
Authenticated Adversarial RoutingYair Amir∗ Paul Bunn† Rafail Ostrovsky‡AbstractThe aim of this paper is to demonstrate the feasibility of authenticated throughput-e�cientrouting in an unreliable and dynamically changing synchronous network in which the majorityof malicious insiders try to destroy and alter messages or disrupt communication in any way.More speci�cally, in this paper we seek to answer the following question: Given a network inwhich the majority of nodes are controlled by a node-controlling adversary and whose topologyis changing every round, is it possible to develop a protocol with polynomially-bounded memoryper processor that guarantees throughput-e�cient and correct end-to-end communication? Weanswer the question a�rmatively for extremely general corruption patterns: we only requestthat the topology of the network and the corruption pattern of the adversary leaves at least onepath each round connecting the sender and receiver through honest nodes (though this path maychange at every round). Out construction works in the public-key setting and enjoys boundedmemory per processor (that does not depend on the amount of tra�c and is polynomial in thenetwork size.) Our protocol achieves optimal transfer rate with negligible decoding error. Westress that our protocol assumes no knowledge of which nodes are corrupted nor which path isreliable at any round, and is also fully distributed with nodes making decisions locally, so thatthey need not know the topology of the network at any time.The optimality that we prove for our protocol is very strong. Given any routing protocol, weevaluate its e�ciency (rate of message delivery) in the �worst case,� that is with respect to theworst possible graph and against the worst possible (polynomially bounded) adversarial strategy(subject to the above mentioned connectivity constraints). Using this metric, we show that theredoes not exist any protocol that can be asymptotically superior (in terms of throughput) to oursin this setting.We remark that the aim of our paper is to demonstrate via explicit example the feasibilityof throughput-e�cient authenticated adversarial routing. However, we stress that out protocolis not intended to provide a practical solution, as due to its complexity, no attempt thus far hasbeen made to make the protocol practical by reducing constants or the large (though polynomial)memory requirements per processor.Our result is related to recent work of Barak, Goldberg and Xiao in 2008 [8] who stud-ied fault localization in networks assuming a private-key trusted setup setting. Our work, in
∗Johns Hopkins University Department of Computer Science. Email: yairamir@cs.jhu.edu Part of this work wasdone while visiting IPAM and supported in part by NSF grant 0430254.
†UCLA Department of Mathematics. Email: bunn@math.ucla.edu Supported in part by NSF grants 0430254,0716835, 0716389 and 0830803.
‡UCLA Departments of Computer Science and Department of Mathematics. Email: rafail@cs.ucla.edu Partof this work was done while visiting IPAM and supported in part by IBM Faculty Award, Xerox Innovation GroupAward, NSF grants 0430254, 0716835, 0716389, 0830803 and U.C. MICRO grant.1

contrast, assumes a public-key PKI setup and aims at not only fault localization, but also trans-mission optimality. Among other things, our work answers one of the open questions posedin the Barak et. al. paper regarding fault localization on multiple paths. The use of a public-key setting to achieve strong error-correction results in networks was inspired by the work ofMicali, Peikert, Sudan and Wilson [13] who showed that classical error-correction against apolynomially-bounded adversary can be achieved with surprisingly high precision. Our work isalso related to an interactive coding theorem of Rajagopalan and Schulman [14] who showedthat in noisy-edge static-topology networks a constant overhead in communication can also beachieved (provided none of the processors are malicious), thus establishing an optimal-rate rout-ing theorem for static-topology networks. Finally, our work is closely related and builds uponto the problem of End-To-End Communication in distributed networks, studied by Afek andGafni [1], Awebuch, Mansour, and Shavit [7], and Afek, Awerbuch, Gafni, Mansour, Rosen,and Shavit [2], though none of these papers consider or ensure correctness in the setting of anode-controlling adversary that may corrupt the majority of the network.Keywords: Network Routing; Error-correction; Fault Localization; Multi-parity Computationin the presence of Dishonest Majority; Communication Complexity; End-to-End Communica-tion.1 IntroductionOur goal is to design a routing protocol for an unreliable and dynamically changing synchronousnetwork that is resilient against malicious insiders who may try to destroy and alter messages ordisrupt communication in any way. We model the network as a communication graph G = (V,E)where each vertex is a processor and each edge is a communication link. We do not assume that thetopology of this graph is �xed or known by the processors. Rather, we assume a complete graph on
n vertices, where some of the edges are �up� and some are �down�, and the status of each edge canchange dynamically at any time.We concentrate on the most basic task, namely how two processors in the network can exchangeinformation. Thus, we assume that there are two designated vertices, called the sender S and thereceiver R, who wish to communicate with each other. The sender has an in�nite read-once inputtape of packets and the receiver has an in�nite write-once output tape which is initially empty. Weassume that packets are of some bounded size, and that any edge in the system that is �up� duringsome round can transmit only one packet (or control variables, also of bounded size) per round.We will evaluate our protocol using the following three considerations:1. Correctness. A protocol is correct if the sequence of packets output by the receiver is apre�x of packets appearing on the sender's input tape, without duplication or omission.2. Throughput. This measures the number of packets on the output tape as a function of thenumber of rounds that have passed.3. Processor Memory. This measures the memory required of each node by the protocol,independent of the number of packets to be transferred.All three considerations will be measured in the worst-case scenario as standards that are guar-anteed to exist regardless of adversarial interference. One can also evaluate a protocol based onits dependence on global information to make decisions. In the protocol we present in this paper,we will not assume there is any global view of the network available to the internal nodes. Such2

protocols are termed �local control,� in that each node can make all routing decisions based onlythe local conditions of its adjacent edges and neighbors.Our protocol is designed to be resilient against a malicious, polynomially-bounded adversarywho may attempt to impact the correctness, throughput, and memory of our protocol by disruptinglinks between the nodes or taking direct control over the nodes and forcing them to deviate from ourprotocol in any manner the adversary wishes. In order to relate our work to previous results andto clarify the two main forms of adversarial interference, we describe two separate (yet coordinatedwith each other) adversaries1:Edge-Scheduling Adversary. This adversary controls the links between nodes every round.More precisely, at each round, this adversary decides which edges in the network are upand which are down. We will say that the edge-scheduling adversary is conforming if forevery round there is at least one path from the sender to the receiver (although the pathmay change each round)2. The adversary can make any arbitrary poly-time computation tomaximize interference in routing, so long as it remains conforming.Node-Controlling Adversary. This adversary controls the nodes of the network that it hascorrupted. More precisely, each round this adversary decides which nodes to corrupt. Oncecorrupted, a node is forever under complete adversarial control and can behave in an arbitrarymalicious manner. We say that the node-controlling adversary is conforming if every roundthere is a connection between the sender and receiver consisting of edges that are �up� for theround (as speci�ed by the edge-scheduling adversary) and that passes through uncorruptednodes. We emphasize that this path can change each round, and there is no other restrictionon which nodes the node-controlling adversary may corrupt (allowing even a vast majority ofcorrupt nodes).There is another reason to view these adversaries as distinct: we deal with the challenges theypose to correctness, throughput, and memory in di�erent ways. Namely, aside from the conformingcondition, the edge-scheduling adversary cannot be controlled or eliminated. Edges themselvesare not inherently �good� or �bad,� so identifying an edge that has failed does not allow us toforever refuse the protocol to utilize this edge, as it may come back up at any time (and indeedit could form a crucial link on the path connecting the sender and receiver that the conformingassumption guarantees). In sum, we cannot hope to control or alter the behavior of the edge-scheduling adversary, but must come up with a protocol that works well regardless of the behaviorof the ever-present (conforming) edge-scheduling adversary.By contrast, our protocol will limit the amount of in�uence the node-controlling adversary hason correctness, throughput, and memory. Speci�cally, we will show that if a node deviates fromthe protocol in a su�ciently destructive manner (in a well-de�ned sense), then our protocol willbe able to identify it as corrupted in a timely fashion. Once a corrupt node has been identi�ed,it will be eliminated from the network. Namely, our protocol will call for honest nodes to refuse1The separation into two separate adversaries is arti�cial: our protocol is secure whether edge-scheduling andcorruption of nodes are performed by two separate adversaries that have di�erent capabilities yet can coordinatetheir actions with each other, or this can be viewed as a single coordinated adversary.2A more general de�nition of an edge-scheduling adversary would be to allow completely arbitrary edge failures,with the exception that in the limit there is no permanent cut between the sender and receiver. However, thisde�nition (while more general) greatly complicates the exposition, including the de�nition of throughput rate, andwe do not treat it here. 3

all communication with nodes that have been identi�ed as corrupt3. Thus, there is an inherentdi�erence in how we handle the edge-scheduling adversary verses how we handle the node-controllingadversary. We can restrict the in�uence of the latter by eliminating the nodes it has corrupted,while the former must be dealt with in a more ever-lasting manner.1.1 Previous WorkTo motivate the importance of the problem we consider in this paper, and to emphasize the sig-ni�cance of our result, it will be useful to highlight recent works in related areas. To date, routingprotocols that consider adversarial networks have been of two main �avors: End-to-End Com-munication protocols that consider dynamic topologies (a notion captured by our �edge-schedulingadversary�), and Fault Detection and Localization protocols, which handle devious behavior of nodes(as modeled by our �node-controlling adversary�).End-to-End Communication: One of the most relevant research directions to our paper is thenotion of End-to-End communication in distributed networks, considered by Afek and Gafni [1],Awerbuch, Mansour and Shavit [7], Afek, Awebuch, Gafni, Mansour, Rosen, and Shavit [2], andKushilevitz, Ostrovsky and Rosen [12] . Indeed, our starting point is the Slide protocol4 developedin these works. It was designed to perform end-to-end communication with bounded memory in amodel where (using our terminology) an edge-scheduling adversary controls the edges (subject to theconstraint that there is no permanent cut between the sender and receiver). The Slide protocol hasproven to be incredibly useful in a variety of settings, including multi-commodity �ow (Awerbuchand Leigthon [6]) and in developing routing protocols that compete well (in terms of packet loss)against an online bursty adversary ([4]). However, prior to our work there was no version of theSlide protocol that could handle malicious behavior of the nodes. A comparison of various versionsof the Slide protocol and our protocol is featured in Figure 1 of Section 1.2 below.Fault Detection and Localization Protocols: At the other end, there have been a numberof works that explore the possibility of a node-controlling adversary that can corrupt nodes. Inparticular, there is a recent line of work that considers a network consisting of a single path from thesender to the receiver, culminating in the recent work of Barak, Goldberg and Xiao [8] (for furtherbackground on fault localization see references therein). In this model, the adversary can corruptany node on the path (except the sender and receiver) in a dynamic and malicious manner. Sincecorrupting any node on the path will sever the honest connection between S and R, the goal of aprotocol in this model is not to guarantee that all messages sent to R are received. Instead, thegoal is to detect faults when they occur and to localize the fault to a single edge.There have been many results that provide Fault Detection (FD) and Fault Localization (FL)in this model. In Barak et. al. [8], they formalize the de�nitions in this model and the notion of asecure FD/FL protocol, as well as providing lower bounds in terms of communication complexity toguarantee accurate fault detection/location in the presence of a node-controlling adversary. Whilethe Barak et. al. paper has a similar �avor to our paper, we emphasize that their protocol does notseek to guarantee successful or e�cient routing between the sender and receiver. Instead, their proofof security guarantees that if a packet is deleted, malicious nodes cannot collude to convince S that3The conforming assumption guarantees that the sender and receiver are incorruptible, and our protocol placesthe responsibility of identifying and eliminating corrupt nodes on these two nodes.4Also known in practical works as �gravitational �ow� routing.4

no fault occurred, nor can they persuade S into believing that the fault occurred on an honest edge.Localizing the fault in their paper relies on cryptographic tools, and in particular the assumptionthat one-way functions exist. Although utilizing these tools (such as MACs or Signature Schemes)increases communication cost, it is shown by Goldberg, Xiao, Barak, and Redford [11] that theexistence of a protocol that is able to securely detect faults (in the presence of a node-controllingadversary) implies the existence of one-way functions, and it is shown in Barak et. al. [8] that anyprotocol that is able to securely localize faults necessarily requires the intermediate nodes to havea trusted setup. The proofs of these results do not rely on the fact that there is a single pathbetween S and R, and we can therefore extend them to the more general network encountered inour model to justify our use of cryptographic tools and a trusted setup assumption (i.e. PKI) toidentify malicious behavior.Another paper that addresses routing in the Byzantine setting is the work of Awerbuch, Holmes,Nina-Rotary and Rubens [5], though this paper does not have a fully formal treatment of security,and indeed a counter-example that challenges its security is discussed in the appendix of [8].Error-correction in the active setting: Due to space considerations, we will not be ableto give a comprehensive account of all the work in this area. Instead we highlight some of the mostrelevant works and point out how they di�er from our setting and results. For a lengthy treatment oferror-correcting codes against polynomially bounded adversaries, we refer to the work of Micali at.al [13] and references therein. It is important to note that this work deals with a graph with a single�noisy� edge, as modelled by an adversary who can partially control and modify information thatcrosses the edge. In particular, it does not address throughput e�ciency or memory considerationsin a full communication network, nor does it account for malicious behavior at the vertices. Alsoof relevance is the work on Rajagopalan and Schulman on error-correcting network coding [14],where they show how to correct noisy edges during distributed computation. Their work does notconsider actively malicious nodes, and thus is di�erent from our setting. It should also be notedthat their work utilizes Schulman's tree-codes [17] that allow length-�exible online error-correction.The important di�erence between our work and that of Schulman is that in our network setting,the amount of malicious activity of corrupt nodes is not restricted.1.2 Our ResultsTo date, there has not been a protocol that has considered simultaneously a network susceptibleto faults occurring due to edge-failures and faults occurring due to malicious activity of corruptnodes. The end-to-end communication works are not secure when the nodes are allowed to becomecorrupted by a node-controlling adversary, and the fault detection and localization works focus ona single path for some duration of time, and do not consider a fully distributed routing protocolthat utilizes the entire network and attempts to maximize throughput e�ciency while guaranteeingcorrectness in the presence of edge-failures and corrupt nodes. Indeed, our work answers one ofthe open questions posed in the Barak et. al. paper regarding fault localization on multiple paths.In this paper we bridge the gap between these two research areas and obtain the �rst routingprotocol simultaneously secure against both an edge-scheduling adversary and a node-controllingadversary, even if these two adversaries attack the network using an arbitrary coordinated poly-time strategy. Furthermore, our protocol achieves comparable e�ciency standards in terms ofthroughput and processor memory as state-of-the-art protocols that are not secure against a node-controlling adversary and does so using local-control protocols. An informal statement of our result5

and comparison of our protocol to existing protocols can be found below. Although not includedin the table, we emphasize that the linear transmission rate that we achieve (assuming at least n2messages are sent) is asymptotically optimal, as any protocol operating in a network with a singlepath connecting sender and receiver can do no better than one packet per round.A ROUTING THEOREM FOR ADVERSARIAL NETWORKS (Informal): If one-wayfunctions exist, then for any n-node graph and k su�ciently large, there exists a trusted-setup linearthroughput transmission protocol that can send n2 messages in O(n2) rounds with O(n4(k + log n))memory per processor that is resilient against any poly-time conforming Edge-Scheduling Adversary andany conforming poly-time Node-Controlling Adversary, with negligible (in k) probability of failure ordecoding error. Secure Against Secure Against Processor Throughput RateEdge-Sched. Ad? Node-Cntr. Ad? Memory x rounds→f(x) packetsSlide Protocol of [2] Y ES NO O(n2 log n) f(x) = O(x− n2)Slide Protocol of [12] Y ES NO O(n log n) f(x) = O(x/n− n2)(folklore)(Flooding + Signatures) Y ES Y ES O(1) f(x) = O(x/n− n2)(folklore)(Signatures + Sequence No.'s) Y ES Y ES unbounded f(x) = O(x− n2)Our Protocol Y ES Y ES O(n4(k+log n)) f(x) = O(x− n2)Figure 1: Comparison of Our Protocol to Related Existing Protocols and Folklore.2 Challenges and Naïve SolutionsBefore proceeding, it will be useful to consider a couple of naïve solutions that achieve the goal ofcorrectness (but perform poorly in terms of throughput), and help to illustrate some of the technicalchallenges that our theorem resolves. Consider the approach of having the sender continuously �ooda single signed packet into the network for n rounds. Since the conforming assumption guaranteesthat the network provides a path between the sender and receiver through honest nodes at everyround, this packet will reach the receiver within n rounds, regardless of adversarial interference.After n rounds, the sender can begin �ooding the network with the next packet, and so forth5.Notice that this solution will require each processor to store and continuously broadcast a singlepacket at any time, and hence this solution achieves excellent e�ciency in terms of processor memory.However, notice that the throughput rate is sub-linear, namely after x rounds, only O(x/n) packetshave been outputted by the receiver.5An alternative approach would have the sender continue �ooding the �rst packet, and upon receipt, the re-ceiver �oods con�rmation of receipt. This alternative solution requires sequence numbers to accompany pack-ets/con�rmations, and the rule that internal nodes only keep and broadcast the packet and con�rmation with largestsequence number. Although this alternative may potentially speed things up, in the worst-case it will still take O(n)rounds for a single packet/con�rmation pair to be transmitted.6

One idea to try to improve the throughput rate might be to have the sender streamline theprocess, sending packets with ever-increasing sequence numbers without waiting for n rounds topass (or signed acknowledgments from the receiver) before sending the next packet. In particular,across each of his edges the sender will send every packet once, waiting only for the neighboringnode's con�rmation of receipt before sending the next packet across that edge. The protocol calls forthe internal nodes to act similarly. Analysis of this approach shows that not only has the attemptto improve throughput failed (it is still O(x/n) in the worst-case scenario), but additionally thismodi�cation requires arbitrarily large (polynomial in n and k) processor memory, since achievingcorrectness in the dynamic topology of the graph will force the nodes to remember all of the packetsthey see until they have broadcasted them across all adjacent edges or seen con�rmation of theirreceipt from the receiver.2.1 Challenges in Dealing with Node-Controlling AdversariesIn this section, we discuss some potential strategies that the node-controlling and edge-schedulingadversaries6 may incorporate to disrupt network communication. Although our theorem will work inthe presence of arbitrarymalicious activity of the adversarial controlled nodes (except with negligibleprobability), it will be instructive to list a few obvious forms of devious behavior that our protocolmust protect against. It is important to stress that this list is not intended to be exhaustive. Indeed,we do not claim to know all the speci�c ways an arbitrary polynomially bounded adversary mayforce nodes to deviate from a given protocol, and in this paper we rigorously prove that our protocolis secure against all possible deviations.
• Packet Deletion/Modi�cation. Instead of forwarding a packet, a corrupt node �drops it to the�oor� (i.e. deletes it or e�ectively deletes it by forever storing it in memory), or modi�es thepacket before passing it on. Another manifestation of this is if the sender/receiver requestsfault localization information of the internal nodes, such as providing documentation of theirinteractions with neighbors. A corrupt node can then block or modify information that passesthrough it in attempt to hide malicious activity or implicate an honest node.
• Introduction of Junk/Duplicate Packets. The adversary can attempt to disrupt communication�ow and �jam� the network by having corrupted nodes introduce junk packets or re-broadcastold packets. Notice that junk packets can be handled by using cryptographic signatures toprevent introduction of �new� packets, but this does not control the re-transmission of old,correctly signed packets.
• Disobedience of Transfer Rules. If the protocol speci�es how nodes should make decisions onwhere to send packets, etc., then corrupt nodes can disregard these rules. This includes �lying�to adjacent nodes about their current state.
• Coordination of Edge-Failures. The edge-scheduling adversary can attempt to disrupt commu-nication �ow by scheduling edge-failures in any manner that is consistent with the conformingcriterion. Coordinating edge failures can be used to impede correctness, memory, and through-put in various ways: e.g. packets may become lost across a failed edge, stuck at a suddenlyisolated node, or arrive at the receiver out of order. A separate issue arises concerning faultlocalization: when the sender/receiver requests documentation from the internal nodes, theedge-scheduling adversary can slow progress of this information, as well as attempt to protect6We give a formal de�nition of the adversary in Section 3.2.7

corrupt nodes by allowing them to �play-dead� (setting all of its adjacent edges to be down),so that incriminating evidence cannot reach the sender.2.2 Highlights of Our SolutionOur starting point is the Slide protocol [2], which has enjoyed practical success in networks withdynamic topologies, but is not secure against nodes that are allowed to behave maliciously. Weprovide a detailed description of our version of the Slide protocol in Section 4, but highlight themain ideas here. Begin by viewing the edges in the graph as consisting of two directed edges, andassociate to each end of a directed edge a stack data-structure able to hold 2n packets and to bemaintained by the node at that end. The protocol speci�es the following simple, local condition fortransferring a packet across a directed edge: if there are more packets in the stack at the originatingend than the terminating end, transfer a packet across the edge. Similarly, within a node's localstacks, packets are shu�ed to average out the stack heights along each of its edges. Intuitively,packet movement is analogous to the �ow of water: high stacks create a pressure that force packetsto ��ow� to neighboring lower stacks. At the source, the sender maintains the pressure by �lling hisoutgoing stacks (as long as there is room) while the receiver relieves pressure by consuming packetsand keeping his stacks empty. Loosely speaking, packets traveling to nodes �near� the sender willtherefore require a very large potential, packets traveling to nodes near the receiver will requirea small potential, and packet transfers near intermediate nodes will require packages to have amoderate potential. Assuming these potential requirements exist, packets will pass from the senderwith a high potential, and then ��ow� downwards across nodes requiring less potential, all the wayto the receiver.Because the Slide protocol provides a fully distributed protocol that works well against an edge-scheduling adversary, our starting point was to try to extend the protocol by using digital signatures7to provide resilience against Byzantine attacks and arbitrary malicious behavior of corrupt nodes.This proved to be a highly nontrivial task that required us to develop a lot of additional machinery,both in terms of additional protocol ideas and novel techniques for proving correctness. We give adetailed explanation of our techniques in Section 8 and formal pseudo-code in Section 9, as well asproviding rigorous proofs of security in Section 10. However, below we �rst give a sample of someof the key ideas we used in ensuring our additional machinery would be provably secure against anode-controlling adversary, and yet not signi�cantly a�ect throughput or memory, compared to theoriginal Slide protocol:
• Addressing the �Coordination of Edge-Scheduling� Issues. In the absence of anode-controlling adversary, previous versions of the Slide protocol (e.g. [2]) are secure ande�cient against an edge-scheduling adversary, and it will be useful to discuss how some ofthe challenges posed by a network with a dynamic topology are handled. First, note that thetotal capacity of the stack data-structure is bounded by 4n3. That is, each of the n nodes canhold at most 2n packets in each of their 2n stacks (along each directed edge) at any time.7In this paper we use public-key operations to sign individual packets with control information. Clearly, this is tooexpensive to do per-packet in practice. There are methods of amortizing the cost of signatures by signing �batches� ofpackets; using private-key initialization [8, 11], or using a combination of private-key and public key operations, suchas �on-line/o�-line� signatures [9, 16]. For the sake of clarity and since the primary focus of our paper is theoreticalfeasibility, we restrict our attention to the straight-forward public-key setting without considering these additionalcost-saving techniques. 8

� To handle the loss of packets due to an edge going down while transmitting a packet,a node is required to maintain a copy of each packet it transmits along an edge until itreceives con�rmation from the neighbor of successful receipt.� To handle packets becoming stuck in some internal node's stack due to edge failures,error-correction is utilized to allow the receiver to decode a full message without needingevery packet. In particular, if an error-correcting code allowing a fraction of λ faults isutilized, then since the capacity of the network is 4n3 packets, if the sender is able topump 4n3/λ codeword packets into the network and there is no malicious deletion ormodi�cation of packets, then the receiver will necessarily have received enough packetsto decode the message.� The Slide protocol has a natural bound in terms of memory per processor of O(n2 log n)bits, where the bottleneck is the possibility of a node holding up to 2n2 packets in itsstacks, where each packet requires O(log n) bits to describe its position in the code.Of course, these techniques are only valid if nodes are acting honestly, which leads us to our�rst extension idea.
• Handling Packet Modification and Introduction of Junk Packets. Before insert-ing any packets into the network, the sender will authenticate each packet using his digitalsignature, and intermediate nodes and the receiver never accept or forward messages not ap-propriately signed. This simultaneously prevents honest nodes becoming bogged down withjunk packets, as well as ensuring that if the receiver has obtained enough authenticated packetsto decode, a node-controlling adversary cannot impede the successful decoding of the mes-sage as the integrity of the codeword packets is guaranteed by the inforgibility of the sender'ssignature.
• Fault Detection. In the absence of a node-controlling adversary, our protocol looks almostidentical to the Slide protocol of [2], with the addition of signatures that accompany allinteractions between two nodes. First, the sender attempts to pump the 4n3/λ codewordpackets of the �rst message into the network, with packet movement exactly as in the originalSlide protocol. We consider all possible outcomes:1. The sender is able to insert all codeword packets and the receiver is able to decode. In thiscase, the message was transmitted successfully, and our protocol moves to transfer thenext message.2. The sender is able to insert all codeword packets, but the receiver has not received enough todecode. In this case, the receiver �oods the network with a single-bit message indicatingpacket deletion has occurred.3. The sender is able to insert all codeword packets, but the receiver cannot decode because hehas received duplicated packets. Although the sender's authenticating signature guaranteesthe receiver will not receive junk or modi�ed packets, a corrupt node is able to duplicatevalid packets. Therefore, the receiver may receive enough packets to decode, but cannotbecause he has received duplicates. In this case, the receiver �oods the network with asingle message indicating the label of a duplicated packet.4. After some amount of time, the sender still has not inserted all codeword packets. In thiscase, the duplication of old packets is so severe that the network has become jammed,and the sender is prevented from inserting packets even along the honest path that9

the conforming assumption guarantees. If the sender believes the jamming cannot beaccounted for by edge-failures alone, he will halt transmission and move to localizinga corrupt node8. One contribution this paper makes is to prove a lower bound on theinsertion rate of the sender for the Slide protocol in the absence of the node-controllingadversary. This bound not only alerts the sender when the jamming he is experiencingexceeds what can be expected in the absence of corrupt nodes, but it also provides amechanism for localizing the o�ending node(s).The above four cases exhaust all possibilities. Furthermore, if a transmission is not successful,the sender is not only able to detect the fact that malicious activity has occured, but he is alsoable to distinguish the form of the malicious activity, i.e. which case 2-4 he is in. Meanwhile,for the top case, our protocol enjoys (within a constant factor) an equivalent throughput rateas the original Slide protocol.
• Fault Localization. Once a fault has been detected, it remains to describe how to localizethe problem to the o�ending node. To this end, we use digital signatures to achieve a newmechanism we call �Routing with Responsibility.� By forcing nodes to sign key parts of everycommunication with their neighbors during the transfer of packets, they can later be heldaccountable for their actions. In particular, once the sender has identi�ed the reason forfailure (cases 2-4 above), he will request all internal nodes to return status reports, whichare signatures on the relevant parts of the communication with their neighbors. We thenprove in each case that with the complete status report from every node, the sender can withoverwhelming probability identify and eliminate a corrupt node. Of course, malicious nodesmay choose not to send incriminating information. We handle this separately as explainedbelow.
• Processor Memory. The signatures on the communication a node has with its neighborsfor the purpose of fault localization is a burden on the memory required of each processorthat is not encountered in the original Slide protocol. One major challenge was to reducethe amount of signed information each node must maintain as much as possible, while stillguaranteeing that each node has maintained �enough� information to identify a corrupt nodein the case of arbitrary malicious activity leading to a failure of type 2-4 above. The contentof Theorem 8.2 in Section 8 demonstrates that the extra memory required of our protocol isa factor of n2 higher than that of the original Slide protocol.
• Incomplete Information. As already mentioned, we show that regardless of the reason offailure 2-4 above, once the sender receives the status reports from every node, a corrupt nodecan be identi�ed. However, this relies on the sender obtaining all of the relevant information;the absence of even a single node's information can prevent the localization of a fault. Weaddress this challenge in the following ways:1. We minimize the amount of information the sender requires of each node. This way, anode need not be connected to the sender for very many rounds in order for the sender8We emphasize here the importance that the sender is able to distinguish the case that the jamming is a result ofthe edge-scheduling adversary's controlling of edges verses the case that a corrupt node is duplicating packets. Afterall, in the case of the former, there is no reward for �localizing� the fault to an edge that has failed, as all edgesare controlled by the edge-scheduling adversary, and therefore no edge is inherently better than another. But in thecase a node is duplicating packets, if the sender can identify the node, it can eliminate it and e�ectively reduce thenode-controlling adversary's ability to disrupt communication in the future.10

to receive its information. Speci�cally, regardless of the reason for failure 2-4 above, astatus report consists of only n pieces of information from each node, i.e. one packet foreach of its edges.2. If the sender does not have the n pieces of information from a node, it cannot a�ord towait inde�nitely. After all, the edge-scheduling adversary may keep the node disconnectedinde�nitely, or a corrupt node may simply refuse to respond. For this purpose, we createa blacklist for non-responding nodes, which will disallow them from transferring codewordpackets in the future. This way, anytime the receiver fails to decode a codeword as incases 2-4 above, the sender can request the information he needs, blacklist nodes notresponding within some short amount of time, and then re-attempt to transmit thecodeword using only non-blacklisted nodes. Nodes should not transfer codeword packetsto blacklisted nodes, but they do still communicate with them to transfer the informationthe sender has requested. If a new transmission again fails, the sender will only need torequest information from nodes that were participating, i.e. he will not need to collectnew information from blacklisted nodes (although the nodes will remain blacklisted untilthe sender gets the original information he requested of them). Nodes will be removedfrom the blacklist and re-allowed to route codeword packets as soon as the sender receivestheir information.
• The Blacklist. Blacklisting nodes is a delicate matter; we want to place malicious nodes�playing-dead� on this list, while at the same time we don't want honest nodes that are tem-porarily disconnected from being on this list for too long. We show in Theorem 8.1 and Lemma10.9 that the occasional honest node that gets put on the blacklist won't signi�cantly hinderpacket transmission. Intuitively, this is true because any honest node that is an importantlink between the sender and receiver will not remain on the blacklist for very long, as hisconnection to the sender guarantees the sender will receive all requested information from thenode in a timely manner.Ultimately, the blacklist allows us to control the amount of malicious activity a singlecorrupt node can contribute to. Indeed, we show that each failed message transmission (cases2-4 above) can be localized (eventually) to (at least) one corrupt node. More precisely, theblacklist allows us to argue that malicious activity can cause at most n failed transmissionsbefore a corrupt node can necessarily be identi�ed and eliminated. Since there are at most ncorrupt nodes, this bounds the number of failed transmissions at n2. The result of this is thatother than at most n2 failed message transmissions, our protocol enjoys the same throughpute�ciency of the old Slide protocol. The formal statement of this fact can be found in Theorem8.1 in Section 8, and its proof can be found in Section 10.3 The Formal ModelIt will be useful to describe two models in this section, one in the presence of an edge-schedulingadversary (all nodes act �honestly�), and one in the presence of an adversary who may �corrupt�some of the nodes in the network. In Section 4 we present an e�cient protocol (�Slide�) that workswell in the edge-scheduling adversarial model, and we then extend this protocol in Section 8 to workin the additional presence of the node-controlling adversary.11

3.1 The Edge-Scheduling Adversarial ModelWe model a communication network by an undirected graph G = (V,E), where |V | = n.Each vertex (or node) represents a processor that is capable of storing information (in its bu�ers)and passing information to other nodes along the edges. We distinguish two nodes, the sender,denoted by S, and the receiver, denoted by R. In our model, S has an input stream of messages
{m1,m2, . . . } of uniform size that he wishes to transmit through the network to R. As mentioned inthe Introduction, the three commodities we care about are Correctness, Throughput, and ProcessorMemory.We assume a synchronous network, so that there is a universal clock that each node has accessto9. The global time is divided into discrete chunks, called rounds, during which nodes communicatewith each other and transfer packets. Each round consists of two equal intervals of unit time calledstages, so that all nodes are synchronized in terms of when each stage begins and ends. We assumethat the edges have some �xed capacity P in terms of the amount of information that can betransmitted across them per stage. The messages will be sub-divided into packets of uniform size
P , so that exactly one packet can be transferred along an edge per stage10.The sole purpose of the network is to transmit the messages from S to R, so S is the onlynode that introduces new messages into the network, and R is the only node that removes themfrom the network (although below we introduce a node-controlling adversary who may corrupt theintermediate nodes and attempt to disrupt the network by illegally deleting/introducing messages).Although the edges in our model are bi-directional, it will be useful to consider each link as consistingof two directed edges. Except for the conforming restriction (see below), we allow the edges of ournetwork to fail and resurrect arbitrarily. We model this via an Edge-Scheduling Adversary, whocontrols the status of each edge of the network, and can alter the state of any edge at any time. Wesay that an edge is active during a given stage/round if the edge-scheduling adversary allows thatedge to remain �up� for the entirety of that stage/round. We impose one restriction on the failureof edges:De�nition 3.1. An edge-scheduling adversary is conforming if for every round of the protocol,there exists at least one path between S and R consisting of edges that active for the entirety ofthe round.For a given round t, we will refer to the path guaranteed by the conforming assumption as theactive path of round t. Notice that although the conforming assumption guarantees the existence ofan active path for each round, it is not assumed that any node (including S and R) is aware of whatthat path is. Furthermore, this path may change from one round to the next. The edge-schedulingadversary cannot a�ect the network in any way other than controlling the status of the edges. Inthe next section, we introduce a node-controlling adversary who can take control of the nodes ofthe network11.9Although synchronous networks are di�cult to realize in practice, we can further relax the model to one in whichthere is a known upper-bound on the amount of time an active edge can take to transfer a packet.10Our protocol for the node-controlling adversarial model will require the packets to include signatures from acryptographic signature scheme. The security of such schemes depend on the security parameter k, and the size ofthe resulting signatures have size O(k). Additionally, error-correction will require packets to carry with them anindex of O(log n) bits. Therefore, we assume that P ≥ (k + log n), so that in each time step a complete packet (withsignature and index) can be transferred.11The distinction between the two kinds of adversaries is made solely to emphasize the contribution of this paper.12

3.2 The Node-Controlling + Edge-Scheduling Adversarial ModelThis model begins with the edge-scheduling adversarial model described above, and adds a poly-nomially bounded Node-Controlling Adversary that is capable of corrupting nodes in the network.The node-controlling adversary is malicious, meaning that the adversary can take complete controlover the nodes he corrupts, and can therefore force them to deviate from any protocol in whatevermanner he likes. We further assume that the adversary is dynamic, which means that he can corruptnodes at any stage of the protocol, deciding which nodes to corrupt based on what he has observedthus far12. For a thorough discussion of these notions, see [10] and references therein.As in Multi-Party Computation (MPC) literature, we will need to specify an �access-structure�for the adversary.De�nition 3.2. A node-controlling adversary is conforming if he does not corrupt any nodes whohave been or will be a part of any round's active path.Apart from this restriction, the node-controlling adversary may corrupt whoever he likes (i.e. itis not a threshold adversary). Note that the conforming assumption implicitly demands that S and
R are incorruptible, since they are always a part of any active path. Also, this restriction on theadversary is really more a statement about when our results remain valid. This is similar to e.g.threshold adversary models, where the results are only valid if the number of corrupted nodes doesnot exceed some threshold value t. Once corrupted, a node is forever considered to be a corruptnode that the adversary has total control over (although the adversary may choose to have the nodeact honestly).Notice that because correctness, throughput, and memory are the only commodities that ourmodel values, an honest-but-curious adversary is completely benign, as privacy does not need to beprotected13 (indeed, any intermediate node is presumed to be able to read any packet that is passedthrough it). Our techniques for preventing/detecting malicious behavior will be to incorporate adigital signature scheme that will serve the dual purpose of validating information that is passedbetween nodes, as well as holding nodes accountable for information that their signature committedthem to.We assume that there is a Public-Key Infrastructure (PKI) that allows digital signatures. Inparticular, before the protocol begins we choose a security parameter k su�ciently large and run akey generation algorithm for a digital signature scheme, producing n = |G| (secret key, veri�cationkey) pairs (skN , vkN). As output to the key generation, each processor N ∈ G is given its ownprivate signing key skN and a list of all n signature veri�cation keys vk

N̂
for all nodes N̂ ∈ G. Inparticular, this allows the sender and receiver to sign messages to each other that cannot be forged(except with negligible probability in the security parameter) by any other node in the system.Edge-scheduling adversaries (as described above) are commonly used to model edge failures in networks, while thecontribution of our paper is in controlling a node-controlling adversary, which has the ability to corrupt the nodes ofthe network.12Although the node-controlling adversary is dynamic, he is still constrained by the conforming assumption.Namely, the adversary may not corrupt nodes that have been, or will be, part of any active path connecting senderand receiver.13If desired, privacy can be added trivially by encrypting all packets.

