.3 256.2±11.4

Long Messages, Vortex 512 255.1±12.4 255.7±11.3 256.4±11.6 255.0±11.0

Table 2: Hamming Weight Analysis for Integer Multiplication (MT=1)

A second set of experiments was conducted in order to measure the statistical properties
of single bit output differentials. We computed the statistical mean and correlation matrix
of single bit output differentials resulting from 16K random messages of size 256 bits.
For the derivation of the differentials we XOR-ed a single bit perturbation mask with the
value “1” being set in bit positions 0 to 255 to each input message. Then, we XOR-ed the
outputs.

Experiment NR=3, DF=5 NR=5, DF=5

Vortex 256 (1 bit) 8192.37 ± 64.03 8191.93 ± 63.99

SHA 256 (1 bit) 8191.99 ± 63.96 8192.6 ± 63.98

Vortex 256 (16 bits) 53689.75 ± 238.16 53687.54± 242.44

SHA 256 (16 bits) 53689.86 ± 238.91 53693.23± 241.05
Experiment NR=7, DF=5 NR=10, DF=5

Vortex 256 (1 bit) 8191.69 ± 64.08 8192.03 ± 63.98
SHA 256 (1 bit) 8191.75 ± 63.93 8191.99 ± 63.85

Vortex 256 (16 bits) 53688.50 ± 242.03 53685.16 ± 240.04
SHA 256 (16 bits) 53682.48 ± 246.06 53681.98 ± 242.25

Table 3: Single Bit Differential Analysis: Scaled Mean Values across Output
Differentials for Carry-less Multiplication (MT=0)

Experiment NR=3, DF=5 NR=5, DF=5

Vortex 256 (1 bit) 8192.46 ± 63.87 8191.81 ± 63.96

SHA 256 (1 bit) 8192.32 ± 63.92 8192.16 ± 64.22

Vortex 256 (16 bits) 53690.16 ± 245.51 53680.92 ± 239.86

SHA 256 (16 bits) 53690.73 ± 243.23 53689.34 ± 241.73
Experiment NR=7, DF=5 NR=10, DF=5

Vortex 256 (1 bit) 8191.67 ± 63.91 8192.33 ± 64.24
SHA 256 (1 bit) 8191.96 ± 63.94 8191.76 ± 63.86

Vortex 256 (16 bits) 53678.77 ± 244.83 53687.57 ± 242.94
SHA 256 (16 bits) 53681.87.± 242.01 53688.66 ± 243.16

Table 4: Single Bit Differential Analysis: Scaled Mean Values across Output

Differentials for Integer Multiplication (MT=1)

The statistical means and correlation properties shown in Tables 1-5 were derived from
these computed output differentials. We considered that either a single bit or a group of
16 consecutive bits in an output differential is a random signal. Computations were done
to derive the statistical properties of these random signals over specific sets of output
differentials. Each differential in a set was associated with a perturbation in a different bit
position from 0 to 255, over the same random message.

Tables 3 and 4 show the mean values across all random signals coming from output
differentials for MT=0 and MT=1 respectively. Table 5 shows the sum of the elements of
the correlation matrix computed for the random signals described above. The results from
our experiments were multiplied with appropriate scaling constants so that the
comparison between Vortex 256 and SHA 256 is meaningful.

Experiment NR=3, DF=5, MT=0 NR=5, DF=5, MT=0
Vortex 256 (16 bits) 147.99 ± 55.27 148.71 ± 55.90
SHA 256 (16 bits) 152.92 ± 56.23 150.82 ± 56.11

Experiment NR=7, DF=5, MT=0 NR=10, DF=5, MT=0
Vortex 256 (16 bits) 151.43 ± 56.55 162.26 ± 59.04
SHA 256 (16 bits) 149.55 ± 55.88 154.34 ± 56.71

Experiment NR=3, DF=5, MT=1 NR=5, DF=5, MT=1
Vortex 256 (16 bits) 150.31 ± 56.55 149.14 ± 55.41
SHA 256 (16 bits) 150.45 ± 57.09 147.32 ± 55.15

Experiment NR=7, DF=5, MT=1 NR=10, DF=5, MT=1
Vortex 256 (16 bits) 154.68 ± 56.42 153.66 ± 57.21
SHA 256 (16 bits) 151.31 ± 56.74 150.29 ± 57.98

Table 5: Single Bit Differential Analysis: Scaled Sum of the Elements of the

Correlation Matrix

It is clear from the results that Vortex outputs are as random as those of the SHA family
across all variants of the family. These results also indicate that even with three rounds
and degree of diffusion equal to 5 the Vortex family can output values with satisfactory
statistical properties. This is due to the strong mixing performed by its compression
function and the EMD transform used as domain extension which preserves the pseudo-
random oracle and pseudo-random function properties.

Known Attacks

In what follows we provide a summary of how Vortex addresses a number of known
attacks:

• Algebraic attacks may be applicable to Vortex. Vortex provides two mechanisms
for mitigating algebraic attacks: First it sets the number of block cipher rounds to
a tunable parameter, where the larger the number of rounds is the more complex
an algebraic attack becomes. Second, it includes a degree of diffusion parameter
for repeating the last sub-bock several times. These repetitions, together with
other non-linearities of the block cipher push the complexity of algebraic attacks
to a safety margin. For example, if the number of rounds is 3 and the degree of
diffusion 5 (which is the default setup of the algorithm), each bit of the input goes
through a SBox transformation 15 times. This is even stronger mixing as
compared to AES 256 (14 times).

• Related key attacks are mitigated by using a Matyas-Meyer-Oseas structure
which sets the attacker in control of the plaintext of the encryption but not the
key.

• Multi-collision attacks may be applicable to Vortex; However the number of
queries required for finding a single collision is quite high (~2122.5) as shown in
the previous section and hence such attacks may not be practical.

