
New hash function designs

Igor Semaev
Selmersenteret, University of Bergen, Norway

February 1, 2008

1 Known designs

Let n be a natural number and M denotes the message represented by n-bit
blocks mi, so that

M = m1,m2, . . . , ms.

In case the message length is not a multiple of n, it should be padded somehow.
We do not specify how at this point.

Most of the known hash functions are based on the Merkle-Damgȧrd con-
struction. First, a compression function f(h,m) is determined, where m is an
n-bit input and another input h is of the hash value size r. The initial value h0

of r-bit length is fixed. Then one computes

hi = f(hi−1,mi)

for i = 1, 2, . . . , s and puts H(M) = hs, which is the hash value of M .
Two properties of the modern hash functions based on the Merkle-Damgȧrd

construction are observed:

1. The compression function is commonly a many round construction of some
very simple round functions. Some of them heavily use bit logical opera-
tions which are not very compatible with modern 32 and 64-bit computers.

2. The computation of the final hash value H(m) can’t be distributed over
several processors. That is, in order to compute hi all h1, h2, . . . , hi−1

should be computed before.

2 New design principles

Our new design solves the above two problems. That is, in order to process one
n-bit message block, one n-bit modular multiplication and few of n-bit modular
additions and n-bit XOR’s are calculated. So the hash value computation is
especially efficient on 64-bit machines. The whole hash computation of long
messages is easily distributed over any number of processors with tree hash

1

function construction. So that, with O(s) processors the computational cost of
H(M) is roughly the processing cost of only logn/2 s blocks, that is essentially
logn/2 s of n-bit multiplications. In practice, that makes very few operations.
In what follows we introduce line construction, which has restricted ability to
be distributed, and tree hash function construction which provides with full
distribution.

In what follows n, t, r are generally any natural numbers.

2.1 Line construction

1. The same sequence of t-bit blocks A = a1, a2, . . . , as, . . . is used in order to
hash every message M = m1,m2, . . . , ms. In order to process one message
block mi the t-bit block ai is generated. Blocks ai are produced with a
simple rule like

ai ≡ ai−1 + b = a0 + ib mod 2t

for fixed initial values a0 and b. The length of A is bounded by 2t/2. That
means that the longest message to process is 2t/2 of n-bit blocks. For
short M the first few blocks of A may be kept.

2. For each t-bit block a the function

x → fa(x)

is determined. The input to fa is n-bit and the output is r-bit, which is the
hash value size. The function fa is required to be a one-way permutation
or close to that, provided n = r. Anyway that should be a one-way
collision resistant function for all ai ∈ A.

3. Let 1 ≤ u ≤ n
2 − 1 be a parameter. For i = 0, 1, . . . one computes

H1 = fa1(m1)⊕ fa2(m2)⊕ . . .⊕ fau(mu),
H2 = fau+1(mu+1) ¢ fau+2(mu+2) ¢ . . . ¢ fa2u(m2u),
H3 = fa2u+1(m2u+1)⊕ fa2u+2(m2u+2)⊕ . . .⊕ fa3u(m3u),
. . .

Generally,

Hi+1 = faiu+1(miu+1) + faiu+2(miu+2) + . . . + fa(i+1)u
(m(i+1)u).

Here + is { ⊕, i is even or zero;
¢, i is odd,

where ⊕ is the r-bit XOR and ¢ is the integer numbers addition modulo
p = 2r + e with the truncation of the result to r bits. The last value Hd s

u e
may depend on less than u summands. The hash value H(M) is then
computed by the rule

2

H(M) = (. . . (((H1 ¢ H2)⊕H3) ¢ H4)⊕ . . .) + Hd s
u e, (1)

where + is ⊕ or ¢ depending on d s
ue. One sees that the computation of

H(M) is fully distributed with at least u processors.

2.2 Tree constructions

In contrast with the previous line construction, the tree structure allows the
hash function computation to be distributed over any number of processors.
The price to pay is using up to dlogu |M |e additional memory locations for r-
bit blocks during the computation. Here s = |M | denotes the length of M
in n-bit blocks. In Fig.1 hash computation tree is depicted for u = 3. The
hash value of M = m1,m2, . . . , m27 is m3,1. We suggest two ways to compute

Figure 1: Hash computation tree

r-bit blocks mk,i. In both the constructions, for every block of the message
M = m1,m2, . . . , ms a t-bit block of the sequence A = a1, a2, . . . , as, . . . is
generated, such that ai is generated when mi is being processed.