13

4 Routing Protocol in the Edge-Scheduling Adversarial ModelIn this section we formally describe our edge-scheduling protocol, which is essentially the �Slide�protocol of [2].4.1 De�nitions and High-Level IdeasThe goal of the protocol is to transmit a sequence of messages {m1,m2, . . . } of uniform size fromthe sender S to the receiver R (refer to Section 3.1 for a complete description of the model). Eachnode will maintain a stack (i.e. FILO bu�ers) along each of its (directed) edges that can hold up to
2n packets concurrently. To allow for packets to become stuck in the bu�ers, we will utilize error-correction (see e.g. [10]). Speci�cally, the messages {m1,m2, . . . } are converted into codewords
{c1, c2, . . . }, allowing the receiver to decode a message provided he has received an appropriatenumber (depending on the information rate and error-rate of the code) of bits of the correspondingcodeword. In this paper, we assume the existence of a error-correcting code with information rate
σ and error rate λ.As part of the setup of our protocol, we assume that the messages {m1,m2, . . . } have beenpartitioned to have uniform size M = 6σPn3

λ
(recall that P is the capacity of each edge and σ and

λ are the parameters for the error-correction code). The messages are expanded into codewords,which will have size C = M
σ

= 6Pn3

λ
. The codewords are then divided into C

P
= 6n3

λ
packets of size

P . We emphasize this quantity for later use:
D :=

6n3

λ
= number of packets per codeword. (1)Note that the only �noise� in our network results from undelivered packets or out-dated packets (inthe edge-scheduling adversarial model, any packet that R receives has not been altered). Therefore,since each codeword consists of D = 6n3

λ
packets, by de�nition of λ, if R receives (1 − λ)D =

(1−λ)
(

6n3

λ

) packets corresponding to the same codeword, he will be able to decode. We emphasizethis fact:Fact 1. If the receiver has obtained D− 6n3 = (1− λ)
(

6n3

λ

) packets from any codeword, hewill be able to decode the codeword to obtain the corresponding message.Because our model allows for edges to go up/down, we force each node to keep incoming andoutgoing bu�ers for every possible edge, even if that edge isn't part of the graph at the outset. Weintroduce now the notion of height of a bu�er, which will be used to determine when packets aretransferred and how packets are re-shu�ed between the internal bu�ers of a given node betweenrounds.De�nition 4.1. The height of an incoming/outgoing bu�er is the number of packets currentlystored in that bu�er.The presence of an edge-scheduling adversary that can force edges to fail at any time complicatesthe interaction between the nodes. Note that our model does not assume that the nodes are awareof the status of any of its adjacent edges, so failed edges can only be detected when informationthat was supposed to be passed along the edge does not arrive. We handle potential edge failuresas follows. First, the incoming/outgoing bu�ers at either end of an edge will be given a �status�14

(normal or problem). Also, to account for a packet that may be lost due to edge failure duringtransmission across that edge, a node at the receiving end of a failed edge may have to leave roomin its corresponding incoming bu�er. We refer to this gap as a ghost packet, but emphasize thatthe height of an incoming bu�er is not a�ected by ghost packets (by de�nition, height only countspackets that are present in the bu�er). Similarly, when a sending node �sends� a packet across anedge, it actually only sends a copy of the packet, leaving the original packet in its outgoing bu�er.We will refer to the original copy left in the outgoing bu�er as a �agged packet, and note that �aggedpackets continue to contribute to the height of an outgoing bu�er until they are deleted.The codewords will be transferred sequentially, so that at any time, the sender is only insertingpackets corresponding to a single codeword. We will refer to the rounds for which the sender isinserting codeword packets corresponding to the ith codeword as the ith transmission. Lemma6.15 below states that after the sender has inserted D − 2n3 packets corresponding to the samecodeword, the receiver can necessarily decode. Therefore, when the sender has inserted this manypackets corresponding to codeword bi, he will clear his outgoing bu�ers and begin distributingpackets corresponding to the next codeword bi+1.4.2 Detailed Description of the Edge-Scheduling ProtocolWe describe now the two main parts of the edge-scheduling adversarial routing protocol: theSetup and the Routing Phase. For a formal presentation of the pseudo-code, see Section 5.Setup. Each internal (i.e. not S or R) node has the following bu�ers:1. Incoming Bu�ers. Recall that we view each bi-directional edge as consisting of two directededges. Then for each incoming edge, a node will have a bu�er that has the capacity to hold 2npackets at any given time. Additionally, each incoming bu�er will be able to store a �Status�bit, the label of the �Last-Received� packet, and the �Round-Received� index (the round inwhich this incoming bu�er last accepted a packet, see De�nition 6.5 below). The way that thisadditional information is used will be described in the �Routing Rules for Receiving Node�section below.2. Outgoing Bu�ers. For each outgoing edge, a node will have a bu�er that has the capacity tohold 2n packets at any given time. Like incoming bu�ers, each outgoing bu�er will also beable to store a status bit, the index label of one packet (called the �Flagged� packet), and a�Problem-Round� index (index of the most recent round in which the status bit switched to1).The receiver will only have incoming bu�ers (with capacity of one) and a large Storage Bu�er thatcan hold up to D packets. Similarly, the sender has only outgoing bu�ers (with capacity 2n) andthe input stream of messages {m1,m2, . . . } which are encoded into the codewords and divided intopackets, the latter then distributed to the sender's outgoing bu�ers.Also as part of the Setup, all nodes learn the relevant parameters (P , n, λ, and σ).Routing Phase. As indicated in Section 3.1, we assume a synchronous network, so that there arewell-de�ned rounds in which information is passed between nodes. Each round consists of two unitsof time, called Stages. The formal treatment of the Routing Phase can be found in the pseudo-codeof Section 5. Informally, Figure 2 below considers a directed edge E(A,B) from A (including A = S)to B (including B = R), and describes what communication each node sends in each stage.15

Stage A B
HA := Height of bu�er along E(A,B)

1 Height of �agged p. (if there is one) −→Round prev. packet was sent
←−

HB := Height of bu�er along E(A,B)Round prev. packet was receivedSend packet if:
2 • HA > HB OR −→

• B didn't rec. prev. packet sentFigure 2: Description of communication exchange along directed edge E(A,B) during the RoutingPhase of any round.In addition to this communication, each node must update its internal state based on thecommunication it receives. In particular, from the communication A receives from B in Stage 1 ofany round, A can determine if B has received the most recent packet A sent. If so, A will deletethis packet and switch the status of the outgoing bu�er along this edge to �normal.� If not, A willkeep the packet as a �agged packet, and switch the status of the outgoing bu�er along this edgeto �problem.� At the other end, if B does not receive A's Stage 1 communication or B does notreceive a packet it was expecting from A in Stage 2, then B will leave a gap in its incoming bu�er(termed a �ghost packet�) and will switch this bu�er's status to �problem.� On the other hand, if
B successfully receives a packet in Stage 2, it will switch the bu�er back to �normal� status.Re-Shu�e Rules. At the end of each round, nodes will shu�e the packets they are holdingaccording to the following rules:1. Take a packet from the fullest bu�er and shu�e it to the emptiest bu�er, provided the di�er-ence in height is at least two (respectively one) when the packet is moved between two bu�ersof the same type (respectively when the packet moves from an incoming bu�er to an outgoingbu�er). Packets will never be re-shu�ed from an outgoing bu�er to an incoming bu�er. Iftwo (or more) bu�ers are tied for having the most packets, then a packet will preferentiallybe chosen from incoming bu�ers over outgoing bu�ers (ties are broken in a round-robin fash-ion). Conversely, if two (or more) bu�ers are tied for the emptiest bu�er, then a packet willpreferentially be given to outgoing bu�ers over incoming bu�ers (again, ties are broken in around-robin fashion).2. Repeat the above step until the di�erence between the fullest bu�er and the emptiest bu�erdoes not meet the criterion outlined in Step 1.Recall that when a packet is shu�ed locally between two bu�ers, packets travel in a FILO manner,so that the top-most packet of one bu�er is shu�ed to the top spot of the next bu�er. When anoutgoing bu�er has a �agged packet or an incoming bu�er has a ghost packet, we use instead thefollowing modi�cations to the above re-shu�e rules. Recall that in terms of measuring a bu�er'sheight, �agged packets are counted but ghost packets are not.- Outgoing bu�ers do not shu�e �agged packets. In particular, if Rule 1 above selects to transfera packet from an outgoing bu�er, the top-most non-�agged packet will be shu�ed. This maymean that a gap is created between the �agged packet and the next non-�agged packet.16

- Incoming bu�ers do not re-shu�e ghost packets. In particular, ghost packets will remain inthe incoming bu�er that created them, although we do allow ghost packets to slide downwithin its incoming bu�er during re-shu�ing. Also, packets shu�ed into an incoming bu�erare not allowed to occupy the same slot as a ghost packet (they will take the �rst non-occupiedslot)14.The sender and receiver have special rules for re-shu�ing packets. Namely, during the re-shu�ephase the sender will �ll each of his outgoing bu�ers (in an arbitrary order) with packets correspond-ing to the current codeword. Meanwhile, the receiver will empty all of its incoming bu�ers into itsstorage bu�er. If at any time R has received enough packets to decode a codeword bi (Fact 1 saysthis amount is at most D− 6n3), then R outputs message mi and deletes all packets correspondingto codeword bi from its storage bu�er that he receives in later rounds.4.3 Analysis of the Edge-Scheduling Adversarial ProtocolWe now evaluate our edge-scheduling protocol in terms of our three measurements of perfor-mance: correctness, throughput, and processor memory. The throughput standard expressed inTheorem 4.2 below will serve an additional purpose when we move to the node-controlling ad-versary setting: The sender will know that malicious activity has occurred when the throughputstandard of Theorem 4.2 is not observed. Both of the theorems below will be proved rigorously inSections 6 and 7, after presenting the pseudo-code in Section 5.Theorem 4.2. Each message mi takes at most 3D rounds to pass from the sender to the receiver.In particular, after O(xD) rounds, R will have received at least O(x) messages. Since each messagehas size M=6σ
λ

Pn3=O(n3) and D=6n3

λ
=O(n3), after O(x) rounds, R has received O(x) bits ofinformation, and thus our edge-scheduling adversarial protocol enjoys a linear throughput rate.The above theorem implicitly states that our edge-scheduling protocol is correct. For complete-ness, we also state the memory requirements of our edge-scheduling protocol, which is bottle-neckedby the O(n2) packets that each internal node has the capacity to store in its bu�ers.Theorem 4.3. The edge-scheduling protocol described in Section 4.2 (and formally in the pseudo-code of Section 5) requires at most O(n2 log n) bits of memory of the internal processors.

14Note that because ghost packets do not count towards height, there appears to be a danger that the re-shu�e rulesmay dictate a packet gets transferred into an incoming bu�er, and this packet either has no place to go (because theghost packet occupies the top slot) or the packet increases in height (which would violate Claim 6.4 below). However,because only incoming bu�ers are allowed to re-shu�e packets into other incoming bu�ers, and the di�erence inheight must be at least two when this happens, neither of these troublesome events can occur.17

5 Pseudo-Code for the Edge-Scheduling Adversarial ProtocolSetupDEFINITION OF VARIABLES:01 n := Number of nodes in G;02 D := 6n3

λ
;03 T := Transmission index;04 t := Stage/Round index;05 P := Capacity of edge (in bits);06 for every N ∈ G07 for every outgoing edge E(N, B) ∈ G, B 6= S and N 6= R08 OUT ∈ [2n] × {0, 1}P ; ## Outgoing Bu�er able to hold 2n packets09 p̃ ∈ {0, 1}P ∪ ⊥; ## Copy of packet to be sent10 sb ∈ {0, 1}; ## Status bit11 d ∈ {0, 1}; ## Bit indicating if a packet was sent in the previous round12 FR ∈ [0..6D] ∪ ⊥; ## Flagged Round (index of round N �rst tried to send p̃ to B)13 H ∈ [0..2n]; ## Height of OUT. Also denoted HOUT when there's ambiguity14 HF P ∈ [1..2n] ∪ ⊥; ## Height of Flagged Packet15 RR ∈ [−1..6D] ∪ ⊥; ## Round Received index (from adjacent incoming bu�er)16 HIN ∈ [0..2n] ∪ ⊥; ## Height of incoming bu�er of B17 for every incoming edge E(A,N) ∈ G, A 6= R and N 6= S18 IN ∈ [2n] × {0, 1}P ; ## Incoming Bu�er able to hold 2n packets19 p ∈ {0, 1}P ∪ ⊥; ## Packet just received20 sb ∈ {0, 1}; ## Status bit21 RR ∈ [−1..6D]; ## Round Received (index of round N last rec'd a p. from A)22 H ∈ [0..2n]; ## Height of IN. Also denoted HIN when there's ambiguity23 HGP ∈ [1..2n] ∪ ⊥; ## Height of Ghost Packet24 HOUT ∈ [0..2n] ∪ ⊥; ## Height of outgoing bu�er, or height of Flagged Packet of A25 sbOUT ∈ {0, 1}; ## Status Bit of outgoing bu�er of A26 FR ∈ [0..6D] ∪ ⊥; ## Flagged Round index (from adjacent outgoing bu�er)INITIALIZATION OF VARIABLES:27 for every N ∈ G28 for every incoming edge E(A,N) ∈ G, A 6= R and N 6= S29 Initialize IN; ## Set each entry in IN to ⊥30 p, FR,HGP = ⊥;31 sb, sbOUT , H, HOUT = 0; RR = −1;32 for every outgoing edge E(N, B) ∈ G, B 6= S and N 6= R33 Initialize OUT; ## Set each entry in OUT to ⊥34 p̃, HF P , RR,FR = ⊥;35 sb, d, H,HIN = 0;End SetupFigure 3: Pseudo-Code for Internal Nodes' Setup for the Edge-Scheduling Adversarial Model

18

Sender and Receiver's Additional SetupDEFINITION OF ADDITIONAL VARIABLES FOR SENDER:36 M := {m1, m2, . . . } = Input Stream of Messages;37 κ ∈ [0..D] = Number of packets corresponding to current codeword the sender has knowingly inserted;INITIALIZATION OF SENDER'S VARIABLES:38 Distribute Packets; ## See Figure 639 κ = 0;DEFINITION OF ADDITIONAL VARIABLES FOR RECEIVER:40 IR ∈ [D] × ({0, 1}P ∪ ⊥) = Storage Bu�er to hold packets corresponding to current codeword;41 κ ∈ [0..D] := Number of packets received corresponding to current codeword;INITIALIZATION OF RECEIVER'S VARIABLES:42 κ = 0;43 Initialize IR; ## Sets each element of IR to ⊥End Sender and Receiver's Additional SetupFigure 4: Additional Code for Sender and Receiver Setup
Transmission T01 for every N ∈ G02 for every t < 2 ∗ (3D) ## The factor of 2 is for the 2 stages per round03 if t (mod 2) = 0 then: ## STAGE 104 for every outgoing edge E(N, B) ∈ G, N 6= R, B 6= S05 if HF P = ⊥: send (H,⊥,⊥); else: send (H − 1, HF P , FR);06 receive (HIN , RR);07 Reset Outgoing Variables;08 for every incoming edge E(A, N) ∈ G, N 6= S, A 6= R09 send (H,RR);10 sbOUT = 0; FR = ⊥;11 receive (H,⊥,⊥) or (H,HF P , FR); ## If H = ⊥ or FR > RR, set sbOUT=1; and## HOUT=HF P ; O.W. set HOUT=H ; sbOUT=0;12 else if t (mod 2) = 1 then: ## STAGE 213 for every outgoing edge E(N, B) ∈ G, N 6= R, B 6= S14 if HIN 6= ⊥ then: ## Received B's info.15 Create Flagged Packet;16 if (sb=1 or (sb=0 and HOUT > HIN)) then:17 Send Packet;18 for every incoming edge E(A, N) ∈ G, N 6= S, A 6= R19 Receive Packet;20 if N /∈ {S, R} then: Re-Shu�e;21 else if N = R then: Receiver Re-Shu�e;22 else if N = S then: Sender Re-Shu�e;23 if t = 2(3D) − 1 then: End of Transmission Adjustments;End Transmission TFigure 5: Routing Rules I for Edge-Scheduling Adversarial Model19

24 Reset Outgoing Variables25 if d = 1: ## N sent a packet previous round26 d = 0;27 if RR = ⊥ or ⊥ 6= FR > RR ## Didn't receive conf. of packet receipt28 sb = 1;29 if RR 6= ⊥:30 if ⊥ 6= FR ≤ RR: ## B rec'd most recently sent packet31 if N = S then: κ = κ + 1;32 OUT[HF P] = ⊥; Fill Gap; ## Remove p̃ from OUT, shifting## down packets on top of p̃ if necessary33 FR, p̃, HF P = ⊥; sb = 0; H = H − 1;34 if ⊥ 6= RR < FR and ⊥ 6= HF P < H : ## B did not receive most recently sent packet35 Elevate Flagged Packet; ## Swap OUT[H] and OUT[HF P]; Set HF P = H;36 Create Flagged Packet37 if sb = 0 and H > HIN : ## Normal Status, will send top packet38 p̃ = OUT[H]; HF P = H ; FR = t;39 Send Packet40 d = 1;41 send (p̃, FR);42 Receive Packet43 receive (p, FR);44 if HOUT = ⊥: ## Didn't Rec. A's height info.45 sb = 1;46 if HGP > H or (HGP = ⊥ and H < 2n): HGP = H + 1;47 else if sbOUT = 1 or HOUT > H : ## A packet should've been sent48 if p = ⊥: ## Packet wasn't rec'd49 sb = 1;50 if HGP > H or (HGP = ⊥ and H < 2n): HGP = H + 1;51 else if RR < FR: ## Packet was rec'd and should keep it52 if HGP = ⊥: HGP = H + 1; ## If no slot is saved for p, put it on top53 sb = 0; IN[HGP] = p; H = H + 1; HGP = ⊥; RR = t;54 else: ## Packet was rec'd, but already had it55 sb = 0; Fill Gap; HGP = ⊥; ## See comment about Fill Gap on line 57 below56 else: ## A packet should NOT have been sent57 sb = 0; Fill Gap; HGP = ⊥; ## If packets occupied slots above the## Ghost Packet, then Fill Gap will Slide## those packets down one slot58 End of Transmission Adjustments59 for every outgoing edge E(N, B) ∈ G, N 6= R, B 6= S:60 if HF P 6= ⊥:61 OUT [HF P] = ⊥; Fill Gap; ## Remove any �agged packet p̃ from OUT, shifting## down packets on top of p̃ if necessary62 d, sb = 0; FR, HF P , p̃ = ⊥; H = H − 1;63 for every incoming edge E(A,N) ∈ G, N 6= S, A 6= R:64 HGP = ⊥; sb = 0; RR = −1; Fill Gap;65 if N = S then: Distribute Packets;Figure 6: Routing Rules for Edge-Scheduling Adversarial Model (continued)20

71 Re-Shu�e72 (M, BF) = Find Maximum Bu�er ## Node N �nds its fullest bu�er BF with height M ,## breaking ties by 1) selecting incoming bu�ers over## outgoing bu�ers, then 2) Round-Robin73 (m, BT) = Find Minimum Bu�er ## Node N �nds its emptiest bu�er BT with height m,## breaking ties by 1) selecting outgoing bu�ers over## incoming bu�ers, then 2) Round-Robin74 if Packet Should Be Re-Shu�ed: ## A packet should be re-shu�ed if M − m > 1 or## M − m = 1 and

{
BF is an Inc. Bu�er
BT is an Out. Bu�er }75 Adjust Heights ## Adjust M , m to account for Ghost, Flagged packets.76 SIGN,N = SIGN,N + (M − m − 1); ## Only used for (node-contr. + edge-sched.) protocol77 Shu�e Packet78 Re-Shu�e79 Adjust Heights80 if BF is an Out. Bu�er and HF P ≥ HOUT : ## HF P and HOUT refer to BF 's info. If true,81 M = M − 1; ## then a Flagged packet is top-most non-null packet82 if BF is an Inc. Bu�er and IN[HIN + 1] 6= ⊥: ## IN and HIN refer to BF 's info. If true,83 M = M + 1; ## then there is a Ghost Packet creating a gap84 if BT is an Out. Bu�er and OUT[HOUT] = ⊥: ## OUT and HOUT refer to BT 's info. If true,85 m = m − 1; ## then there is a Flagged packet creating a gap86 if BT is an Inc. Bu�er and HGP 6= ⊥: ## HGP and HIN refer to BT 's info. If true,87 m = m + 1; ## then there is a Ghost Packet creating a gap88 Shu�e Packet89 BT [m + 1] = BF [M];90 BF [M] = ⊥;91 HBT

= HBT
+ 1; ## HBT

is the height of BT92 HBF
= HBF

− 1; ## HBF
is the height of BF93 if BF is an Inc. Bu�er and ⊥ 6= HGP > HIN , then: ## HGP and HIN refer to BF 's info. Since BF lost a94 HGP = HIN + 1; ## packet, slide Ghost Packet down into top slot95 Sender Re-Shu�e96 Fill Packets; ## Fills each outgoing bu�er with codeword packets not## yet distributed, adjusting each HOUT appropriately97 Receiver Re-Shu�e98 for every incoming edge E(A,R) ∈ G: ## Reset R's Inc. Bu�er to be open99 if HIN > 0: ## R rec'd a packet along this edge this round100 if IN [1] is a packet for current codeword: ## Also, see comments on 104 below101 IR[κ] = IN [1]; κ = κ + 1;102 HIN = 0; IN [1] = ⊥; HGP = ⊥;103 if κ ≥ D − 3n3 then: ## R can decode by Fact 1104 Decode and output message; ## Also, only keep codeword packets corresponding## to next message in future roundsFigure 7: Re-Shu�e Rules for both Edge-Scheduling and (Node-Controlling + Edge-Scheduling)Protocols

21

6 Edge-Scheduling Adversary Model:Proofs of Lemmas and TheoremsBefore proving the main two theorems for the edge-scheduling adversarial protocol (Theorems4.2 and 4.3), we will �rst state and prove a sequence of claims that follow immediately from theRouting and Re-Shu�e Rules of Section 4.1. We have included pseudo-code in Section 5, and whenappropriate the proofs will refer to speci�c line numbers in the pseudo-code. In particular, we willreference a line in pseudo-code by writing (X.YY), where X refers to the Figure and YY to the linenumber. We pushed the claims and proofs that rely heavily on the pseudo-code (but are unlikelyto add insight) to Section 7 so as not to distract the reader with the gory details of these proofs.Logically, these claims need to be proven �rst as the claims and proofs below will rely on them(even though Section 7 appears below, the proofs there do not rely on proofs here, so there is nodanger of circularity).We state and prove here the claims that will lead to Theorem 4.2 and Theorem 4.3.Claim 6.1. The capacity of the internal bu�ers of the network (not counting S or R's bu�ers) is
4n(n− 2)2.Proof. Each node has (n − 2) outgoing bu�ers (one to each node except itself and S, 3.07) and
(n−2) incoming bu�ers (one from each node except itself and R, 3.17), and thus a total of 2(n−2)bu�ers. Each of these bu�ers has capacity 2n (Lemma 7.1, parts 5, 6, and 9), and there are n − 2internal nodes, so the internal bu�er capacity of the network is 4n(n− 2)2. �Claim 6.2. The maximum amount of potential15 in the internal bu�ers of the network at any timeis 2n(2n + 1)(n − 2)2.Proof. A bu�er contributes the most to network potential when it is full, in which case it contributes∑2n

i=1 i = n(2n + 1). Since there are 2(n − 2) bu�ers per internal node, and n − 2 internal nodes,the maximum amount of potential in the internal bu�ers is as claimed. �We de�ne the height of a packet in an incoming/outgoing bu�er to be the spot it occupies in thatbu�er.Claim 6.3. After re-shu�ing, (and hence at the very end/beginning of each round), all of the bu�ersof each node are balanced. In particular, there are no incoming bu�ers that have height strictlybigger than any outgoing bu�ers, and the di�erence in height between any two bu�ers is at mostone.Proof of Claim 6.3. We prove this using induction (on the round index), noting that all bu�ersare balanced at the outset of the protocol (lines (3.29) and (3.33)). Consider any node N in thenetwork, and assume that its bu�ers are all balanced at the end of some round t. We need to showthe bu�ers of N will remain balanced at the end of the next round t + 1. Let B1 and B2 denoteany two bu�ers of N , and let h1 be the variable denoting the height of B1 and h2 the height of B2.Suppose for the sake of contradiction that h1 ≥ h2 + 2 at the end of round t+ 1 (after re-shu�ing).Let H denote the height of the maximum bu�er in N at the end of t+ 1, so H ≥ h1 ≥ h2 + 2. Also15See De�nition 6.10. 22

let h denote the height of the minimum bu�er in N at the end of t + 1, so h ≤ h2 ≤ H − 2. Butthen Re-Shu�e Rules dictate that N should've kept re-shu�ing (7.72-74), a contradiction.Similarly, assume for contradiction that there exists an incoming bu�er whose height h2 is biggerthan that of some outgoing bu�er that has height h1. Let H and h be as de�ned above, so we havethat h ≤ h1 < h2 ≤ H. In the case that h2 = H, Re-Shu�e Rules (7.72) guarantee that anincoming bu�er will be selected to take a packet from. Also, if h = h1, then Re-Shu�e Rules (7.73)guarantee that an outgoing bu�er will be chosen to give a packet to. Therefore, in this case a packetshould have been re-shu�ed (7.74), and hence we have contradicted the fact that we are at the endof the Re-Shu�e phase of round t. On the other hand, if h 6= h1 or H 6= h2, then H − h ≥ 2, andagain Re-Shu�ing should not have terminated (7.74). �The following observation is the formalization of the concept of packets ��owing downhill� that wasintroduced in Section 4.1.Claim 6.4. Every packet is inserted into one of the sender's outgoing bu�ers at some initial height.When (a copy of) the packet goes between any two bu�ers B1 6= B2 (either across an edge or locallyduring re-shu�ing), its height in B2 is less than or equal to the height it had in B1. If B1 = B2,the statement remains true EXCEPT for on line (6.35).Proof. See Section 7, where we restate and prove this in Lemma 7.11. �De�nition 6.5. We will say that a packet is accepted by a bu�er B in round t if B receives andstores that packet in round t, either due to a packet transfer or re-shu�ing (as on (6.53) or (7.89)).De�nition 6.6. We say that the sender inserts a packet into the network in round t if any internalnode (or R) accepts the packet (as in De�nition 6.5) in round t. Note that this de�nition does notrequire that S receives the veri�cation of receipt (i.e. that S receives the communication on (5.06)indicating RR ≥ FR), so S may not be aware that a packet was inserted.Notice that in terms of transferring packets, the above de�nition distinguishes between the case thata packet is accepted by B in round t (as de�ned above) and the case that a packet arrives at B inround t but is deleted by B (by failing the conditional statement on line (6.51)). As emphasized inthe Introduction, correctness and throughput rate are two of the three commodities with which wewill evaluate a given routing protocol. In our protocol, we will need to show that packets are notlost en route from S to R to ensure correctness, and meanwhile we will want to show that packetsare not (overly) duplicated (since transferred packets are actually copies of the original, some packetduplication is necessary) to allow a �fast� throughput rate. The following two claims guarantee thatpacket duplication won't become problematic while simultaneously guaranteeing that packets arenever deleted completely (except by R).Claim 6.7. Before the end of transmission T, any packet that was inserted into the network duringtransmission T is either in some bu�er (perhaps as a �agged packet) or has been received by R.Proof. See Section 7, where we restate and prove this in Lemma 7.12. �Claim 6.8. Not counting �agged packets, there is at most one copy of any packet in the network atany time (not including packets in the sender or receiver's bu�ers). Looking at all copies (�aggedand un-�agged) of any given packet present in the network at any time, at most one copy will everbe accepted (as in De�nition 6.5) by another node.23

Proof. See Section 7, where we restate and prove this in Lemma 7.13. �The following claim won't be needed until we introduce the protocol for the (Node-Controlling
+ Edge-Scheduling) adversarial model, but follows from the Routing Rules outlined in Section 4.1.Claim 6.9. At any time, an outgoing bu�er has at most one �agged packet.Proof. See Section 7, where we restate and prove this in Corollary 7.8. �The following de�nition formalizes the notion of �potential,� and will be necessary to provethroughput performance bounds.De�nition 6.10. For any bu�er16 B 6= S,R that has height h at time t, de�ne the potential of Bat time t, denoted by ΦB

t , to be:
ΦB

t :=

h∑

i=1

i =
h(h + 1)

2
.For any internal node N ∈ P \ {R,S}, de�ne the node's potential ΦN

t to be the sum of its bu�er'spotentials:
ΦN

t :=
∑Bu�ers B of N

ΦB
tDe�ne the network potential Φt at time t to be the sum of all the internal bu�ers' potentials:

Φt :=
∑

ΦN
t

N∈P\{R,S}It will be useful to break an internal node's potential into two parts. The �rst part, which we willterm packet duplication potential, will be the sum of the heights of the �agged packets in the node'soutgoing bu�ers that have already been accepted by the neighboring node (as in De�nition 6.5).Recall that a �agged packet is a packet that was sent along an outgoing edge, but the sending nodeis maintaining a copy of the packet until it gets con�rmation of receipt. Therefore, the contributionof packet duplication potential to overall network potential is the extraneous potential; it representsthe over-counting of duplicated packets. We emphasize that not all �agged packets count towardspacket-duplication potential, since packets are �agged as soon as the sending node determines apacket should be sent (see line 6.38), but the �agged packet's height does not count towards packetduplication potential until the receiving node has accepted the packet as on line (6.53) (which mayhappen in a later round or not at all). The other part of network potential will be termed non-duplicated potential, and is the sum of the heights of all non-�agged packets together with �aggedpackets that have not yet been accepted. Note that the separation of potential into these two partsis purely for analysis of our protocol, indeed the nodes are not able to determine if a given �aggedpacket contributes to packet duplication or non-duplicated potential. For convenience, we will oftenrefer to (network) non-duplicated potential simply as (network) potential (the meaning should beclear from context).Notice that when a node accepts a packet, its own (non-duplicated) potential instantaneouslyincreases by the height that this packet assumes in the corresponding incoming bu�er. Meanwhile,the sending node's non-duplicated potential drops by the height that the packet occupied in its16Packets in one of the sender or receiver's bu�ers do not count towards potential.24

outgoing bu�er, and there is a simultaneous and equivalent increase in this sending node's packetduplication potential. Separating overall network potential into these two categories will be necessaryto state and prove the following Lemma:Lemma 6.11. Every change in network potential comes from one of the following 3 events:1. S inserts a packet into the network.2. R receives a packet.3. A packet that was sent from one internal node to another is accepted; the veri�cation of packetreceipt is received by the sending node; a packet is shu�ed between bu�ers of the same node;or a packet is moved within a bu�er.Furthermore, changes in network potential due to item 1) are strictly non-negative and changes dueto item 2) are strictly non-positive. Also, changes in network non-duplicated potential due toitem 3) are strictly non-positive. Finally, at all times, network packet duplication potential isbounded between zero and 2n3 − 8n2 + 8n.Proof. Since network potential counts the heights of the internal nodes' bu�ers, it only changeswhen these heights change, which in turn happens exclusively when there is packet movement. Byreviewing the pseudo-code, we see that this happens only on lines (6.32), (6.35), (6.53), (6.55),(6.57), (6.61), (6.64), and (7.89-90). Each of these falls under one of the three items listed inthe Lemma, thus proving the �rst statement in the Lemma. That network potential changes dueto packet insertion by S are strictly non-negative is obvious (either the receiving node's potentialincreases by the height the packet assumed, as on (6.53), or the receiving node is R and thepacket does not contribute to potential). Similarly, that potential change upon packet receipt by
R is strictly non-positive is clear, since packets at R do not count towards potential (see De�nition6.10). Also, since only �agged packets (but not necessarily all of them) contribute to network packetduplication potential, the biggest it can be is the maximal number of �agged packets that can existin the network at any given time, times the maximum height each �agged packet can have. ByClaim 6.9, there are at most (n−2)2 �agged packets in the network at any given time, and each onehas maximal height 2n (Lemma 7.1, part 9), so network packet duplication potential is bounded by
2n3 − 8n2 + 8n.It remains to prove that changes in network non-duplicated potential due to item 3) are strictlynon-positive. To do this, we look at all lines on which there is packet movement, and argue eachwill result in a non-positive change to non-duplicated potential. Clearly potential changes on lines(6.32), (6.55), (6.57), (6.61), and (6.64) are non-positive. Also, if (6.35) is reached, if R hasalready accepted the packet, then that packet's potential will count towards duplicated potentialwithin the outgoing bu�er, and so the change in potential as on (6.35) will not a�ect non-duplicatedpotential. If on the other hand R has not already accepted the packet, then the �agged packet stillcounts towards non-duplication potential in the outgoing bu�er. Since the result of (6.35) is simplyto swap the �agged packet with the top packet in the bu�er, the net change in non-duplicationpotential is zero. That changes in potential due to re-shu�ing packets (7.89-90) are strictly non-positive follows from Claim 6.4. It remains to check the cases that a packet that was transferredbetween two internal nodes is accepted (6.53). Notice that upon receipt there are two changes tonetwork non-duplicated potential: it increases by the height the packet assumes in the incomingbu�er it arrived at (6.53), and it decreases by the height the packet had in the correspondingoutgoing bu�er (this decrease is because the �agged packet in the outgoing bu�er will count towardspacket duplication potential instead of non-duplicated potential the instant the packet is accepted).25

The decrease outweighs the increase since the packet's height in the incoming bu�er is less than orequal to the height it had in the corresponding outgoing bu�er (Claim 6.4). �The following Lemma will be useful in bounding the number of rounds in which no packets areinserted. We begin with the following de�nition:De�nition 6.12. The sender is blocked from inserting any packets in some round t if the sender isnot able to insert any packets in t (see De�nition 6.6). Let βT denote the number of rounds in atransmission T that the sender was blocked.Lemma 6.13. If at any point in any transmission T, the number of blocked rounds is βT, then therehas been a decrease in the network's non-duplicated potential by at least17 nβT.The intuition of the proof is to argue that each blocked round creates a drop in non-duplicatedpotential of at least n as follows. If the sender is blocked from inserting a packet, the node Nadjacent to the sender (along the active honest path) will necessarily have a full incoming bu�eralong its edge to the sender. By the fact that bu�ers are balanced (Lemma 6.3), this implies thatall of N 's outgoing bu�ers are also full. Meanwhile, at the opposite end of the active honest path,the node adjacent to the receiver will necessarily send a packet to the receiver if there is anythingin its outgoing bu�er along this edge, and this will result in a drop of potential of whatever heightthe packet had in the outgoing bu�er. Therefore, at the start of the active honest path, the bu�ersare full, while at the end of the path, a packet will be transferred to height zero (in the receiver'sbu�er). Intuitively, it therefore seems that tracking all packet movements along the active honestpath should result in a drop of potential of at least 2n. As the counter-example in the footnoteshows, this argument does not work exactly (we are only guaranteed a drop of n), but the structureof the proof is guided by this intuition. We begin with the following lemma.Lemma 6.14. Let C = N1N2 . . . Nl be a path consisting of l nodes, such that R = Nl and S /∈ C.Suppose that in round t, all edges E(Ni, Ni+1), 1 ≤ i < l are active for the entire round. Let φdenote the change in the network's non-duplicated potential caused by:1. (For 1 ≤ i < l) Packet transfers across E(Ni, Ni+1) in round t,2. (For 1 < i < l) Re-shu�ing packets into Ni's outgoing bu�ers during t,Then if ON1,N2 denotes N1's outgoing bu�er along E(N1, N2) and O denotes its height at the outsetof t, we have:- If ON1,N2 has a �agged packet that has already been accepted by N2 before round t, then:
φ ≤ −O + l − 1 (2)- Otherwise,
φ ≤ −O + l − 2 (3)17An initial guess that the minimal potential drop equals �2n� for each blocked round is incorrect. Consider thecase where the active path consists of all n − 2 intermediate nodes with the following current state: the �rst twonodes' bu�ers all have height 2n, the next pair's bu�ers all have height 2n− 1, and so forth, down to the last pair ofinternal nodes, whose bu�ers all have height n + 2. Then the drop in the network's non-duplicated potential is only

n + 2 for this round. 26

Proof. The proof of this lemma is rather involved and relies heavily on the pseduo-code, so we havepushed its proof to Section 7, where it is restated and proved as Lemma 7.15. �We can prove Lemma 6.13 as a Corollary.Proof of Lemma 6.13. For every blocked round t, by the conforming assumption there exists achain Ct connecting the sender and receiver that satis�es the hypothesis of Lemma 6.14. Letting N1denote the �rst node on this chain (not including the sender), the fact that the round was blockedmeans that N1's incoming bu�er was full, and then by Lemma 6.3, so was N1's outgoing bu�eralong E(N1, N2). Since the length of the chain l is necessarily less than or equal to n, Lemma 6.14says that the change in non-duplicated potential contributions of φ (see notation there) satisfy:
φ ≤ −ON1,N2 + l − 1 ≤ −2n + n− 1 < −n (4)Since φ only records some of the changes to non-duplicated potential, we use Statement 3 of Lemma6.11 to argue that the contributions not counted will only help the bound since they are strictlynon-positive. Since we are not double counting anywhere, each blocked round will correspond to adrop in non-duplicated potential of at least −n, which then yields the lemma. �The following Lemma will bound the number of rounds that S needs to insert packets corre-sponding to the same codeword.Lemma 6.15. If at any time D−2n3 distinct packets corresponding to some codeword bi have beeninserted into the network, then R can necessarily decode message mi.Proof. Every packet that has been inserted into the network has either reached R or is in theincoming/outgoing bu�er of an internal node (Claim 6.7). Since the maximum number of packetsthat are in the latter category is less than 4n3 (Claim 6.1), if D−2n3 distinct packets correspondingto bi have been inserted, then R has necessarily received D − 6n3 = (1− λ)

(
6n3

λ

) of these, and soby Fact 1 R can decode message mi. �We can now (restate and) prove the two main theorems of Section 4.3.Theorem 4.2. Each message mi takes at most 3D rounds to pass from the sender to the receiver.In particular, after O(xD) rounds, R will have received at least O(x) messages. Since each messagehas size M=6σ
λ