• Side channel attacks can be mitigated using processor instructions that
implement Rijndael rounds and carry-less multiplication using combinatorial
logic as opposed to memory lookups.

• Birthday attacks are mitigated by feeding the same message word into two
parallel block cipher stages and then mixing the results of the encryption using the
Vortex merging function.

5. Performance Analysis

The main strength from using Vortex comes from the fact that the algorithm operates at a
expected speed of 2.2-2.5 cycles per byte when using parameters NR=3, MT=0, DF=5, and
running in future processor architectures with instruction set support for Rijndael rounds
and carry-less multiplication. Moreover, adding a single round to an A-Rijndael
transformation increases the cost of the algorithm by no more than 0.5 cycles per byte.

An example a future processor architecture that will support such instructions, and which
is familiar to the authors of this document, is Intel’s next generation Core Micro-
architecture. In this processor family, a new set of instructions will be introduced that
enable high performance and secure round encryption and decryption. These instructions
are AESENC (AES round encryption), AESENCLAST (AES last round encryption),
AESDEC (AES round decryption) and AESDECLAST (AES last round decryption). The
specification for these instructions is given in Table 6. Further information about the AES
instructions can be found in the reference [10].

As shown in Table 6 the state of the cipher is kept at the destination XMM register
(xmm1). The round key is kept at a source XMM register or can be obtained from
memory. The AESENC instruction implements the following transformations of the AES
specification in the order presented: Shift Rows, SBox, Mix Columns and Add Round
Key. The AESENCLAST implements Shift Rows, SBox and Add Round Key but not

Mix Columns. The AESDEC instruction implements Inverse Shift Rows, Inverse SBox,
Inverse Mix Columns and Add Round Key. Finally the AESDECLAST instruction
implements Inverse Shift Rows, Inverse SBox, and Add Round Key but not Inverse Mix
Columns.

Instruction Description

AESENC xmm1, xmm2/128
performs one round of an AES encryption flow
operating on a 128-bit data (state) from xmm1 with a
128-bit round key from xmm2/128

AESENCLAST xmm1, xmm2/128
performs the last round of an AES encryption flow
operating on a 128-bit data (state) from xmm1 with a
128-bit round key from xmm2/128

AESDEC xmm1, xmm2/128

performs one round of an AES decryption flow using
the equivalent inverse cipher operating on a 128-bit
data (state) from xmm1 with a 128-bit round key from
xmm2/128

AESDECLAST xmm1, xmm2/128

performs the last round of an AES decryption flow
using the equivalent inverse cipher operating on a 128-
bit data (state) from xmm1 with a 128-bit round key
from xmm2/128

Table 6: AES instructions for round encryption and decryption

Instruction/ Description

PCLMULQDQ xmm1, xmm2/m128, imm8
Carry-less multiplication of one quadword of xmm1 by one quadword of xmm2/m128, returning
double quadwords. The immediate byte is used for determining which quadwords of xmm1 and
xmm2/m128 should be used.

imm8[7:0] Operation

0x00 xmm2/m128[63:0] • xmm1[63:0]
0x01 xmm2/m128[63:0] • xmm1[127:64]
0x10 xmm2/m128[127:64] • xmm1[63:0]
0x11 xmm2/m128[127:64] • xmm1[127:64]

Table 7: The PCLMULQDQ instruction

Together with the AES instructions, Intel will also offer one new instruction supporting
carry-less multiplication named PCLMULQDQ. The PCLMULQDQ instruction
performs carry-less multiplication of two 64-bit words which are selected from the first

and the second operands according to the immediate byte value. The specification of the
PCLMULQDQ instruction is given in Table 7.

In this document we argue that the introduction of such instructions will not characterize
one particular processor family only, but eventually become a trend in the industry. There
are several reasons for this: First, several hardware vendors besides Intel including Sun
and IBM are researching the implementation of high performance AES encryption [16]
and Galois Field multiplication [9] in hardware. Second, technologies such as composite
fields are well known and can be used for constructing very compact AES
implementations potentially exhibiting single clock throughput and small processing
latency. Third, there is precedence with examples like the SSE instructions for
multimedia processing, or the 64-bit extensions to integer arithmetic instructions which
indicate that good technologies are eventually adopted by several semiconductor
manufacturers. Fourth, even processors used in embedded systems already use hardware
for AES encryption. Fifth, flexible crypto instructions like AES round instructions can be
good hardware solutions for implementing a variety of algorithms. This is one of the aims
of this work.

In this submission package we provide 4 implementations of the Vortex family: (i) a
reference implementation; (ii) an optimized 64-bit implementation; (iii) an optimized 32-
bit implementation; (iv) and an optimized assembly implementation with instruction
‘stand-ins’ for AESENC, AESENCLAST and PCLMULQDQ. The replacement we used
for all three instructions is the integer multiplication instruction PMULUDQ.
PMULUDQ demonstrates single clock throughput and three clock latency. From a
researcher’s perspective, we believe that such instruction can approximate the best
performance that can come out of future implementations of AESENC, AESENCLAST
and PCLMULQDQ. This statement reflects a belief based on well known characteristics
of high performance and compact AES implementations and should not be seen as any
form of product roadmap commitment.

Our performance results for the four types of implementation are shown in Table 8. Table
8 shows the performance of all members of the Vortex family when the number of rounds
NR is equal to 3, multiplication is carry-less (MT = 0), and the degree of diffusion DF is
equal to 5. The results were obtained by hashing 1024 random messages of size 128 KB
on a Core 2 Duo processor running at 3 GHz clock speed with 4 GB of RAM.
Measurements were taken using the RDTSC instruction.