1. In the first variant of the tree construction we compute

m1,i+1 = faiu+1(miu+1)⊕ faiu+2(miu+2)⊕ . . .⊕ fa(i+1)u
(m(i+1)u)

for i = 0, 1, . . . The last block m1,j doesn’t necessarily depend on u sum-
mands. Then

mk+1,i+1 = mk,iu+1 + mk,iu+2 + . . . + mk,(i+1)u,

where k = 1, 2, . . . and i = 0, 1, . . . Here + is
{ ⊕, k is even;

¢, k is odd.

The last computed block mk,i is the hash value H(M).

3

2. In the second variant in addition to A, for every block of mk,1, . . . , mk,i, . . .
a t-bit block of the sequence Ak = ak,1, . . . , ak,i, . . . is generated, such that
ak,i is generated when mk,i is being processed. One uses a simple rule as
ak,i ≡ ak,i−1 + bk ≡ ak,0 + ibk mod 2t for fixed initial values ak,0 and bk.
Then

m1,i+1 = faiu+1(miu+1)⊕ faiu+2(miu+2)⊕ . . .⊕ fa(i+1)u
(m(i+1)u)

for i = 0, 1, . . . and

mk+1,i+1 = fak,iu+1(mk,iu+1)⊕fak,iu+2(mk,iu+2)⊕. . .⊕fak,(i+1)u
(mk,(i+1)u)

for k = 1, 2, . . . and i = 0, 1, . . . The last computed block mk,i is the hash
value H(M).

In both cases, given O(s) processors the computational cost of H(M) is dlogu se
computations of fa(x) values for some different a.

3 Choice of fa(x)

Although it is not necessary by the previous Section, we put here r = t = n and
n = 224, 256, 384, 512 as in the NIST requirements or so. Let p = 2n + e be a
prime number for a small natural number e. By x ? y we denote the product
of n-bit numbers x and y modulo p with the truncation of the result to n bits.
Then we define the function

fa(x) = ((x⊕ a) ? x(1) ⊕ c) ¢ x, (2)

where c is a constant related to the constant a, for instance, c ≡ a + b′ mod p,
for some constant b′. The n-bit block x(1) is the swap of n/2 + 1 of the least
significant bits and n/2− 1 of the most significant bits of x, that is

x = x0, . . . , xn/2, xn/2+1, . . . , xn−1

x(1) = xn/2+1, . . . , xn−1, x0, . . . , xn/2.

The choice of x(1) is justified by the following proposition.

Lemma 1 If n ≡ 0 mod 4, then x = x(1) if and only if x = 0 or 2n − 1.

Proof. If x = 0 or 2n − 1, then obviously x = x(1). Let now x = x(1). Then

x0 = xn
2 +1 = x1 = . . . = xn

2−1 = xn−1 = . . . = xn−2 = xn
2−1.

As n ≡ 0 mod 4 all xi occur in the chain and they are all equal. Therefore,
x = 0 or 2n − 1.

4

4 Notes on cryptanalysis

The task of the hash function cryptanalysis is to produce two different messages
M1 = m1, m2, . . . ,ms and M2 = m′

1,m
′
2, . . . , m

′
t such that H(M1) = H(M2).

Therefore, the described functions are considered to be broken if e.g. for at least
one a ∈ A(orAk) the function fa(x) is not collision resistant or one-way.

Let fai
(x) be not a collision resistant function and x1, x2 be a collision. Then

two i-block messages

M1 = m1, . . . , mi−1, x1 and M2 = m1, . . . ,mi−1, x2

collide in both the line and tree constructions.
Assume that some of fai

(x) are not one-way. Let for instance fai
(x) and

faj
(x) be not one-way and 1 ≤ i < j ≤ u. For any t-bit blocks b, c one finds

n-bit blocks x1, x
′
1 and x2, x

′
2 such that

fai
(x1) = b, fai

(x′1) = b,

faj (x2) = c, faj (x
′
2) = c.