Pn3=O(n3) and D=6n3

λ
=O(n3), after O(x) rounds, R has received O(x) bits ofinformation, and thus our edge-scheduling adversarial protocol enjoys a linear throughput rate.Proof of Theorem 4.2. Let t denote the round that S �rst tries to insert packets corresponding to anew codeword bi into the network. In each round between t and t+ 3D, either S is able to insert apacket or he isn't. By the pigeonhole principle, either D rounds pass in which S can insert a packet,or 2D rounds pass in which no packets are inserted. In the former case, R can decode by Lemma 6.15.It remains to prove the theorem in the latter case. Lemma 6.13 says that the network non-duplicatedpotential drops by at least n in each of the 2D rounds in which no packets are inserted, a total dropof 2nD. Meanwhile, Lemma 6.11 guarantees that the increase to network potential between t and

t + 3D caused by duplicated potential is at most by 2n3 − 8n2 + 8n. Combining these two facts,we have that (not counting changes in potential caused by packet insertions) the network potentialdrops by at least 2nD−2n3 +8n2−8n between t and t+3D. Since network potential can never be27

negative, we must account for this (non-duplicated) potential drop with positive contributions topotential change. The potential already in the network at the start of t adds to the potential at most
4n4−14n3+8n2+8n (Claim 6.2). Therefore, packet insertions must account for the remaining changein potential of (2nD−2n3+8n2−8n)−(4n4−14n3+8n2+8n) = 2nD−4n4+(12n3−16n) ≥ 2nD−4n4(where the last inequality assumes n ≥ 3). Lemma 6.11 states that the only way network potentialcan increase (other than the contribution of packet duplication potential which has already beenaccounted for) is when S inserts a packet (a maximum increase of 2n per packet), so it must bethat S inserted at least (2nD−4n4)/2n = D−2n3 packets into the network between t and t+3D,and again R can decode by Lemma 6.15. �Theorem 4.3. The edge-scheduling protocol described in Section 4.2 (and formally in the pseudo-code of Section 5) requires at most O(n2 log n) bits of memory of the internal processors.Proof of Theorem 4.3. Packets have size log n to allow the packets to be indexed. Since each internalnode needs to hold at most O(n2) packets at any time (it has 2(n− 2) bu�ers, each able to hold 2npackets), the theorem follows. �7 Edge-Scheduling Protocol:Pseudo-Code Intensive Claims and ProofsIn this section we prove that our pseudo-code is consistent with the claimed properties that ourprotocol enjoys.The following lemma is the �rst attempt to link the pseudo-code with the high-level descriptionof what our protocol is doing. Recall that a bu�er is in normal (respectively problem) statuswhenever its status bit sb is zero (respectively one). Also, an outgoing bu�er is said to have a�agged packet if HFP 6= ⊥, and the �agged packet is the packet in the outgoing bu�er at height
HFP . Notice that because the pseudo-code is written sequentially, things that conceptually happensimultaneously appear in the pseudo-code as occurring consecutively. In particular, when packetsare moved between bu�ers, updating the bu�ers' contents and updating the height variables doesnot happen simultaneously in the code, which explains the wording of the �rst sentence in thefollowing lemma.Lemma 7.1. At all times (i.e. all lines of code in Figures 5, 6, and 7) EXCEPT when packetstravel between bu�ers ((6.32-33), (6.52-53), and (7.89-90)), along any (directed) edge E(A,B)for any pair of internal nodes (A,B), we have that:1. If HGP > HIN or HGP = ⊥, then HGP = HIN + 1 or HGP = ⊥ and IN[i] 6= ⊥ ∀i ∈ [1..HIN]and IN[i] = ⊥ ∀i ∈ [HIN + 1..2n].2. If HGP ≤ HIN , then IN[i] 6= ⊥ ∀i ∈ [1..HGP − 1] and ∀i ∈ [HGP + 1..HIN + 1], and

IN[i] = ⊥ ∀i ∈ [HIN + 2..2n] and IN[HGP] = ⊥.3. If HFP > HOUT , then sb = 1 and OUT[i] 6= ⊥ ∀i ∈ [1..HOUT − 1] and OUT[HFP] 6= ⊥.4. If HFP = ⊥ or HFP ≤ HOUT , then OUT[i] 6= ⊥ ∀i ∈ [1..HOUT].5. The height of IN, as de�ned by the number of packets (i.e. non-null entries) of IN, is equal tothe value of HIN .6. The height of OUT, as de�ned by the number of packets (i.e. non-null entries) of OUT, isequal to the value of HOUT . 28

7. Whenever (6.53) is reached, HGP ∈ [1..2n] and HIN ∈ [0..2n − 1].8. Whenever (6.32) is reached, HFP 6= ⊥ and HOUT ∈ [1..2n].9. At all times (even those listed in the hypothesis above), HIN ,HOUT ∈ [0..2n] and HGP ,HFP ∈

⊥ ∪ [1..2n] (so the domains of these variables are well-de�ned).Additionally, during any call to Re-Shu�e:10. Whenever the conditional statement on line (7.74) is satis�ed, one packet will pass betweenbu�ers. In particular, there will be a bu�er that was storing the packet before the call to Re-Shu�e that will not be storing (that instance of) the packet after the reshu�e. Similarly, therewill be another bu�er that has �lled a vacant slot with (an instance of) the packet in question.11. Flagged packets do not move. More precisely, if HFP 6= ⊥ just before any call to Re-Shu�e,then HFP and OUT[HFP] will not change during that call to Re-Shu�e.12. Either HGP does not change during re-shu�ing or HGP has decreased to equal HIN + 1.Also, if HGP 6= ⊥, then IN[HGP] does not get �lled at any point during re-shu�ing.13. If HIN < 2n before Re-Shu�ing, then HIN < 2n after Re-Shu�ing.Proof of Lemma 7.1. We prove each Statement of the Lemma above simultaneously by usinginduction on the round and line number as follows. We �rst prove the Lemma holds at the outsetof the protocol (base case). We then notice that the above variables only change their value in thelines excluded from the Lemma and lines (6.35), (6.38), (6.46), (6.50), (6.55), (6.57), (6.61-62),(6.64), and (7.91-94). In particular, we use the induction hypothesis to argue that as long asthe statement of the Lemma is true going into each set of excluded lines and lines (6.35), (6.38),(6.46), (6.50), (6.55), (6.57), (6.61-62), (6.64), and (7.91-94), then it will remain true when theprotocol leaves each of those lines. Using this technique, we now prove each Statement listed above.Base Case. At the outset of the protocol, HGP and HFP = ⊥, HIN and HOUT = 0, and all entriesof IN and OUT are ⊥ (3.29-31 and 3.33-35) so Statements 1-6 and 9 are true.Induction Step. We now prove that each of the above Statements hold after leaving lines (6.32-33), (6.35), (6.38), (6.46), (6.50), (6.52-53), (6.55), (6.57), (6.61-62), (6.64), (7.89-90), and(7.91-94), provided they held upon entering these lines.Lines (6.32-33). The variables in Statements 1, 2, 5, 7, do not change in these lines, and hencethese Statements remain valid by the induction hypothesis. Statement 3 is vacuously true, since
HFP is set to ⊥ at the end of line (6.33). Also, Statement 9 will remain valid as long as Statement8 does, as HFP is set to ⊥ on line (6.33), and HOUT ∈ [0..2n] would follow from Statement 8since upon entering these lines, HOUT ∈ [1..2n] (Statement 8), and so subtracting 1 from H on line(6.33) ensures that HOUT will remain in [0..2n − 1] ⊆ [0..2n]. The �rst part of Statement 8, that
HFP 6= ⊥ when (6.32) is reached, follows immediately from Claim 7.4 below together with the factthat (6.30) must have been satis�ed to reach (6.32).We next prove Statement 6. Anytime lines (6.32-33) are reached, the decrease of one by
HOUT on (6.33) represents the fact that OUT should be deleting a packet on these lines. Sincethe induction hypothesis (applied to Statement 6) guarantees that HOUT matches the number ofpackets (non-bottom entries) of OUT before lines (6.32-33), the changes to HOUT and the heightof OUT on these lines will exactly match/cancel provided OUT does actually decrease in height by29

1 (i.e. provided OUT[HFP] 6= ⊥). Since HFP is changed (6.33) after deleting a packet (6.32), wemay apply the induction hypothesis to Statements 3 and 4 to argue that OUT[HFP] 6= ⊥ as longas the value of HFP was not ⊥ when line (6.32) was reached. This was proven above for the �rstpart of Statement 8.Statement 4 follows from the argument above as follows. Upon leaving (6.33), HFP = ⊥, so wemust show OUT[i] 6= ⊥ ∀i ∈ [1..HOUT]. As was argued above, HFP 6= ⊥ when (6.32) is reached. If
HFP > HOUT when (6.32) is reached, then by the induction hypothesis applied to Statement 3, onthat same line OUT[i] 6= ⊥ ∀i ∈ [1..HOUT − 1] and OUT[HFP] 6= ⊥. The packet at height HFP willbe deleted on (6.32), so that OUT[i] 6= ⊥ ∀i ∈ [1..HOUT − 1], but OUT[i] = ⊥ for all i ≥ HOUT .Then when HOUT is reduced by one on (6.33), we will have that OUT[i] 6= ⊥ ∀i ∈ [1..HOUT], asrequired.If on the other hand HFP ≤ HOUT when (6.32) is reached, then by the induction hypothesisapplied to Statement 4, on that same line OUT[i] 6= ⊥ ∀i ∈ [1..HOUT]. The packet at height HFPwill be deleted on (6.32) and the packets on top of it shifted down one if necessary, so that after(6.32) but before (6.33), we will have that OUT[i] 6= ⊥ ∀i ∈ [1..HOUT − 1], but OUT[i] = ⊥ forall i ≥ HOUT . Then when HOUT is reduced by one on (6.33), we will have that OUT[i] 6= ⊥ ∀i ∈

[1..HOUT], as required.The second part of Statement 8 also follows from the arguments above as follows. First, it wasshown in the proof of Statement 6 that OUT[HFP] 6= ⊥ when (6.32) is reached. In particular,the height of OUT is at least one going into (6.32), and then the induction hypothesis applied toStatement 6 implies that HOUT ≥ 1 when (6.32) is reached, and the induction hypothesis appliedto Statement 9 implies that HOUT ≤ 2n when (6.32) is reached.Line (6.35). Since only HFP and OUT are modi�ed on (6.35), we need only verify Statements 3,4, 6, and 9 remain true after leaving (6.35). Since HFP is gets the value max(HOUT ,HFP) on(6.35), Statement 9 will be true by the induction hypothesis (applied to Statement 9). Also, theheight of OUT does not change, as (6.35) only swaps the location of two packets already in OUT,so Statement 6 will remain true.Statement 3 is only relevant if HFP > HOUT before reaching (6.35), since otherwise HFP =

HOUT upon leaving (6.35), and Statement 3 will be vacuously true. On the other hand, if HFP >

HOUT , then line (6.35) is not reached since (6.34) will be false.In order to reach (6.35), HFP 6= ⊥ on (6.34), and so both HOUT and HFP are not equal to ⊥when (6.35) is entered (Claim 7.4), and hence HFP 6= ⊥ upon leaving (6.35). Also, since (6.35)is only reached if HFP < HOUT (6.34), we use the induction hypothesis (applied to Statement 4)to argue that before reaching (6.35), we had that OUT[i] 6= ⊥ ∀i ∈ [1..HOUT]. In particular, both
OUT[HFP] and OUT[HOUT] are storing a packet, and the call to Elevate Flagged Packet simplyswaps these packets, so that after the swap, it is still the case that OUT[i] 6= ⊥ ∀i ∈ [1..HOUT].Since in this case HFP = HOUT after line (6.35), Statement 4 will remain true.Line (6.38). HFP is the only relevant value changed on (6.38), so it remains to prove the relevantparts of Statements 3, 4 and 9. We will show that whenever (6.38) is reached, HOUT ∈ [1..2n] and
OUT[HOUT] 6= ⊥. If we can show these two things, we will be done, since when HFP is set to HOUTon (6.38), Statement 9 will be true, Statement 4 will follow from the induction hypothesis applied toeither Statement 3 or 4, and Statement 3 will not be relevant. By the induction hypothesis (appliedto Statement 9), HOUT ∈ [0..2n] when (6.38) is reached. The fact that (6.38) was reached means30

that the conditional statement on the line before (6.37) was satis�ed, and thus OUT is in normalstatus (sb = 0) and HOUT ∈ [1..2n]. By the induction hypothesis (applied to Statement 3), thefact that sb = 0 going into (6.37) implies that HFP = ⊥ or HFP ≤ HOUT going into (6.37), andthen the induction hypothesis (applied to Statement 4) says that OUT[HOUT] 6= ⊥ when (6.38) isentered.Lines (6.46) and (6.50). The parts of Statements 1, 2, and 9 involving changes to HGP are theonly Statements that are a�ected by these lines. If the conditional statement on these lines arenot satis�ed, then no values change, and there is nothing to prove. We therefore consider the casethat the conditional statement is satis�ed. Then HGP is set to HIN + 1 on these lines, and henceStatement 2 is vacuously satis�ed. Since we are assuming HGP changes value on (6.46) or (6.50),the conditional statement says that HGP = ⊥ or HGP > HIN going into (6.46) (respectively(6.50)). By the induction hypothesis (applied to Statement 1), IN[i] 6= ⊥ for all 1 ≤ i ≤ HIN ,and IN[i] = ⊥ for all i > HIN . Therefore, since IN and HIN do not change on (6.46) or (6.50),Statement 1 will remain true upon leaving these lines. Finally, for Statement 9, we need only show
HGP ∈ [1..2n] upon leaving line (6.46) (respectively line (6.50)). If HGP > HIN going into line(6.46) (respectively line (6.50)), then the change to HGP is non-positive, and so the inductionhypothesis applied to Statements 1 and 9 guarantee HGP will be in [1..2n] upon leaving these lines.On the other hand, if HGP = ⊥ going into either of these lines, then HIN < 2n, and the inductionhypothesis applied to Statement 9 indicates that HIN ∈ [0..2n−1] going into these lines, and hence
HGP ∈ [1..2n] upon leaving either line.Lines (6.52-53). Notice that HGP necessarily equals ⊥ when leaving (6.53), so Statement 2 aboveis vacuously satis�ed. Also, neither HOUT , HFP , nor OUT is modi�ed in these lines, so Statements3, 4, 6, 8, and the parts of Statement 9 concerning these variables will remain valid by the inductionhypothesis.We prove Statement 1 �rst. Recall that the height of an incoming bu�er refers to the number of(non-ghost) packets the bu�er currently holds. Since HGP will necessarily equal ⊥ when leaving line(6.53), we must show that IN[i] 6= ⊥ ∀i ∈ [1..HIN] and IN[i] = ⊥ ∀i ∈ [HIN + 1..2n] upon leavingline (6.53). Both of these follow immediately from the induction hypothesis applied to Statements1 and 2, as follows. By the induction hypothesis applied to Statements 1, 2, and 9, either HGP = ⊥,
1 ≤ HGP ≤ HIN , or HGP = HIN + 1 ≤ 2n when line (6.52) is reached. We consider each case:
• If HGP = HIN + 1 when we reach line (6.52), then by the induction hypothesis (applied toStatement 1) it will also be true that IN[i] 6= ⊥ ∀i ∈ [1..HIN] and IN[i] = ⊥ ∀i ∈ [HIN +1..2n]when this line is reached. While on line (6.53), �rst IN[HGP] = IN[HIN + 1] is �lled with apacket, and then HIN is increased by one, and so Statement 1 will remain true by the end ofline (6.53).
• If 1 ≤ HGP ≤ HIN when the protocol reaches (6.52), then also when this line is reached wehave that (by the induction hypothesis applied to Statement 2) IN[i] 6= ⊥ ∀i ∈ [1..HGP − 1]and ∀i ∈ [HGP + 1..HIN + 1], and IN[i] = ⊥ ∀i ∈ [HIN + 2..2n] and IN[HGP] = ⊥. When apacket is inserted into slot HGP and HIN is increased by one on line (6.53), we will thereforehave that all slots between 1 and (the new value of) HIN will have a packet, and all otherslots will be ⊥, and thus Statement 1 will hold.
• If HGP = ⊥ going into line (6.52), then HGP will be set to HIN + 1 on this line, and then31

we can repeat the argument of the top bullet point, provided HIN + 1 ≤ 2n. If sbOUT = 1,then Statement 4 of Lemma 7.10 states that HGP 6= ⊥ when (6.52) is reached, contradictingthe fact we are in the case HGP = ⊥. So we may assume sbOUT = 0, and then the fact that(6.52) was reached means that (6.47) must have been satis�ed because HOUT > HIN . Sinceboth of these variables live in [0..2n] by the induction hypothesis applied to Statement 9, weconclude HIN < 2n on (6.47), and it cannot change value between then and (6.52).The �rst part of Statement 7 is proven in the above three bullet points. For the second part, if
sbOUT = 0 when (6.47) was evaluated earlier in the round, then the fact that (6.53) was reachedmeans HOUT > HIN , and then the second part of Statement 7 follows from the induction hypothesisapplied to Statement 9. If on the other hand sbOUT = 1 when (6.47) was evaluated, then the secondpart of Statement 7 follows from Statement 5 of Lemma 7.10.We now prove Statement 5. There are two relevant changes made on line (6.53) that a�ectStatement 5: a packet is added to IN[HGP] and HIN is increased by one. The argument in thepreceding paragraph showed that when (6.53) is reached, HGP ∈ [1..2n] and IN[HGP] = ⊥, andtherefore the net e�ect of (6.53) is to increase the number of packets stored in IN by one and toincrease HIN by one. Therefore, since Statement 5 was true going into line (6.53) by the inductionhypothesis, it will remain true upon leaving (6.53).It remains to prove the parts of Statement 9 not yet proven, namely that at all times HIN ∈

[0..2n] and HGP ∈ ⊥ ∪ [1..2n]. As was proven in the third bullet point above, if (6.52) is satis�ed,then HIN < 2n, and hence the change there does not threaten the domain of HGP . Also, (6.53)sets HGP to ⊥, which is again in the valid domain. Meanwhile, on (6.53) HIN is changed to
HIN + 1 ≤ 2n, where the inequality follows from the induction hypothesis applied to Statement 7.Line (6.55), (6.57), and (6.64). Since IN and HGP are the only relevant quantities that changevalue on these lines, only the relevant parts of Statements 1, 2, and 9 must be proven. Since HGPis set to ⊥ on these lines, Statement 9 is immediate and Statement 2 is vacuously true. It remainsto prove Statement 1. If HGP = ⊥ going into (6.55), (6.57), or (6.64), then HGP and IN will notchange, and the inductive hypothesis (applied to Statement 1) will ensure that Statement 1 willcontinue to be true upon exiting any of these lines. If 1 ≤ HGP ≤ HIN when (6.55), (6.57), or(6.64) is entered, then we may apply the induction hypothesis to Statement 2 to conclude that
IN[i] 6= ⊥ ∀i ∈ [1..HGP − 1] and ∀i ∈ [HGP + 1..HIN + 1], and IN[i] = ⊥ ∀i ∈ [HIN + 2..2n] and
IN[HGP] = ⊥. In particular, there is a gap in IN storing a �ghost packet,� and this gap will be �lledwhen Fill Gap is called on (6.55), (6.57) or (6.64). Namely, this will shift all the packets fromheight HGP +1 through H+1 down one spot, so that after Fill Gap is called, IN[i] 6= ⊥ ∀i ∈ [1..HIN]and IN[i] = ⊥ ∀i ∈ [HIN +1..2n], which is Statement 1. Finally, if HGP > HIN when (6.55), (6.57)or (6.64) is entered, then Fill Gap will not do anything, and so IN will not change. Since Statement1 was true going into these lines (by our induction hypothesis), it will remain true upon exitingthese lines.Line (6.61-62). The only relevant variables to change values on these lines are sbOUT , HOUT , HFP ,and OUT, so we need only verify Statements 3, 4, 6, and 9 remain true after leaving (6.61-62).First note that HFP 6= ⊥ upon reaching (6.61) (since (6.60) must be satis�ed to reach (6.61-62)),so the induction hypothesis (applied to Statements 3 and 4) implies that OUT[HFP] 6= ⊥ when(6.61) is reached. Therefore, HOUT ≥ 1 when (6.61) is reached, and hence HOUT ∈ [1..2n] uponreaching (6.61) by the induction hypothesis (applied to Statement 9). In particular, when HOUT is32

reduced by one on (6.62), we will have that HOUT ∈ [0..2n − 1] upon leaving (6.62), as required.Also, HFP will be set to ⊥ upon leaving (6.62), so Statement 9 remains true.Statement 6 also follows from the fact that OUT[HFP] 6= ⊥ when (6.61) is reached, as follows.Since (by induction) Statement 6 was true upon reaching (6.61), the packet deleted from OUT on(6.61) is accounted for by the drop in HOUT on (6.62).Statement 3 is vacuously true upon leaving (6.62), so it remains to prove Statement 4. Thisargument is identical to the one used to prove Statement 4 in lines (6.32-33) above.Lines (7.89-94). We �rst prove Statements 10-13, and then address Statements 1-9. We �rst proveStatement 10, i.e. that before Shu�e Packet is called on (7.77), we have that BF [M] 6= ⊥ and
BT [m + 1] = ⊥.
• If BF is an outgoing bu�er and HFP = ⊥ or HFP < HBF

, then M = HBF
(the conditionalstatement on line (7.80) will fail), and then BF [M] 6= ⊥ by the induction hypothesis appliedto Statement 4.

• If BF is an outgoing bu�er and HFP ≥ HBF
, then M = HBF

−1 (the conditional statement online (7.80) will pass), and then BF [M] 6= ⊥ by the induction hypothesis applied to Statement3 or 4 (that M = HBF
− 1 is greater than zero follows from the fact that HFP 6= ⊥ implies

FP 6=⊥ (Claim 7.4), and then the induction hypothesis applied to Statement 6 says HBF
> 0).

• If BF is an incoming bu�er and BF [M +1] 6= ⊥, then (7.82) is satis�ed and M is set to M +1on line (7.82), and then by construction BF [M] 6= ⊥ after line (7.83).
• Suppose BF is an incoming bu�er and BF [M + 1] = ⊥. Notice that the induction hypothesisapplied to Statement 2 and the fact that BF [M + 1] = ⊥ imply that HGP > HIN = M .Therefore, the induction hypothesis applied to Statement 1 implies that BF [M] 6= ⊥.
• If BT is an outgoing bu�er and BT [m] = ⊥, then the conditional statement on line (7.84)will be satis�ed, and hence m is set to m− 1. Thus after line (7.85), BT [m + 1] = ⊥.
• If BT is an outgoing bu�er and BT [m] 6= ⊥, then the induction hypothesis applied to State-ments 3, 4, and 6 imply that BT [m + 1] = ⊥.
• If BT is an incoming bu�er and HGP = ⊥, then the value of m is not changed on line (7.86),and so m + 1 = HIN + 1. The induction hypothesis applied to Statement 1 then implies that

BT [m + 1] = ⊥.
• If BT is an incoming bu�er and HGP 6= ⊥, then BT [HIN +2] = ⊥ by the induction hypothesisapplied to Statements 1 and 2, and thus after m is changed to m + 1 on (7.87), we have that

BT [m + 1] = BT [HIN + 2] = ⊥, as required.For Statements 11-13, we need to change notation slightly, since Re-Shu�ing can occur betweentwo bu�ers of any types (except outgoing to incoming). To prove these statements, we thereforetreat 4 cases: 1) BF is an outgoing bu�er, 2) BF is an incoming bu�er, 3) BT is an outgoing bu�er,4) BT is an incoming bu�er. We then prove the necessary Statements in each case.Case 1. The value of BF [M] = OUT[M] is changed on line (7.90), and hence Statement 11will hold provided M 6= HFP . The top two bullet points above guarantee that this is indeedthe case. Statements 12 and 13 are not relevant unless BT is an incoming bu�er, which willbe handled in case 4 below.Case 2. For Statement 13, the only relevant change to HIN is on line (7.92), where HINdecreases in value, and hence Statement 13 will remain true. For the �rst part of Statement33

12, the only place HGP can change is line (7.94). But if HGP does change value here, then theconditional statement on the previous line guarantees that that HGP decreases to HIN + 1.Statement 11 and the second part of Statement 12 are not relevant to this case.Case 3. The value of BT [m + 1] = OUT[m + 1] is changed on line (7.89), and henceStatement 11 will hold provided m + 1 6= HFP . But we have already shown Statement 10remains true, and in particular the slot that is �lled on line (7.89) was vacant. If HFP 6= ⊥,then by the induction hypothesis applied to Statements 3 and 4, OUT[HFP] 6= ⊥, and hence
OUT[m + 1] = ⊥ implies that m + 1 6= HFP . Statements 12 and 13 are not relevant to thiscase.Case 4. Since BT is an incoming bu�er, the condition on line (7.74) implies that the valueof m (which is the height of BT) on line (7.73) must be at most 2n − 2 (M − m > 1 and
M,m ∈ [0..2n] by induction hypothesis applied to Statement 9). Therefore, when the heightof BT is increased by one on line (7.91), it will be at most 2n − 1, and so Statement 13 willremain true. For the second part of Statement 12, we must show that the value of m + 1 online (7.89) is not equal to HGP . In the case that HGP 6= ⊥ on line (7.86), the value of m willchange to HIN + 1 on line (7.87), and then the induction hypothesis applied to Statement 1implies that HGP ≤ HIN + 1 = m and so HGP 6= m + 1 on line (7.89). Statement 11 and the�rst part of Statement 12 are not relevant for this case.It remains to verify Statements 1-9. There are two parts to proving Statements 1 and 2; we mustshow they hold when BF is an incoming bu�er and also when BT is an incoming bu�er. For thelatter part, Statements 1 and 2 will be true if we can show that anytime an incoming bu�er's slotis �lled as on line (7.89), the slot was either slot HIN + 1 (in the case that HGP = ⊥) or HIN + 2(in the case that HGP 6= ⊥). These facts follow immediately from the de�nition of m on line(7.73) and lines (7.86-87) and (7.89). For the former part, Statements 1 and 2 will remain trueprovided the packet taken from BF on line (7.89) is the top-most packet in BF . Looking at theconditional statement on line (7.82), if IN[HIN + 1] 6= ⊥, then by the induction hypothesis appliedto Statements 1 and 2, we must have that IN[HIN + 1] is the top-most non-null packet, which isthe packet that will be taken from BF on line (7.89) (since in this case M = HIN is changed to

HIN + 1 on line (7.83)). On the other hand, if IN[HIN + 1] = ⊥ on line (7.82), then the inductionhypothesis applied to statements 1 and 2 imply that IN[HIN] is the top-most non-null packet, whichis exactly the packet taken on line (7.89) (since the conditional statement on line (7.82) won't besatis�ed, and hence the value of M won't be change on line (7.83)).Similarly, there are two parts to proving Statements 3 and 4; we must show they hold when BFis an outgoing bu�er and also when BT is an outgoing bu�er. The former part will be true providedthe packet taken from BF on line (7.79) is the top-most non-�agged packet. If HFP = ⊥, thenthere is no �agged packet, and hence the packet taken from BF should be the top packet, i.e. thepacket in index BF [HOUT]. Investigating the de�nition of M on line (7.72) and lines (7.80-81)and (7.89) shows that this will be the case if HFP = ⊥. If HFP 6= ⊥ and HFP < HOUT , theninvestigating those same lines also shows the top packet will be taken from BF (which is not �aggedsince HFP < HOUT by assumption). If HFP ≥ HOUT , then line (7.80) will be satis�ed, shifting thevalue of M to HOUT − 1 on line (7.81). By the induction hypothesis applied to Statement 3, thisnew value of M corresponds to the top-most non-�agged packet of BF . The latter part will be trueprovided the packet given to BT takes the �rst free slot in BT (in particular, the packet will notover-write a �agged packet's spot). If BT [HOUT] 6= ⊥ on line (7.84), then the induction hypothesis34

applied to Statements 3, 4, and 6 imply that all slots of BT between [1..HOUT] are non-⊥, and allspots above HOUT are ⊥. Therefore, (since in this case the conditional statement on line (7.84) failsand hence the value of m does not change on the next line) the de�nition of m on line (7.73) andline (7.89) show that the �rst free slot of BT will be �lled. On the other hand, if BT [HOUT] = ⊥ online (7.84), then by the induction hypothesis, we must have that BT [HOUT] is the �rst free slot of
BT , and by investigating lines (7.73), (7.84-85), and (7.89), this is exactly the spot that is �lled.Statements 5 and 6 remain true by the fact that Statement 10 was proven true and lines (7.91)and (7.92). To satisfy the condition on line (7.74), it must be that HBF

= M ≥ 1 and HBT
= m <

2n, and hence the changes made to HBF
and HBT

on lines (7.91) and (7.92) will guarantee theparts of Statement 9 regarding HOUT and HIN remain true. Also, HGP remains in the appropriatedemain by induction applied to Statements 9, 12, and 13. Statements 7, 8, are not relevant. �Lemma 7.2. The domains of all of the variables in Figures 3 and 4 are appropriate. In otherwords, the protocol never calls for more information to be stored in a node's variable (bu�er, packet,etc.) than the variable has room for.Proof. Below we �x a node N ∈ G and track changes to each of its variables.Outgoing Bu�ers OUT (3.08). Each entry of OUT is initialized to ⊥ on (3.33). After thispoint, Statement 6 of Lemma 7.1 above guarantees OUT will need to hold at most HOUTpackets, and since HOUT is always between 0 and 2n (by Statement 9 of Lemma 7.1) andpackets have size P , the domain for OUT is as indicated.Copy of Packet to be Sent p̃ (3.09). This is initialized to ⊥ on (3.34), and is only modi�edafterwards on (6.38), (6.33), and (6.62). By Statements 3, 4, and 9 of Lemma 7.1, OUT [H] 6=

⊥ when p̃ is set on (6.38), and the changes on (6.33) and (6.62) reset p̃ to ⊥. Therefore, thedomain of p̃ is as indicated.Outgoing Status Bit sb (3.10). This is initialized to 0 on (3.35), and is only modi�ed afterwardson lines (6.33), (6.28), and (6.62), all of which change sb to 0 or 1, as required.Packet Sent Bit d (3.11). This is initialized to 0 on (3.35), and is only modi�ed afterwardson lines (6.26), (6.40), and (6.62), each of which change d to 0 or 1, as required.Flagged Round Index FR (3.12). This is initialized to ⊥ on (3.34), and is only modi�edafterwards on lines (6.38), (6.33), and (6.62). The latter two lines reset FR to ⊥, while(6.38) sets FR to the index of the current stage and round t, and since there are 3D roundsper transmission and 2 stages per round (5.02), so when FR is set to t on (6.38), it will bein [0..6D], as required.Height of Outgoing Bu�er H (3.13). This is initialized to 0 on (3.35). After this point,Statement 9 of Lemma 7.1 above guarantees H ∈ [0..2n], as required.Height of Flagged Packet HFP (3.14). Statement 9 of Lemma 7.1 guarantees that HFP willlie in the appropriate domain at all times.Round Adjacent Node Last Received a Packet RR (3.15). This is initialized to ⊥ on (3.34),and is only modi�ed afterwards when it is received on (5.06), where it is either set to thereceived value or ⊥ if nothing was received. As discussed below, the incoming bu�er's value35

for RR always lies in the appropriate domain domain, and hence so will the value received on(5.06).Outgoing Bu�er's Value for Adjacent Node's Incoming Bu�er Height HIN (3.16). This is ini-tialized to 0 on (3.35), and is only modi�ed afterwards on line (5.06), where it is set to thevalue sent on (5.09) by the adjacent node, or ⊥ in case no value was received. Since the valuesent on (5.09) will always be between 0 and 2n (by Statement 9 of Lemma 7.1), HIN has therequired domain.Incoming Bu�ers IN (3.18). Each entry of IN is initialized to ⊥ on (3.29). After this point,Statement 5 of Lemma 7.1 above guarantees IN will need to hold at most HIN packets, andsince HIN is always between 0 and 2n (by Statement 9 of Lemma 7.1) and packets have size
P , the domain for IN is as indicated.Packet Just Received p (3.19). This is initialized to ⊥ on (3.30), and is only modi�ed after-wards on (6.43), where it either is set to the value sent on (6.41) or ⊥ in the case no valuewas received. Since the value sent on (6.41) has the appropriate domain (i.e. the size of apacket, P), in either case p has the appropriate domain.Incoming Status Bit sb (3.20). This is initialized to 0 on (3.31), and is only modi�ed afterwardson lines (6.45), (6.49), (6.53), (6.55), (6.57), and (6.64), all of which change sb to 0 or 1as required.Round Received Index RR (3.21). This is initialized to −1 on (3.31), and is only modi�edafterwards on lines (6.53) and (6.64). The former sets RR to the index of the current stageand round t, and since there are 3D rounds per transmission and 2 stages per round (5.02),setting RR = t as on (6.53) will put RR in [0..6D] as required. Meanwhile, (6.64) resets RRto −1. Thus, at all times RR ∈ {0, 1}6D , as required.Height of Incoming Bu�er H (3.22). This is initialized to 0 on (3.31). After this point,Statement 9 of Lemma 7.1 above guarantees H ∈ [0..2n], as required.Height of Ghost Packet HGP (3.23). Statement 9 of Lemma 7.1 guarantees that HGP will liein the appropriate domain at all times.Incoming Bu�er's Value for Adjacent Node's Outgoing Bu�er Height HOUT (3.24). This isinitialized to 0 on (3.31), and is only modi�ed afterwards on line (5.11), where it is set tobe one of the values sent on (5.05) by the adjacent node, or ⊥ in case no value was received.Since the value sent on (5.05) (either HOUT or HFP) will always be ⊥ or a number between 1and 2n (see domain argument above for an outgoing bu�er's height of �agged packet variable
HFP), HOUT has the required domain.Incoming Bu�er's Value for Adjacent Node's Status Bit sbOUT (3.25). This is initialized to 0on (3.31), and is only modi�ed afterwards on lines (5.10) and (5.11). Both changes assign
sbOUT to `0' or `1', as required.Incoming Bu�er's Value for Adjacent Node's Flagged Round Index FR (3.26). This is initializedto ⊥ on (3.30), and is only modi�ed afterwards on lines (5.10-11) and (6.43). Each of thesetimes, FR is either set to the value sent by the adjacent node, or ⊥ in the case nothing was36

received. Since the values sent on (5.05) and (6.45) live in [0..6D] ∪ ⊥ (see argument abovefor an outgoing bu�er's variable FR living in the appropriate domain), so does FR.Sender's Count of Packets Inserted κ (4.37). We want to argue that at all times, κ corre-sponds to the number of packets (corresponding to the current codeword) that the senderhas knowingly inserted. Lines (4.39) and (6.68) guarantee that κ = 0 at the outset of anytransmission. The only other place κ is modi�ed is (6.31) where it is incremented by one,so we must argue that (6.31) is reached exactly once for every packet the sender knowinglyinserts. By �knowingly� inserting a packet, we means that the sender has received veri�cationthat the adjacent node has received and stored the packet, and hence the sender can deletethe packet.Suppose that in some round t, the sender sends a packet p as on (6.41). By Claim 7.7below, the sender will continue to try and send this packet to its neighbor until he receivescon�rmation of receipt. There are two things to show: 1) If the sender does not receivecon�rmation of receipt, then κ is never incremented as on (6.31), and 2) If the sender doesreceive con�rmation of receipt, then κ is incremented exactly once. By �receiveing con�rmationof receipt,� we mean that line (6.30) is satis�ed in some round t
′ when the sender's value for

p̃ equals the packet p sent in round t (see De�nition 7.6 below). Clearly, 1) will be true since(6.31) will never be reached if (6.30) is never satis�ed. For 2), suppose that in some laterround t
′ > t the sender gets con�rmation of receipt for p. Clearly line (6.31) is reached thisround, and κ is incremented by one there. We must show κ will not be incremented due to

p ever again. However, p will be deleted on line (6.32) of round t
′, and therefore this packetcan cause the sender to reach (6.31) at most once. Thus, at all times κ corresponds to thenumber of packets (corresponding to the current codeword) that the sender has knowinglyinserted, as desired. Since each codeword has D packets, the domain for κ is as required.Receiver's Storage Bu�er IR (4.40). Each entry of IR is initialized to ⊥ on (4.43), after whichit is only modi�ed on lines (7.101) and (6.66). The latter resets IR, while the former setsentry κ of IR to the packet in IN [1]. We show below that κ will always accurately representthe number of current codeword packets the receiver has received, and hence will be a valuebetween 0 and D. It remains to show that IN [1] will always hold a packet when (7.101)is reached. We use Claim 7.3 below which states that for the receiver, anytime HIN > 0,

HGP = ⊥. Therefore, whenever (7.99) is satis�ed, Statement 1 of Lemma 7.1 (together withthe argument that IN has the appropriate domain) state that IN [1] will hold a packet, asrequired.Receiver's Number of Packets Received κ (4.41). We want to show that κ always equals thenumber of packets corresponding to the current codeword the receiver has received so far.Lines (4.42) and (6.66) guarantee that κ = 0 at the outset of any transmission. The onlyother place κ is modi�ed is (7.101) where it is incremented by one, so we must argue that(7.101) is reached exactly once for every packet (corresponding to the current codeword) thatthe receiver receives. By Statement 1 of Lemma 7.1 and Claim 7.3 below, anytime (7.101) isreached, IN[1] necessarily stores a packet. This packet is added to IR on (7.101) and then ispromptly deleted from IN on (7.102). By Claim 6.8, the receiver will never enter (7.100) twicedue to the same packet, and hence (7.101) is reached exactly once for every distinct packetcorresponding to the current codeword (see comments on 7.100 and 7.104). Therefore, κ37

always equals the number of packets corresponding to the current codeword the receiver hasreceived so far, as desired. Since there are D packets per codeword, κ ∈ [0..D], as required.�Claim 7.3. For any of the receiver's bu�ers IN , HIN = 0 at the start of every round. Also,anytime HIN > 0, HGP = ⊥.Proof. H = HIN is set to 0 at the outset of the protocol (3.31). The �rst statement followsimmediately from line (7.102), where each of the receiver's incoming bu�ers IN have HIN resetto zero during the re-shu�e phase of every round. For the second statement, we will show thatwhenever H changes value from 0 in any round t, that HGP will be set to ⊥ at the same time, andneither will change value until the end of the round when H will be reset to zero during re-shu�ing.In particular, the only place H can change from zero is on (6.53). Suppose (6.53) is reached insome round t, changing H from zero to 1, and also changing HGP to ⊥. Looking at the pseudo-code,neither H nor HGP can change value until line (7.102), where H is reset to zero. Therefore, H canonly be non-zero between lines (6.53) and (5.21) (when Receiver Re-Shu�e is called) of a givenround, and at these times HGP is always equal to ⊥. �Claim 7.4. Let OUT be any outgoing bu�er, and HFP , FR, and sb denote the height of it �aggedpacket, round the packet was �agged, and status bit, respectively (see (3.10, 3.12, 3.14)). Then
HFP = ⊥ ⇔ FR = ⊥. Also, anytime OUT has no �agged packets (i.e. HFP = ⊥), OUT hasnormal status (i.e. sb = 0).Proof. The �rst statement is true at the outset of the protocol (3.34), so it will be enough to makesure that anytime HFP or FR changes value from ⊥ to non-⊥ (or vice-versa), the other one alsochanges. Examining the pseudo-code, these changes occur only on lines (6.33), (6.38), and (6.62),where it is clear HFP takes on a non-⊥ (respectively ⊥) value if and only if FR does.The second statement is true at the outset of the protocol (3.34-35). So it is enough to show:1) anytime HFP is set to ⊥, sb is equal to zero, and 2) anytime sb changes to one, HFP 6= ⊥.The former is true since anytime HFP changes to ⊥, sb is set to zero on the same line ((6.33) and(6.62)), while the latter is true since sb only changes to one on (6.28), which can only be reachedif FR 6= ⊥ (6.27), which by the �rst statement of this claim implies HFP 6= ⊥. �Claim 7.5.1. Anytime sbOUT is equal to 1 when Create Flagged Packet is called on line (5.15), HFP 6= ⊥.2. Anytime Send Packet is called on line (5.17), the �agged packet has height at least one (i.e.