Implementation Vortex 224
(cycles/byte)

Vortex 256
(cycles/byte)

Vortex 384
(cycles/byte)

Vortex 512
(cycles/byte)

Reference (64bit) 46.46 46.46 61.67 61.67
Optimized 64-bit 46.26 46.26 56.05 56.05
Optimized 32-bit 69.44 69.44 90.07 90.07

Assembly (stand-ins) 2.47 2.47 2.22 2.22

Table 8: Performance of the Vortex Family

Our optimized assembly code which results in the best performance is listed below:

Vortex_256_asm PROC

 ;rcx holds the pointer to the hash
 ;rdx holds the pointer to the data
 ;r8 holds the pointer to the rcon constants
 ;r9 holds the pointer to the length in blocks

 ;first we load the hash in the register pair <xmm1:xmm0>

 movdqu xmm0, XMMWORD PTR [rcx]
 movdqu xmm1, XMMWORD PTR [rcx+16]

;then we load the rcon constants in the registers xmm13, xmm14,
;xmm15

 movdqu xmm13, XMMWORD PTR [r8]
 movdqu xmm14, XMMWORD PTR [r8+16]
 movdqu xmm15, XMMWORD PTR [r8+32]

 ;xmm12 holds the constant zero
 pxor xmm12, xmm12

vortex_block_loop:
 mov r10, 4
vortex_word_loop:
 ;first we load the data into the register xmm11
 movdqu xmm11, XMMWORD PTR [rdx]

 ;1st block: move the data to xmm4, xmm5
 movdqu xmm4, xmm11
 movdqu xmm5, xmm11

 ;do the modified key schedule
 paddq xmm0, xmm13
 paddq xmm1, xmm13

;permutation + sbox can be implemented using the future pshufb +
;aeseclast instructions

 ;we simulate these using pxor, pmuludq

 ;pshufb xmm0
 pxor xmm0, xmm13 ;1 clock stand-in
 ;pshufb xmm1
 pxor xmm1, xmm13
 ;aesenclast xmm0, xmm12
 pmuludq xmm0, xmm12 ;3 clock latency, 1 clock

;throughput stand-in
;aesenclast xmm1, xmm12

 pmuludq xmm1, xmm12

 ;the keys for the first round are in the registers xmm1:xmm0
 ;to pipeline the execution of the aes round instructions we begin

 ;preparing the key schedule for the next round

 movdqu xmm2, xmm0
 movdqu xmm3, xmm1
 paddq xmm2, xmm14
 paddq xmm3, xmm14
 ;pshufb xmm2
 pxor xmm2, xmm14 ;1 clock stand-in
 ;pshufb xmm3
 pxor xmm3, xmm14

 ;now we issue four aes instructions 2 for the first round and 2
 ;for the next key schedule
 ;aesenc xmm4, xmm0
 pmuludq xmm4, xmm0
 ;aesenc xmm5, xmm1
 pmuludq xmm5, xmm1
 ;aesenclast xmm2, xmm12
 pmuludq xmm2, xmm12

;3 clock latency, 1 clock throughput stand-in
 ;aesenclast xmm3, xmm12
 pmuludq xmm3, xmm12

 ;first round done - key schedule for second round prepared

 ;we begin preparing the key schedule for the third round

 movdqu xmm0, xmm2
 movdqu xmm1, xmm3
 paddq xmm0, xmm15
 paddq xmm1, xmm15
 ;pshufb xmm0
 pxor xmm0, xmm15 ;1 clock stand-in
 ;pshufb xmm1
 pxor xmm1, xmm15

;now we issue four aes instructions 2 for the first round and 2
;for the next key schedule

 ;aesenc xmm4, xmm2
 pmuludq xmm4, xmm2
 ;aesenc xmm5, xmm3
 pmuludq xmm5, xmm3
 ;aesenclast xmm0, xmm12
 pmuludq xmm0, xmm12 ;3 clock latency, 1 clock

;throughput stand-in
 ;aesenclast xmm1, xmm12
 pmuludq xmm1, xmm12

 ;second round done - key schedule for third round prepared

 ;aesenc xmm4, xmm0
 pmuludq xmm4, xmm0
 ;aesenc xmm5, xmm1
 pmuludq xmm5, xmm1

 ;last round done!
 pxor xmm4, xmm11 ;matyas-mayer-oseyas

 pxor xmm5, xmm11

 ;now we start the merging

 movdqu xmm1, xmm4
 ;pclmulqdq xmm1, xmm5, 0x10 ;xmm1 holds the outer product
 pmuludq xmm1, xmm5
 movdqu xmm0, xmm4
 ;pclmulqdq xmm0, xmm5, 0x01 ;xmm0 holds the inner product
 pmuludq xmm0, xmm5

 movdqu xmm2, xmm0
 movdqu xmm3, xmm1
 shufpd xmm0, xmm3, 0
 shufpd xmm1, xmm2, 0
 pxor xmm0, xmm4
 paddq xmm1, xmm5
 ;we are done!

 add rdx, 16
 dec r10
 jnz vortex_word_loop
 dec r9
 jnz vortex_block_loop

 ;we load the hash back
 movdqu XMMWORD PTR [rcx], xmm0
 movdqu XMMWORD PTR [rcx+16], xmm1

 RET

6. Selected Related Work and Acknowledgement

A lot of work has been done the recent years on the design of one way hash functions [3,
5, 6, 8, 11, 12, 15, 18, 19, 23]. In this section we acknowledge some seminal papers,
which this design heavily draws from. First, this design uses the Enveloped Merkle-
Damgård construction [3] as its domain extension transform to preserve the pseudo-
random function and pseudo-random oracle properties besides collision resistance.
Second, to avoid length extension attacks this design uses the concept of Merkle-
Damgård strengthening presented in [8, 15]. Third, motivated by the weak security of the
MDC2 mode, analyzed in [23] this design improves upon MDC2 by replacing its Feistel
reordering stage by a more computationally complex merging function. Fourth the
assembly implementation reported in this document uses processor instructions and
development techniques discussed in [10, 24]. The authors would like to thank Jesse
Walker and Gary Graunke for their useful discussions and comments on the algorithm
specification and for their suggestions on how to demonstrate the security of the
algorithm analytically and experimentally.