Then two j-block messages

M1 = m1, . . . ,mi−1, x1,mi+1 . . . ,mj−1, x
′
1

M2 = m1, . . . ,mi−1, x2,mi+1 . . . ,mj−1, x
′
2

collide in both the line and tree constructions.

4.1 Bound on u

We will now explain the bound on the parameter u ≤ n
2 − 1. Assume there is

not any restriction for u. In this case the hash value may be computed by

H(M) = fa1(m1)⊕ fa2(m2)⊕ . . .⊕ fau(mu)

for any M of any length u in n-bit blocks. In order to construct a collision, one
produces 2u random n-bit blocks: m1, . . . , mu,m′

1, . . . , m
′
u. Then one computes

u n-bit binary vectors:

fa1(m1)⊕ fa1(m
′
1), . . . , fau(mu)⊕ fau(m′

u).

If u is close to n these vectors are linearly dependent with the probability
close to 1. Let this dependence be

fai1
(mi1)⊕ fai1

(m′
i1)⊕ . . .⊕ faiv

(miv)⊕ faiv
(m′

iv
) = 0.

Then the two messages

M1 = m . . . mi1 . . .m . . . miv and M ′
1 = m. . .m′

i1 . . . m . . . m′
iv

have the same hash value, where the same n-bit block m appears at the places
j /∈ {i1, . . . , iv} in both the messages. This gives the collision.

5

We realize that if u ≤ n
2 , then the probability of the dependence doesn’t

exceed 1
2n/2 . Then the running time of the attack overcomes the generic bound

on the hash function security that is 2n/2 operations. The similar observation
is valid if we change the operation ⊕ by ¢.

4.2 Broken fa(x)

In this Section we show the functions, similar in appearance to that described
in Section 3 or based on some other combination of the arithmetic operations,
which are already broken. In other words, it was shown them not being one-way
or collision resistant.

1. The function
fa(x) = ((x⊕ a) ? x(1) ⊕ c)⊕ x, (3)

differs from (2) in that the operation ¢ at the last occurrence of x was
changed to ⊕. The function admits the simple explicit collision:

x1 = a, x2 = 1(−1) such that fa(x1) = fa(x2),

where x → x(−1) denotes the inversion of x → x(1). This observation is
due to Seyed Mehdi Mohammad Hassanzadeh.

2. The function
fa(x) = a ? x⊕ x, (4)

is not one-way. We show that if b is any n-bit number of binary weight
|b| = s and there is x such that fa(x) = b, then x is found in at most 2s+1

trials. Let
b = 2i1 + 2i2 + . . . + 2is .

We observe that x⊕ b = x + b1, where

b1 ∈ {±2i1 ± 2i2 ± . . .± 2is}
and + is ordinary addition of integer numbers. So the equation fa(x) = b
is represented as ax − d ≡ x + b1 mod p, where d = 0 if the product ax
modulo p is within 0, . . . , 2n − 1 and d = 2n if it is bigger than 2n − 1.
In other words, a ? x ≡ ax − d mod p. On the whole, there are 2s+1

possibilities for d, b1. For each of them we find x satisfying

x ≡ b1 + d

a− 1
mod p

and check whether fa(x) = b. The correct x should be among them.

3. The function
fa(x) = ((x⊕ a) ? x ¢ c)⊕ x, (5)

differs from (2) that the operations at c and x are swept and x(1) is changed
to the plain x. We show that if for some b ⊆ a there exists a collision x, x⊕b

6

for fa(x), then it can be computed in at most 23s trials on the average,
where s is the binary weight of b. The notation b ⊆ a means that the 1′s in
the binary representation of b are among 1′s in the binary representation
of a.