HFP is at least one anytime Send Packet is called).Proof. We prove the 2nd statement by separating the proof into the following two cases.Case 1: sbOUT = 0 at the start of Stage 2. Since Send Packet is called, the conditional statementon line (5.16) was satis�ed. Therefore, since we are in the case sbOUT = 0 on that line, then
HOUT > HIN . Tracing HIN backwards, it was received on line (5.06) and represents the valueof HIN that was sent on line (5.09). Using the induction hypothesis applied to Statement 9of Lemma 7.1, HIN ≥ 0 and hence the value of HOUT on (5.16) must be at least one. Since
HOUT and HIN cannot change between lines (5.15) and (5.16) of any round, when CreateFlagged Packet was called, it was still true that sbOUT = 0 and HOUT > HIN ≥ 0. Therefore,line (6.37) will be satis�ed and (6.38) will set HFP = HOUT ≥ 1 as required.38

Case 2: sbOUT = 1 at the start of Stage 2. Let t denote some round where sbOUT = 1 at thestart of Stage 2. Our strategy will be to �nd the most recent round that sbOUT switched from0 to 1, and argue that the value that HFP acquired in that round has not changed. So let
t0 + 1 denote the most recent round that sbOUT had the value 0 at any stage of the round.We argue that sbOUT = 1 by the end of t0 +1, and sbOUT = 0 at the start of Stage 2 of round
t0 (the round before t0 + 1) as follows:� If sbOUT equals 0 by the end of round t0 + 1, then it will at the start of round t0 + 2,contradicting the choice of t0 + 1.� If sbOUT = 1 at the start of Stage 2 of round t0, then sbOUT must have changed its valueto 0 sometime between Stage 2 of round t0 and the end of round t0 +1 (since sbOUT = 0at some point of round t0 + 1 by de�nition). This can only happen on line (6.33) insidethe Reset Outgoing Variables function of round t0 + 1 (this is the only place that sbOUTcan be set to zero). However, since sbOUT cannot change between the time that ResetOutgoing Variables is called on line (5.07) and the end of the round, it must be that

sbOUT was equal to zero at the start of round t0 + 2, contradicting the choice of t0 + 1.Now since sbOUT = 0 at the start of round t0 + 1 (it cannot change between Stage 2 of t0and the start of t0 + 1), and sbOUT = 1 by the end of mathttt0 + 1, it must have changedon line (6.28) of round t0 + 1 (this is the only line that sets sbOUT to 1). In particular, theconditional statements on lines (6.25) and (6.27) must have been satis�ed, and so d was equalto 1 on line (6.25) of round t0 + 1. Since d is reset to zero during Stage 1 of every round(6.26), it must be that d was switched from 0 to 1 on line (6.40) of round t0 (this is the onlyplace d is set to one). Thus, we have that Send Packet was called on line (5.17) of round t0.We are now back in Case 1 above (but for round t0 instead of t), and thus HFP was set to avalue of at least 1 on line (6.38) of round t0. It remains to argue that HFP does not decreasein value between round t0 and line (5.17) of round t. But HFP can only change value onlines (6.33), (6.35), and (6.38). For round t0, the former two of these lines have both passedwhen the latter is called (setting HFP ≥ 1 as in Case 1). Meanwhile, between t0 + 1 and t,we know that (6.33) and (6.38) cannot be reached, as this would imply the value of sbOUT iszero sometime after t0 + 1, contradicting the choice of t0 + 1. The only other place HFP canchange is (6.35), which can only increase HFP . Thus in any case, ⊥ 6= HFP ≥ 1 when SendPacket is called on (5.17) of round t.The proof of the 1st statement follows from the proof given in Case 2 above. �De�nition 7.6. We will say that an outgoing bu�er gets con�rmation of receipt for a packet pthat it sent across its adjacent edge whenever line (6.30) (alternatively line (12.46) for the node-controlling + edge-controlling protocol of Sections 8-11) is reached and satis�ed and the packetsubsequently deleted on (6.32) (respectively (12.50)) is (a copy of) p.Claim 7.7. Suppose (an instance of) a packet p is accepted by node B in round t (using thede�nition of �accepted� from De�nition 6.5). Then:1. Let t′ be the �rst round after18 t in which B attempts to send (a copy of) this packet acrossany outgoing edge. Then the corresponding outgoing bu�er OUT of B will necessarily havenormal status at the start of Stage 2 of t′.18The Claim remains valid even if t′ is a round in a di�erent transmission than t.39

2. If B fails to get con�rmation of receipt for the packet in the following round (i.e. either RRis not received on (5.06) of round t
′ + 1, or it is received but RR < FR), then OUT entersproblem status as on (6.28) of round t

′ + 1. OUT will remain in problem status until the endof the transmission or until the round in which it gets con�rmation of receipt (i.e. until RRis received as on (5.06) with RR ≥ t
′).3. From the time p is �rst �agged as on (6.38) of round t

′ through the time B does get con�r-mation of receipt (or through the end of the transmission, whichever comes �rst), B will nothave any other �agged packets, i.e. p̃,OUT[HFP] = p and FR = t
′.Proof. We prove Statement 1 by contradiction. Let t

′ denote the �rst round after t in which Battempts to send (a copy of) p across an edge E(B,C), i.e. t′ is the �rst round after t that SendPacket is called by B's outgoing bu�er OUT such that the p̃ that appears on line (6.38) of thatround corresponds to p. For the sake of contradiction, assume that sbOUT = 1 at the start of Stage2 of round t
′. Since sbOUT cannot change between the start of Stage 2 and the time that CreateFlagged Packet is called on line (5.15), we must have that sbOUT = 1 on line (6.37) of round t

′, andhence (6.38) is not reached that round. In particular, when Send Packet is called on line (5.17) (asit must be by the fact that p was sent during round t
′), the packet p̃ that is sent (which is p) was setin some previous round. Let t̃ denote the most recent round for which p̃ was set to p as on (6.38)(this is the only line which sets p̃). Then by assumption t̃ < t

′, and OUT had normal status at thestart of Stage 2 of round t̃ (in order for (6.38) to be reached). Since OUT had normal status at thestart of Stage 2 of round t̃, but by assumption OUT had problem status at the start of Stage 2 ofround t
′, let t̂ denote the �rst round such that t̃ < t̂ ≤ t

′ and such that OUT had problem statusat the start of Stage 2 of t̂. Since the only place OUT switches status from normal to problem ison (6.28), this line must have been reached in round t̂. In particular, this implies that (6.25) wassatis�ed in round t̂, which in turn implies that Send Packet was called in round t̂ − 1 (since d isre-set to zero at the end of Stage 1 of every round as on (6.26)). But this is a contradiction, since
t̃ ≤ t̂− 1 < t

′, and so p = p̃ was sent in a round before t′, contradicting the choice of t′.For Statement 2, since B sent p in round t
′ and OUT had normal status at the Start of Stage2 of this round, we have that HOUT > HIN on line (5.16) (so that Send Packet could be called).Since sbOUT ,HOUT , and HIN cannot change between (5.15) and (5.17) of any round, FR is set to

t
′ on (6.38) of round t

′. Also, d = 1 after the call to Send Packet of round t
′ (6.40). Notice thatneither FR nor d can change value between the call to Create Flagged Packet in round t

′ and thecall to Reset Outgoing Variables in the following round. Therefore, if B does not receive RR or if
RR < FR = t

′ when Reset Outgoing Variables is called in round t
′ + 1, then (6.25) and (6.27)will be satis�ed, and hence OUT will enter problem status in round t

′ + 1. That OUT remainsin problem status until the end of the transmission or until the round in which RR is received on(5.06) with RR ≥ t
′ now follows from the following subclaim. (Warning: the following subclaimswitches notation. In particular, to apply the subclaim here, replace (t, t0) of the subclaim with

(t′ + 1, t′).)Subclaim. Suppose that at the start of Stage 2 of some round t, an outgoing bu�er OUThas problem status and ⊥ 6= FR = t0. Then OUT will remain in problem status until theend of the transmission or until the round in which RR is received on (5.06) with RR ≥ t0.Proof. OUT will certainly return to normal status by the end of the transmission (6.62), inwhich case there is nothing to show. So suppose that t′ > t is such that OUT �rst returns to40

normal status (in the same transmission as t) as on (6.33) of round t
′. In particular, lines(6.29) and (6.30) were both satis�ed, so OUT must have received RR on (5.06) earlier inround t

′, with RR ≥ FR. If the value of FR on line (6.30) equals t0, then the proof iscomplete. So we show by contradiction that this must be the case.Assume for the sake of contradiction that FR 6= t0 on line (6.30) of round t
′. Since FR wasequal to t0 at the start of Stage 2 of round t by hypothesis, FR must have changed at somepoint between Stage 2 of round t and round t

′. Notice that between these rounds, FR canonly change values on lines (6.33) and (6.38). Let t′′ denote the �rst round between t and
t
′ such that one of these two lines is reached. Note that t′′ > t, since (6.33) already passedby the start of Stage 2 (which is when the subclaim asserts FR = t0), and (6.38) cannotbe reached in round t since OUT has problem status when (6.37) of round t is reached (byhypothesis).
• Suppose FR is �rst changed from FR = t0 on (6.33) of round t

′′. First note thatbecause (6.33) is the �rst time FR changes its value from t0, it must be the case that
FR was still equal to t0 on (6.30) earlier in round t

′′. Also, since (6.33) is reached inround t
′′, OUT returns to normal status. Since t′ was de�ned to be the �rst round after

t for which this happens, we must have that t′′ ≥ t
′. But by construction t

′′ ≤ t
′, sowe must have that t′′ = t

′. However, this is a contradiction, because our assumption isthat FR 6= t0 on line (6.30) of round t
′ = t

′′, but as noted in the second sentence ofthis paragraph, we are in the case that FR = t0 on line (6.30) of round t
′′.

• Suppose FR is �rst changed from FR = t0 on (6.38) of round t
′′. Then (6.37) musthave been satis�ed, and thus OUT had normal status when Create Flagged Packet wascalled in round t

′′. Since OUT had problem status at the start of Stage 2 of round t (byhypothesis), the status must have switched to normal at some point between t and t
′′,which can only happen on (6.33). But if (6.33) is reached, then FR will be set to ⊥ onthis line, which contradicts the fact that FR was �rst changed from FR = t0 on (6.38)of round t

′′.This completes the proof of the subclaim.For the third Statement, �rst note that OUT[HFP] = p as of line (6.38) of round t
′. This is the casesince sbOUT = 0 on line (5.12) (by Statement 1 of this claim), and then the fact that Send Packetis called in round t

′ means HOUT > HIN on (5.16), and therefore since none of these values changebetween (5.12) and (5.16), (6.37) will be satis�ed in round t
′. Therefore, we will track all changesto OUT and HFP from Stage 2 of round t

′ through the time p is deleted from OUT as on (6.32-33)of some later round19, and show that none of these changes will alter the fact that OUT[HFP] = p.Notice that (before the end of the transmission) HFP only changes value on lines (6.33), (6.35),and (6.38); while OUT only changes values on lines (6.32), (6.35), and (7.89-90). Clearly thechanges to each value on (6.35) will preserve OUT[HFP] = p, so it is enough to check the otherchanges. Notice that (6.32) is reached if and only if (6.33) is reached, which by Statement 2 ofthis claim does not happen until OUT gets con�rmation of receipt that p was successfully receivedby B's neighbor, and therefore these changes also do not threaten the validity of Statement 3. Thechange to HFP as on (6.38) can only occur if (6.37) is satis�ed, i.e. only if OUT has normal status,19Or through the end of the transmission, whichever occurs �rst.41

and thus again Statement 2 of this claim says this cannot happen until OUT gets con�rmationof receipt that p was successfully received by B's neighbor. Finally, lines (7.89-90) will preserve
OUT[HFP] = p by Statement 11 of Lemma 7.1.That FR = t

′ from (6.38) of t′ through the time B gets con�rmation of receipt for p was provenin the subclaim above. Also, p̃ can only change on (6.33) or (6.38), which we already proved (inthe proof of the subclaim above) are not reached. �Corollary 7.8. At any time, an outgoing bu�er has at most one �agged packet.Proof. This follows immediately from Statement 3 of Lemma 7.7. �Claim 7.9. For any outgoing bu�er OUT, if at any time its Flagged Round value FR is equal to
t, then OUT necessarily called Send Packet on line (5.17) of round t.Proof. Suppose that at some point in time, FR is set to t. Notice that the only place FR assumesnon-⊥ values is on (6.38), and therefore line (6.37) must have been satis�ed in round t. Since thevalues for sbOUT ,HOUT , and HIN cannot change between lines (5.15) and (5.16), the statementon (5.16) will also be satis�ed in round t, and consequently Send Packet will be reached in t. �Lemma 7.10. Suppose that sbOUT = 1 when line (6.47) is reached in round t on an edge linkingbu�ers OUT and IN. Further suppose that IN does receive the communication (p, FR) from OUTon line (6.43) of t. Also, let t0 denote the round described by FR, let h denote the height of thepacket in OUT in round t0, and let h′ denote the height of IN at the start of round t0. Then thefollowing are true:1. t0 is well-de�ned (i.e. FR 6= ⊥ and FR ≤ t).2. h > h′.3. OUT sent p to IN on line (6.41) of round t0. Furthermore, the height of p in OUT when it issent on line (6.41) of round t is greater than or equal to h.4. If the condition statement on line (6.51) of round t is satis�ed, then the value of HGP whenthis line is entered, which corresponds to the height in IN that p assumes when it is inserted,satis�es: ⊥ 6= HGP ≤ h′ + 1 ≤ 2n.5. If the condition statement on line (6.51) of round t is satis�ed, then HIN was less than 2nat the start of all rounds between t0 and t.Proof of Lemma 7.10. We make a series of Subclaims to prove the 5 statements of the Lemma.Subclaim 1. The value of FR that is sent on (6.41) of round t is not ⊥.Proof. Since (6.41) is reached, Send Packet was called on (5.17). By Statement 2 of Claim7.5, we have that HFP ≥ 1 when Send Packet is called, and in particular HFP 6= ⊥ on line(5.17). Since HFP cannot change between (5.17) and (6.41), we have that HFP 6= ⊥ on(6.41), and hence FR 6= ⊥ on this line (Claim 7.4).Subclaim 2. t0 is well-de�ned (i.e. ⊥ 6= t0 ≤ t).Proof. By the de�nition of t0 and Subclaim 1, t0 6= ⊥. Also, by looking at the three placesthat FR changes values ((6.33), (6.38), and (6.62)), it is clear that FR will always be lessthan or equal to the current round index. 42

Subclaim 3. t > t0.Proof. That t ≥ t0 is immediate (FR is reset to ⊥ at the start of every transmission (3.34)and (6.62), after which time the FR can never attain a value bigger than the current round(6.38)). Therefore, we only have to show t 6= t0. For the sake of contradiction, suppose
t = t0. By hypothesis, sbOUT = 1 when line (6.47) of round t = t0 is reached. Notice that
sbOUT is reset to 0 on (5.10) of round t = t0, so the only way it can be `1' on (6.47) later thatround is if it is set to one on (5.11). This can only happen if HOUT = ⊥ or FR > RR. Since(6.47) is reached, (6.44) must have failed, and since HOUT does not change values betweenthe time it is received on (5.11) and (6.44), we have that HOUT 6= ⊥ on (5.11). Therefore,we must have that FR > RR on (5.11) of round t = t0.Notice the value for FR here comes from the value sent by OUT on (5.05), and thishappens before line (6.38) has been reached in round t = t0. Therefore, the value of FRreceived on (5.11) obeys FR < t = t0 (as noted above, FR can never attain a value biggerthan the current round). Since RR < FR, line (6.30) cannot have been satis�ed since thetime FR was set to its current value (within a transmission, the values RR assumes are strictlyincreasing, see (3.34), (6.53), and (6.64)). Therefore, we may apply Claim 7.9 and Claim7.7 to argue that FR will not be changed on (6.38) of round t = t0 (since OUT will haveproblem status), and consequently FR will still be strictly smaller than t = t0 when line(6.41) is reached of round t0. This contradicts the de�nition of t0 as the value received online (6.43) of round t.Subclaim 4. OUT had normal status at the start of Stage 2 of round t0. For every roundbetween Stage 2 of t0 + 1 through t− 1, OUT had problem status and FR = t0.Proof. By de�nition of t0, it equals the value of FR that was received in round t on line(6.43), which in turn corresponds to the value of FR that was sent on line (6.41). Tracingthe values of FR backwards, we see that the only time/place FR is set to a non-⊥ value (aswe know it has by Subclaim 1) is on line (6.38), and this must have happened in round t0since FR = t0 by de�nition of t0. Therefore, in round t0, line (6.38) must have been reachedwhen Create Flagged Packet was called on line (5.15); so in particular sbOUT must have beenzero on line (6.37) to have entered the conditional statement. Since sbOUT cannot changebetween the start of Stage 2 and line (5.15) (where Create Flagged Packet is called), it musthave been zero at the start of Stage 2. This proves the �rst part of the subclaim. Now supposethere is a round t

′ between Stage 2 of t0 + 1 and t − 1 such that sbOUT = 0 at any time inthat round (without loss of generality, let t′ be the �rst such round). Since sbOUT can onlyswitch to zero on (6.33) inside the call to Reset Outgoing Variables, it must be that this lineis reached in t
′, and hence FR is also set to ⊥ on this line. Since FR is only assigned non-⊥values on (6.38), FR can only assume values at least t

′ > t0 after this point. Thus, FRwill not ever be able to return to the value of t0, contradicting the fact that FR = t0 duringround t. By the same reasoning, FR can never change value from t0 between the rounds t0and t.Subclaim 5. OUT attempted to send p in round t0.Proof. By de�nition, t0 denotes the value of FR during round t. Since FR can only be set to
t0 on (6.38) of round t0, this line must have been reached in t0. In particular, line (6.37) was43

satis�ed during the call to Create Flagged Packet of round t0, and hence sb = 0 and H > HINat that time. Therefore, (5.16) will be satis�ed when it is reached in round t0, which impliesSend Packet will be called on the following line. The fact that it was the same packet p thatwas sent in t0 as in t follows from Statement 3 of Lemma 7.7.Subclaim 6. The height of p in OUT when it is transferred in round t is greater than orequal to h.Proof. Subclaim 5 stated that OUT attempted to send p in round t0, and Subclaim 4 statedthat OUT had normal status at the start of t0. Therefore, the packet which was sent in round
t0 (which is p) was initialized inside the call to Create Flagged Packet on line (6.38). Byobserving the code there, we see that p is set to OUT[H], i.e. p has height H in round t0, and
HFP is set to equal H on this same line. By Statement 3 of Claim 7.7, p = p̃ will remain the�agged packet through the start of round t, and OUT[HFP] = p. By Statement 11 of Lemma7.1, HFP will not change during any call to re-shu�e. Indeed, since Subclaim 4 ensures thatline (6.38) is never reached from t0 +1 through the start of t, the only place HFP can changevalue is on (6.33) or (6.35). We know the former cannot happen between t0 +1 and the startof t, since this would imply sbOUT is re-set to zero on (6.33) of that round, contradictingSubclaim 4. Therefore, HFP can only change values between t0 + 1 and the start of t as on(6.35), which can only increase HFP . Hence, from the time HFP is set to equal the height of
OUT in round t0 as on (6.38) (which by de�nition is h), HFP can only increase through thestart of round t.Subclaim 7. h > h′.Proof. This follows immediately from Subclaims 4 and 5 as follows. Because OUT triedto send the packet in round t0 (Subclaim 5) and because OUT had normal status in thisround (Subclaim 4), it must be that the conditional statement on line (5.16) of round t0 wassatis�ed, and in particular that the expression H > HIN was true. Since h is de�ned to be thevalue of H,HFP as of line (6.38) of round t0 (Statement 6 of Lemma 7.1), this subclaim willfollow if h′ equals the value of HIN as of line (6.38) of round t0. But this is true by Statement5 of Lemma 7.1, since the value of HIN on line (5.16) comes from the value received on line(5.06), which in turn corresponds to the value of HIN sent on line (5.09).Subclaim 8. If the conditional statement on line (6.51) is satis�ed in round t, then OUT'sattempt to send p in round t0 failed (i.e. IN did not store p in t0), and furthermore IN didnot store p in any round between t0 and t.Proof. We prove this by contradiction. Suppose there is some round t̃ ∈ [t0..t − 1] in which
IN stored p. This would mean that line (6.51) was satis�ed in round t̃, and in particular RRis set to t̃ ≥ t0 on (6.53). But as already noted in the proof of Subclaim 2, for the remainderof the transmission, FR can never assume the value of a round before t0. Similarly, once RRchanges to t̃ ≥ t0 ≥ FR on (6.53) of round t̃, it can never assume a smaller (non-⊥) valuefor the rest of the transmission (RR can only change to a non-⊥ value on line (6.53)). Butthis contradicts the fact that RR < FR on (6.51) of round t.Subclaim 9. If the conditional statement on line (6.51) is satis�ed in round t, then RR < t044

between the start of t0 through line (6.51) of round t. In particular, lines (6.47) and (6.51)will be satis�ed for any round between t0 and t for which they are reached.Proof. RR is set to −1 at the start of any transmission ((3.31) and (6.64)). Since the onlyother place RR changes value is (6.53), it is always the case that the value of RR is less thanor equal to the index of the current round. Thus, RR can only assume a value greater than(or equal to) t0 in a round after (or during) t0. But this would mean there was some roundbetween t0 and t − 1 (inclusive) such that (6.53) was reached, which contradicts Subclaim8. The fact that (6.51) will be satis�ed whenever it is reached now follows immediately fromStatement 3 of Claim 7.7, since in order to reach (6.51), line (6.48) must have failed, whichmeans the communication on line (6.43) was received. The fact that (6.47) will be satis�edwhenever it is reached follows from the fact that sbOUT will always be set to one on (5.11) ofeach round between t0 and t (the �rst part of this subclaim says RR < t0, and Subclaim 4says that if FR is received on (5.11), then FR = t0).Subclaim 10. If the conditional statement on line (6.51) is satis�ed in round t, then therewas no round between t0 + 1 and t− 1 (inclusive) in which IN received both HOUT and p.Proof. Suppose for the sake of contradiction that there is such a round, t̃. Notice thatline (6.51) of round t̃ will necessarily be reached (since the conditional statement of line(6.44) will fail by assumption, (6.47) will be satis�ed by Subclaim 4, and (6.48) will fail byassumption). However, line (6.53) cannot be reached in round t̃ (Subclaim 8 above), andtherefore the conditional statement on line (6.51) must fail. This contradicts Subclaim 9.Subclaim 11. If the conditional statement on line (6.51) is satis�ed in round t, then IN wasin problem status at the end of round t0, and remained in problem status until line (6.53) ofround t.Proof. We �rst show that sbIN will be set to one on line (6.45) or (6.49) of round t0. Tosee this, we note that if (6.44) fails in round t0, then necessarily (6.47) and (6.48) will bothbe satis�ed. Afterall, (6.47) is satis�ed (Subclaim 7), and if (6.48) failed, then (6.51) wouldbe reached and subsequently satis�ed (Subclaim 9), which would contradict Subclaim 8. Forevery round between t0 + 1 and t, we will show that either the conditional statement on line(6.44) will be satis�ed, or the conditional statements on lines (6.47) and (6.48) will both besatis�ed, and hence sbIN can never be reset to zero since lines (6.53), (6.55), and (6.57) willnever be reached. To see this, let t′ ∈ [t0 + 1..t − 1]. If (6.44) is satis�ed for t′, then we aredone. So assume (6.44) is not satis�ed for t′, and hence IN did not receive the communicationon (6.43) (Subclaim 10). This means (6.48) will be satis�ed. The fact that (6.47) is alsosatis�ed follows from Subclaim 9.Subclaim 12. If the conditional statement on line (6.51) is satis�ed in round t, then betweenthe end of round t0 and the time Receive Packet is called in round t, we have that HGP 6= ⊥and HGP ≤ h′ + 1 ≤ 2n.Proof. As in the proof of Subclaim 11, either line (6.46) or (6.50) will be reached in round
t0 (since either line (6.45) or (6.49) is reached). The value of HIN at the start of round
t0 is h′ by de�nition. Since h′ < h ≤ 2n (the �rst inequality is Subclaim 7, the second isStatements 6 and 9 of Lemma 7.1), and since HIN cannot change value between the start of45

t0 and the time Receive Packet is called, we have that the value of HIN < 2n when either line(6.46) or (6.50) is reached. Therefore, these lines guarantee that ⊥ 6= HGP ≤ h′ + 1 ≤ 2nafter these lines. After this, there are �ve places HGP can change its value: (6.46), (6.50),(6.53), (6.55), and (6.57). As in the proof of Subclaim 11, lines (6.55) and (6.57) will notbe reached at any point between t0 and t, nor will line (6.53) by Subclaim 8. The other twolines that change HGP can only decrease it (but they cannot set HGP to ⊥).Subclaim 13. If the condition statement on line (6.51) of round t is satis�ed, then the valueof HGP when this line is entered, which corresponds to the height in IN that p assumes whenit is inserted, satis�es: HGP 6= ⊥ and HGP ≤ h′ + 1 ≤ 2n.Proof. This follows immediately from Subclaim 12 since p is inserted into IN at height HGP(6.53).Subclaim 14. If the condition statement on line (6.51) of round t is satis�ed, then HIN wasless than 2n at the start of all rounds between t0 and t.Proof. Subclaim 12 implies that h′ < 2n (so HIN had height strictly smaller than 2n at thestart of round t0). Searching through the pseudo-code, we see that HIN is only modi�edon lines (6.53), and during Re-Shu�ing (7.91-92). Between rounds t0 and t, line (6.53) isnever reached (Subclaim 8), and hence all changes to HIN must come from Re-Shu�ing. Butbecause HIN was less than 2n when it entered the Re-Shu�e phase in round t0, Statement13 of Lemma 7.1 guarantees that HIN will still be less than 2n at the start of round t.All Statements of the Lemma have now been proven. �Claim 7.11. Every packet is inserted into one of the sender's outgoing bu�ers at some initial height.When (a copy of) the packet goes between any two bu�ers B1 6= B2 (either across an edge or locallyduring re-shu�ing), its height in B2 is less than or equal to the height it had in B1. If B1 = B2,the statement remains true EXCEPT for on line (6.35).Proof. We separate the proof into cases, based on the nature of the packet movement. The onlytimes packets are accepted by a new bu�er or re-shu�ed within the same bu�er occurs on lines(6.32), (6.35), (6.53), (6.55), (6.57), (6.61), (6.64), (7.89-90), and (7.101-102). Of these,(6.35) is excluded from the claim, and the packet movement on lines (6.32), (6.55), (6.57), (6.61),(6.64), and (7.101-102) are all clearly strictly downwards. It remains to consider lines (6.53) and(7.89-90).Case 1: The packet moved during Re-Shuffling as on (7.89-90). By investigatingthe code on these lines, we must show that m+1 ≤M . This was certainly true as of line (7.74),but we need to make sure this didn't change when Adjust Heights was called. The changesmade to M and m on (7.83) and (7.85) will only serve to help the inequality m + 1 ≤M , sowe need only argue the cases for when (7.81) and/or (7.87) is reached. Notice that if eitherline is reached, by (7.74) we must have (before adjusting M and m) that M −m ≥ 2, andtherefore modifying only M = M −1 or m = m+1 won't threaten the inequality m+1 ≤M .It remains to argue that both (7.81) and (7.87) cannot happen simultaneously (i.e. cannotboth happen within the same call to Re-Shu�e). If both of these were to happen, then it46

must be that during this call to Re-Shu�e, there was an outgoing bu�er B1 that had height2 or more higher than an incoming bu�er B2 (see lines (7.72-74) and (7.80) and (7.86)).We argue that this cannot ever happen. By Claim 6.3, at the end of the previous round, wehad that the height of B1 was at most one bigger than the height of B2. During routing, B2can only get bigger and B1 can only get smaller ((6.53) and (6.33) are the only places theseheights change). Therefore, after Routing but before any Re-Shu�ing, we have again thatthe height of B1 was at most one bigger than the height of B2. Therefore, in order for B1to get at least 2 bigger than B2, either a packet must be shu�ed into B1, or a packet mustbe shu�ed out of B2, and this must happen when B1 is already one bigger than B2. Butanalyzing (7.72) and (7.73) shows that this can never happen.Case 2: The packet moved during Routing as on (6.53). In order to reach (6.53),the conditional statements on lines (6.47), (6.48), and (6.51) all must be satis�ed, so p 6= ⊥,
RR < FR, and either sbOUT = 1 or HOUT > H (or both). We investigate each case separately:Case A: sbOUT = 1 on line (6.47). Then Statements 2-4 of Lemma 7.10 imply thatthe height of the packet in B1 is greater than or equal to the height it will be stored intoin B2, as desired.Case B: sbOUT = 0 and HOUT > HIN on line (6.47). For notational convenience,denote the current round (when the hypotheses of Case B hold) by t. First note thatStatements 1 and 2 of Lemma 7.1 imply that the height the packet assumes in B2 (HGP)is less than or equal to HIN +1. Meanwhile, since sbOUT = 0 (it is set on (5.11) of round

t), the value received for HOUT on (5.11) is not ⊥, and the value for FR received on(5.11) is either ⊥ or satis�es FR ≤ RR. Notice that the case FR ≤ RR is not possible,since then (6.53) would not be reached ((6.51) would fail). Therefore, FR = ⊥ but
HOUT 6= ⊥, and so B2 received the communication sent by B1 on (5.05) of round t,which had the �rst of the two possible forms. In particular, HFP = ⊥ at the outset of t,and since HFP cannot change between the start of a round a line (6.38) of the previousround, we must have that (6.37) failed in round t − 1. By this fact and Claim 7.4, B1had normal status when (5.16) was reached in round t− 1, and this will not be able tochange in the call to Reset Outgoing Variables of round t because d = 0 (6.25) (since
d is reset to zero every round on (6.26), it can only have non-zero values between line(6.40) of one round and line (6.26) of the following round IF a packet was sent the earlierround. However, as already noted this did not happen, as the fact that OUT had normalstatus and yet (6.37) failed in round t − 1 implies that (5.16) will also fail in round
t−1). Therefore, B1 has normal status when Create Flagged Packet is called in round t,and in particular, HFP is set to HOUT on (6.38), i.e. the �agged packet to be transferredduring t has height HOUT in B1. Putting this all together, the packet has height HOUTin B1 and assumes height HGP in B2. But as argued above, HOUT ≥ HIN + 1 ≥ HGP ,as desired. �Claim 7.12. Before End of Transmission Adjustments is called in any transmission T (6.61),any packet that was inserted into the network during transmission T is either in some bu�er (perhapsas a �agged packet) or has been received by R.Proof. As packets travel between nodes, the sending node maintains a copy of the packet until ithas obtained veri�cation from the receiving node that the packet was accepted. This way, packets47

that are lost due to edge failure are backed-up. This is the high-level idea of why the claim is true,we now go through rigorous detail.First notice that the statement only concerns packets corresponding to the current codewordtransmission, and packets deleted as on (6.61) do not threaten the validity of the Claim. We considera speci�c packet p that has been inserted into the network and show that p is never removed froma bu�er B until another bu�er B′ has taken p from B. We do this by considering every line of codethat a bu�er could possible remove p, and argue that whenever this happens, p has necessarily beenaccepted from B by some other bu�er B′. Notice that the only lines that a bu�er could possiblyremove p (before line (6.61) of T is reached) are: (6.32), (6.53), and (6.89-90).Line (6.53). This line is handled by Lemma 7.1, Statements 1 and 2, which say that whenevera slot of an incoming bu�er is �lled as on line (6.53), it �lls an empty slot, and therefore cannotcorrespond to removing (over-writing) p.Lines (7.89-90). These lines are handled by Lemma 7.1, Statement 10.Line (6.32). This is the interesting case, where p is removed from an outgoing bu�er aftera packet transfer. We must show that any time p is removed here, it has been accepted bysome incoming bu�er B′. For notation, we will let t denote the round that p is deleted from
B (i.e. when line (6.32) is reached), and t0 denote the round that B �rst tried to send thepacket to B′ as on (6.41). By Statement 3 of Claim 7.7, t0 is the round that p̃ was mostrecently set to p as on line (6.38) (note that t0 ≤ t). Since line (6.32) was reached in round
t, the conditional statements on lines (6.29) and (6.30) were satis�ed, and so ⊥ 6= RR ≥ FRwhen those lines were reached. By Statement 3 of Claim 7.7, FR will equal t0 when (6.30)is satis�ed. Since in any round t

′, the only non-⊥ value that RR can ever be set to is t
′(6.53), and since RR ≥ t0 = FR (6.30), it must be that (6.53) was reached in some round

t
′ ∈ [t0, t]. In particular, B′ stored a packet as on (6.53) of round t

′, which by Statement 3of Claim 7.7 was necessarily p. �Claim 7.13. Not counting �agged packets, there is at most one copy of any packet in the networkat any time (not including packets in the sender or receiver's bu�ers). Looking at all copies (�aggedand un-�agged) of any given packet present in the network at any time, at most one copy of thatpacket will ever be accepted (as in De�nition 6.5) by another node.Proof. For any packet p, let Np denote the copies of p (both �agged and not) present in the network(in an internal node's bu�er) at a given time. We begin the proof via a sequence of observations:Observation 1. The only time Np can ever increase is on line (6.53).Proof. The only way for Np to increase is if (a copy of) p is stored by a new bu�er. Lookingat the pseudo-code, the only place a bu�er slot can be assigned a new copy of p is on lines(6.32), (6.35), (6.53), (6.55), (6.57), (6.61), (6.64), and (7.89). Of these, only (6.53) and(7.89) could possibly increase Np, as the others simply shift packets within a bu�er and/ordelete packets. In the latter case, Np does not change by Statement 10 of Lemma 7.1.Observation 2. Suppose A (including A = S) �rst sends a (copy of a) packet p to B as on(6.41) of round t0. Then:(a) The copy of p in A's outgoing bu�er along E(A,B) (for which there was a copy madeand sent on (6.41) of round t0) will never be transferred to any of A's other bu�ers.48

(b) The copy of p will remain in A's outgoing bu�er along E(A,B) as a �agged packet until itis deleted either when A gets con�rmation of receipt (see De�nition 7.6) in some round t(6.32), or by the end of the transmission as on (6.61). In the latter case, de�ne t := 3D(the last round of the transmission) for Statement (c) below.(c) Between t0 and line (5.07) of round t, B will accept (a copy of) p from A as on (6.53)at most once. Furthermore, the copy of p in A's bu�er cannot move to any other bu�eror generate any other copies other than the one (possibly) received by B as on (6.53).Proof. Statement (a) follows from Statement 3 of Claim 7.7 and Statement 11 of Lemma 7.1,together with the fact that lines (6.32) and (6.61, 6.69) imply that the relevant copy of Awill be deleted when it does get con�rmation of receipt as in De�nition 7.6 (or the end of thetransmission). By Statement 3 of Claim 7.7, this copy of p will be (the unique) �agged packetin A's outgoing bu�er to B until con�rmation of receipt (or the end of the transmission),which proves Statement (b). For Statement (c), suppose that B accepts a copy of p as on(6.53) during some round t
′ ∈ [t0, t]. Then RR will be set to t