7. Concluding Remarks

We presented Vortex a new family of one way hash functions that can produce message
digests of 224, 256, 384 and 512 bits. The main idea behind the design of these hash
functions is that we use well known algorithms supporting very fast diffusion in a small
number of steps. We presented a set of qualitative and analytical arguments why we
believe Vortex is secure and described a set of experiments that gave us confidence that
the Vortex design is not inferior to the SHA family in terms of its collision resistance and
randomness of output differentials. Performance-wise the expected difference between
Vortex and earlier work is expected to be substantial in future processor architectures.
The Vortex family is expected to operate at a speed of less than 2.2-2.5 cycles per byte in
future CPUs with instruction set support for Rijndael round computation and Galois Field
(GF(2)) multiplication. We believe that the design of the Vortex family is important
because it represents a scalable on-the-CPU solution for message and code integrity and
can be used for supporting both high speed secure networking and protection against
malware in next generation computing systems.

References

1. “Advanced Encryption Standard”, Federal Information Processing Standards

Publication 197, available at: http://csrc.nist.gov/publication/fips

2. K. Atasu, L. Breveglieri, and M. Macchetti, “ Efficient AES implementations for
ARM based platforms”, Proceedings of the 2004 ACM symposium on Applied
Computing, Nicosia, Cyprus, 2004.

3. M. Bellare and T. Ristenpart, “Multi-Property-Preserving Hash Domain Extension
and the EMD Transform”, Advances in Cryptology – ASIACRYPT 2006, LNCS
4284, pp. 299-314, 2006.

4. E. Biham, O. Dunkjelman and N. Keller, “Related key Impossible Differential
Attacks on 8-Round AES-192”, Proceedings Cryptographer’s Track, RSA
Conference, RSA 2006, San Jose, CA, 2006.

5. J. Black, M. Cochran and T. Shrimpton, “On the Impossibility of Highly Efficient
Block Cipher-based Hash Functions”, Advances in Cryptology – EUROCRYPT 2005,
LNCS 3494, pp. 526-541, 2005.

6. J. S. Coron, Y. Dodis, C. Malinaud, and P. Puniya, “Merkle-Damgård revisited: How
to construct a hash function”, Crypto 2005, Santa Barbara, CA, 2004.

7. J. Daemen and V. Rijman, “AES Proposal: Rijndael”, available on-line at:
http://www.cs.bilkent.edu.tr/~selcuk/teaching/cs519/rijndael.pdf

8. I. Damgård, “A Design Principle for Hash Functions”, Advances in Cryptology –
CRYPTO 1989, LNCS 435, pp. 416-427, 1989.

9. H. Eberle, N. Gura, and S. Chang-Shantz: “Cryptographic Processor for Arbitrary
Elliptic Curves over GF(2m)”, ASAP 2003, 14th IEEE Int. Conference on

Application-specific Systems, Architectures and Processors, Hague, The Netherlands,
June 24-26, 2003, pp. 444-454.

10. S. Gueron, “Advanced Encryption Standard (AES) Instruction Set”, available on-line
at: http://software.intel.com/sites/avx/

11. L. Knudsen, X. Lai and B. Preneel, “Attacks on Fast Double Block Length Hash
Functions”, Journal of Cryptology, No. 11, pp. 59-72, International Association for
Cryptologic Research, 1998.

12. S. Lucks, “Design Principles for Iterated Hash Functions”, Cryptology ePrint
Archive, Report 2004/253, 2004. Available at: http://eprint.iacr.org

13. M. Maurer, R. Renner, C. Holenstein, “Indifferentiability, Impossibility Results on
Reductions and Applications to the Random Oracle Methodology”, in TCC 2004,
Vol. 2951, LNCS pp.21-39, 2004.

14. A. Menezes, P. Oorschot and S. Vanstone, “Handbook of Applied Cryptography",
CRC Press, 199

15. R. Merkle, “One Way Hash Functions and DES”, Advances in Cryptology – CRYPTO
1989, LNCS 435, pp. 428-446, 1989.

16. S. Moriokah and A. Satoh, “An Optimized S-Box Circuit Architecture for Low Power
RIJNDAEL Design”, Cryptographic Hardware and Embedded Systems - CHESS
2001, pp. 172-186, 2002.

17. R. C.W. Phan, “Impossible Differential Cryptanalysis of 7 round Advanced
Encryption Standard (AES)”, Information Processing Letters, Vol. 91 (2004, pp. 33-
38.

18. P. Rogaway and J. Steinberger, “Constructing hash Functions from Fixed-Key Block
Ciphers”, Crypto 2008, Santa Barbara, CA, 2008.

19. P. Rogaway and T. Shrimpton, “Cryptographic Hash-Functions Basics: Definitions,
Implications, and Separations for Pre-image Resistance, Second Pre-image Resistance
and Collision Resistance”, In Proceedings, Fast Software Encryption, 2004.

20. A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao and P. Rohatgi, “Efficient
Rijndael Encryption with Composite Field Arithmetic”, Cryptographic Hardware
and Embedded Systems - CHESS 2001, pp. 175-188, 2001.

21. A. Satoh, S. Moriokah, K. Takano and S. Munetoh, “A Compact Rijndael Hardware
Architecture with SBox Optimization”, Advances in Cryptology – ASIACRYPT 2001,
LNCS 2248, pp. 239-254, 2001.

22. “Secure Hash Standard”, Federal Information Processing Standards Publication 180-
2, available at: http://csrc.nist.gov/publication/fips

23. J. P. Steinberger, “The Collision Intractability of MDC-2 in the Ideal Cipher Model”,
Advances in Cryptology - EUROCRYPT 2007, LNCS 4515, pp. 35-41, 2007.