Let b = 2i1 + 2i2 + . . . + 2is and s ≤ n/2. By the previous observation we
have for the sought x that

x⊕ b = x + b1,

x⊕ a⊕ b = (x⊕ a)− b1, (6)

where −b1 appears in the second formula due to b ⊆ a, and

((x⊕ a⊕ b) ? (x⊕ b) ¢ c)⊕ b = ((x⊕ a) ? x ¢ c) + b3, (7)

where b1, b3 ∈ {±2i1 ± 2i2 ± . . .± 2is}. Let a = 2j1 + 2j2 + . . . + 2jr , then

x⊕ a = x + a1,

where a1 ∈ {±2j1 ± 2j2 ± . . .± 2jr}. Finally,

(x⊕ a) ? x ¢ c = (x⊕ a)x + c− d1 − d′1 mod p, (8)
(x⊕ a⊕ b) ? (x⊕ b) ¢ c = (x⊕ a⊕ b)(x⊕ b) + c− d2 − d′2 mod p,

where d1, d
′
1, d2, d

′
2 are 0 or 2n. Taking all this into account, we get fa(x) =

fa(x⊕ b) is equivalent to

−d1 − d′1 = b1a1 − b2
1 + b3 − d2 − d′2, (9)

We realize that the last condition doesn’t depend on x. We formulate the
algorithm to compute x:

• for any b1, b3 ∈ {±2i1 ± 2i2 ± . . . ± 2is} and d1, d
′
1, d2, d

′
2 ∈ {0, 2n}

compute a1 from the equation (9). If a1 ∈ {±2j1 ± 2j2 ± . . . ± 2jr},
then proceed further, otherwise take another b1, b3, d1, d

′
1, d2, d

′
2.

• Take any x that satisfies two equations in (6). The bits of x are
determined at the positions, where bits of b equal 1. All other bits
are free.

• Check the equations (7) and (8). If they are satisfied, then the colli-
sion is found, otherwise take another x or another b1, b3, d1, d

′
1, d2, d

′
2.

It is obvious that the number of trials of b1, b3, d1, d
′
1, d2, d

′
2 is at most

22s+4. We estimate the probability of the success. The number of choices
for x is 2n−s the probability that (7) is fulfilled is 2−s. The probability
that (8) is fulfilled is almost 1 if d1, d

′
1, d2, d

′
2 = 0. We can assume that

for the true x. Therefore, the number of the trials for x, when the true
b1, b3, 0, 0, 0, 0 is being processed, is 2s on the average. That shows that
the complexity of finding at least one x satisfying fa(x) = fa(x⊕ b) is on
the average 23s trials.

7

4. The function
fa(x) = ((x⊕ a) ? x⊕ c) ¢ x, (10)

differs from (2) in that x(1) is changed to the plain x. Let |a| = r and
|c| = s denote the weight of a, c. Let α be a parameter and assume that
(r ≤ α) or (r ≥ n−α) and (s ≤ α) or (s ≥ n−α). Under this assumption
we show that for a random b the equation fa(x) = b is solved with the
probability at least P and in at most T trials. The values P and T are
determined by r and s and shown in the following table.

r and s T P
(r ≥ n− α) and (s ≥ n− α) 4 2−2α

(r ≤ α) and (s ≥ n− α) or
(r ≥ n− α) and (s ≤ α) 2α+2 2−α

(r ≤ α) and (s ≤ α) 22α+2 1

This data demonstrates that the function (10) should not be considered
one-way if the weight of a and c much differ from the average value n

2 .
We only consider the case r ≤ α and s ≥ n− α, as other possibilities are
similarly treated.

Let x satisfy fa(x) = b, where a = 2j1 +2j2 +. . .+2jr . Then x⊕a = x+a1,
where a1 ∈ {±2j1 ± 2j2 ± . . .± 2jr}. So there are 2r ≤ 2α possibilities for
a1. With the probability

2s

2n
= 2−(n−s) ≥ 2−α

we get that
(x⊕ a) ? x ⊆ c

and so (x⊕ a) ? x⊕ c = c− (x⊕ a) ? x in this case. Summing up all these
observations, we conclude that

fa(x) = (c− (x⊕ a) ? x) ¢ x =
c− (x + a1)x + d1 − d′1 mod p,

where d1, d
′
1 are 0 or 2n. One now solves fa(x) = b which is equivalent to

the quadratic equation

−x2 − (a1 − 1)x + c + d1 − d′1 ≡ b mod p. (11)

We find its root x if there are any roots and check whether fa(x) = b. If
not, then take another root or another tuple a1, d1, d

′
1 or another b. So

the number of trials is at most 2α+2 for each b.

We observe that we also find a collision for fa(x) with the same complexity
parameters P and T as the quadratic equation (11) should generally admit
two solutions if it admits one.

8