′ on (6.53) of round t
′, and

RR cannot obtain a smaller index until the next transmission (6.53). By Statement 3 ofClaim 7.7, FR will remain equal to t0 from line (6.38) of round t0 through the time (6.33)of round t is reached. Therefore, between t
′ ≥ t0 and line (6.33) of round t, we have that

FR = t0 ≤ t
′ ≤ RR, and hence line (6.51) can never be satis�ed during these times, whichimplies (6.53) can never be reached again after t′. This proves the �rst part of Statement (c).The second part follows by looking at all possible places (copies of) packets can move or becreated: (6.32), (6.35), (6.53), (6.55), (6.57), (6.61), (6.64), and (7.89-90). Of these, only(6.53) and (7.89-90) threaten to move p or create a new copy of p. However, the �rst partof Observation 2(c) says that (6.53) can happen at most once (and is accounted for), whileStatement 11 of Lemma 7.1 rules out the case that the packet is re-shu�ed as on (7.89-90).Observation 3. No packet will ever be inserted (see De�nition 6.6) into the network morethan once. In particular, for any packet p, Np = 0 until the sender inserts it (i.e. some nodeaccepts the packet from the sender as on (6.53)), at which point Np = 1. After this point,the only way Np can become larger than one is if (6.53) is reached, where neither the sendingnode nor the receiving node is S or R.Proof. Since the packets of S are distributed to his outgoing bu�ers before being inserted intothe network (4.38), (6.65), and (6.67-70), and since S never receives a packet he has alreadyinserted (S has no incoming bu�ers (3.17)) nor shu�es packets between bu�ers ((5.22) and(7.95-96)), a given packet p can only be insereted along one edge adjacent to the sender. Thefact the sender can insert at most one (copy of a) packet p along an adjacent edge now followsfrom Observation 2 above for A = S. This proves the �rst part of Observation 3.By Observation 1, the only place Np can increase is on (6.53). Whenever this line is reached,the copy stored comes from the one received on (6.43), which in turn was sent by anothernode on (6.41). The copy sent on (6.41) in turn can only be set on (6.38) (perhaps in anearlier round), so in particular a copy of the packet must have already existed in an outgoingbu�er of the sending node. This proves that when Np goes from zero to one, it can onlyhappen when a packet is inserted for the �rst time by the sender. The rest of Observation 3now follows from Observation 1, the �rst part of Observation 3, the fact that copies reaching49

R do not increase Np (by de�nition of Np), and the fact R never sends a copy of a packet(3.07) and S never accepts packets (3.17).De�ne a copy of a packet p in the network to be dead if that copy will never leave the bu�er it iscurrently in, nor will it ever generate any new copies. A copy of a packet that is not dead will bealive.Observation 4. If a (copy of a) packet is ever �agged and dead, it will forever remain both�agged and dead, until it is deleted.Proof. By de�nition of being �dead,� once a (copy of a) packet becomes dead it can neverbecome alive again. Also, copies of a packet that are �agged remain �agged until they aredeleted by Observation 2(b).The Claim now follows immediately from the following subclaim:Subclaim. Fix any packet p that is ever inserted into the network. Then at any time, thereis at most one alive copy of p in the network at any time. Also at any time, if there is onealive copy of p, then all dead copies of p are �agged packets. If there are no alive copies, thenthere is at most one dead copy of p that is not a �agged packet.Proof. Before p is inserted into the network, Np = 0, and there is nothing to show. Suppose pis inserted into the network in round t0, so that Np = 1 by the end of the round (Observation3). Since Np = 1, the validity of the subclaim is not threatened. Also, if this packet isdead, then the proof is complete, as by Observation 3 and the de�nition of deadness, no other(copies) of p will ever be created, and hence the subclaim will forever be true for p. So suppose
p is alive when it is inserted. We will show that a (copy of an) alive packet can create at mostone new (copy of a) packet, and the instant it does so, the original copy is necessarily both�agged and dead (the new copy may be either alive or dead), from which the subclaim followsfrom Observation 4. So suppose an alive copy of p creates a new copy (increasing Np) of itselfin round t. Notice that the only time new copies of any packet can be created is on (6.53)(see e.g. proof of Observation 2). Fix notation, so that the alive copy of p was in node A'soutgoing bu�er to node B, and hence it was B's corresponding bu�er that entered (6.53)in round t. The fact that the alive copy of p in A's outgoing bu�er is �agged and dead theinstant B accepts it on (6.53) of round t follows immediately from Observation 2. �Lemma 7.14. Suppose that in round t, B accepts (as in De�nition 6.5) a packet from A. Let

OA,B denote A's outgoing bu�er along E(A,B), and let O denote the height the packet had in OA,Bwhen Send Packet was called in round t (5.17). Also let IB,A denote B's incoming bu�er along
E(A,B), and let I denote the height of IB,A at the start of t. Then the change in non-duplicatedpotential caused by this packet transfer is less than or equal to:

−O + I + 1 OR −O (if B = R) (5)Furthermore, after the packet transfer but before re-shu�ing, IB,A will have height I + 1.Proof. By de�nition, B accepts the packet in round t means that (6.53) was reached by B'sincoming bu�er along E(A,B) in round t. Since the packet is stored at height HGP (6.53), B'snon-duplicated potential will increase by HGP due to this packet transfer (if B = R, then by50

de�nition of non-duplicated potential, packets in R do not contribute anything, so there will beno change). By Statements 1 and 2 of Lemma 7.1, HGP ≤ I + 1, and hence B's increase in non-duplicated potential caused by the packet transfer is at most I + 1 (or zero in the case B = R).Also, since B had height I at the start of the round, and B accepts a packet on (6.53) of round t,
B will have I + 1 packets in I when the re-shu�ing phase of round t begins, which is the secondstatement of the lemma.Meanwhile, the packet transferred along E(A,B) in round t still has a copy in OA,B (until
A receives con�rmation of receipt from B, see De�nition 7.6), but by de�nition of non-duplicatedpotential (see the paragraph between Claim 6.9 and Lemma 6.11), this (�agged) packet will nolonger count towards non-duplicated potential the instant B accepts it as on (6.53) of round t.Therefore, A's non-duplicated potential will drop by the value HFP has when B accepts the packeton (6.53) (Statement 3 of Claim 7.7), which equals O since HFP cannot change between the timeSend Packet is called on (5.17) and the time the packet is accepted on (6.53). Therefore, countingonly changes in non-duplicated potential due to the packet transfer, the change in potential is:
−O + HGP ≤ −O + I + 1 (or −O in the case B = R), as desired. �We now re-state and prove Lemma 6.14.Lemma 7.15. Let C = N1N2 . . . Nl be a path consisting of l nodes, such that R = Nl and S /∈ C.Suppose that in round t, all edges E(Ni, Ni+1), 1 ≤ i < l are active for the entire round. Let φdenote the change in the network's non-duplicated potential caused by:1. (For 1 ≤ i < l) Packet transfers across E(Ni, Ni+1) in round t,2. (For 1 < i < l) Re-shu�ing packets into Ni's outgoing bu�ers during t,Then if ON1,N2 denotes N1's outgoing bu�er along E(N1, N2) and O denotes its height at the startof t, we have:- If ON1,N2 has a �agged packet that has already been accepted by N2 before round t, then:

φ ≤ −O + l − 1 (6)- Otherwise,
φ ≤ −O + l − 2 (7)Proof. (Induction on l).Base Case: l = 2. So C = N1R.Case 1: ON1,R had a �agged packet at the start of t that was already accepted by N2. Our aimfor this case is to prove (6) for l = 2. If O < 2, then −O+ l−1 ≥ −1+2−1 = 0, and then (6)will be true by Statement 3 of Lemma 6.11. So assume O ≥ 2. Since E(N1, R) is active during

t and R had already accepted the packet in some previous round t̃ < t, we have that RR ≥ t̃(6.53), and N1 will receive this value for RR in R's stage one communication (5.06), (5.09).By Statment 3 of Claim 7.7, FR ≤ t̃ ≤ RR, and thus lines (6.29-30) will be satis�ed in round
t, deleting the �agged packet on (6.32) and setting sb = 0. When Create Flagged Packet iscalled on (5.15), a new packet will be �agged, with HFP = HOUT = O − 1 and FR = t(since O ≥ 2, there will be at least one packet left in ON1,R of height O − 1 > 0 by Lemma7.1). Letting I denote the height of the receiver's incoming bu�er along E(N1, R), we have51

that I = 0 (Claim 7.3). Therefore, HOUT > HIN , and so the �agged packet will be sent as on(5.17). Since R will receive and store this packet (since the edge is active and RR < t = FR,lines (6.44) and (6.48) will fail, while lines (6.47) and (6.51) will be satis�ed), we applyLemma 7.14 to argue there will be a change in non-duplication potential that is less than orequal to −(O − 1), which is (6) (for l = 2).Case 2: Either ON1,R has no �agged packet at the start of t, or if so, it has not yet been acceptedby R. Our aim for this case is to prove (6) for l = 2. If O = 0, then −O + l− 2 = 0, and (7) istrue by Statement 3 of Lemma 6.11. So assume O ≥ 1. Then necessarily a packet will be sentduring round t ((5.16) is necessarily satis�ed since by assumption E(N1, R) is active during
t, HOUT ≥ 1 by Lemma 7.1 and HIN = 0 by Claim 7.3). We �rst show that the height ofthe packet in ON1,R that will be transferred in round t (which will be the value held by HFPwhen Send Packet is called in round t) is greater than or equal to O (whether or not it was�agged before round t):
• If ON1,R did not have any �agged packets at the outset of t, then HFP = ⊥ at the startof t, and so sb = 0 and FR = ⊥ at the start of t by Claim 7.4. Since HFP cannotchange between the call to Send Packet in the previous round and the call to ResetOutgoing Variables in the current round, Statement 2 of Claim 7.5 implies no packet wassent the previous round, and hence d = 0 at the start of t (d was necessarily zero as of(6.26) of round t − 1, and as argued did not change to `1' on (6.40) later that round).Consequently, sb will remain zero from the start of t through the time Create FlaggedPacket is called in round t, and because HOUT = O > 0 = I = HIN , (6.38) will bereached in round t, setting HFP to O.
• Alternatively, if ON1,R does have a �agged packet at the outset of t, we argue that it willhave height at least O when Send Packet is called in round t as follows. Let t0 < tdenote the round ON1,R �rst sent (a copy of) the packet to R. We �rst show that N1will not get con�rmation of receipt from R (as in De�nition 7.6) for the packet at anypoint between rounds t0 and t − 1 (inclusive). To see this, note that since we are Case2, R has not accepted the �agged packet by the start of t. This means that at all timesbetween t0 and the start of t, RR < t0

20. Meanwhile, by Statement 3 of Lemma 7.7,
FR = t0 and HFP 6= ⊥ at the start of t. Since these do not change values before ResetOutgoing Variables is called in round t, line (6.34) guarantees that if HFP < O, thenline (6.35) will be reached, and thus in either case HFP ≥ O after the call to ResetOutgoing Variables.Therefore, since R will necessarily receive and accept the �agged packet sent (by the sameargument used in Case 1), we may apply Lemma 7.14 to argue that φ ≤ −O, which is (7) (for

l = 2).Induction Step. Assume the lemma is true for any chain of length less that or equal to l− 1, andlet C be a chain of length l (l > 2). Since we will be applying the induction hypothesis, we extend and20By Statement 3 of Claim 7.7, the packet �agged in t0 is the only packet ON1,R can send to R between t0 +1 andthe time R receives this �agged packet. Since we know R has still not accepted this �agged packet by the outset of t,this means that between t0 and t− 1, RR cannot be changed as on (6.53). Since RR begins each transmission equalto −1 ((3.31) and (6.64)) and can only be changed after this on (6.53), necessarily RR < t0 through the start of t.52

change our notation as follows: Let ONi,Nj
(respectively INi,Nj

) denote the height of Ni's outgoing(respectively incoming) bu�er along edge E(Ni, Nj) at the start of round t (before, the notationreferred to the bu�er, now it will refer to the bu�er's height). Notice that if ON1,N2 ≤ IN2,N1 , then:
φ ≤ −ON2,N3 + (l − 1)− 1 ≤ −IN2,N1 + l − 2 ≤ −ON1,N2 + l − 2 (8)where the �rst inequality is from the induction hypothesis applied to the chain N2 . . . R, the secondfollows from Lemma 6.3, and the third follows from the fact we are assuming ON1,N2 ≤ IN2,N1 .Therefore, both (6) and (7) are satis�ed. We may therefore assume in both cases below:

ON1,N2 > IN2,N1 (9)Case 1: ON1,N2 had a �agged packet at the start of t that was already accepted by N2. If
ON1,N2 = IN2,N1 + 1, then by the same string of inequalities as in (8), we would have φ ≤

−ON1,N2 + l − 1, which is (6). Therefore, it remains to consider the case:
ON1,N2 ≥ IN2,N1 + 2 (10)By an analogous argument to the one made in the Base Case, a packet will be transfered andaccepted across E(N1, N2) in round t that will cause the non-duplicated potential to changeby an amount less than or equal to:

(−ON1,N2 + 1) + IN2,N1 + 1 (11)Also, when the receiving node N2 accepts this packet as on (6.53), the height of the corre-sponding bu�er increases by one on this line. We emphasize this fact for use below:Fact: After the Routing Phase but before the call to Re-Shu�e in round t, N2's incomingbu�er along E(N1, N2) has height IN2,N1 + 1.Meanwhile, we may apply the induction hypothesis to the chain C′ := N2 . . . R, so that thechange in non-duplicated potential due to contributions 1 and 2 (in the hypothesis of theLemma) on C′ is less than or equal to:(a) −ON2,N3 + (l − 1)− 1, if ON2,N3 had a �agged packet at the start of t that was alreadyaccepted by N3.(b) −ON2,N3 + (l − 1)− 2, otherwise.Adding these contributions to (11), we have that:
φ ≤ ((−ON1,N2 + 1) + IN2,N1 + 1) + (−ON2,N3 + (l − 1)− x)

= (−ON1,N2 + l − 1) + (−ON2,N3 + IN2,N1) + (2− x), (12)where x = 1 or 2, depending on whether we are in case (a) or (b) above. By Lemma 6.3,
−ON2,N3 + IN2,N1 is either 0 or -1. If −ON2,N3 + IN2,N1 = −1, then (−ON2,N3 + IN2,N1) +

(2 − x) ≤ 0, regardless whether x = 1 or 2, and hence (12) implies (6). Also, if x = 2, then
(−ON2,N3 +IN2,N1)+(2−x) ≤ 0 (by Lemma 6.3), and hence hence (12) implies (6). It remainsto consider the case x = 1 and −ON2,N3 + IN2,N1 = 0, in which case (12) becomes:

φ ≤ (−ON1,N2 + l − 1) + 1 (13)In order to obtain (6) from (13), we therefore need to account for a drop of at least one more to
φ. We will obtain this by the second contribution to φ (see statement of Lemma) by arguing:53

(a) After the Routing Phase of round t but before the call to Re-Shu�ing, the fullest bu�erof N2 has height ON2,N3 +1, and there is at least one incoming bu�er of N2 that has thisheight. In particular, during the call to Re-Shu�e in round t, the �rst bu�er chosen totransfer a packet from will be an incoming bu�er of height ON2,N3 + 1.(b) After the Routing Phase of round t but before the call to Re-Shu�ing, the emptiestbu�er of N2 has height ON2,N3 − 1, and there is at least one outgoing bu�er of N2 thathas this height. In particular, during the call to Re-Shu�e in round t, the �rst bu�erchosen to transfer a packet to will be an outgoing bu�er of height ON2,N3 − 1.Notice that if I can show these two things, this case will be done, as during the �rst call toRe-Shu�e in round t, we will have M −m ≥ (ON2,N3 + 1) − (ON2,N3 − 1) ≥ 2 (the call toAdjust Heights can only help this inequality since the selection process on (7.72-73) and thetwo items above guarantee (7.80) and (7.86) will both fail if reached), and consequently there-shu�e on (7.89-90) will cause a drop of at least one to φ.We �rst argue (a). As noted at the beginning of Case 1 of the Induction Step, Fact 1implies that there will exist an incoming bu�er of the required height (since we are assuming
ON2,N3 = IN2,N1). Also, at the start of t, since N2 has an outgoing bu�er of height ON2,N3(namely, the outgoing bu�er along E(N2, N3)), Lemma 6.3 guarantees that all of N2's incomingbu�ers have hieght at most ON2,N3 at the start of t; and also that all of N2's outgoing bu�ershave height at most ON2,N3 + 1 at the start of t. During the Routing Phase but before theRe-Shu�e Phase of t, outgoing bu�ers cannot increase in height (6.33) and incoming bu�erscannot increase in height by more than one (6.53). Therefore, after transferring packets butbefore Re-Shu�ing in round t, the fullest bu�er in N2 has height at most ON2,N3 + 1, and asalready argued, at least one incoming bu�er has this height. The last part of (a) is immediatefrom the selection rules in (7.72).We now argue (b). Since x = 1, we are in the case the outgoing bu�er along E(N2, N3) had a�agged packet at the start of t that had already been accepted by N3 in some round t0 < t.By a similar argument that was used in Case 1 of the Base Case, the outgoing bu�er along
E(N2, N3) will reach lines (6.32-33) in round t. In particular, the height of the outgoingbu�er along E(N2, N3) will drop by one on (6.33), and thus this bu�er has height ON2,N3 − 1after the call to Reset Outgoing Variables. Since this height cannot change before the call toRe-Shu�e, this outgoing bu�er has height ON2,N3−1 after the Routing Phase (but before thecall to Re-Shu�e) in round t. Also, ON2,N3 − 1 is a lower bound for the emptiest bu�er in N2just before the call to Re-Shu�e in round t, argued as follows. At the start of t, since N2 hasan incoming bu�er of height IN2,N1 = ON2,N3 (namely, the incoming bu�er along E(N1, N2)),Lemma 6.3 guarantees that all of N2's incoming bu�ers have hieght at least ON2,N3 − 1 at thestart of t; and also that all of N2's outgoing bu�ers have hieght at least ON2,N3 at the start of
t. During the Routing Phase but before the Re-Shu�e Phase of t, incoming bu�ers cannotdecrease in height (6.53) and outgoing bu�ers can decrease in height by at most one (6.33).Therefore, after transferring packets but before Re-Shu�ing in round t, the emptiest bu�erin N2 has height at least ON2,N3 − 1, and as already argued, at least one outgoing bu�er hasthis height. The last part of (b) is immediate from the selection rules in (7.73).Case 2: Either ON1,N2 has no �agged packet at the start of t, or if so, it has not yet been54

accepted by N2. By the same argument21 used in Case 2 of the Base Case, there will bea packet transferred across E(N1, N2) and accepted by N2 in round t, and this packet willhave height at least ON1,N2 in N1's outgoing bu�er. Therefore, by Lemma 7.14, the change innon-duplicated potential due to this packet transfer is less than or equal to:
−ON1,N2 + IN2,N1 + 1 (14)Meanwhile, we may apply the induction hypothesis to the chain C′ := N2 . . . R, so that thechange in non-duplicated potential due to contributions 1 and 2 (in the hypothesis of theLemma) on C′ is less than or equal to:(a) −ON2,N3 + (l − 1)− 1, if ON2,N3 had a �agged packet at the start of t that was alreadyaccepted by N3.(b) −ON2,N3 + (l − 1)− 2, otherwise.Adding these contributions to (14), we have that:

φ ≤ (−ON1,N2 + IN2,N1 + 1) + (−ON2,N3 + (l − 1)− x)

= (−ON1,N2 + l − 2) + (−ON2,N3 + IN2,N1) + (2− x), (15)where x = 1 or 2, depending on whether we are in case (a) or (b) above. Since the �rst termof (15) matches (7) and the latter two terms match the latter two terms of (12), we followthe argument of Case 1 above to conclude the proof. �8 Routing Against a (Node-Controlling+Edge-Scheduling) Adversary8.1 De�nitions and High-Level Description of the ProtocolIn this section, we de�ne the variables that appear in the next section and describe how theywill be used.As in the protocol for the edge-scheduling adversary model, the sender �rst converts the inputstream of messages into codewords, and then transmits a single codeword at a time. The sender willallow (at most) 4D rounds for this codeword to reach the receiver (for the edge-scheduling protocol,we only allowed 3D rounds; the extra D rounds will be motivated below). We will call each attemptto transfer a codeword a transmission, usually denoted by T. At the end of each transmission,the receiver will broadcast an end of transmission message, indicating whether it could successfullydecode the codeword. In the case that the receiver cannot decode, we will say that the transmissionfailed, and otherwise the transmission was successful.As mentioned in Section 2.2, in the absence of a node-controlling adversary, the only di�erencebetween the present protocol and the one presented in Section 4 is that digital signatures are usedto authenticate the sender's packets and also accompany packet transfers for later use to identifycorrupt nodes. In the case a transmission fails, the sender will determine the reason for failure(cases 2-4 from Section 2.2, and also F2-F4 below), and request nodes to return status reports that21For the argument in the Base Case, we used the fact that the receiver's incoming bu�er had height zero inorder to conclude HOUT > HIN (and thus a packet would be sent). Here, we use instead (9) to come to the sameconclusion. 55

correspond to a particular piece of signed communication between each node and its neighbors. Wewill refer to status report packets as parcels to clarify discussion in distinguishing them from thecodeword packets.We give now a brief description of how we handle transmission failures in each of the three cases:F2. The receiver could not decode, and the sender has inserted less than D packetsF3. The receiver could not decode, the sender has inserted D packets, and the receiver has notreceived any duplicated packets corresponding to the current codewordF4. The receiver could not decode and cases F2 and F3 do not happenBelow is a short description of the speci�c kind of information nodes will be required to sign andstore when communicating with their neighbors, and how this information will be used to identifycorrupt nodes in each case F2-F4.Case F2. Anytime a packet at height h in an outgoing bu�er of A is transferred to an incomingbu�er of B at height h′, A's potential will drop by h and B's potential will increase by h′.So for directed edge E(A,B), A and B will each need to keep two values, the cumulativedecrease in A's potential from packets leaving A, and the cumulative increase in B's potentialfrom those packets entering B. These quantities are updated every time a packet is transferredacross the edge, along with a tag indicating the round index and a signature from the neighborvalidating the quantities and round index. Loosely speaking, case F2 corresponds to packetduplication. If a corrupt node attempts to slow transmission by duplicating packets, thatnode will have introduced extra potential in the network that cannot be accounted for, andthe signing of potential changes will allow us to identify such a node.Case F3. A and B will keep track of the net number of packets that have travelled across edge
E(A,B). This number is updated anytime a packet is passed across the edge, and the updatedquantity, tagged with the round index, is signed by both nodes, who need only store the mostrecent quantity. Loosely speaking, case F3 corresponds to packet deletion. In particular, theinformation signed here will be used to �nd a node who input more packets than it output, andsuch that the node's capacity to store packets in its bu�ers cannot account for the di�erence.Case F4. For each packet p corresponding to the current codeword, A and B will keep trackof the net number of times the packet p has travelled across edge E(A,B). This quantityis updated every time p �ows across the edge, and the updated quantity, tagged with theround index, is signed by both nodes, who for each packet p need only store the most recentquantity. We will show in Section 10 that whenever case F4 occurs, the receiver will havenecessarily received a duplicated packet (corresponding to the current codeword). Therefore,the information signed here will allow the sender to track this duplicated packet, looking fora node that outputted the packet more times than it inputted the packet.We will prove that whenever cases F2-F4 occur, if the sender has all of the relevant quantitiesspeci�ed above, then he will necessarily be able to identify a corrupt node. Notice that each caseof failure requires each node to transfer back only one signed quantity for each of its edges, and sothe sender only needs n status report packets from each node.We will show that the maximum number of failed transmissions that can occur before a corrupt56

node is necessarily identi�ed and eliminated is n.22 Because there are fewer than n nodes that canbe corrupted by the adversary, the cumulative number of failed transmissions is bounded by n2.This provides us with our main theorem regarding e�ciency, stated precisely in Theorem 8.1 inSection 8.3 (note that the additive term that appears there comes from the n2 failed transmissions).8.2 Detailed Description of the Node-Controlling + Edge-Scheduling ProtocolIn this section we give a more thorough description of our routing protocol for the node-controlling adversary model. Formal pseudo-code can be found in Section 9.Setup. As in the edge-scheduling protocol, the sender has a sequence of messages {m1,m2, . . . }that he will divide into codewords {b1, b2, . . . }. However, we demand each message has size M ′ =
6σ(P−2k)n3

λ
, so that codewords have size C ′ = M ′

σ
, and these are then divided into packets of size

P ′ = P − 2k, which will allow packets to have enough room23 to hold two signatures of size k.Notice that the number of packets per codeword is D = C′

P ′ = 6(P−2k)n3

(P−2k)λ = 6n3

λ
, which matches thevalue of D for the edge-scheduling protocol. One of the signatures that packets will carry with themcomes from the sender, who will authenticate every packet by signing it, and the packets will carrythis signature until they are removed from the network by the receiver. We re-emphasize Fact 1from the edge-scheduling protocol, which remains true with these new values:Fact 1′. If the receiver has obtained D− 6n3 = (1−λ)

(
6n3

λ

) distinct and un-altered packetsfrom any codeword, he will be able to decode the codeword to obtain the correspondingmessage.The primary di�erence between the protocol we present here and that presented in Section 4 is theneed to maintain and transmit information that will allow the sender to identify corrupt nodes. Tothis end, as part of the Setup, each node will have additional bu�ers:3. Signature Bu�ers. Each node has a signature bu�er along each edge to keep track of (outgo-ing/incoming) information exchanged with its neighbor along that edge. The signature bu�erswill hold information corresponding to changes in the following values for a single transmis-sion. The following considers A's signature bu�er along directed edge E(A,B): 1) The netnumber of packets passed across E(A,B); 2) B's cumulative change in potential due to packettransfers across E(A,B). Additionally, for codeword packets corresponding to the currenttransmission only, the signature bu�ers will hold: 3) For each packet p that A has seen, thenet number of times p has passed across E(A,B) during the current transmission.Each of the three items above, together with the current round index and transmissionindex, ahve been signed by B. Since only a single (value, signature) pair is required for items1)-2), while item 3) requires a (value, signature) pair for each packet, each signature bu�erwill need to hold at most 2 + D (value, signature) pairs.22As mentioned in Section 2.2, the sender can eliminate a corrupt node as soon as he has received the status reportsfrom every non-blacklisted node. The reason we require up to n transmissions to guarantee the identi�cation of acorrupt node is that it may take this long for the sender to have the complete information he needs.23The network is equipped with some minimal bandwidth, by which we mean the the number of bits that canbe transferred by an edge in a single round. We will divide codewords into blocks of this size and denote the sizeby P , which therefore simultaneously denotes the size of any packet and also the network bandwidth. As in theedge-scheduling protocol, we assume P > O(k + log n), so that P ′ is well-de�ned.57

4. Broadcast Bu�er. This is where nodes will temporarily store their neighbor's (and their own)state information that the sender will need to identify malicious activity. A node A's broadcastbu�er will be able to hold the following (signed) information: 1) One end of transmissionparcel (described below); 2) Up to n di�erent start of transmission parcels (described below);3) A list of blacklisted nodes and the transmission they were blacklisted or removed from theblacklist; 4) For each B ∈ G, a list of nodes for which B has claimed knowledge of their statusreport; and 5) For each B ∈ G (including B = A), A's broadcast bu�er can hold the contentof up to n slots of B's signature bu�er. Additionally, the broadcast bu�er will also keep trackof the edges across which it has already passed broadcasted information.5. Data Bu�er. This keeps a list of 1) All nodes that have been identi�ed as corrupt andeliminated from the network by the sender; 2) Currently blacklisted nodes; and 3) Each node
A ∈ G will keep track of all pairs (N1, N2) such that N2 is on the blacklist, and N1 claims toknow N2's complete status report.The sender's bu�ers are the same as in the edge-scheduling protocol's Setup, with the addition offour more bu�ers:- Data Bu�er. Stores all necessary information from the status reports, as well as additionalinformation it will need to identify corrupt nodes. Speci�cally, the bu�er is able to hold: 1) Upto n status report parcels from each node; 2) For up to n transmissions, the reason for failure,including the label of a duplicated packet (if relevant); 3) For up to n failed transmissions, aparticipating list of up to n nodes that were not on the blacklist for at least one round of thefailed transmission; 4) A list of eliminated nodes and of blacklisted nodes and the transmissionthey were blacklisted; 5) The same as items 1)-3) of an internal node's Signature Bu�er; and6) The same as item 3) of an internal node's data bu�er.- Broadcast Bu�er. Holds up to 2n start of transmission parcels and the labels of up to n − 1nodes that should be removed from the blacklist.- Copy of Current Packets Bu�er. Maintains a copy of all the packets that are being sent inthe current transmission (to be used any time a transmission fails and needs to be repeated).The receiver's bu�ers are as in the Edge-Scheduling protocol's Setup, with the addition of a Broad-cast Bu�er, Data Bu�er, and Signature Bu�ers which are identical to those of an internal node.The rest of the Setup is as in the edge-scheduling model, with the added assumption that eachnode receives a private key from a trusted third party for signing, and each node receives publicinformation that allows them to verify the signature of every other node in the network.Routing Phase. As in the edge-scheduling protocol, rounds consist of two stages followed byre-shu�ing packets locally. The main di�erence between the two protocols will be the addition ofsignatures to all information, as well as the need to transmit the broadcast information, namely thestatus reports and start and end of transmission broadcasts, which inform the nodes of blacklistedand eliminated nodes and request status reports in the case a transmission fails. The two stagesof a round are divided as they were for the edge-scheduling protocol, with the same treatment ofrouting codeword packets (with the addition of signatures). However, we will also require that eachround allows all edges the opportunity to transmit broadcast information (e.g. status report parcels).Therefore, for every directed edge and every round of a transmission, there are four main packet58

transfers, two in each direction: codeword packets, broadcast parcels, and signatures con�rmingreceipt of each of these. The order of transmitting these is succinctly expressed below in Figure 8.At the start of any transmission T, the sender will determine which codeword is to be sent (thenext one in the case the previous transmission was successful, or the same one again in the case theprevious transmission failed). He will �ll his Copy Of Current Packets Bu�er with a copy of all ofthe codeword packets (to be used in case the transmission fails), and then �ll his outgoing bu�erswith packets corresponding to this codeword. All codeword packets are signed by the sender, andthese signatures will remain with the packets as they travel through the network to the receiver.Stage A B
HA := Height of bu�er along E(A,B)

1

Height of �agged p. (if there is one)Round prev. packet was sent −→Con�rmation of rec. of broadcast info.
←−

HB:=Height of bu�er along E(A,B)Round prev. packet was receivedSig's on values for edge E(A,B)Send p. and Sig's on values for E(A,B) if: Receive packet if:
• �Enough� bdcst info has passed E(A,B), AND • �Enough� bdcst info has passed E(A,B)

2 •B is not on A's blacklist/eliminated, AND −→ AND
− HA > HB OR •A is not on B's blacklist/eliminated
− B didn't rec. prev. packet sent

←− Broadcast InformationFigure 8: Description of Communication Exchange Along Directed Edge E(A,B) During the RoutingPhase of Some Round.To compliment Figure 8 above, we provide a breif description of the information that shouldbe passed across directed edge E(A,B) (B 6= S and A 6= R, and A,B ∈ G, i.e. not eliminated)during some transmission T. The precise and complete description can be found in the pseudo-code of Section 9. We state once and for all that if a node ever receives inaccurate or mis-signedinformation, it will act as if no information was received at all (e.g. as if the edge had failed for thatstage).Stage 1. A will send the same information to B as in the edge-scheduling protocol (height,height of �agged packet, round packet was �agged). Also, if A received a valid broadcastbu�er from B in Stage 2 of the previous round, then A will send B con�rmation of this fact.Also, if A knows that B has crucial broadcast information A needs, A speci�es the type ofbroadcast information he wants from B. Meanwhile, A should receive the seven items that Bsigned and sent (see below), updating his internal variables as in the edge-scheduling protocoland updating its signature bu�er, provided B has given a valid24 signature.At the other end, B will send the following seven items to A: 1) the transmission index;2) index of the current round; 3) current height; 4) index of the round B last received a24Here, �valid� means that A agrees with all the values sent by B, and B's signature is veri�ed.59

packet from A; 5) the net change in packet transfers so far across E(A,B) for the currenttransmission; 6) B's cumulative increase in potential due to packet transfers across E(A,B) inthe current transmission; and 7) if a packet p was sent and received in Stage 2, the net numberof times p has been transferred across E(A,B) for the current transmission. Meanwhile, Bwill also receive the information A sent.Stage 2. A will send a packet to B under the same conditions as in the edge-schedulingprotocol, with the additional conditions: 1) A has received the sender's start of transmissionbroadcast (see below), and this information has passed across E(A,B) or E(B,A); 2) A and
B are not on (A's version of) the blacklist; 3) A does not have any end of transmissioninformation not yet passed across E(A,B) or E(B,A); and 4) A does not have any changesto blacklist information yet to pass across E(A,B) or E(B,A). We emphasize these last twopoints: if A (including A = S) has any start of transmission, end of transmission, or changesto blacklist information in its broadcast bu�er that it has not yet passed along edge E(A,B),then it will not send a packet along this edge.If A does send a packet, the �packet� A sends includes a signature on the following sevenitems25: 1) transmission index; 2) index of the current round; 3) the packet itself with sender'ssignature; 4) index of the round A �rst tried to send this packet to B; 5) One plus the netchange in packet transfers so far across E(A,B) for the current transmission; 6) A's cumula-tive decrease in potential due to packet transfers across E(A,B) in the current transmissionincluding the potential drop due to the current packet being transferred; and 7) One plus the netnumber of times the packet currently being transferred has been transferred across E(A,B)for the current transmission.Also, A should receive broadcast information (if B has something in its broadcast bu�ernot yet passed along E(A,B)) and update its broadcast bu�er as described by the UpdateBroadcast Bu�er Rules below.At the other end, B will receive and store the packet sent by A as in the edge-schedulingprotocol, updating his signature bu�er appropriately, with the added conditions: 1) B hasreceived the sender's start of transmission broadcast, and this information has been passedacross E(A,B) or E(B,A); 2) The packet has a valid signature from S; 3) A and B are not on(B's version of) the blacklist; 4) B does not have any end of transmission information not yetpassed across E(A,B) or E(B,A); 5) B does not have any changes to blacklist informationyet to pass across E(A,B) or E(B,A); and 6) The signatures on the seven items includedwith the packet from A is �valid.24� Additionally, if there is anything in B's broadcast bu�erthat has not been transferred along E(A,B) yet, then B will send one parcel of broadcastinformation chosen according to the priorities: 1) The receiver's end of transmission parcel;2) One of the sender's start of transmission parcels; 3) Changes to the blacklist or a node topermanently eliminate; 4) The identity of a node N on B's blacklist for which B has completeknowledge of N 's status report; 5) The most recent status report parcel A requested in Stage1 of an earlier round; and 6) Arbitrary status report parcels.25Recall that packets have room to hold two signatures. The �rst will be the sender's signature that accompaniesthe packet until the packet is removed by the receiver. The second signature is the one indicated here, and thissignature will be replaced/overwritten by the sending node every time the packet is passed across an edge.60