24. S. Gueron and Michael E. Kounavis, “Carry-Less Multiplication and Its Usage for
Computing The GCM Mode”, available on-line at:
http://software.intel.com/sites/avx/

Appendix A: Constant generation

Vortex uses a simple algorithm for constant generation. Two 32-bit values need to be
stored by the algorithm in advance. These are a prime x and a modulus p listed below. All
vortex constants result from x by iterating the formula pxxx mod)(2 −← . The ANSI C
code implementing the generation of the Vortex constants is given below.

int i, j;

 uint64_t p, x;
 a0_b0_32_g = (uint8_t *)malloc(32);
 a0_b0_64_g = (uint8_t *)malloc(64);
 ta_tb_32_g = (uint8_t *)malloc(32);
 ta_tb_64_g = (uint8_t *)malloc(64);

 for(i=0; i < MAX_NUMBER_OF_ROUNDS; i++)
 {
 rcon_256_g[i] = (uint8_t *)malloc(16);
 rcon_512_g[i] = (uint8_t *)malloc(32);
 }

 p = 4294967291;
 x = 1414213562;
 x = (x*x-x) % p;

 for(i=0; i < 8; i++)
 {
 ((uint32_t *)a0_b0_32_g)[i] = (uint32_t)x;
 x = (x*x-x) % p;
 }
 for(i=0; i < MAX_NUMBER_OF_ROUNDS; i++)
 for(j=0; j < 4; j++)
 {
 ((uint32_t *)(rcon_256_g[i]))[j] = (uint32_t)x;
 x = (x*x-x) % p;
 }
 for(i=0; i < 16; i++)
 {
 ((uint32_t *)a0_b0_64_g)[i] = (uint32_t)x;
 x = (x*x-x) % p;
 }
 for(i=0; i < MAX_NUMBER_OF_ROUNDS; i++)
 for(j=0; j < 8; j++)
 {
 ((uint32_t *)(rcon_512_g[i]))[j] = (uint32_t)x;
 x = (x*x-x) % p;
 }
 for(i=0; i < 8; i++)
 {
 ((uint32_t *)ta_tb_32_g)[i] = (uint32_t)x;
 x = (x*x-x) % p;
 }
 for(i=0; i < 16; i++)
 {

 ((uint32_t *)ta_tb_64_g)[i] = (uint32_t)x;
 x = (x*x-x) % p;
 }
 return VORTEX_SUCCESS;

Appendix B: Test Vector with List of Intermediate Values

In what follows we provide a list of intermediate values for a known answer text vector
for Vortex 256. The algorithm setup is the default (NR=3, DF=5, MT=0). The input message
is of length 2 and each bit value is equal to “1”. The representation is little endian and the
least significant bit of the quantities presented is the rightmost in the listing below.

message: 3
inputs to the vortex block compression function:
hash:
4932b0fc796d966ab6874438c48941ed435d25efe0c0c972766bdc05aa33ac12
input block:
987b3efa1d423a6c4ab885fbd29f4522531784875a34e4087b561a4d465dc66d
00000000000000020007
before A-Rijndael
a:
435d25efe0c0c972766bdc05aa33ac12
b:
4932b0fc796d966ab6874438c48941ed
after A-Rijndael
a:
b5319fdd290ec6e34dd3218af5a01a8d
b:
2fbb92b3ddcdbe2e34e334e70c7052e5
after merging
a:
bf2d4faa78d3abb598d527f94354e4c2
b:
4efcf1a7b1003945513811237856bfcb
before A-Rijndael
a:
bf2d4faa78d3abb598d527f94354e4c2
b:
4efcf1a7b1003945513811237856bfcb
after A-Rijndael
a:
23dcb50e7ad740680f1ccb43b62318dc
b:
ef743f916f33d44cd2fc9677b5115ad2
after merging
a:
262123695ba4366d679762658efea08c
b:
0af217e7758318ba498a59ce92d27d62
before A-Rijndael
a:
262123695ba4366d679762658efea08c
b:
0af217e7758318ba498a59ce92d27d62
after A-Rijndael
a:
cb3e931feceef5029a8c5b12ac04ec99
b:
12605eb1adc372181ffba1ab5343b0a9
after merging

a:
c3969452a049470f9fd9f20a7fcef0cb
b:
1b3eb72abd82d6de030ea255deeb2001
before A-Rijndael
a:
c3969452a049470f9fd9f20a7fcef0cb
b:
1b3eb72abd82d6de030ea255deeb2001
after A-Rijndael
a:
d5f294b1db65cd6a58da00e7eb29a6b1
b:
9f4812d16567116b140b236c1a1e80bb
after merging
a:
ff4a179a60b1a3e19ebb28f3e59354bf
b:
ad573c421cbef91b8cda415b80ee85f6
before A-Rijndael
a:
ff4a179a60b1a3e19ebb28f3e59354bf
b:
ad573c421cbef91b8cda415b80ee85f6
after A-Rijndael
a:
f68220794a2654976c7d1f013165753f
b:
cdc3c4ed7c28a0819b2e43bb6b0115dc
after merging
a:
d930305fcdd8c54f806c4d54dfcc1feb
b:
40618fc43cb332028735a39ab900a09b
before A-Rijndael
a:
d930305fcdd8c54f806c4d54dfcc1feb
b:
40618fc43cb332028735a39ab900a09b
after A-Rijndael
a:
ec1641623b45e38438b60ffcb11468f7
b:
f54f5fb1857d2f9b8659bf95f46611c1
after merging
a:
fa2845b200385d2a3fa553ebea9b6c73
b:
69a0dd6348f118274ed81f43fcd3a912
before A-Rijndael
a:
fa2845b200385d2a3fa553ebea9b6c73
b:
69a0dd6348f118274ed81f43fcd3a912
after A-Rijndael
a:
bbf9bcf276ca962c28abb7c7d70f47f3

b:
8428284c2b6d0dfb8db57f779643e18d
after merging
a:
af0a9dbe26aa235f53fc2252c64a820f
b:
de5c789b89dd75217da01fa86aa9b62a
before A-Rijndael
a:
af0a9dbe26aa235f53fc2252c64a820f
b:
de5c789b89dd75217da01fa86aa9b62a
after A-Rijndael
a:
b0b7bfd9e47395c2b5254a54cc8fe39d
b:
1707f50a6ce2ca11d163cbd8116cc999
after merging
a:
b8ed7239b4d1c091d313587066e1376f
b:
96fe5bcb14dff7987297eb979e4691e6
final message digest:
96fe5bcb14dff7987297eb979e4691e6b8ed7239b4d1c091d313587066e1376f