For any edge E(A,S) or E(R,B), only broadcast information is passed along these directed edges,and this is done as in the rules above, with the exceptions mentioned below in the Update BroadcastBu�er Rules for S and R. Additionally, any round in which the sender is unable to insert anypackets, he will increase the number of blocked rounds in his data bu�er. The sender will also keeptrack of the total number of packets inserted in the current transmission in his data bu�er.Re-Shu�e Rules. The Re-Shu�e rules are exactly as in the edge-scheduling protocol, with theexception that node's record the changes in non-duplicated potential caused by re-shu�ing packetslocally.Update Broadcast Bu�er Rules for Internal Nodes. Looking at Stage 2 of the RoutingRules above, we have that in every round and for every edge E(A,B), each node B will havethe opportunity to send and receive exactly one parcel of broadcast information in addition to asingle codeword packet. The order in which a node's broadcast bu�er information is transmitted isdescribed above in the Routing Rules.For any node A ∈ P \ {R,S}, we now describe the rules for updating their broadcast bu�erwhen they receive broadcast information. Assume that A has received broadcast information alongone of its edges E(A,B), and has veri�ed that it has a valid signature. We describe how A willupdate its Broadcast Bu�er, depending on the nature of the new information:The received information is the receiver's end of transmission broadcast (see below). In this case,
A will �rst make sure the transmission index is for the current transmission, and if so, theinformation is added to A's broadcast bu�er, and edge E(A,B) is marked as having alreadytransmitted this information.The received information is the sender's start of transmission broadcast (see below). This broad-cast consists of a single parcel containing information about the previous transmission, followedby up to 2n − 2 additional parcels (describing blacklisted/eliminated nodes and labels of upto n previous transmissions that have failed). When A receives a parcel from the start oftransmission broadcast, if A does not already have it stored in its broadcast bu�er, it will addit, and edge E(A,B) is marked as having already transmitted this information. Additionally,
A will handle the parcels concerning blacklisted nodes as described below. Finally, when Ahas received every parcel in the start of transmission broadcast, it will also remove from itsblacklist any node not implicated in this broadcast (i.e. this will count as �A receives infor-mation concerning a node to remove from the blacklist,� see below), as well as clearing itssignature bu�ers for the new transmission.The received information indicates a node N to eliminate. If the information is current, then Awill add the new information to its broadcast bu�er and mark edge E(A,B) as already havingpassed this information. If N is not already on A's list of eliminated nodes EN , then A willadd N to EN (in its data bu�er), clear all of its incoming and outgoing bu�ers, its signaturebu�ers, and its broadcast bu�er (with the exception of start of transmission parcels).The received information concerns a node N to add to or remove from the blacklist. If thereceived information did not originate in the current transmission (as signed by the sender)or A has more recent blacklist information regarding N , then A ignores the new information.Otherwise, the information is added to A's broadcast bu�er, and edge E(A,B) is marked as61

having already transmitted this information. Additionally, parcels that are now outdated in
A's broadcast bu�er are deleted (such as N 's status report parcels or a parcel indicating anode N̂ had N 's complete status report).If N = A, then A adds n of its own status report parcels to its broadcast bu�er, choosingthese n parcels based on information from the relevant start and end of transmission parcels.
A also will add his own signature to each of these parcels, so that they each one will carrytwo signatures back to the sender (A's signature and the relevant neighbor's signature).The received information indicates B has some node N 's complete status report. If N is on
A's blacklist for the transmission B claims knowledge for, then A stores the fact that B hascomplete knowledge of N in its data bu�er (A will later use this information when requestinga speci�c parcel from B).The received information pertains to some node N 's status report the sender has requested. A will�rst make sure that N is on its version of the blacklist. If so, the information is added to A'sbroadcast bu�er, and edge E(A,B) is marked as having already transmitted this information.If this completes A's knowledge of N 's status report, A will add to its broadcast bu�er thefact that it now knows all of N 's missing status report.At the end of a transmission, all nodes will clear their broadcast bu�ers except parcels concerning ablacklisted node's status report. All nodes also clear their version of the blacklist (it will be restoredat the beginning of the next transmission).Update Broadcast Bu�er Rules for Sender and Receiver. The receiver has the same rulesas internal nodes for updating its broadcast bu�er, with the addition that when there are exactly

n rounds left in any transmission26, R will add to its broadcast bu�er a single (signed) parcel thatindicates the transmission index, whether or not he could decode the current codeword, and thelabel of a duplicate packet he received (if there was one). We will refer to this as the receiver's endof transmission parcel.The rules for the sender updating its broadcast bu�er are slightly more involved, as the senderwill be the one determining which information it requires of each node, as well as managing theblacklisted and eliminated nodes. The below rules dictate how S will update his broadcast bu�erand status bu�er at the end of a transmission, or when the sender receives new (appropriatelysigned) broadcast information along E(S,B).A transmission T has just ended. Note that the sender will have necessarily received and storedthe receiver's end of transmission broadcast by the end of the transmission (Lemma 11.19).In the case that the transmission was successful, S will clear his outgoing bu�ers and Copyof Old Packets Bu�er, then re-�ll them with codewords corresponding to the next message.If EN denotes the eliminated nodes and BT denotes the nodes on the sender's blacklist atthe end of this transmission, then the sender will set ΩT+1 = (|EN |, |BT|, F, 0), where F26We note that because there is always an active honest path between sender and receiver, and the receiver's �nalbroadcast has top priority in terms of broadcast order, the sender will necessarily receive this broadcast by the endof the transmission. Alternatively, we could modify our protocol to add an extra n rounds to allow this broadcast toreach the sender. However, the exposition is easier without adding an extra n rounds, and we will show that wastingthe �nal n rounds of a transmission by having the receiver determine if it can decode with n rounds still left is notimportant, as the n wasted rounds is insigni�cant compared to the O(n3) rounds per transmission.62

denotes the number of failed transmissions that have taken place since the last corrupt nodewas eliminated. Finally, the sender will delete the information in his data bu�er concerningthe number of packets inserted and the number of blocked rounds for the just completedtransmission.In the case that the transmission failed, S will clear his outgoing bu�ers and then re-�ll themusing the Copy of Old Packets Bu�er, while leaving the latter bu�er unchanged. The senderwill determine the reason the transmission failed (F2-F4), and add this fact along with therelevant information from his own signature bu�ers to the data bu�er. For any node (notincluding S or R or eliminated nodes) not on the sender's blacklist, the sender will add thenode to the participating list PT in his data bu�er, and then add each of these nodes to theblacklist, recording that T was the most recent transmission that the node was blacklisted.Also, the sender will set:
ΩT+1 =





(|EN |, |BT|, F, p) if the transmission failed and p was included inthe receiver's end of transmission parcel
(|EN |, |BT|, F, 1) if the transmission failed and S inserted D packets
(|EN |, |BT|, F, 2) otherwiseFor both a failed transmission and a successful transmission, the sender will sign and add to hisbroadcast bu�er the following parcels, which will comprise the sender's Start of Transmission(SOT) broadcast: ΩT+1, a list of eliminated and blacklisted nodes, and the reason for failureof each of the last (up to n− 1) failed transmissions since the last node was eliminated. Notethat each parcel added to the broadcast bu�er regarding a blacklisted node includes the indexof the transmission for which the node was blacklisted, and all parcels added to the broadcastbu�er include the index of the transmission about to start (as a timestamp) and are signedby S. Notice that the rules regarding priority of transferring broadcast information guaranteethat ΩT+1 will be the �rst parcel of the SOT that is received, and because it reveals thenumber of blacklisted and eliminated nodes and the number of failed transmissions to expect,as soon as each node receives ΩT+1, they will know exactly how many more parcels remain inthe SOT broadcast. Nodes will not be allowed to transfer any (codeword) packets until theSOT broadcast for the current transmission is received in its entirety.The sender receives the receiver's end of transmission parcel for the current transmission. Thesender will store this parcel in its data bu�er.The sender receives information along E(S,B) indicating B has some node N 's complete statusreport. If N is on the sender's blacklist for the transmission B claims knowledge for, then thesender stores the fact that B has complete knowledge of N in its data bu�er (the sender willlater use this information when requesting a speci�c parcel from B).The sender receives information along E(S,B) that pertains to some node N 's status report thatthe sender has requested. The sender will �rst make sure that N is on its blacklist and thatthe parcel received contains the appropriate information, i.e. the sender checks its data bu�erto see which transmission N was added to the blacklist and the reason this transmissionfailed, and makes sure the status report parcel is from this transmission and contains theinformation corresponding to this reason for failure. If the parcel has faulty information thathas been signed by N , i.e. N sent back information that was not requested by the sender,63

then N is eliminated from the network. Otherwise, the sender will add the information to itsdata bu�er. If the information completes N 's missing status report, the sender updates hisbroadcast bu�er indicating N 's removal from the blacklist, including the index of the currenttransmission and his signature.The sender will then determine if he has enough information to eliminate a corrupt node
N ′. If so, N ′ will be added to his list of Eliminate Nodes, and his broadcast bu�er anddata bu�er will be wiped completely (except for the list of eliminated nodes). Also, he willabandon the current transmission and begin a new one corresponding to the same codeword.In particular, he will clear his outgoing bu�ers and re-�ll them with the codewords in his Copyof Old Packets Bu�er, leaving the latter unchanged, and he will skip to the �A transmissionhas just ended� case above, setting the start of transmission parcel ΩT+1 = (|EN |, 0, 0, 0).8.3 Analysis of Our Node-Controlling + Edge-Scheduling ProtocolWe state our results concerning the correctness, throughput, and memory of our adversarialrouting protocol, leaving the analysis and proofs to Section 10.Theorem 8.1. Except for the at most n2 transmissions that may fail due to malicious activity, ourRouting Protocol enjoys linear throughput. More precisely, after x transmissions, the receiver hascorrectly outputted at least x− n2 messages. If the number of transmissions x is quadratic in n orgreater, than the failed transmissions due to adversarial behavior become asymptotically negligible.Since a transmission lasts O(n3) rounds and messages contain O(n3) bits, information is transferredthrough the network at a linear rate.Theorem 8.2. The memory required of each node is at most O(n4(k + log n)).Proofs. See Section 10. �9 Pseudo-Code for Node-Controlling + Edge-Scheduling ProtocolWe now modify the pseudo-code from our edge-scheduling adversarial protocol to pseudo-codefor the (node-controlling + edge-scheduling) adversarial model. The two codes will be very similar,with di�erences emphasized by marking the line number in bold. The Re-Shu�e Rules will remainthe same as in the edge-scheduling protocol, with the addition of line (7.76) (see Figure 7).

64

SetupDEFINITION OF VARIABLES:01 n := Number of nodes in G;02 D := 3n3

λ
;03 T := Transmission index;04 t := Stage/Round index;05 k := Security Parameter;06 P := Capacity of edge= O(k + log n);07 for every N ∈ P \ S08 BB ∈ [n2 + 5n] × {0, 1}P+n; ## Broadcast Bu�er09 DB ∈ [1..n2] × {0, 1}P ; ## Data Bu�er. Holds BL and EN below, and info. as on line 15110 BL ∈ [1..n − 1] × {0, 1}P ; ## Blacklist11 EN ∈ [1..n − 1] × {0, 1}P ; ## List of Eliminated Nodes12 SIGN,N ∈ {0, 1}O(log n); ## Holds change in potential due to local re-shu�ing of packets13 for every N ∈ G14 SK, {PK}n

i ## Secret Key for signing, Public Keys to verify sig's of all nodes15 for every outgoing edge E(N, B) ∈ G, B 6= S and N 6= R16 OUT ∈ [2n] × {0, 1}P ; ## Outgoing Bu�er able to hold 2n packets17 SIGN,B ∈ [D + 3] × {0, 1}O(log n);## Signature Bu�er for current trans., indexed as follows:## SIG[1]= net no. of current codeword p's transferred across E(N, B)## SIG[2]= net change in B's pot. due to p. transfers across E(N, B)## SIG[3]= net change in N 's pot. due to p. transfers across E(N, B)## SIG[p]= net no. of times packet p transferred across E(N, B)18 p̃ ∈ {0, 1}P ∪ ⊥; ## Copy of packet to be sent19 sb ∈ {0, 1}; ## Status bit20 d ∈ {0, 1}; ## Bit indicating if a packet was sent in prev. round21 FR ∈ [0..8D] ∪ ⊥; ## Flagged Round (index of round N �rst tried to send p̃ to B)22 RR ∈ [−1..8D] ∪ ⊥; ## Round Received (index of round that N last rec. a p. from A)23 H ∈ [0..2n]; ## Height of OUT. Also denoted HOUT when there's ambiguity24 HF P ∈ [1..2n] ∪ ⊥; ## Height of Flagged Packet25 HIN ∈ [0..2n] ∪ ⊥; ## Height of incoming bu�er of B26 for every outgoing edge E(N, B) ∈ G, including B = S and N = R27 bp ∈ {0, 1}P ; ## Broadcast Parcel received along this edge28 α ∈ {0, 1}P ; ## Broadcast Parcel request29 cbp ∈ {0, 1}; ## Veri�cation bit of broadcast parcel receipt30 for every incoming edge E(A, N) ∈ G, A 6= R and N 6= S31 IN ∈ [2n] × {0, 1}P ; ## Incoming Bu�er able to hold 2n packets32 SIGA,N ∈ [D + 3] × {0, 1}O(log n);## Signature Bu�er, indexed as on line 1733 p ∈ {0, 1}P ∪ ⊥; ## Packet just received34 sb ∈ {0, 1}; ## Status bit35 RR ∈ {0, 1}8D; ## Round Received index36 H ∈ [0..2n]; ## Height of IN. Also denoted HIN when there's ambiguity37 HGP ∈ [1..2n] ∪ ⊥; ## Height of Ghost Packet38 HOUT ∈ [0..2n] ∪ ⊥; ## Height of outgoing bu�er or height of Flagged Packet of A39 sbOUT ∈ {0, 1}; ## Status Bit of outgoing bu�er of A40 FR ∈ {0, 1}8D ∪ ⊥; ## Flagged Round index (from adjacent outgoing bu�er A)41 for every incoming edge E(A, N) ∈ G, including A = R and N = S42 bp ∈ {0, 1}P ; ## Broadcast Parcel to send along this edge43 cbp ∈ {0, 1}; ## Veri�cation bit of packet broadcast parcel receiptFigure 9: Pseudo-Code for Internal Nodes' Setup for the (Node-Controlling + Edge-Scheduling)Protocol 65

INITIALIZATION OF VARIABLES:44 for every N ∈ G45 Receive Keys; ## Receive {PK}n
i and SK from KEYGEN46 Initialize BB, DB, BL, EN , SIGN,N ; ## Set SIGN,N = 0, set each entry of DB and BB to ⊥47 for every incoming edge E(A, N) ∈ G, A 6= R and N 6= S48 Initialize IN, SIG; ## Set each entry in IN to ⊥ and each entry of SIG to zero49 p, HGP , FR = ⊥;50 sb, sbOUT , cp, H,HOUT = 0; RR = −1;51 for every incoming edge E(A, N) ∈ G, including A = R and N = S52 bp = ⊥; cbp = 0;53 for every outgoing edge E(N, B) ∈ G, B 6= S and N 6= R54 Initialize OUT, SIG; ## Set each entry in OUT to ⊥ and each entry of SIG to zero54 p̃, HF P , FR,RR = ⊥;55 sb, d, H, HIN , 0;57 for every outgoing edge E(N, B) ∈ G, including B = S and N = R58 bp, α = ⊥; cbp = 0;Sender's Additional SetupDEFINITION OF ADDITIONAL VARIABLES FOR SENDER:59 M := {m1, m2, . . . } = Input Stream of Messages;60 COPY ∈ [D] × {0, 1}P := Copy of Packets for Current Codeword;61 BB ∈ [3n] × {0, 1}P := Broadcast Bu�er;62 DB ∈ [1..n3 + n2 + n] × {0, 1}P := Data Bu�er, which includes:63 BL ∈ [1..n] × {0, 1}P := Blacklist;64 EN ∈ [1..n] × {0, 1}P := List of Eliminated Nodes;65 κ ∈ [0..D] := Number of packets corresponding to current codeword the sender has knowingly inserted;66 ΩT ∈ {0, 1}O(log n) := First parcel of Start of Transmission broadcast for transmission T;67 βT ∈ [0..4D] := Number of rounds blocked in current transmission;68 F ∈ [0..n − 1] := Number of failed transmissions since the last corrupt node was eliminated;69 PT ∈ {0, 1}n := Participating List for current transmission;INITIALIZATION OF SENDER'S VARIABLES:70 κ = 0;71 β1, F = 0;72 Ω1 = (0, 0, 0, 0);73 Initialize BB, DB, P1; ## Set each entry of DB to ⊥, add Ω1 to BB, and set P1 = G74 Distribute Packets;Receiver's Additional SetupDEFINITION OF ADDITIONAL VARIABLES FOR RECEIVER:75 IR ∈ [D] × ({0, 1}P ∪ ⊥) := Storage Bu�er to hold packets corresponding to current codeword;76 κ ∈ [0..D] := Number of packets received corresponding to current codeword;77 ΘT ∈ {0, 1}O(k+log n) := End of Transmission broadcast for transmission T;INITIALIZATION OF RECEIVER'S VARIABLES:78 κ = 0;79 Θ1 = ⊥;80 for every outgoing edge E(R,B) ∈ G:81 bp, α = ⊥;82 Initialize IR; ## Sets each element of IR to ⊥End SetupFigure 10: Additional Setup Code for (Node-Controlling + Edge-Scheduling) Protocol66

Transmission T01 for every N ∈ G, N /∈ EN :02 for every t < 2 ∗ (4D) ## The factor of 2 is for the 2 stages per round03 if t (mod 2) = 0 then: ## STAGE 104 Update Broadcast Bu�er One;05 for every outgoing edge E(N, B) ∈ G, N 6= R, B 6= S06 if HF P 6= ⊥: send (H,⊥,⊥); else: send (H − 1, HF P , FR);07 receive Signed(T, t, HIN , RR, SIG[1], SIG[2], SIG[p]); ## SIG[3], 6th coord sent on line 11, is kept as SIG[2]08 Verify Signature Two:09 Reset Outgoing Variables;10 for every incoming edge E(A, N) ∈ G, N 6= S, A 6= R## �p� on line 11 refers to last p. rec'd on E(A,N)11 send Sign(T, t, H, RR,SIG[1], SIG[3], SIG[p]); ## If p was from an old codeword, send instead:## Sign(T, t, H, RR, SIG[1], SIG[3],⊥)12 sbOUT = 0; FR = ⊥;13 receive (H,⊥,⊥) or (H,HF P , FR); ## If H = ⊥ or F R>RR, set sbOUT=1; and## HOUT=HF P ; O.W. set HOUT=H; sbOUT=0;14 else if t (mod 2) = 1 then: ## STAGE 215 Send/Receive Broadcast Parcels;16 for every outgoing edge E(N, B) ∈ G, N 6= R, B 6= S17 if HIN 6= ⊥ then:18 Create Flagged Packet;19 if sb=1 or (sb=0 and H > HIN) then:20 Send Packet;21 for every incoming edge E(A, N) ∈ G, N 6= S, A 6= R22 Receive Packet;23 if N /∈ {S, R} and N has rec'd SOT broadcast for T then: Re-Shu�e;24 else if N = R and N has rec'd SOT broadcast for T then: Receiver Re-Shu�e;25 else if N = S then:26 Sender Re-Shu�e;27 if All (non-⊥) values S received on line 07 had HIN = 2n then: βT = βT + 1;28 if t = 2(4D − n) and N = R then: Send End of Transmission Parcel;29 if t = 2(4D) and N = S then: Prepare Start of Transmission Broadcast;30 if t = 2(4D) then: End of Transmission Adjustments;End Transmission T31 Okay to Send Packet32 if 



N does not have (ΩT, T) in BB OR

N has (ΩT, T) with ΩT = (|EN |, |BT|, F, ∗), but has not yet rec'd |EN | parcels as in line 200b,
F parcels as in line 200c, or |BT| parcels as in line 200d OR

N has rec'd the complete SOT broadcast, but every parcel hasn't yet passed across E(N, B) OR

N or B ∈ BL OR

N has ΘT ∈ BB, but this has not passed across E(N, B) yet OR

N has BL info. in BB (as on line 115, items 3 or 4) not yet passed across E(N, B)33 Return False;34 else: Return True;35 Okay to Receive Packet36 if 




N does not have (ΩT, T) in BB OR

N has (ΩT, T) with ΩT = (|EN |, |BT|, F, ∗), but has not yet rec'd |EN | parcels as in line 200b,
F parcels as in line 200c, or |BT| parcels as in line 200d OR

N has rec'd the complete SOT broadcast, but every parcel hasn't yet passed across E(A, N) OR

N or A ∈ BL OR

N has ΘT ∈ BB, but this has not passed across E(A,N) yet OR

N has BL info. in BB (as on line 115, items 3 or 4) not yet passed across E(A, N) OR37 Return False;38 else: Return True;Figure 11: Routing Rules for Transmission T, (Node-Controlling + Edge-Scheduling) Protocol67

39 Reset Outgoing Variables40 cbp = 0;41 if d = 1: ## N sent a packet previous round42 d = 0;43 if RR = ⊥ or ⊥ 6= FR > RR ## Didn't receive conf. of packet receipt44 sb = 1;45 if RR 6= ⊥:46 if ⊥ 6= FR ≤ RR: ## B rec'd most recently sent packet47 if N = S then: κ = κ + 1;48 For i = 1, 2, p: SIG[i] = value rec'd on line 07;49 SIG[3] = SIG[3] + HF P ; ## If N = S, skip this line50 OUT[HF P] = ⊥; Fill Gap; ## Remove p̃ from OUT, shifting down packets on top## of p̃ (if necessary) and adjusting SIGN,N accordingly51 FR, p̃, HF P = ⊥; sb = 0; H = H − 1;52 if ⊥ 6= RR < FR and ⊥ 6= HF P < H : ## B did not receive most recently sent packet53 Elevate Flagged Packet; ## Swap packets in OUT[H] and OUT[HF P]; Set HF P=H;54 Create Flagged Packet55 if sb = 0 and H > HIN : ## Normal Status, will send top packet56 p̃ = OUT[H]; HF P = H ; FR = t;57 Send Packet58 d = 1;59 if Okay to Send Packet then: ## If p̃ is from an old codeword, send instead:60 send Sign(T, t, p̃, FR, SIG[1]+1, SIG[3] + HF P , SIG[p̃]+1); ## Sign(T, t, p̃, FR, SIG[1], SIG[3] + HF P ,⊥)61 Receive Packet62 receive Sign(T, t− 2, p, FR, SIG[1], SIG[2], SIG[p]); ## SIG[3], 6th coord. sent on line 60, is kept as SIG[2]63 if HOUT = ⊥ or Okay to Receive Packet is false: ##Didn't rec. A's ht. info, or BB info prevents p. transfer64 sb = 1;65 if HGP > H or (HGP = ⊥ and H < 2n):66 HGP = H + 1;67 else if sbOUT = 1 or HOUT > H : ## A packet should've been sent68 Verify Signature One;69 if (Verify Signature One returns false or ## Signature from A was not valid, or
p = ⊥ or p not properly signed by S) then: ## Packet wasn't rec'd. or wasn't signed by S70 sb = 1;71 if HGP > H or (HGP = ⊥ and H < 2n):72 HGP = H + 1;73 else if RR < FR: ## Packet was rec'd and should keep it74 For i = 1, 2, p: SIG[i] = value rec'd on line 62;75 SIG[3] = SIG[3] + HGP ; ## If N = R, skip this line76 if HGP = ⊥: HGP = H + 1; ## If no slot is saved for p, put it on top77 IN[HGP] = p;78 sb = 0; H = H + 1; HGP = ⊥; RR = t;79 else: ## Packet was rec'd, but already had it80 sb = 0; Fill Gap; HGP = ⊥; ## See comment about Fill Gap on line 82 below81 else: ## A packet should NOT have been sent82 sb = 0; Fill Gap; HGP = ⊥; ## If packets occupied slots above the Ghost## Packet, then Fill Gap will Slide them down one slot,## updating SIGN,N to re�ect this shift, if necessary83 Verify Signature One84 if Signature is Valid and Values are correct ## N veri�es the values A sent on line 60 are consistent:85 Return true; ## Change in SIG[1] and SIG[p] is `1', change in SIG[2] is86 else: ## at least HGP , (T, t) is correct and p. has sender's sig87 Return false;88 Verify Signature Two ## N veri�es the values B sent on line 11 are consistent:89 if Signature is NOT Valid or Values are NOT Correct:## Change in SIG[1] and SIG[p] is `1', change in SIG[2]90 RR,HIN = ⊥; ## is at most HF P , and T and t are correctFigure 12: Routing Rules for Transmission T, (Node-Controlling + Edge-Scheduling) Protocol (cont)68

91 Send/Receive Broadcast Parcels92 for every outgoing edge E(N, B) ∈ G, including N = R, B = S93 receive bp;94 Update Broadcast Bu�er Two;95 for every incoming edge E(A,N) ∈ G, including N = S, A = R96 Determine Broadcast Parcel to Send;97 send bp;98 Update Broadcast Bu�er One99 for every outgoing edge E(N, B) ∈ G, including N = R, B = S100 if bp 6= ⊥ then:101 send cbp;102 Broadcast Parcel to Request;103 send α;104 for every incoming edge E(A,N) ∈ G, including N = S, A = R105 receive cbp; receive α;106 if α 6= ⊥ then: Update Broadcast Bu�er; ## Update BB to preferentially send α107 if cbp = 1 then: Update Broadcast Bu�er; ## Update BB that bp crossed E(A, N)108 cbp = 0;109 Update Broadcast Bu�er Two110 if ⊥ 6= bp has valid sig. and

{
N has received full SOT broadcast for T OR

bp is a valid SOT broadcast parcel rec'd in correct order (see 115 and 200)## Here, a �valid� signature means both from B and the from node bp originated from, and## a �valid� SOT parcel means that N has already received all SOT parcels that## should have arrived before bp, as indicated by the ordering of line 115, items 2a-2d111 cbp = 1;112 if N = S: Sender Update Broadcast Bu�er;113 else: Internal Node and Receiver Update Broadcast Bu�er;114 Determine Broadcast Parcel to Send115 Among all information in BB, choose some bp ∈ BB that has not passed along E(A,N) by priority:1) The receiver's end of transmission parcel ΘT2) The sender's start of transmission (SOT) broadcast, in the order indicated on line 200:a) (ΩT, T) b) (N̂ ∈ EN, T) c) (T′, F i, T) d) (N̂ ∈ BL, T′, T)3) (N̂, 0, T) = label of a node to remove from the blacklist, see line 1654) (N, N̂ , T′) = label of a node N̂ on BL for which N has the complete status report for T′, see line 1555) A status report parcel requested by A as indicated by α (received on line 105)6) An arbitrary status report parcel of a node on N 's blacklist116 Broadcast Parcel to Request117 α = ⊥;118 if B is on N 's blacklist and N is missing a status report from B:119 Set α to indicate B's label and an index of the parcel N is missing from B;120 else if DB indicates that B has complete status report for some node N̂ on BL (see lines 150-151, 155):121 if N is missing a status report of node N̂ :122 Set α to the label of the node N̂ and the index of a status report parcel from N̂ that N is missing;Figure 13: Routing Rules for Transmission T, (Node-Controlling + Edge-Scheduling) Protocol (cont)
69

123 Internal Node and Receiver Update Broadcast Bu�er## Below, a broadcast parcel bp is �Added� only if it is not already in BB. Also, view BB as being## indexed by each bp with n − 1 slots for each parcel to indicate which edges bp has already traversed.## Then when bp is removed from BB, the edge �markings� are removed as well.124 if bp = ΘT is receiver's end of transmission parcel (for current transmission T, see line 179):125 Add bp to BB and mark edge E(N, B) as having passed this info.;126 else if bp = (ΩT, T) is the �rst parcel of the sender's start of transmission (SOT) broadcast (see line 200a):127 Add bp to BB, and mark edge E(N, B) as having passed this information;128 if ΩT = (∗, 0, ∗, ∗) : Clear all entries of SIG, and set SIGN,N = 0;129 else if bp= (N̂, T) is from the SOT broadcast indicating a node to eliminate, as on line 200b:130 Add bp to BB and mark edge E(N, B) as having passed this info.;131 if N̂ /∈ EN : ## N is just learning N̂ is to be eliminated132 Add N̂ to EN ;133 Clear all incoming and outgoing bu�ers, clear all entries of SIG, and set SIGN,N = 0;134 Clear BB, EXCEPT for parcels from current SOT broadcast; Clear DB, EXCEPT for EN ;135 else if bp= (T′, F i, T) is from the SOT broadcast indicating why a previous trans. failed, as on line 200c:136 Add bp to BB and mark edge E(N, B) as having passed this information;137 else if bp= (N̂, T′, T) is from the SOT broadcast indicating a node to blacklist, as on line 200d:138 Add N̂ to BL; Add bp to BB and mark edge E(N, B) as having passed this information;139 Remove outdated info. from BB and DB;## This includes for any trans. T′′ 6= T
′ removing from DB all entries of form (B̃, N̂ , T′′), see line 115, item 4;## and removing from BB: 1) (N, N̂, T′′), see line 115 item 4, and 2) Any status report parcel of N̂ for T′′140 if N̂ = N has not already added its own status report info. corresponding to T

′ to BB:## The following reasons for failure come from SOT. See lines 190, 193, and 196-197## The information added in each case will be referred to as the node's status report for transmission T
′141 if entries of SIGN,N and SIG correspond to a transmission T

′′ 6= T
′: Clear SIG and set SIGN,N = 0;142 if T′ failed as in F2: For each incoming and outgoing edge, sign and add to BB: (SIG[2], SIG[3], T′);143 Also sign and add (SIGN,N , T′) to BB (see line 12 of Figure 9);144 else if T′ failed as in F3: For each incoming and outgoing edge, sign and add (SIG[1], T′) to BB;145 else if T′ failed as in F4: For each incoming and outgoing edge, sign and add (SIG[p], T′) to BB;146 if N has received |BLT| SOT parcels of form (N̂, T′, T) : Clear all entries of SIG and set SIGN,N = 0;147 else if bp= (N̂, 0, T) is from sender, indicating a node to remove from BL, as on line 165:148 Remove N̂ from BL; Add bp to BB and mark edge E(N, B) as having passed this information;149 Remove outdated info. from BB and DB as on line 139 above;150 else if bp= (B, N̂, T′) indicates B has a blacklisted node N̂ 's complete status report for trans. T′:151 if (N̂, T′, T) is on N 's blacklist: Add fact that B has N̂ 's complete status report to DB;152 else if bp is a status report parcel for trans. T′ of some node (N̂ , T′, T) on BL, see lines 140-145 and 200d:153 if bp has valid sig. from N̂ and concerns correct info.:## N �nds (N̂, T′, T) and (T′, F i, T) in BB (from SOT broadcast) and checks that bp concerns correct info.154 Add bp to BB, and mark edge E(N, B) as having passed this information;155 if bp completes N 's knowledge of N̂ 's missing status report for transmission T

′: Add (N, N̂, T′) to BB;156 Sender Update Broadcast Bu�er ## Below, a parcel bp is �Added� only if it is not in DB157 if bp = ΘT is receiver's end of transmission parcel (for current transmission T):158 Add bp to DB;159 else if bp indicates B has a blacklisted node N̂ 's complete status report for trans. T′:160 if (N̂, T′, T) is on S's blacklist: Add (B, N̂ , T′) to DB;161 else if bp is a status report parcel of some node N̂ on the sender's blacklist (see lines 140-145):162 Add bp to DB;163 if bp contains faulty info. but has a valid sig. from N̂ : Eliminate N̂ ;## S checks DB for reason of failure and makes sure N̂ has returned an appropriate value164 if bp completes the sender's knowledge of N̂ 's missing status report from transmission T
′:165 Sign (N̂, 0, T) and add to BB; ## Indicates that N̂ should be removed from blacklist166 Remove outdated info. from DB; Remove (N̂, T′) from BL;## �Outdated� refers to parcels as on 159-160 whose second entry is N̂167 if bp completes sender's knowledge of all relevant status reports from some transmission:168 Eliminate N̂ ; ## S can eliminate a node. See pf. of Thm 8.1 for detailsFigure 14: Routing Rules for Transmission T, (Node-Controlling + Edge-Scheduling) Protocol (cont)70

169 Eliminate N̂170 Add (N̂, T) to EN ;171 Clear BB, DB (except for EN), and signature bu�ers;172 βT, F = 0;173 PT+1 = P \ EN ;174 ΩT+1 = (|EN |, 0, 0, 0);175 Sign and Add ΩT+1 to BB;176 for every N ∈ EN , Sign and Add (N, T + 1) to BB;177 Halt until End of Transmission Adjustments is called;## S does not begin inserting p's until next trans.,## and S ignores all instructions for T until line 30178 Send End of Transmission Parcel179 Add signed ΘT = (b, p′, T) to BB ## b is a bit indicating if R could decode, p′ is## the label of a packet R rec'd twice, or else ⊥180 Prepare Start of Transmission Broadcast181 ## Let ΘT = (b, p′, T) denote Sender's value obtained from Receiver's transmission above (as stored in DB)182 if b = 1 then: ## R was able to decode183 Clear each entry of signature bu�ers holding data corresponding to T;184 ΩT+1 = (|EN |, |BL|, F, 0);185 else if b = 0 then: ## R was not able to decode: a failed transmission186 F = F + 1;187 Set PT = P \ (EN ∪ BL) and add (PT, T) to DB;188 For each N ∈ PT \ S: Add (N, T) to BL; ## (N, T) records the trans. N was added to BL189 Clear outgoing bu�ers;190 if p′ 6= ⊥: ## R rec'd a duplicate packet191 Add (p′, T) to DB; Add SIG[p′] to DB; ## Record that reason T failed was F4192 ΩT+1 = (|EN |, |BL|, F, p′);193 else if κ < D: ## S did not insert at least D packets194 Add (1, T) to DB; Add SIG[2] and SIG[3] to DB; ## Record that reason T failed was F2195 ΩT+1 = (|EN |, |BL|, F, 1);196 else:197 Add (2, T) to DB; Add SIG[1] to DB; ## Record that reason T failed was F3198 ΩT+1 = (|EN |, |BL|, F, 2);199 Clear BB and SIG[i] for each i = 1, 2, p; Remove ΘT from DB;200 Sign and Add to BB: ## The Start of Transmission (SOT) broadcasta) (ΩT+1, T+1)b) For each N ∈ EN , add the parcel (N, T+1)c) For each failed transmission T
′ since the last node was eliminated, add the parcel (T′, F i, T+1)## Here, F i is the reason trans. T′ failed (F2, F3, or F4). See pf. of Thm. 8.1 for detailsd) For each N ∈ BL, add the parcel (N, T′, T+1), where T

′ indicates the trans. N was last added to BL201 βT = 0;202 End of Transmission Adjustments203 if N 6= S : Clear ΘT, BL, all parcels from SOT broadcast, and info. of form (N̂, 0, T) from BB;204 for every outgoing edge E(N, B), B ∈ G, N 6= R, B 6= S:205 if HF P 6= ⊥:206 OUT [HF P] = ⊥; Fill Gap; ## Remove any �agged packet p̃ from OUT, shifting## down packets on top of p̃ if necessary207 sb = 0; FR,HF P , p̃ = ⊥; H = H − 1;208 for every incoming edge E(A, N), A ∈ G, A 6= R:209 HGP = ⊥; sb = 0; RR = −1; Fill Gap;210 if N = S then: Distribute Packets;211 if N = R then: κ = 0; Clear IR; ## Set each entry of IR to ⊥212 Distribute Packets213 κ = 0; HOUT = 2n; ## Set height of each outgoing bu�er to 2n214 Fill each outgoing bu�er with codeword packets;## If T was successful, make new codeword p's, and �ll out. bu�ers and COPY with these.## If T failed or a node was just eliminated, use codeword packets in COPY to �ll out. bu�ers.Figure 15: Routing Rules for Transmission T, (Node-Controlling + Edge-Scheduling) Protocol (cont)71

10 Node-Controlling + Edge-Scheduling Protocol:Proofs of TheoremsWe restate and prove our two main theorems for the node-controlling adversary Routing Proto-col:Theorem 8.2. The memory required of each node is at most O(n4(k + log n)).Proof. By looking at the domains of the variables in Figures 9 and 10, it is clear that the BroadcastBu�er and Signature Bu�er maintained by all nodes, and the Data Bu�er of the sender and StorageBu�er of the receiver require the most memory. Each of these require O(n3(k + log n)) bits ofmemory, but each node must maintain O(n) signature bu�ers, which yields the memory bound of
O(n4(k +log n)). It remains to show that the domains described are accurate, i.e. that the protocolnever calls for the nodes to store in more (or di�erent) information than their domains allow. Theproof of this fact walks through the pseudo-code and analyses every time information is added ordeleted from each bu�er, and it can be found in Section 11 (see Lemma 11.2). �Theorem 8.1. Except for the at most n2 transmissions that may fail due to malicious activity, therouting protocol presented described in Sections 8 and 9 enjoys linear throughput. More precisely,after x transmissions, the receiver has correctly outputted at least x − n2 messages. If the numberof transmissions x is quadratic in n or greater, than the failed transmissions due to adversarialbehavior become asymptotically negligible. Since a transmission lasts O(n3) rounds and messagescontain O(n3) bits, information is transferred through the network at a linear rate.Theorem 8.1 will follow immediately from the following three theorems. As with the proofs forthe edge-scheduling protocol, line numbers for the pseudo-code have form (X.YY), where X refersto the Figure number, and YY refers to the line number. It will be convenient to introduce newterminology:De�nition 10.1. We will say a node N ∈ G participated in transmission T if there was at least oneround in the transmission for which N was not on the (sender's) blacklist. The sender's variablethat keeps track of nodes participating in transmission T (10.69) will be called the participating listfor transmission T, denoted by PT (it is updated at the end of every transmission on 15.187).Theorem 10.2. Every transmission (regardless of its success/failure) lasts O(n3) rounds.Proof. Line (11.02) shows that each transmission, regardless of success or failure, lasts 4D = O(n3)rounds. �Theorem 10.3. Suppose transmission T failed and at some later time (after transmission T butbefore any additional nodes have been eliminated) the sender has received all of the status reportparcels from all nodes on PT. Then the sender can eliminate a corrupt node.Proof. The proof of this theorem is rather involved, as it needs to address the three possible reasons(F2-F4) that a transmission can fail. It can be found in Section 10.1 below. �Theorem 10.4. After a corrupt node has been eliminated (or at the outset of the protocol) and beforethe next corrupt node is eliminated, there can be at most n − 1 failed transmissions {T1, . . . , Tn−1}before there is necessarily some index 1 ≤ i ≤ n − 1 such that the sender has the complete statusreport from every node on PTi

. 72

Proof. The theorem will follow from a simple observation:Observation. If N ∈ PT, then the sender is not missing any status report parcel for N forany transmission prior to transmission T. In other words, there is no transmission T
′ < T suchthat N was blacklisted at the end of T′ (as on 15.188) and the sender is still missing statusreport information from N at the end of T.Proof. Nodes are added to the blacklist whenever they were participating in a transmissionthat failed (15.187-88). Nodes are removed from the blacklist whenever the sender receivesall of the status report information he requested of them (14.164-166), or when he has justeliminated a node (15.171), in which case the sender no longer needs status reports fromnodes for old failed transmissions27 (and in particular, this case falls outside the hypothesesof the Theorem). Since PT is de�ned as non-blacklisted nodes (15.187), the fact that N ∈ PTimplies that N was not on the sender's blacklist at the end of T. Also, notice the next lineguarantees that all nodes not already on the sender's blacklist will be put on the blacklistif the transmission fails. Therefore, if N has not been blacklisted since the last node waseliminated (15.169-177), then there have not been any failed transmissions, and hence thesender is not missing any status reports. Otherwise, let T′ < T denote the last time N wasput on the blacklist, as on (15.188). In order for N to be put on PT on line (15.187) oftransmission T, it must have been removed from the blacklist at some point between T

′ andthe end of T. In this case, the remarks at the start of the proof of this observation indicatethe sender is not missing any status reports from N . �Suppose now for the sake of contradiction that we have reached the end of transmission Tn−1, whichmarks the (n−1)st transmission {T1, . . . , Tn−1} such that for each of these n−1 failed transmissions,the sender does not have the complete status report from at least one of the nodes that participatedin the transmission. De�ne the set S to be the set of nodes that were necessarily not on PTn−1 , andinitialize this set to be empty.Since the sender is missing some node's complete status report that participated in T1, there issome node N1 ∈ PT1 from which the sender is still missing a status report parcel corresponding to
T1 by the end of transmission Tn−1. Notice by the observation above that N1 will not be on PT′ forany T2 ≤ T

′ ≤ Tn−1, so put N1 into the set S. Now looking at T2, there must be some node N2 ∈ PT2from which the sender is still missing a status report parcel from T2 by the end of transmission Tn−1.Notice that N2 6= N1 since N1 /∈ PT2 , and also that N2 /∈ PTn−1 (both facts follow from the aboveobservation), so put N2 into S. Continue in this manner, until we have found the (n− 2)th distinctnode that was put into S due to information the sender was still missing by the end of Tn−2. Butthen |S| = n − 2, which implies that all nodes, except for the sender and the receiver, are not on
PTn−1 (the sender and receiver participate in every transmission by Lemma 11.21). But now wehave a contradiction, since Lemma 11.22 says that transmission Tn−1 will not fail. �We are now ready to prove Theorem 8.1, reserving the proof of Theorem 10.3 to the next section.27The sender already received enough information to eliminate a node. Even though it is possible that other nodesacted maliciously and caused one of the failed transmissions, it is also possible that the node just eliminated causedall of the failed transmissions. Therefore, the protocol does not spend further resources attempting to detect anothercorrupt node, but rather starts anew with a reduced network (the eliminated node no longer legally participates),and will address future failed transmissions as they arise.73

Proof of Theorem 8.1. By Theorem 10.2, every transmission lasts at most O(n3) rounds, so it re-mains to show that there are at most n2 failed transmissions. By Theorem 10.4, by the end of atmost n− 1 failed transmissions, there will be at least one failed transmission T such that the senderwill have all status report parcels from every node on PT. Then by Theorem 10.3, the sender caneliminate a corrupt node. At this point, lines (15.169-177) essentially call for the protocol to startover, wiping clear all bu�ers except for the eliminated nodes bu�er, which will now contain theidentity of a newly eliminated node. The transmission of the latest codeword not yet transmittedthen resumes (see comments on (15.214)), and the argument can be applied to the new network,consisting of n − 1 nodes. Since the node-controlling adversary can corrupt at most n − 2 nodes(the sender and receiver are incorruptible by the conforming assumption), this can happen at most
n− 2 times, yielding the bound of n2 for the maximum number of failed transmissions. �10.1 Main Technical Proof of the Node-Controlling + Edge-Scheduling ProtocolIn this section, we aim to prove Lemma 10.3 which states that the sender will be able to eliminatea corrupt node if he has the complete status reports from every node that participated in some failedtransmission T. We begin by formally de�ning the three reasons a transmission may fail, and provethat every failed transmission falls under one of these three cases.Theorem 10.5. At the end of any transmission T, (at least) one of the following necessarily happens:S1. The receiver has received at least D−6n3 distinct packets corresponding to the current codewordF2. S1 does not happen, and the sender has knowingly28 inserted less than D packetsF3. S1 does not happen, the sender has knowingly28 inserted at least D packets, and the receiverhas not received any duplicated packets corresponding to the current codewordF4. S1, F2, and F3 all do not happenProof. That the four cases cover all possibilities (and are disjoint) is immediate. Also, in the caseof S1, the receiver can necessarily decode by Lemma 11.20, and hence that case corresponds to asuccessful transmission. Therefore, all failed transmissions must fall under one of the other threecases. �Note that case F2 roughly corresponds to packet duplication, since the sender is blocked frominserting packets in at least 4D −D rounds, indicating jamming that cannot be accounted for byedge failures alone. Case F3 roughly corresponds to packet deletion, since the D packets the senderinserted do not reach the receiver (otherwise the receiver could have decoded as by Lemma 11.20),and case F4 corresponds to a mixed adversarial strategy of packet deletions and duplications. Wetreat each case separately in Theorems 10.6, 10.11 and 10.12 below, thus proving Theorem 10.3:Proof of Theorem 10.3. Theorem 10.5 guarantees that each failed transmission falls under F2, F3,or F4, and the theorem is proven for each case below in Theorems 10.6, 10.11 and 10.12. �We declare once-and-for-all that at any time, G will refer to nodes still a part of the network,i.e. nodes that have not been eliminated by the sender.28Recall that by the de�nition of �inserted� (see 6.6), the sender may not have received con�rmation (as in De�nition7.6) that a packet he outputted along some edge was received by the adjacent node. Case F3 requires that the senderhas received con�rmation for at least D packets. 74

Handling Failures as in F2: Packet DuplicationThe goal of this section will be to prove the following theorem.Theorem 10.6. Suppose transmission T failed and falls under case F2, and at some later time(after transmission T but before any additional nodes have been eliminated) the sender has receivedall of the status report parcels from all nodes on PT. Then the sender can eliminate a corrupt node.The idea of the proof is as follows. Case F2 of transmission failure roughly corresponds topacket duplication: there is a node N ∈ G who is jamming the network by outputting duplicatepackets. Notice that in terms of network potential (see De�nition 6.10), the fact that N is outputtingmore packets than he is inputting means that N will be responsible for illegal increases in networkpotential. Using the status reports for case F2, which include nodes' signatures on changes ofnetwork potential due to packet transfers and re-shu�ing, we will catch N by looking for a nodewho caused a greater increase in potential than is possible if it had been acting honestly. The formalproof of this fact will require some work. We begin with the following de�nitions:De�nition 10.7. The conforming assumption on the node-controlling and edge-scheduling adver-saries demand that for every round there is a path connecting the sender and receiver consisting ofedges that are �up� and through uncorrupted nodes. We will refer to this path as the active honestpath for round t and denote it by Pt, noting that the path may not be the same for all rounds.De�nition 10.8. We will say that some round t (of transmission T) is wasted if there is an edge
E(A,B) on that round's active honest path such that either Okay To Send Packet (11.31) orOkay To Receive Packet (11.35) returned false.Intuitively, a round is wasted if an edge on the active honest path was prevented from passinga packet either because one of the nodes was blacklisted or because there was important broadcastinformation that had to be communicated before packets could be transferred.Lemma 10.9. There are at most 4n3 wasted rounds in any transmission T.Proof. We will prove this lemma via two claims.Claim 1. Every wasted round t falls under (at least) one of the following cases:1. An edge on Pt transfers ΘT or a parcel of the sender's Start of Transmission (SOT)broadcast2. An edge on Pt transfers the label of a node to remove from the blacklist3. An edge on Pt transfers the information that one of the terminal nodes (on that edge)has the complete status report for a blacklisted node4. A node on Pt learns a status report parcel for a blacklisted node. More speci�cally,there is some node (N̂ , T′, T) that was part of the SOT broadcast (i.e. the node beganthe transmission on the sender's blacklist) and some other honest node N ∈ G such that

N learns a new status report parcel from N̂ corresponding to transmission T
′.Proof. Let t be a wasted round. Denote the active honest path for round t by Pt =

N0N1 . . . Nl. By looking at Okay To Send Packet and Okay To Receive Packet (11.31and 11.35), we �rst argue that that cases 1-3 cover all possible reasons for a wasted round,except the possibility that one node is on the other's blacklist. To see this, we go through each75

line of Okay To Send Packet and Okay To Receive Packet and consider what happensalong a speci�ed edge on Pt, noting that by assumption this edge is active and the neighboringnodes are honest, so the appropriate broadcast parcel will be successfully transferred (11.15).In particular, it will be enough to show that for every reason a round may be wasted, thereis a node on Pt that has broadcast information of type 1-4 (see line (13.115)) that it has yetto transfer across an adjacent edge on Pt, as then we will fall under cases 1-3 of the Claim.� If there is a node Ni on Pt that does not know all parcels of the SOT broadcast (15.200),then �nd the last index 0 ≤ j < i such that Nj knows all of SOT but Nj+1 does not (jis guaranteed to exist since S = N0 knows all of SOT and Ni does not). Then Nj hasbroadcast information of type 2 (13.115) it has not yet sent along its edge to Nj+1.� If there is a node Ni on Pt that knows ΘT or all of SOT but has not yet transferred oneof these parcels across an edge of Pt, or Ni knows the complete status report for someblacklisted node N̂ and Ni has not yet passed this fact along an edge on Pt, then Ni hasbroadcast information of type 1, 2, or 4 (13.115).� If there is a node Ni on Pt that knows of a node N̂ that should be removed from theblacklist, but it has yet to transfer this information across an edge of Pt, then Ni hasbroadcast information of type 3 (13.115).It remains to consider the �nal reason one of these two functions may return false, namelywhen there is some Ni on Pt that is on the blacklist of either Ni−1 or Ni+1. Let BLS denotethe sender's blacklist at the start of round t.� If Ni /∈ BLS, then there will be some index 0 ≤ j < i + 1 such that at the start of round
t, Ni is not on Nj 's blacklist but Ni is on Nj+1's blacklist. We may assume that both
Nj and Nj+1 have received the full start of transmission broadcast, else we would bein one of the above covered cases. Since Ni is on Nj+1's blacklist, Ni must have begunthe transmission on the sender's blacklist (all internal nodes' blacklists are cleared at theend of each transmission (15.203) and restored when they receive the SOT broadcast(15.200), (14.137-138)). However, since Ni is not on Nj 's blacklist as of round t and Njhas received the full SOT broadcast, at some point in T, Nj must have received a parcelfrom the sender indicating Ni should be removed from the blacklist, as on (14.147-149).Since Nj and Nj+1 are both honest and Nj has received the information that Ni shouldbe removed from the blacklist (but Nj+1 has not received this information yet), it must bethat this broadcast information of type 3 (13.115) has not yet been successfully passedalong E(Nj , Nj+1) yet. In particular, Nj has broadcast information of priority at least3 that he has yet to successfully send to Nj+1, so he will send a parcel of priority 1, 2,or 3 in round t, which are in turn covered by Statements 1 and 2 of the Lemma.� If Ni ∈ BLS, then there exist some 0 ≤ j < i such that Nj does not have Ni's completestatus report, but Nj+1 does (since Ni ∈ BLS implies S does not have the completestatus report, but Ni has its own complete status report in its broadcast bu�er, seeStatement 2 of Lemma 11.16). Then if Nj+1 has not yet passed the fact that it has suchknowledge along E(Nj+1, Nj), then Nj+1 had broadcast information of type 4, in whichcase we fall under case 3 of the Claim. On the other hand, if this information has alreadybeen passed along E(Nj+1, Nj), then Statement 4 of Lemma 11.16 implies that Nj isaware that Nj+1 knows the complete status report of Ni (who by choice of j is on Nj'sblacklist), and hence α will necessarily be set as on (13.119 or 13.122) and sent to Nj on76

(13.103)). Consequently, Nj+1 will receive α (13.105) during Stage 1 communicationof round t, and will have broadcast information of type 5 (13.115) it has not sent along
E(Nj , Nj+1) yet. This broadcast parcel can then be sent in Stage 2 communication ofround t (11.15), and this is covered by case 4 of the Claim. �Claim 2. The maximum number of wasted rounds due to Case 1 of Claim 1 is n3, themaximum number of wasted rounds due to Case 2 of Claim 1 is n3/2, the maximum numberof wasted rounds due to Case 3 of Claim 1 is n3, and the maximum number of wasted roundsdue to Case 4 of Claim 1 is n3.Proof.1. ΘT is one parcel (15.179), and the SOT is at most 2n− 1 parcels (15.200), so togetherthey are at most 2n parcels. Since each honest node will only broadcast each of theseparcels at most once across any edge (as long as the broadcast is successful, which it willbe if the round is wasted due to Case 1) and there are at most n2/2 such edges, we havethat Case 1 can happen at most n3 times.2. Lemma 11.23 says that no honest node N will accept more than one distinct parcel(per transmission) that indicates some node N̂ should be removed from the blacklist.Therefore, in terms of broadcasting this information, N will have at most one broadcastparcel per transmission per node N̂ indicating N̂ should be removed from the blacklist.Therefore, it can happen at most n times that an edge adjacent to an honest node willneed to broadcast a parcel indicating a node to remove. Again since the number of edgesis bounded by n2/2, Case 2 can be responsible for a wasted round at most n3/2 times.3. Lemma 11.24 says that for any node N ∈ G that has received the full SOT broadcast fortransmission T, if N is honest then it will transmit along each edge at most once (pertransmission) the fact that it knows some N̂ 's complete status report. Since each nodehas at most n − 1 adjacent edges and there are at most n nodes in G, Case 3 can beresponsible for a wasted round at most n3 times.4. Notice that Case 4 emphasizes the fact that a node on Pt learned a blacklisted node'sstatus report parcel. Since there are at most n − 1 blacklisted nodes at any time (see(15.187-188) and Claim 11.6), and at most n status report parcels per blacklisted node(see (14.142-45) and Lemma 11.7), an honest node can learn a new status report parcelat most n(n − 1) < n2 times per transmission (see Statement 3 of Lemma 11.16 whichsays honest nodes will not ever �unlearn� relevant status report parcels). Since there areat most n nodes, Case 4 can be responsible for a wasted round at most n3 times. �Claim 1 guarantees every wasted round falls under Case 1-4, and Claim 2 says these can happen atmost 4n3 rounds, which proves the lemma. �We now de�ne the notation we will use to describe the speci�c information the status reportscontain in the case of F2 (see (9.12), (9.17), (9.32), and (14.142-145))29:- SIGA,A denotes the net decrease in A's potential due to re-shu�ing packets in the currenttransmission.29On a technical point, since our protocol calls for internal nodes to keep old codeword packets in their bu�ers fromone transmission to the next, packets being transferred during some transmission may correspond to old codewords.We emphasize that the quantities in SIGA,A, SIG[2], and SIG[3] include old codeword packets, while SIG[1] and

SIG[p] do not count old codeword packets (see 11.11 and 12.59-60).77

- SIGA[2]A,B denotes the net increase in B's potential due to packet transfers across directededge E(A,B), as signed by B and stored in A's signature bu�er ((12.75), (11.11), and(11.07)).- SIGA[2]B,A denotes the net decrease in B's potential due to packet transfers across directededge E(B,A), as signed by B and stored in A's signature bu�er. Notice that SIGA[2]B,A ismeasured as a positive quantity, see lines (12.60), (12.62), and (12.74).- SIGA[3]A,B denotes the net decrease in A's potential due to packet transfers across di-rected edge E(A,B), which is signed by A and stored its own signature bu�er. Notice that
SIGA[3]A,B is measured as a positive quantity, see line (12.49).- SIGA[3]B,A denotes the net increase in A's potential due to packet transfers across directededge E(B,A), which is signed by A and stored its own signature bu�er (12.75).Lemma 10.10. Suppose transmission T failed and falls under case F2, and at some later time (aftertransmission T but before any additional nodes have been eliminated) the sender has received all ofthe status reports from every node on PT. Then one of the following two things happens:1. There is some node A ∈ G whose status report indicates that A is corrupt30.2. There is some A ∈ G whose potential at the start of T plus the net increase in potential during
T is smaller than its net decrease in potential during T. More speci�cally, note that A's netincrease in potential, as claimed by itself, is given by:

∑

B∈P\A

SIGA[3]B,AAlso, A's net decrease in potential, as documented by all of its neighbors and its own lossdue to re-shu�ing, is given by:
SIGA,A +

∑

B∈P\A

SIGB [2]A,BThen case 2) says there exists some A ∈ G such that:
4n3 − 4n2 +

∑

B∈P\A

SIGA[3]B,A < SIGA,A +
∑

B∈P\A

SIGB [2]A,B , (16)where the 4n3 − 4n2 term on the LHS is an upper bound for the maximum potential a nodeshould have at the outset of a transmission (see proof of Claim 6.2).Proof. The idea of the proof is to use Lemma 11.12, which argues that in the absence of maliciousactivity, the network potential should drop by at least n every (non-wasted) round in which thesender is unable to insert a packet. Then since the sender could not insert a packet in at least 3D30This includes, but is not limited to: 1) The node has returned a (value, signature) pair, where the value isnot in an appropriate domain; 2) The node has returned non-zero values indicating interaction with blacklisted oreliminated nodes; 3)The node has reported values for SIGA[3]S,A that are inconsistent with the sender's quantity
SIGS[2]S,A; or 4) The node has returned outdated information in their status report. By �outdated� information, wemean that as part of its status report, A returned a (value, signature) pair using a signature he received in round tfrom one of A's neighbors N , but in N 's status report, N provided a (value, signature) pair from A indicating theycommunicated after round t and that A was necessarily using an outdated signature from N .78

rounds (case F2 states the sender inserted fewer than D packets in the 4D rounds of the transmission)and since there are at most 4n3 wasted rounds per transmission, the network potential should havedropped by at least (n)(3D− 4n3) > 2nD + 8n4 (since D = 6n3

λ
> 12n3 as λ < 1/2). However, thisis impossible, since the maximum network potential in the network at the start of the transmission(which is upper bounded from the capacity of the network) is 4n4 (Lemma 6.2) plus the maximumamount of network potential increase during transmission T is 2nD (since the sender inserted fewerthan D packets at maximum height 2n), and hence the sum of these is less than 2nD+8n4, resultingin a negative network potential. Since network potential can never be negative, there must be illegalincreases to network potential not accounted for above, and the node responsible for these increasesis necessarily corrupt. We now formalize this argument, showing how to �nd such an o�ending nodeand prove it is corrupt.Let β denote the number of rounds in transmission T that the sender was blocked from insertingany packets, and P denote the participating list for T.Obs. 1: If there exists A ∈ P such that one of the following inequalities is not true, then A iscorrupt.

0 ≤ SIGA,A 0 ≤
∑

B∈P\{A,S}

(SIGA[2]B,A − SIGA[3]B,A)Proof. The above inequalities state that for honest nodes, the potential changes due to re-shu�ing and packet transfers are strictly non-positive (this was the content of Lemma 6.11).This observation is proved rigorously as Statements 4 and 5 of Lemma 11.9 in Section 11. �Obs. 2: The increase in network potential due to packet insertions is at most 2nD + 2n2. Moreprecisely, either there exists a node A ∈ G such that the sender can eliminate A, or the followinginequality is true: ∑

A∈P\S

SIGA[3]S,A < 2nD + 2n2 (17)Proof. By hypothesis, the sender knowingly inserted less than D packets in transmission T,and each packet can increase network potential by at most 2n. The sum on the LHS of(17) represents the increase in potential claimed by nodes participating in T caused by packetinsertions. This quantity should match the sender's perspective of the potential increase(which is at most 2nD), with the exception of potential increases caused by packets thatwere inserted but S did not received con�rmation of receipt (see De�nition 7.6). There canbe at most one such packet per edge, causing an additional potential increase of at most 2nper edge. Adding this additional potential increase to the maximum increase of 2nD of thesender's perspective is the RHS of (17). The formal proof can be found in Lemma 11.15 inSection 11. �Obs. 3: β ≥ 3D − n. (Recall that β denotes the number of blocked rounds in T.)Proof. Since the sender knowingly inserted fewer than D packets, there could be at most npackets (one packet per edge) that was inserted unbeknownst to S, and hence the sender musthave been blocked for (at least) all but D + n of the rounds of the transmission. Since thenumber of rounds in a transmission is 4D (11.02), we have that β ≥ 3D − n. �79

Let HT ⊆ PT denote the subset of participating nodes that are honest (the sender is of courseoblivious as to which nodes are honest, but we will nevertheless make use of HT in the followingargument). For notational convenience, since transmission T is �xed, we suppress the subscript andwrite simply H and P. We make the following simple observations:Obs. 4: The following inequality is true:
2nD + 4n4 − 4n3 + 2n2 <

∑

A∈H\S

SIGA,A +
∑ ∑

A∈H\S B∈P\{A,S}

(SIGA[2]B,A − SIGA[3]B,A) (18)Proof. This follows immediately from Observation 3 and Lemma 11.12, since:
n(βT − 4n3) ≥ n(3D − n− 4n3)

≥ 2nD + 4n4 − 4n3 + 2n2,where the �rst inequality is Observation 3, and the second follows because D = 6n3/λ ≥

8n3 ≥ 8n3 − 4n2 + 3n. �Obs. 5: Either a corrupt node can be identi�ed as in Obs. 1 or 2, or there is some A ∈ P suchthat:
4n3 − 4n2 < SIGA,A +

∑

B∈P\A

SIGB [2]A,B − SIGA[3]B,A (19)Proof. Consider the following inequalities:
2nD + 4n4 − 4n3 + 2n2 <

∑

A∈H\S

SIGA,A +
∑ ∑

A∈H\S B∈P\{A,S}

(SIGA[2]B,A − SIGA[3]B,A)

≤
∑

A∈P\S

SIGA,A +
∑ ∑

A∈P\S B∈P\{A,S}

(SIGA[2]B,A − SIGA[3]B,A)

=
∑

A∈P\S

SIGA,A +
∑ ∑

A∈P\S B∈P\{A,S}

(SIGB [2]A,B − SIGA[3]B,A) (20)Above, the top inequality follows from Obs. 4, the second inequality follows from Obs. 1, andthe third line is a re-arranging and re-labelling of terms. Subtracting 2nD + 2n2 from bothsides:
4n4 − 4n3 <

∑

A∈P\S

SIGA,A +
∑ ∑

A∈P\S B∈P\{A,S}

(SIGB [2]A,B − SIGA[3]B,A) − 2nD − 2n2

<
∑

A∈P\S

SIGA,A +
∑ ∑

A∈P\S B∈P\{A,S}

(SIGB [2]A,B − SIGA[3]B,A) +
∑

A∈P\S

−SIGA[3]S,A

=
∑

A∈P\S

SIGA,A +
∑ ∑

A∈P\S B∈P\{A,S}

(SIGB [2]A,B − SIGA[3]B,A) +

∑

A∈P\S

(SIGS [2]A,S − SIGA[3]S,A)

=
∑

A∈P\S

SIGA,A +
∑

A∈P\S

∑

B∈P\A

(SIGB [2]A,B − SIGA[3]B,A) (21)80

Above, the top inequality is from (20), the second follows from Obs. 2, the third line is because
SIGS [2]A,S = 0 for all A ∈ G (S never receives a packet from anyone, see (11.21-22)), andthe �nal line comes from combining sums. Using an averaging argument, this implies there issome A ∈ P \ S such that:

4n3 − 4n2 < SIGA,A +
∑

B∈P\A

(SIGB [2]A,B − SIGA[3]B,A), (22)which is (19). �Therefore, if a node cannot be eliminated as in Obs. 1 or 2 (which are covered by Case 1 of Lemma10.10), then Obs. 5 implies that Case 2 of Lemma 10.10 is true. �Proof of Theorem 10.6. This Theorem now follows immediately from Lemma 10.10 and the factthat a node A ∈ G for which (16) is true is necessarily corrupt. Intuitively, such a node A ∈ Gis corrupt since the potential decrease at A is higher than can be accounted for by A's potentialat the outset of T plus the potential increase due to packet insertions from the sender. The formalstatement and proof of this fact is the content of Corollary 11.14. �Handling Failures as in F3: Packet DeletionThe goal of this section will be to prove the following theorem.Theorem 10.11. Suppose transmission T failed and falls under case F3, and at some later time(after transmission T but before any additional nodes have been eliminated) the sender has receivedall of the status report parcels from all nodes on PT. Then the sender can eliminate a corrupt node.The idea of the proof is as follows. Case F3 of transmission failure roughly corresponds to packetdeletion: there is a node N ∈ G who is deleting some packets transferred to it instead of forwardingthem on. Using the status reports for case F3, which include nodes' signatures on the net numberof packets that have passed across each of their edges, we will catch N by looking for a node whoinput more packets than it output, and this di�erence is greater than the bu�er capacity of thenode.Proof. We �rst de�ne the notation we will use to describe the speci�c information the status reportscontain in the case of F3 ((9.17), (9.32), and (14.144)):- SIGA[1]A,B denotes the net number of packets that have travelled across directed edge
E(A,B), as signed by B and stored in A's (outgoing) signature bu�er.- SIGA[1]B,A denotes the net number of packets that have travelled across directed edge
E(B,A), as signed by B and stored in A's (incoming) signature bu�er.By the third Statement of Lemma 11.13, either a corrupt node can be eliminated, or the followingis true for all A,B ∈ G:

|SIGA[1]B,A − SIGB [1]B,A| ≤ 1 and |SIGA[1]A,B − SIGB [1]A,B | ≤ 1Then summing over all A,B ∈ P:
∑

A,B∈P,A 6=B

|SIGA[1]B,A − SIGB [1]B,A| ≤ n2 (23)81

This in turn implies that:
−n2 ≤

∑

A,B∈P,A 6=B

(SIGA[1]B,A − SIGB [1]B,A)

=
∑

A∈P

∑

B∈P\A

(SIGA[1]B,A − SIGA[1]A,B)

=
∑

B∈P\R

SIGR[1]B,R −
∑

B∈P\S

SIGS [1]S,B +
∑

A∈P\{R,S}B∈P\A

∑ (
SIGA[1]B,A − SIGA[1]A,B

)

≤ −6n3 +
∑

A∈P\{R,S}B∈P\A

∑
(SIGA[1]B,A − SIGA[1]A,B)The �rst inequality is from (23), the second line is from re-labelling and re-arranging terms, thethird line comes from separating out the terms A = S and A = R and noting that SIGR[1]R,B =

SIGS [1]B,S = 0 (since the receiver will never output packets to other nodes and the sender willnever input packets, see (11.16-20) and (11.21-22)), and the �nal inequality is due to the factthat we are in case F3, so the sender knowingly inserted D packets, but the receiver received fewerthan D − 6n3 packets corresponding to the current codeword31. Using an averaging argument, wecan �nd some A ∈ G such that:
4n2 − 8n < 6n2 − n <

∑

B∈P\A

(SIGA[1]B,A − SIGA[1]A,B), (24)where the �rst inequality is obvious. Statement 7 of Lemma 11.9 now guarantees that A is corrupt32.
�Handling Failures as in F4: Packet Duplication + DeletionThe goal of this section will be to prove the following theorem.Theorem 10.12. Suppose transmission T failed and falls under case F4, and at some later time(after transmission T but before any additional nodes have been eliminated) the sender has receivedall of the status report parcels from all nodes on PT. Then the sender can eliminate a corrupt node.The idea of the proof is as follows. Case F4 of transmission failure roughly corresponds to packetduplication and packet deletion: there is a node N ∈ G who is replacing valid packets with copies ofold packets it has already passed on. Therefore, simply tracking potential changes and net packetsinto and out of N will not help us to locate N , as both of these quantities will be consistent withhonest behavior. Instead, we use the fact that case F4 implies that the receiver will have receivedsome packet p (from the current codeword) twice. We will then use the status reports for case F4,which include nodes' signatures on the net number of times p has crossed each of their edges, to�nd a corrupt node N by looking for a node who output p more times than it input p.31More precisely, F3 states that the sender knowingly inserted at least D packets and the receiver did not receiveany packet (from the current codeword) more than once. By Fact 1', since we are not in case S1, the receiver gotfewer than D − 6n3 distinct packets corresponding to the current codeword.32Intuitively, A must be corrupt since the sum on the RHS of (24) represents the net number of packets A inputminus the number of packets A output. Since this di�erence is larger than the capacity of A's internal bu�ers, Amust have deleted at least one packet and is necessarily corrupt.82

Proof. By de�nition of F4, the receiver received some packet p (corresponding to the current code-word) at least twice. Therefore, when (15.178-179) is reached, the receiver will send the label of
p back to the sender (which reaches S by the end of the transmission by Lemma 11.19), and this isin turn broadcasted as part of the sender's start of transmission broadcast in the following trans-mission ((15.190-192) and (15.200)). We will use the following notation to describe the speci�cinformation the status reports contain in the case of F4 (see (9.17) and (9.32)):- SIGA[p]A,B denotes the net number of times p has travelled across directed edge E(A,B), assigned by B and stored in A's (outgoing) signature bu�er.- SIGA[p]B,A denotes the net number of times p has travelled across directed edge E(B,A), assigned by B and stored in A's (incoming) signature bu�er.Consider the following string of equalities:

0 =
∑

A∈PT

∑

B∈PT

(SIGA[p]B,A − SIGA[p]B,A)

=
∑

A∈PT

∑

B∈PT

(SIGB [p]A,B − SIGA[p]B,A)

=
∑

A∈PT\{R,S} B∈PT

∑
(SIGB [p]A,B − SIGA[p]B,A) +

∑

B∈PT

(SIGB [p]R,B − SIGR[p]B,R) +

∑

B∈PT

(SIGB [p]S,B − SIGS [p]B,S)

=
∑

A∈PT\{R,S} B∈PT

∑
(SIGB [p]A,B − SIGA[p]B,A) +

∑

B∈PT

(SIGB [p]S,B − SIGR[p]B,R) (25)The �rst equality is trivial, the second equality comes from re-labelling and rearranging the termsof the sum, the third comes from separating out the A = S and A = R terms, and the �nal equalityresults from the fact that R never outputs packets and S never inputs packets, and hence they willnever sign non-zero values for SIG[p]R,B or SIG[p]B,S , respectively (see (11.16-20) and (11.21-22)). Because p was received by R at least twice (by choice of p) and S will never send any packetto more than one node33, we have that:
∑

B∈PT

(SIGB [p]S,B − SIGR[p]B,R) ≤ −1 (26)Plugging this into (25) and rearranging:
1 ≤

∑

A∈PT\{R,S} B∈PT

∑
(SIGB [p]A,B − SIGA[p]B,A) (27)By an averaging argument, there must be some A ∈ PT \ {R,S} such that:

1 ≤
∑

B∈PT

(SIGB [p]A,B − SIGA[p]B,A) (28)Now Statement 8 of Lemma 11.9 says that A is necessarily corrupt34. �33This was proven in Observations 2-3 of Lemma 7.13 for the edge-scheduling protocol. However, the proofs ofthese observations remain valid in the (node-controlling+edge-scheduling) model because the sender is honest (bythe conforming adversary assumption).34Intuitively, A is corrupt since (28) says that it has output p more times than it input p.83

11 Node-Controlling + Edge-Scheduling Protocol:Pseudo-Code Intensive ProofsIn this section, we give detailed proofs that walk through the pseudo-code of Figures 9 - 15to argue very basic properties the protocol satis�es. The following lemma will relieve the need tore-prove many of the lemmas of Sections 6 and 7.Lemma 11.1. Di�erences between the edge-scheduling adversary protocol and the (node-controlling
+ edge-scheduling) adversary protocol all fall under one of the following cases:1. Extra variables in the Setup Phase2. Length of transmission and codeword being transmitted for the current transmission3. Need to authenticate signatures on packets, as on (11.08) and (12.68)4. Need to check if it is okay to send/receive packets, as on (12.59) and (12.63)5. Broadcasting information, i.e. transmission of broadcast parcels and modi�cations of BroadcastBu�er, Data Bu�er, and Signature Bu�erFurthermore, di�erences as in Cases 3 and 4 are identical to having an edge-fail in the edge-scheduling adversary protocol. Also, di�erences as in Case 5 a�ect the routing protocol only insofaras their a�ect on Cases 3 and 4 above. Furthermore, between any two honest nodes, the authen-tications of Case 3 never fail, and Case 4 failures correspond to �wasted� rounds (see De�nition10.8).Proof. Comparing the pseudo-code of Figures 5, 6, and 7 to Figures 11, 12, and 15, as emphasizedby line numbers in bold face in the latter three, it is clear that all di�erences fall under Cases 1-5of the lemma. Also, all of the other methods in Figures 13-15 fall under Cases 4 and 5.As for the di�erences as in Cases 3 and 4, it is clear that failing Verify Signature One on(12.86-87) is equivalent to the edge failing during Stage 2 (i.e. as if p = ⊥ on (12.62) causing(12.69) to fail); failing Verify Signature Two on (12.89-90) is equivalent to the edge failingduring Stage 1 (since this sets HIN and RR to ⊥ on (12.90), which is equivalent to the commu-nication on (5.06) not being received); failing Okay to Send Packet on (12.59) is equivalent tothe edge failing during Stage 2 (so that nothing is received on lines (11.22/12.62)); and failingOkay to Receive Packet on (12.63) is equivalent to the edge failing during Stage 1 (i.e. as ifnothing is received on (11.13), so that HOUT = ⊥ on (12.63)). Finally, di�erences as in Case 5do not directly a�ect routing (except their a�ects captured by Cases 3 and 4) since the transfer ofbroadcast parcels and maintenance of the related bu�ers (signature, broadcast, and data bu�ers)happen independently of the routing of codeword packets. This is evident by investigating therelevant bold lines in Figures 11, 12, and 15.The second part of the last sentence is true by de�nition of wasted (see De�nition 10.8), andthe �rst part follows from lines (11.11), (12.49), (12.60), (12.75), and Lemma 11.17. �Lemma 11.2. The domains of all of the variables in Figures 9 and 10 are appropriate. In otherwords, the protocol never calls for more information to be stored in an honest node's variable (bu�er,packet, etc.) than the variable has room for. 84

Proof. The proof for variables and bu�ers that also appear in the edge-scheduling protocol followsfrom Lemmas 7.1 and 7.2, since all di�erences between the edge-scheduling protocol and the (node-controlling + edge-scheduling) protocol are equivalent to an edge-failure (Lemma 11.1). So itremains to prove the lemma for the new variables appearing in Figures 9 and 10 (i.e. the bold linenumbers). The distribution of public and private keys (9.14) is performed by a trusted third party,so these variables are as speci�ed. Below, when we refer to a speci�c node's variable, we implicitlyassume the node is honest, as the lemma is only concerned about honest nodes.Bandwidth P (9.06). We look at all transfers along each directed edge in each stage of anyround. In Stage 1, this includes the transfer of HOUT , HFP , FR (11.06), cbp, α (11.04),and the seven signed items on (11.11). All of these have collective size O(k + log n) ((9.03-04), (9.21), (9.23), (9.24), (9.27), (9.29), (9.32), (9.35), and (9.36)). In Stage 2, thisincludes the transfer of the seven items on (12.60) and bp (11.15). Collectively, these havesize O(k + log n) ((9.03-04), (9.17), (9.18), (9.21), and (9.42)).Potential Lost Due to Re-Shu�ing SIGN,N (9.12). This is initialized to zero on (10.46), afterwhich it is only updated on (7.76), (12.50), (12.80), (12.82), (14.128), (14.133), (14.141),and (14.146). The �rst four of these increment SIGN,N by at most 2n, and the latter four allreset SIGN,N to zero. We will see in Lemma 11.16 below that SIGN,N will always representthe potential lost due to re-shu�ing in at most one failed transmission, and consequently
SIGN,N is polynomial in n, as required.Broadcast Parcel bp to Receive (9.27). This is initialized to ⊥ on (10.58), after which it isonly updated on (13.93). Either no value was received on (13.93) (in which case bp = ⊥),or it corresponds to the value sent on (13.97). As discussed below, the value of bp sent on(13.97) lies in the appropriate domain, and hence so does bp.Broadcast Bu�er Request α (9.28). This is initialized to ⊥ on (10.58), after which it is onlyupdated as in Broadcast Parcel to Request (13.117-122). On (13.117), α is set to ⊥,and on (13.119) and (13.122), α includes the label of a node and a status report parcel (see14.142-145), and so α is bounded by O(k + log n) = P as required.Outgoing Veri�cation of Broadcast Parcel Bit cbp (9.29). This is initialized to zero on (10.58),after which it is only updated as on (12.40) and (13.111), where it clearly lies in the appro-priate domain.Broadcast Parcel bp to Send (9.42). This is initialized to ⊥ on (10.52), after which it isonly updated as in Determine Broadcast Parcel to Send (13.115). Looking at the sixtypes of broadcast parcels on line (13.115) and comparing the corresponding domains of thesevariables in Figures 9 and 10, we see that in each case, bp can be expressed in O(k+log n) = Pbits.Incoming Veri�cation of Broadcast Parcel Bit cbp (9.43). This is initialized to zero on (10.52),after which it is only updated as on (13.105) and (13.108). The value it takes on (13.105)will either be set to zero (if no value was received), or it will equal the value of cbp sent on(13.101), which as shown above is either a one or zero. Meanwhile, the value it takes on(13.108) is zero, so at all times cbp equals one or zero, as required.85