Appendix C

Proof of lemma 1

A straightforward way to prove Lemma 1 is to build the truth table of the 64-bit carry-
less multiplier and observe the frequency by which output values appear. Such approach
is computationally infeasible since it requires storage space of at least 2102 GB. An
alternative approach is to consider the carry-less multiplier as resulting from smaller
input functions for which truth tables can be built.

We define the ‘upper square’ function),,,(jiYXU s as follows:

)],,,()...,,,(),,,([),,,()0()6()7(jiYXujiYXujiYXujiYXU sssS = (30)

where X, Y are given by (15), }48,40,32,24,16,8,0{∈i , }56,48,40,32,24,16,8{∈j and the
bit functions),,,(),...,,,,(,),,,()7()1()0(jiYXujiYXujiYXu sss are given by:

70,...),,,(7711

7

0

)(≤≤⊕⊕⊕== −++−+++−++
=
⊕ kyxyxyxyxjiYXu kjikjikjiqkjqi
q

k
s (31)

Similarly we define the ‘upper triangle’ function),,,(jiYXU t :

)],,,()...,,,(),,,([),,,()0()6()7(jiYXujiYXujiYXujiYXU tttt = (32)

where X, Y are given by (15), }56,48,40,32,24,16,8,0{∈i , 0=j and the bit functions

),,,(),...,,,(,),,,()7()1()0(jiYXujiYXujiYXu ttt are given by:

70,...),,,(11
0

)(≤≤⊕⊕⊕== +−+++−++
=
⊕ kyxyxyxyxjiYXu jkikjikjiqkjqi

k

q

k
t (33)

Next, we define the ‘lower square’ function),,,(jiYXLs as follows:

)],,,()...,,,(),,,([),,,()0()6()7(jiYXljiYXljiYXljiYXL sssS = (34)

where X, Y are given by (15), }49,41,33,25,17,9,1{∈i , }63,55,47,39,31,23,15{∈j and the
bit functions),,,(),...,,,(,),,,()7()1()0(jiYXljiYXljiYXl sss are given by:

70,...),,,(7711

7

0

)(≤≤⊕⊕⊕== −++−+++−++
=
⊕ kyxyxyxyxjiYXl jkijkijkiqjqki
q

k
s (35)

Last we define the lower triangle’ function),,,(jiYXLt :

)],,,()...,,,(),,,([),,,()0()5()6(jiYXljiYXljiYXljiYXL tttt = (36)

where X, Y are given by (15), 57=i , }63,55,47,39,31,23,15,7{∈j and the bit functions

),,,(),...,,,(,),,,()6()1()0(jiYXljiYXljiYXl ttt are given by:

60,,...),,,(6611

6

0

)(≤≤⊕⊕⊕== −++−+++−++

−

=
⊕ kyxyxyxyxjiYXl kjijkijkiqjqki

k

q

k
t (37)

The importance of the functions defined by Eq. (30)-(37) lies on the fact that the 64-bit
carry-less multiplication can be expressed as an exclusive OR (XOR) operation between
their outputs. Let the output words W and Z be the byte sequences:

]:...::[],:...::[067067 ZZZZWWWW == (38)

Then one can show that:

)0,8,,()))(8,8,,((
1

0
kYXUqkqYXUZ ts

k

q
k ⋅⊕−⋅⋅= ⊕

−

=

 (39)

and:

)87,57,,())863),(81,,((
6

0
qYXLqqkYXLW ts

k

q
k ⋅+⊕⋅−+⋅+= ⊕

−

=

 (40)

where 0 ≤ k ≤ 7.

The functional decomposition of the 64-bit carry-less multiplier into upper, and lower,
square and triangle functions is further shown in Figure 6.

We define ‘adjacent’ squares, as the outputs of upper or lower square functions of the
form),,,(jiYXU s or),,,(jiYXLs for which the indexes i and j have the same sum and
the indexes do not differ by more than 8 between different squares. Adjacent squares are
illustrated as neighboring in Figure 6. For example, the squares)16,0,,(YXU s and

)8,8,,(YXU s are adjacent. This is because the indexes 0, 16 and 8, 8 have the same sum
and do not differ by more than 8. On the other hand the squares)16,0,,(YXU s and

)24,0,,(YXU s are not adjacent. The concept of adjacency can be extended between
square and triangle functions (upper or lower) in a similar manner.

Figure 6: Functional Decomposition of a 64-bit Carry-less Multiplier

We observe that only adjacent squares or adjacent squares and triangles have associated
input bits in common. Specifically, the squares),,,(JIYXU s
and)8,8,,(−+ JIYXU s defined for some index pair I, J that satisfies (34) have seven
input bits in common. These are the bits]...[167 −−− JJJ yyy . Similarly squares

),,,(JIYXLs ,)8,8,,(−+ JIYXLs defined for some index pair I, J that satisfies (23)
have seven input bits in common. These are the bits]...[1498 +++ III xxx . Adjacent upper
squares),,,(JIYXU s and triangles)8,8,,(−+ JIYXU t have common input bits

]...[167 −−− JJJ yyy . Similarly adjacent lower squares),,,(JIYXLs and triangles
)8,8,,(−+ JIYXLt have common input bits]...[1498 +++ III xxx .

US(X, Y, 0, 56), US(X, Y, 8, 48), US(X, Y, 16, 40), US(X, Y, 24, 32), US(X, Y, 32, 24), US(X, Y, 40, 16), US(X, Y, 48, 8),XOR of

US(X, Y, 0, 48), US(X, Y, 8, 40), US(X, Y, 16, 32), US(X, Y, 24, 24), US(X, Y, 32, 16), US(X, Y, 40, 8),XOR of

US(X, Y, 0, 40), US(X, Y, 8, 32), US(X, Y, 16, 24), US(X, Y, 24, 16), US(X, Y, 32, 8),XOR of

US(X, Y, 0, 32), US(X, Y, 8, 24), US(X, Y, 16, 16), US(X, Y, 24, 8),XOR of

US(X, Y, 0, 24), US(X, Y, 8, 16), US(X, Y, 16, 8),XOR of

US(X, Y, 0, 16), US(X, Y, 8, 8),XOR of

US(X, Y, 0, 8),XOR of Ut(X,Y,8,0)

Ut(X,Y,0,0)

Ut(X,Y,16,0)

Ut(X,Y,24,0)

Ut(X,Y,32,0)

Ut(X,Y,40,0)

Ut(X,Y,48,0)

Ut(X,Y,56,0)

=Z0

=Z1

=Z2

=Z3

=Z4

=Z5

=Z6

=Z7

LS(X, Y, 1, 63), LS(X, Y, 9, 55), LS(X, Y, 17, 47), LS(X, Y, 25, 39), LS(X, Y, 33, 31), LS(X, Y, 41, 23), LS(X, Y, 49, 15),XOR of
=W0

Lt(X,Y,57,7)

LS(X, Y, 9, 63), LS(X, Y, 17, 55), LS(X, Y, 25, 47), LS(X, Y, 33, 39), LS(X, Y, 41, 31), LS(X, Y, 49, 23),
=W1

Lt(X,Y,57,15)

LS(X, Y, 17, 63), LS(X, Y, 25, 55), LS(X, Y, 33, 47), LS(X, Y, 41, 39), LS(X, Y, 49, 31),
=W2

Lt(X,Y,57,23)

XOR of

XOR of

LS(X, Y, 25, 63), LS(X, Y, 33, 55), LS(X, Y, 41, 47), LS(X, Y, 49, 39),
=W3

Lt(X,Y,57,31)
XOR of

LS(X, Y, 33, 63), LS(X, Y, 41, 55), LS(X, Y, 49, 47),
=W4

XOR of
Lt(X,Y,57,39)

LS(X, Y, 41, 63), LS(X, Y, 49, 55),
=W5

XOR of
Lt(X,Y,57,47)

LS(X, Y, 49, 63),
=W6

XOR of

Lt(X,Y,57,55)

=W7

Lt(X,Y,57,63)

From Eq. (31) and (35) it is evident that the upper and lower square functions accept
much fewer input bits as compared to the 64-bit carry-less multiplier. Each upper or
lower square function accepts 23 input bits. An upper square accepts 8 bits from X and 15
bits from Y, where 7 bits from Y are in common with an adjacent square. A lower square
accepts 15 bits from X and 8 bits from Y, where 7 bits from X are in common with an
adjacent square.

Similarly, from Eq. (33) it is evident that the upper triangle function accepts 16 input bits,
8 bits from X and 8 bits from Y, where 7 bits from Y are in common with an adjacent
square. From Eq. (37) it is also evident that a lower triangle function accepts 14 input
bits, 7 bits from X and 7 bits from Y, where all 7 bits from X are in common with an
adjacent square.

Based on these observations we build a truth table for each of these functions. The size of
the truth table for both the upper and lower square functions is 8 MB. The size of the
truth table for the upper triangle function is 64 KB. The size of the truth table for the
lower triangle function is 16 KB. Using these truth tables we observe the frequency by
which output values appear. Using these frequencies we compute probability
distributions for each of these functions when the bits which are in common with adjacent
squares are given.

In all expressions listed below it is assumed that the input to the carry-less multiplier is X
and Y and it is uniformly distributed. We define the ‘upper square –left’ distribution as:

)~]...[~),,,(Pr()~,~(167
)(cyyyvjiYXUcvP jjjs

LUS =∧== −−−
− (41)

where the indexes i and j take the values defined in (34). Because of the uniformity of the
square and triangle functions the probability distribution)~,~()(cvP LUS− is independent of
the values of indexes i and j.

 Similarly we define the ‘upper square –right’ distribution as:

)~]...[~),,,(Pr()~,~(721
)(cyyyvjiYXUcvP jjjs

RUS =∧== +++
− (42)

the ‘lower square –left’ distribution as:

)~]...[~),,,(Pr()~,~(1498
)(cxxxvjiYXLcvP iiis

LLS =∧== +++
− (43)

and the ‘lower square-right distribution as:

)~]...[~),,,(Pr()~,~(61
)(cxxxvjiYXLcvP iiis

RLS =∧== ++
− (44)

Last we define the ‘upper triangle distribution’ as:

)~]...[~),,,(Pr()~,~(721

)(cyyyvjiYXUcvP jjjt
UT =∧== +++ (45)

and the ‘lower triangle distribution’ as:

)~]...[~),,,(Pr()~,~(61
)(cxxxvjiYXLcvP iiit

LT =∧== ++ (46)

The probability distributions defined in Eq. (42)-(46) are independent of the choices of i,
j. If the inputs X and Y are uniformly distributed, the probability distributions (41)-(46)
can be computed from the truth tables of the upper and lower, square and triangle
functions.

We continue with the proof of Lemma 1 by computing the probability distribution of the
exclusive OR (XOR) between the outputs of two adjacent squares - or one triangle and its
adjacent square. We define ‘upper adjacent square XOR’ distribution as:

)~)8,8,,(),,,(Pr()~()(vjiYXUjiYXUvP ss
AUS =−+⊕=− (47)

The probability distribution (47) is obtained from the upper square left (41) and right (42)
distributions as follows:

∑
=⊕∈∈

−−− ⋅=
vwuwuc

RUSLUSAUS cwPcuPvP
~~~],255,0[~,~],127,0[~

)()()( )~,~()~,~()~(  (48) 

 
Similarly, we define the ‘lower adjacent square XOR’ distribution: 
 

)~)8,8,,(),,,(Pr()~()( vjiYXLjiYXLvP ss
ALS =−+⊕=−  (49) 

 
which is computed from the lower square left (43) and right (44) distributions: 
 

∑
=⊕∈∈

−−− ⋅=
vwuwuc

RLSLLSALS cwPcuPvP
~~~],255,0[~,~],127,0[~

)()()()~,~()~,~()~((50)

We also define the ‘upper adjacent square-triangle XOR’ distribution as:

)~)8,8,,(),,,(Pr()~()(vjiYXUjiYXUvP ts
AUST =−+⊕=− (51)

which is computed from the upper square left (41) and triangle (45) distributions:

∑
=⊕∈∈

−− ⋅=
vwuwuc

UTLUSAUST cwPcuPvP
~~~],255,0[~,~],127,0[~

)()()( )~,~()~,~()~(  (52) 

 
Last we define the ‘lower adjacent square-triangle XOR’ distribution as: 
 



)~)8,8,,(),,,(Pr()~()( vjiYXLjiYXLvP ts
ALST =−+⊕=−  (53) 

 
which is computed from the lower square left (41) and triangle (45) distributions:  
 

∑
=⊕∈∈

−− ⋅=
vwuucw

LTLLSALST cwPcuPvP
~~~],255,0[~],127,0[~,~

)()()()~,~()~,~()~((54)

The probability distributions computed from (47), (49), (51), (53) are used together with
Eq. (39) and Eq. (40) to compute the probability distribution of the output of the 64-bit
carry-less multiplier, assuming that the input is uniformly distributed.

Let the byte representation of a 128-bit value]~:~[ZW be:

]~:...:~:~[~],~:...:~:~[~
067067 ZZZZWWWW == (55)

The probability that the 64-bit carry-less multiplier output]:[ZW is equal to]~:~[ZW is
given by the product:

))~Pr(())~Pr((])~:~[]:Pr([
7

0

7

0
∏∏
==

=⋅===
k

kk
k

kk ZZWWZWZW (56)

where the output words W and Z are expressed as byte sequences as in Eq. (38).

Each of the output byte probabilities)~Pr(kk ZZ = for k =0 , 1,…,7 are computed from
the XOR probability distributions for adjacent squares and adjacent squares/triangles
using the algorithm ‘compute)~Pr(kk ZZ = ’ shown below.

compute)~Pr(kk ZZ =
begin
 if (k=0) return ∑

∈]127,0[~
0

)()~,~(
c

UT cZP // the output results from a single triangle

 else // the output results from XOR-ing squares and a triangle
 for i←0 to 255 do)~(][)(

2 k
AUST ZiPiT ⊕← −

 for i←0 to k-1 do
 begin
 21 TT ←
 for j←0 to 255 do ∑

=⊕∈

− ⋅←
jvuvu

AUS vTuPjT
~~],255,0[~,~

1
)(

2]~[)~(][

 end

 return ∑ ∑
= ∈

− ⋅
255

0
2

]127,0[~

)(])[))~,((
i c

LUS iTciP

end

The rationale behind this algorithm is that the event kk ZZ ~= is expressed as the union of
other events. These are the events that certain values, from 0 to 255, appear at the
outputs of the squares that contribute to the computation of kk ZZ ~= . Knowing the XOR
probability distributions for adjacent squares and adjacent squares/triangles helps us
compute the probabilities of such events. The computation starts from the square that is
adjacent to the upper triangle resulting in kk ZZ ~= and proceeds by taking one additional
adjacent square into account at a time. The computation stops when all squares that
contribute to kk ZZ ~= have been taken into account. The resulting probability is returned.

Similarly the output byte probabilities)~Pr(kk WW = for k =0 , 1,…,7 are computed using

the algorithm ‘compute)~Pr(kk WW = ’

compute)~Pr(kk WW =
begin
 if (k=7) return ∑

∈]127,0[~
7

)()~,~(
c

LT cWP // the output results from a single triangle

 else // the output results from XOR-ing squares and a triangle
 for i←0 to 255 do)~(][)(

2 k
ALST WiPiT ⊕← −

 for i←0 to 6-k do
 begin
 21 TT ←
 for j←0 to 255 do ∑

=⊕∈

− ⋅←
jvuvu

ALS vTuPjT
~~],255,0[~,~

1
)(

2]~[)~(][

 end

 return ∑ ∑
= ∈

− ⋅
255

0
2

]127,0[~

)(])[))~,((
i c

LLS iTciP

end

k
upper bound for

)~Pr(kk ZZ =
upper bound for

)~Pr(kk WW =
0 2-5.68 2-8
1 2-7.98 2-8
2 2-8 2-8
3 2-8 2-8
4 2-8 2-8
5 2-8 2-8
6 2-8 2-8
7 2-8 2-4.83

Table 9: Upper bounds for the byte probabilities)~Pr(kk WW = and)~Pr(kk ZZ =

Upper bounds for the probabilities)~Pr(kk ZZ = and)~Pr(kk WW = are computed using
the algorithms presented above and the truth tables for the upper and lower square and
triangle functions. These upper bounds are shown in Table 9. From the data of Table 9
and Eq. (56) Lemma 1 is proven.