First Parcel of Start of Transmission Broadcast ΩT (10.66). This is initialized to (0, 0, 0, 0) on(10.72) and is only changed on (15.174), (15.184), (15.192), (15.195), and (15.198). Inall of these cases, it is clear that ΩT can be expressed in O(log n) bits, as required.Number of Rounds Blocked βT (10.67). This is initialized to zero on (10.71) and is onlychanged on (11.27), (15.172), and (15.201). Notice that in the latter two cases, βT isreset to zero, while βT can only be incremented by one on (11.27) at most 4D times pertransmission by (11.02). Since either line (15.172) or line (15.201) is reached at the end ofevery transmission (in the case a node is not eliminated as on line (14.163) or (14.168), line(15.201) will be reached by the call on (11.29)), βT ∈ [0..4D] at all times, as required.Number of Failed Transmissions F (10.68). This is initialized to zero on (10.71) and is onlychanged on (15.172) and (15.186). Notice that F is only incremented by one as on line(15.186) when a transmission fails. As was shown in Theorem 10.4, there can be at most
n−1 failed transmissions before a node can necessarily be eliminated, in which case F is resetto zero on (15.172).Participating List PT (10.69). This is initialized to G on (10.73) and is only changed on(15.173) and (15.187), where it is clear each time that PT ⊆ G in both places.End of Transmission Parcel ΘT (10.77). This is initialized to ⊥ on (10.79) and is only changedon (15.179), where it is clear that ΩT can be expressed in O(k+log n) bits as required (packetshave size O(k + log n), and the index of a transmission requires O(log n) bits).Broadcast Bu�er BB (9.08). We treat the sender's broadcast bu�er separately below, andconsider now only the broadcast bu�er of any internal node or the receiver. Notice that thebroadcast bu�er is initially empty (10.46). Looking at all places information is added to
BB (lines (13.106-107), (14.125), (14.127), (14.130), (14.136), (14.138), (14.142-145),(14.148-149), (14.154), and (14.155)), we see that there are 7 kinds of parcels stored in thebroadcast bu�er, as listed on (13.115) (the 7th type is to indicate which parcel to send acrosseach edge, as on (13.106)). We look at each one separately, stating the maximum number ofbits it requires in any broadcast bu�er. For all of the items below, the comments on (14.123)ensure that there are never duplicates of the same parcel in BB at the same time, and alsothat every parcel in BB has associated with it n − 1 bits to indicate which edges the parcelhas travelled across (see e.g. (13.107), (14.125), (14.127), (14.130), (14.136), (14.138),(14.148), and (14.154)). Totaling all numbers below, we see that the BB needs to hold atmost n2 + 5n broadcast parcels, with each parcel needing to record which of the n− 1 edgesit has traversed, which proves the domain on (9.08) is correct.1. Receiver's End of Transmission Parcel ΘT. This is added to a node's broadcastbu�er on (14.125), and removed on (15.203). Since every internal node and the receiverwill reach (15.203) at the end of every transmission ((11.30) and (15.203)), and bythe inforgibility of the signature scheme, there is only one valid ΘT per transmission T.Therefore, each node will have at most one broadcast parcel of this type in BB at anytime.2. Sender's Start of Transmission Parcels. These are added to a node's broad-cast bu�er on (14.127), (14.130), (14.136), and (14.138), and they are removed on86

(15.203). Since every internal node and the receiver will reach (15.203) at the end ofevery transmission ((11.30) and (15.203)), by the inforgibility of the signature scheme,for every transmission T, there is only one valid ΩT in BB at any time. Notice that ΩTcan hold up to 1 parcel for 200a, n− 1 valid parcels for 200b and 200d together, and upto n − 1 valid parcels for 200c (see (15.200), and use the fact that S /∈ EN,BL andTheorem 10.4). Therefore, each node will have at most 2n broadcast parcels of this typein BB at any time.3. Label of a Node to Remove from the Blacklist. Parcels of this nature are addedto a node's broadcast bu�er on (14.148) and removed on (15.203). Since every internalnode and the receiver will reach (15.203) at the end of every transmission ((11.30)and (15.203)), we argue that in any transmission, every node will have at most n − 1parcels in their broadcast bu�er corresponding to the label of a node to remove fromthe blacklist. To see this, we argue that the sender will add (N̂ , 0, T) to his broadcastbu�er as on (14.165) at most once for each node N̂ ∈ P \ S per transmission, and thenuse the inforgibility of the signature scheme to argue each node will add a correspondingbroadcast parcel to their broadcast bu�er as on (14.148) at most n− 1 times. That thesender will enter line (14.165) at most once per node per transmission is clear since oncethe sender has reached (14.165) for some node N̂ , the node will be removed from hisblacklist on (14.166), and nodes are not re-added to the blacklist until the end of anytransmission, as on (15.188). Therefore, once the sender has received some node N̂ 'scomplete status report as on (14.164), that same line cannot be entered again by thesame node N̂ in the same transmission. In summary, there are at most n− 1 broadcastparcels of this type in any node's broadcast bu�er at any time.4. The Label of a Node N̂ Whose Status Report is Known to N . We show thatfor any node N ∈ P \S, there are at most (n−1) broadcast parcels of type 4 (13.115) in
BB at any time35. This follows from the same argument as above, where it was shownthat (14.164) can be true at most once per node per transmission. The inforgibilityof the signature scheme ensures that the same will be true for internal nodes regardingline (14.155), and since this is the only line on which broadcast parcels of this kind areadded to BB, this can happen at most n − 1 times per transmission. However, we arenot yet done with this case, because broadcast information of this type is not removedfrom BB at the end of each transmission like the above forms of broadcast information.Therefore, we �x N̂ ∈ G, and show that if N adds a broadcast parcel to BB of form
(N, N̂ , T′) as on (14.155) of transmission T, then necessarily BB was not already storinga broadcast parcel of form (N, N̂ , T′′) for some other T′′ 6= T

′ (if T′′ = T
′, then there isnothing to show, as nothing new will be added to BB by the comments on 14.123).For the sake of contradiction, suppose that BB is already storing a parcel of form

(N, N̂ , T′′) when (14.155) of transmission T is entered and N is called to add (N, N̂, T′)to BB for some T
′ 6= T

′′. Since (14.155) is reached, we must have that (14.152) wassatis�ed for the bp appearing there. In particular, N̂ is on N 's version of the blacklist.Since the blacklist is cleared at the end of every transmission (15.203), it must bethat (N̂ , T′, T) was added to N 's version of the blacklist during the SOT broadcast forthe current transmission T, as on (14.137-138). Therefore, all parcels in BB of form35The (n − 1) comes from the fact that there are no status reports for the sender.87

(N, N̂ , T′′) for T′′ 6= T
′ should have been removed from BB on line (14.139), yielding thedesired contradiction.5-6. Status Report Parcels. We �x N ∈ G and show that for every N̂ ∈ P \ {S,N},there are at most n status report parcels corresponding to N̂ in N 's broadcast bu�er,and hence N 's broadcast bu�er will hold at most n(n − 1) status report parcels at anytime. Since a single node's status report for a single transmission consists of at most nparcels (see lines (14.142-145)36), it will be enough to show that for every N̂ ∈ P \ S,at all times N 's broadcast bu�er only holds status report parcels for N̂ corresponding toa single failed transmission T

′.For the sake of contradiction, suppose that during some transmission T, there is somenode N̂ ∈ P \ S and two transmissions T′ and T
′′ such that N 's broadcast bu�er holdsat least one status report parcel for N̂ from both T

′ and T
′′. Notice that status reportparcels are only added to BB as on (14.154), and without loss of generality supposethat the status report parcel of N̂ corresponding to T

′′ was already in BB when onecorresponding to T
′ is added to BB as on (14.154) of transmission T. As was arguedabove, since (14.154) is reached in T, (14.152) must have been satis�ed, and since N 'sblacklist is cleared at the end of every transmission (15.203), it must be that a broadcastparcel of form (N̂ , T̂, T), adding N̂ to N 's version of the blacklist, was received earlierin transmission T. Notice that necessarily T̂ = T

′, since otherwise line (14.153) will notbe satis�ed. But then since T
′′ 6= T

′, all status report parcels of N̂ corresponding totransmission T
′′ should have been removed from BB on (14.139), yielding the desiredcontradiction.Now for a N 's own status report parcels, these are added to BB on (14.142-145).Investigating lines (14.137), (14.139), and (14.140), we see that status reports of Ncan occupy BB for at most one failed transmission.7. Requested Parcel for Each Edge. For any edge E(A,N), N will have at mostone copy of a parcel like α as on (13.106) at any time, since the old version of α issimultaneously deleted when the new one is added on (13.106). Since each node has

(n− 1) incoming edges, BB need hold at most n− 1 parcels of this form at any time.Data Bu�er DB, Eliminated List EN , and Blacklist BL (9.09-11). We treat the sender'sbroadcast bu�er separately below, and consider now only the data bu�er of any internal nodeor the receiver. The data bu�er (which includes the blacklist and list of eliminated nodes) isinitially empty (10.46). A node N 's data bu�er holds three di�erent kinds of information:blacklist, list of eliminated nodes, and for each neighbor B̂ ∈ G, a list of nodes N̂ ∈ G forwhich B̂ knows the complete status report (see item 4 on line (13.115)). Below, we showthat these contribute at most n − 1, n − 1, and (n − 1)2 parcels (respectively), so that DBrequires at most n2 parcels at any time.Blacklist BL. Each entry of BL is initialized to ⊥ on (10.46), and BL is only modi�edon lines (14.134), (14.138), (14.148), and (15.203). BL is an array with n− 1 entries,indexed by the nodes in P \S. When a node (N̂ , T) is added to BL as on (14.138), thismeans that the entry of BL corresponding to N̂ is switched to be T. When a node (N̂ , T)36We assume that the signature bu�er information for two directed edges E(A,B) and E(B,A) are combined intoone status report parcel. 88

is removed from BL as on (14.148), this means that the entry of BL corresponding to
N̂ is switched to ⊥. Finally, when BL is to be cleared as on (14.134) and (15.203), thismeans that BL each entry of BL is set to ⊥. Thus, in all cases, BL ∈ [1..n− 1]×{0, l}Pas required.List of Eliminated Nodes EN . Each entry of EN is initialized to ⊥ on (10.46),and is only modi�ed on line (14.132). EN is an array with n − 1 entries, indexed bythe nodes in P \ S. Here, when a node (N̂ , T) is added to EN , this means the entry of
EN corresponding to N̂ is switched to T. Thus, at all times EN ∈ [1..n− 1]×{0, l}P asrequired.Which Neighbor's Know Another Node's Status Report. Parcels of this kindare only added to or removed from DB on lines (14.134), (14.139), (14.149), and(14.151). We will now show that for any pair of nodes N̂ , B̂ ∈ P \ S, the data bu�erof any node N ∈ G will have at most one parcel of the form (B̂, N̂ , T′), from which weconclude that this portion of N 's data bu�er need hold at most (n − 1)2 parcels. Tosee this, we �x B̂ and N̂ in G and suppose for the sake of contradiction that N 's databu�er holds two di�erent parcels (B̂, N̂ , T′) and (B̂, N̂ , T′′), for T′ 6= T

′′. We consider thetransmission T for which this �rst happens, i.e. without loss of generality, (B̂, N̂ , T′) isadded to DB as on (14.151) of T. Since the second part of (14.151) is reached, the�rst part of (14.151) must have been satis�ed, and since the blacklist is cleared at theend of every transmission (15.203), it must be that a broadcast parcel of form (N̂ , T̂, T)adding N̂ to N 's version of the blacklist was received earlier in transmission T. Noticethat necessarily T̂ = T
′, since otherwise line (14.151) will not be satis�ed. But then since

T
′′ 6= T

′, (B̂, N̂ , T′′) should have been removed from DB as on (14.139) of transmission
T, yielding the desired contradiction.Adding these three contributions, we see that that DB requires at most n2 parcels, as required.Outgoing Signature Bu�ers SIG (9.17). Each outgoing signature bu�er is initially empty(10.54), and they are only modi�ed on (12.48-49), (14.128), (14.133), (14.141), and(14.146). The �rst of these increments SIG[3] by at most 2n, increments SIG[1], and SIG[p]by at most 1, and increments SIG[2] by at most 2n, and the latter four lines all reset all entriesof SIG to ⊥. Since our protocol is only intended to run polynomially-long (in n), each entryof SIG is polynomial in n, as required.Incoming Signature Bu�ers SIG (9.32). Each incoming signature bu�er is initially empty(10.48), and they are only modi�ed on (12.74-75), (14.128), (14.133), (14.141), and(14.146). The �rst of these increments SIG[3] by at most 2n, SIG[1] and SIG[p] by atmost 1, and SIG[2] by at most 2n, and the latter four lines all reset all entries of SIG to

⊥. Since our protocol is only intended to run polynomially-long (in n), each entry of SIG ispolynomial in n, as required.Copy of Packets Bu�er COPY (10.60). COPY is �rst �lled on (10.74)/(15.214), with acopy of every packet corresponding to the �rst codeword. The only place it is modi�ed afterthis is on (15.214), where the old copies are �rst deleted and then replaced with new ones.89

Sender's Broadcast Bu�er BB. In contrast to an internal node's broadcast bu�er, the only thingthe sender's broadcast bu�er holds is the Start of Transmission broadcast (15.200) and theinformation that a node should be removed from the blacklist, see (14.165). Notice that at theoutset of the protocol, BB only holds the Start of Transmission broadcast, which is comprisedby only Ω1 = (0, 0, 0, 0) (10.72-73). After this, the only changes made to BB appear on lines(14.165), (15.171), (15.199), and (15.200). Notice that for every transmission, necessarilyeither (15.171) or (15.199) will be reached, and hence at any time of any transmission T, BBcontains parcels corresponding to at most one Start of Transmission broadcast, and whateverparcels were added to BB so far in T. By investigating line (15.200) and using Lemma 10.4,the former requires at most 2n parcels, and by the comment on (14.156), the latter requiresat most n parcels (14.165). Therefore, the sender's broadcast bu�er requires at most 3nparcels, as required.Sender's Data Bu�er DB, Eliminated List EN , and Blacklist BL (10.62-64). We will show thatthe sender's DB needs to hold at most n3 + n2 + n parcels at any time, and that the blacklistand list of eliminated nodes need at most n parcels each. Notice that every entry of DB isinitialized to ⊥ on (10.73), after which modi�cations to DB occur only on lines (14.158),(14.160), (14.162), (14.166), (15.170), (15.171), (15.187), (15.188), (15.191), (15.194),(15.197), and (15.199). The sender's data bu�er holds eight di�erent kinds of information:end of transmission parcel ΘT, status report parcels, the participating list for up to n − 1failed transmissions, the reason for failure for up to n− 1 failed transmissions, its own statusreports for up to n−1 failed transmissions, the blacklist, list of eliminated nodes, and for eachneighbor B ∈ G, a list of nodes N̂ ∈ G for which B̂ knows the complete status report (seeitem 4 on line (13.115)).1. End of Transmission Parcel ΘT. Modi�cations to this occur only on lines (14.158),(15.171), and (15.199). Every transmission, the inforgibility of the signature schemeand the comment on line (14.156) guarantee that the sender will add ΘT to DB as on(14.158) at most once. Meanwhile, for every transmission, either (15.171) or (15.199)will be reached exactly once. Therefore, there is at most one End of Transmission parcelin DB at any time.2. Blacklist BL. We show that BL consists of at most n parcels at any time. Morespeci�cally, we will show that BL lives in the domain [1..n]× {0, 1}O(log n), i.e. an arraywith n slots indexed by each N ∈ G, with each slot holding ⊥ (if the correspondingnode is not on the blacklist) or the index of the transmission in which the correspondingnode was most recently added to the blacklist. To see this, notice that modi�cations tothe blacklist occur only on lines (14.166), (15.171), and (15.188). �Removing� a node
N̂ from BL as on (14.166) means changing the entry indexed by N̂ to ⊥. �Clearing�the blacklist as on (15.171) means making every entry of the array equal to ⊥. Finally,�adding� a node to the blacklist as on (15.188) means switching the entry indexed by N̂to be the index of the current transmission.3. Status Report Parcels. Modi�cations to this occur only on lines (14.162) and(15.171). We show in Lemma 11.3 below that for any node N̂ ∈ P \S, DB will hold atmost n(n − 1) status report parcels from N̂ at any time, from which we conclude that
DB need hold at most n(n− 1)2 status report parcels.90

4. Participating Lists. We will view the participating list corresponding to transmission
T as an array [1..n] × {0, 1}P , where the array is indexed by the nodes, and an entrycorresponding to node N ∈ G is either the index of the transmission T (if N participatedin T) or ⊥ otherwise. Therefore, since each participating list consists of n parcels, we canargue that participating lists require at most n(n − 1) parcels if we can show that DBneed hold at most n−1 participating lists at any time. To see this, notice that (15.187)is reached only in the case the transmission failed (15.185), and we showed in Lemma10.4 that there can be at most n − 1 failed transmissions before a node is necessarilyeliminated and DB is cleared as on (15.171).5. Reason Transmissions Failed. Modi�cations to this occur only on lines (15.171),(15.191), (15.194), and (15.197). Notice that of the latter three, exactly one will bereached if and only if the transmission failed. Also, each one of the three will add atmost one parcel to DB. Since DB is cleared any time Eliminate Node is called as on(15.171), we again use Lemma 10.4 to conclude that Reason for Transmission Failuresrequire at most n− 1 parcels of DB.6. Sender's Own Status Reports. These are added to DB on lines (15.191), (15.194),and (15.197), and removed from DB on (15.171). Notice that of the former three lines,exactly one will be reached if and only if the transmission failed. Also, each one ofthe three will add at most n parcels to DB. Since DB is cleared any time EliminateNode is called as on (15.171), we again use Lemma 10.4 to conclude that Reason forTransmission Failures require at most n(n− 1) parcels of DB.7. List of Eliminated Nodes EN . Modi�cations to this occur only on line (15.170).Since EN is viewed as living in [1..n] × {0, 1}O(log n), �adding� a node N̂ to EN meanschanging the entry indexed by N̂ from ⊥ to the index of the current transmission. Noticethat EN ∈ [1..n]× {0, 1}O(log n) can be expressed using n parcels.8. The Label of a Node N̂ Whose Status Report is Known to B. Modi�cationsto this occur only on lines (14.160), (14.166), and (15.171). We show in Lemma 11.5below that for any pair of nodes B, N̂ ∈ P \ S, DB will hold at most one parcel of theform (B, N̂, T′) at any time (see e.g. (14.160)), from which we conclude that DB needhold at most (n− 1)2 parcels of this type.Adding together these changes, the sender's DB needs to hold at most n3 + n2 + n parcels,as required.We have now shown each of the variables of Figures 9 and 10 have domains as indicated. �Lemma 11.3. For any node N̂ ∈ P \ S, the sender's data bu�er will hold at most n(n− 1) statusreport parcels from N̂ at any time. More speci�cally, let {T1, . . . , Tj} denote the set of transmissionsfor which the sender has at least one status report parcel from N̂ . Then j ≤ n − 1 and for every

i < j, the sender has N̂ 's complete status report for transmission Ti.Proof. We �rst note that the �rst sentence follows immediately from the latter two since eachstatus report consists of at most n status report parcels (14.142-145). Fix N̂ ∈ P \ S and let
{T1, . . . , Tj} be as in the lemma, ordered chronologically. We �rst show that j ≤ n−1. For the sakeof contradiction, suppose j ≥ n. We �rst argue that for all 1 ≤ i ≤ j, transmission Ti necessarily91

failed. Fix 1 ≤ i ≤ j. Since DB contains a status report parcel from N̂ for transmission Ti, it musthave been added on (14.162) of some transmission T̂. Therefore, line (14.161) must have beensatis�ed, and in particular, (N̂ , Ti) must have been on BL during T̂. Therefore, (N̂ , Ti) must havebeen added to BL as on (15.188) of transmission Ti, which in turn implies transmission Ti failed(15.185). Therefore, transmission Ti failed for each 1 ≤ i ≤ j.By Lemma 10.4, there can be at most n − 1 failed transmissions before a node is eliminatedas on (15.169-177). Since j ≥ n, considering failed transmissions {T2, . . . , Tj}, there must havebeen a transmission T2 ≤ T ≤ Tj such that Eliminate N (15.169) was entered in transmission T.We �rst argue that T < Tj as follows. If T = Tj, then (N̂ , Tj) would not be added to BL as on(15.188) (once the protocol enters (15.169), it halts until the end of the transmission (15.177),thus skipping (15.188)). But then (14.161) of any transmission after Tj cannot be satis�ed for anystatus report parcel corresponding to Tj, and hence none of N̂ 's status report parcels correspondingto Tj could be added to DB after transmission Tj. Similarly, none of N̂ 's status report parcelscorresponding to Tj can be added to DB before or during transmission Tj by Claim 11.4 below.This then contradicts the fact that at some point in time, DB contains one of N̂ 's status reportparcels corresponding to Tj.We now have that for some transmission T1 < T < Tj , Eliminate N is entered during T.Therefore, all of N̂ 's status report parcels for T1 are removed from DB on (15.171) and (N̂ , T1) isremoved from BL on (15.171) of transmission T ≤ Tj. Since T1 < T, (N̂ , T1) will never be put on
BL as on (15.190) for any transmission after T, and consequently, (14.161) will never be satis�edafter T for any of N̂ 's status report parcels from T1. Therefore, none of N̂ 's status report parcels willbe put into DB after they are removed on (15.171) of T. Meanwhile, by the end of transmission
T < Tj, DB cannot have any of N̂ 's status report parcels corresponding to Tj by Claim 11.4 below.We have now contradicted the assumption that DB simultaneously holds some of N̂ 's status reportparcels from T1 and Tj . Thus, j ≤ n− 1, as desired.We now show that for every i < j, the sender has N̂ 's complete status report for transmission Ti.If j = 1, there is nothing to prove. So let 1 < j ≤ n− 1, and for the sake of contradiction supposethere is some i < j such that the sender has at least one of N̂ 's status report parcels for Ti, but notthe entire report. Let T̂i denote the transmission that the status report parcel corresponding to Tiwas added to DB as on (14.162), and let T̂i+1 denote the transmission that the parcel correspondingto Ti+1 was added to DB as on (14.162). Without loss of generality, we suppose that T̂i ≤ T̂i+1.Since (14.162) is entered during transmission T̂i, it must be that (14.161) was satis�ed, and inparticular (N̂ , Ti) was on BL during T̂i. Similarly, (N̂ , Ti+1) was on BL during T̂i+1. Lemma 11.6below states that for each N ∈ G, N is on BL at most once, i.e. there is at most one entry of theform (N, T̂) on BL at any time. Since nodes are only added to BL at the very end each transmission(15.188), we may conclude that we have strict inequality: T̂i < T̂i+1. In particular, (N̂ , Ti+1) wasnot on BL at the start of T̂i, but (N̂ , Ti) was. Therefore, (N̂ , Ti+1) was added to BL as on (15.188)of transmission Ti+1, and so N̂ ∈ PT (15.187-188). In particular, N̂ is not blacklisted by the endof Ti+1 (15.187). Therefore, there must be some transmission T ∈ [T̂i, Ti+1] such that (N̂ , Ti) isremoved from BL as on (14.166) or (15.171). Both of these lead to a contradiction, as the �rstimplies the sender has N̂ 's complete status report for Ti, while the latter implies that all statusreports corresponding to Ti should have been removed from DB. �Claim 11.4. For any N̂ ∈ G and for any transmission T, the sender's data bu�er DB will neverhold any of N̂ 's status report parcels corresponding to T before or during transmission T.92

Proof. Let N̂ ∈ G, and for the sake of contradiction, let T be a transmission such that DB hasone of N̂ 's status report parcels from T before or during T. Since status reports are only added to
DB on (14.162), this implies that there is some transmission T

′ ≤ T such that (14.161) is satis�edat some point of T′ before the Prepare Start of Transmission Broadcast of transmission T
′ iscalled. This in turn implies that (N̂ , T) was on BL before the Prepare Start of TransmissionBroadcast of transmission T

′ ≤ T was called. However, this contradicts the fact that the onlytime (N̂ , T) can be added to BL is during the Prepare Start of Transmission Broadcast oftransmission T on (15.188). �Claim 11.5. For any pair of nodes B, N̂ ∈ G \ S, the sender's data bu�er will hold at most onestatus report parcels of the form (B, N̂, T′) at any time.Proof. Fix B, N̂ ∈ G\S, and suppose for the sake of contradiction that there are two transmissions
T
′ and T

′′ such that both (B, N̂, T′) and (B, N̂, T′′) are in DB at the same time (note that T′ 6= T
′′by the comment on 14.156). Since parcels of this form are only added to DB on (14.160), wesuppose without loss of generality that T is a transmission and t is a round in T such that (B, N̂, T′′)is already in DB when (B, N̂, T′) is added to DB as on (14.160) of round t. Since (14.160) isreached, (14.159) was satis�ed, so in particular (N̂ , T′) is on the sender's (current version of the)blacklist. Similarly, since (B, N̂, T′′) was (most recently) added to DB as on (14.160) of someround t̂ of some transmission T̂ ≤ T, it must have been that (N̂ , T′′) was on the sender's (version ofthe) blacklist during round t̂ of T̂. By Lemma 11.6 below, since (N̂ , T′) is on the sender's currentblacklist (as of round t of transmission T), and (N̂ , T′′) was on an earlier version of the sender'sblacklist, it must be that (N̂ , T′′) was removed from the blacklist at some point between round t̂ of T̂and round t of T. Notice that nodes are removed from the blacklist only on (14.166) and (15.171).However, in both of these cases, (B, N̂, T′′) should have been removed from DB (see (14.166) and(15.171)), contradicting the fact that it is still in DB when (B, N̂, T′) is added to DB in round tof transmission T. �Lemma 11.6. A node is on at most one blacklist at a time. In other words, whenever a node (N, T)is added to the sender's blacklist as on (15.188), we have that (N, T′) /∈ BL for any other (earlier)transmission T

′. Additionally, if (N, T′) ∈ BL at any time, then:1. Transmission T
′ failed2. No node has been eliminated since T

′ to the current time3. The sender has not received N 's complete status report corresponding to T
′Proof. The �rst statement of the lemma is immediate, since the only place a (node, transmission)pair is added to BL is on (15.188), and by the previous line, necessarily any such node is notalready on the blacklist. Also, Statement 1) is immediate since (15.188) is only reached if thetransmission fails (14.185). To prove Statements 2) and 3), notice that (N, T′) is only added tothe blacklist at the very end of transmission T

′ (15.188). In particular, if (N, T′) is ever removedfrom the blacklist during some transmission T
37 as on (14.166) or (15.171), then (N, T′) can neveragain appear on the blacklist (as remarked in the footnote, T > T

′, and so at any point during or37If (N, T′) is removed from the blacklist as on (14.166) or (15.171) of transmission T, then necessarily T > T
′,since (N, T′) can only be added to BL at the very end of a transmission (15.188), i.e. lines (14.166) and (14.171)cannot be reached after line (15.188) in the same transmission.93

after transmission T, (N, T′) can never again be added to BL as on (15.188) since T
′ has alreadypassed). Therefore, if during transmission T a node is eliminated as on (15.169-177) or the senderreceives N 's complete status report of transmission T

′ as on (14.164), then N will be removed fromthe blacklist as on (14.166) or (15.171), at which point (N, T′) can never be added to BL again(since necessarily T > T
′ as remarked in the footnote). This proves Statements 2) and 3). �Lemma 11.7. For any (N, T) on the sender's blacklist, the sender needs at most n parcels from Nin order to have N 's complete status report, and subsequently remove N from the blacklist (14.164-165).Proof. This was proven when discussing the appropriateness of variable domains in Lemma 11.2. �We set the following notation for the remainder of the section. T will denote a transmission,

GT will denote the set of non-eliminated nodes at the start of T, PT will denote the participatinglist for T, and HT will denote the uncorrupted nodes in the network. If the transmission is clear orunimportant, we suppress the subscripts for convenience, writing instead G,P, and H.Lemma 11.8. For any honest node A ∈ G and any transmission T, A must receive the completeStart of Transmission (SOT) broadcast before it transfers or re-shu�es any packets. Additionally,the signature bu�ers SIGA,A and SIGA of any honest node A ∈ G are always cleared upon receiptof the complete SOT broadcast (and hence before any packets are transferred to/from/within A).Proof. Fix an honest node A ∈ G and a transmission T. If A has not received the full Start ofTransmission (SOT) broadcast for T yet, then A will not transfer any packets (12.59), (11.31-33),(12.63) and (11.35-37). This means that (12.63) will always be satis�ed, and hence (12.78)can never be reached, and so RR will remain equal to −1 ((10.50), and (15.209)) so long as nocodeword packets have been transferred. This in turn implies (12.46) cannot be satis�ed beforeany codeword packets have been transferred. Putting these facts together, the signature bu�erscannot change as on (12.48-50), (12.74-75), (12.80), or (12.82) before A receives the completeSOT broadcast. Also, no packets will be re-shu�ed during the call to Re-Shu�e if no packets havemoved during the Routing Phase, as the condition statement on (7.74) was eventually false in thelast round of the previous transmission, and the state of the bu�ers will not have changed if nopackets have been transferred in the current transmission. Therefore, before A has received thecomplete SOT broadcast, no packet movement to/from/within A is possible, and changes to thesignature bu�ers are con�ned to the ones appearing on lines (14.128), (14.133), (14.141), and(14.146), all of which clear the signature bu�ers.Suppose now that A has received the full SOT broadcast for T. Recall that part of the SOTbroadcast contains ΩT = (|EN |, |BL|, F, ∗), where EN refers to the eliminated nodes, BL is thesender's current blacklist, F is the number of failed transmissions since the last node was eliminated,and the last coordinate denotes the reason for failure of the previous transmission (in the case itfailed) (15.200). If |BL| = 0, then A will clear all its entries of SIGA and SIGA,A on (14.128).Otherwise, |BL| > 0, and N will clear all its entries of SIGA and SIGA,A when it learns the lastblacklisted node on (14.146). Therefore, in all cases A's signature bu�ers are cleared by the timeit receives the full SOT broadcast, and in particular before it transfers any packets in transmission
T. �In order to prove a variant of Lemma 6.13 in terms of the variables used in the (node-controlling
+ edge-scheduling) adversary protocol, we will need to �rst re-state and prove variants of Lemmas94

6.11, 7.14, and 7.15. We begin with a variant of Lemma 6.11 (the �rst 5 Statements corresponddirectly with Lemma 6.11, the others do not, but will be needed later):Lemma 11.9. For any honest node A ∈ G and at all times of any transmission:1. For incoming edge E(S,A), all changes to SIGA[3]S,A are strictly non-negative. In particular,at all times:
0 ≤ SIGA[3]S,A (29)2. For outgoing edge E(A,R), all changes to SIGA[3]A,R are strictly non-negative38. In partic-ular, at all times:
0 ≤ SIGA[3]A,R (30)3. For outgoing edges E(A,B), B 6= R, all changes to the quantity (SIGA[3]A,B − SIGA[2]A,B)are strictly non-negative. This remains true even if B is corrupt. In particular, at all times:

0 ≤
∑

B∈P\{A,S}

(SIGA[3]A,B − SIGA[2]A,B) (31)4. For incoming edges E(B,A), B 6= S, all changes to the quantity (SIGA[2]B,A − SIGA[3]B,A)are strictly non-negative. This remains true even if B is corrupt. In particular, at all times:
0 ≤

∑

B∈P\{A,S}

(SIGA[2]B,A − SIGA[3]B,A) (32)5. All changes to SIGA,A are strictly non-negative. In particular, at all times:
0 ≤ SIGA,A (33)6. The net decrease in potential at A (due to transferring packets out of A and re-shu�ingpackets within A's bu�ers) in any transmission is bounded by A's potential at the start of thetransmission, plus A's increase in potential caused by packets transferred into A. In particular:

SIGA,A +
∑

B∈P\A

SIGA[3]A,B ≤ (4n3 − 6n2) +
∑

B∈P\A

SIGA[3]B,A (34)7. The number of packets transferred out of A in any transmission must be at least as much asthe number of packets transferred into A during the transmission minus the capacity of A'sbu�ers. In particular:
4n2 − 8n ≥

∑

B∈P\A

(SIGA[1]B,A − SIGA[1]A,B) (35)38SIGA[3] along outgoing edges measures the decrease in potential as a positive quantity. Thus, a positive valuefor SIGA[3] along an outgoing edge corresponds to a decrease in non-duplicated potential.
95

8. The number of times a packet p corresponding to the current codeword has been transferredout of A during any transmission is bounded by the number of times that packet has beentransferred into A. In particular39:
0 ≥

∑

B∈P

(SIGB [p]A,B − SIGA[p]B,A) (36)Proof. We prove each inequality separately, using an inductive type argument on a node A's signa-ture bu�ers. First, note that all signature bu�ers are cleared at the outset of the protocol (10.46),(10.48), and (10.54). Also, anytime the signature bu�ers are cleared as on (14.128), (14.133),(14.141), and (14.146), then all of the statements (except possible Statement 8, which depends onvalues from potentially corrupt nodes B ∈ G) will be true. So it remains to check the other placessignature bu�ers can change values ((12.48-50), (12.74-75), (12.80), (12.82), and (7.76)), andargue inductively that all such changes will preserve the inequalities of Statements 1-7 (Statement8 will be proven separately). Since all of these lines represent packet movement, they can only bereached if A has received the complete SOT broadcast for the current transmission (Lemma 11.8),and so we may (and do) assume this is the case in each item below. In particular, Lemma 11.8states that because we are assuming A has received the complete SOT broadcast for transmission
T, all of A's signature bu�ers will be cleared before any changes are made to them.1. Aside from being cleared, in which case (29) is trivially true, the only changes made to

SIGA[3]S,A occur on (12.75), where it is clear that all changes are non-negative since HGPis non-negative (Statement 9 of Lemma 7.1 together with Lemma 11.1).2. Aside from being cleared, in which case (30) is trivially true, the only changes made to
SIGA[3]A,R occur on (12.49), where it is clear that all changes are non-negative since HFPis non-negative (Statement 9 of Lemma 7.1 together with Lemma 11.1).3. Fix B ∈ P \ S,A. Intuitively, this inequality means that considering directed edge E(A,B),the decrease in A's potential caused by packet transfers must be greater than or equal to B'sincrease, which is a consequence of Lemma 6.11. Formally, we will track all changes to therelevant values in the pseudo-code and argue that at all times and for any �xed B ∈ G (honestor corrupt), if A is honest, then 0 ≤ SIGA[3]A,B − SIGA[2]A,B . All changes to these values(aside from being cleared) occur only on (12.48-49) since here we are considering A's valuesalong outgoing edge E(A,B). Notice that HFP cannot change between (11.08) of some roundand (12.49) of the same round. Since lines (12.48-49) are only reached if Verify SignatureTwo accepts the signature (otherwise RR is set to⊥ on (12.90) and hence (12.45) will fail), wehave that SIGA[2]A,B changes by at most the value that HFP had on (12.89) (see commentson line (12.88-90)), and this is the value sent/received on lines (11.07) and (11.11) andeventually stored on (12.48). Meanwhile, when SIGA[3]A,B changes, for honest nodes it willalways be an increase of HFP (12.49), and as noted above, this value of HFP is the same as ithad on (12.89). Therefore, for honest nodes, whenever the relevant values change on (12.48-49), the change will respect the inequality SIGA[3]A,B − SIGA[2]A,B ≥ HFP −HFP = 0.39Notice that (36) is the only statement of the Lemma that involves quantities in the neighbors' signature bu�ers(in addition to A's bu�ers). Since there is no assumption made about the honesty of the neighbor's of A, this mayseem problematic. However, we show in the proof that regardless of the honesty of A's neighbors B ∈ G, (36) will besatis�ed if A in honest. 96

4. Fix B ∈ P \ S,A. Intuitively, this inequality means that considering directed edge E(B,A),the decrease in B's potential caused by packet transfers must be greater than or equal to A'sincrease, which is a consequence of Lemma 6.11. Formally, we will track all changes to therelevant values in the pseudo-code and argue that at all times and for any �xed B ∈ G (honestor corrupt), if A is honest, then 0 ≤ SIGA[2]B,A − SIGA[3]B,A. All changes to these values(aside from being cleared) occur only on (12.74-75) since here we are considering A's valuesalong incoming edge E(B,A). When SIGA[2]B,A changes on (12.74), they take on the valuessent by B on (12.60) and received by A on (12.62). However, in order to reach (12.74),the call to Verify Signature One on (12.69) must have returned true. In particular, thecomments on (12.84-86) require that A verify that the change in SIGA[2]B,A that B sent to Ais at least HGP bigger than the previous value A had from B. Meanwhile, when SIGA[3]B,Achanges, for honest nodes it will always be an increase of HGP (12.75). Therefore, since
HGP cannot change between (12.84) of some round and (12.75) later in the same round forhonest nodes, whenever the relevant values change on (12.74-75), the change will respect theinequality SIGA[2]B,A − SIGA[3]B,A ≥ HGP −HGP = 0.5. Intuitively, this inequality says that all changes in potential due to packet re-shu�ing shouldbe strictly non-positive (SIGA,A measures potential drop as a positive quantity), which is aconsequence of Lemma 6.11. Formally, all changes made to SIGA,A (aside from being cleared)occur on (7.76), where the change is M + m− 1. The fact that this quantity is strictly non-negative for honest nodes follows from Claim 6.4.6. Since the inequality concerns SIGA,A and SIG[3] (along both incoming and outgoing edges),we will focus on changes to these values when a packet is transferred (or re-shu�ed). Morespeci�cally, we will look at a speci�c packet p and consider p's a�ect on A's potential duringeach of p's stays in A, where a �stay� refers to the time A receives (an instance of) p as on(12.77) to the time it sends and gets con�rmation of receipt (as in De�nition 7.6) for (thatinstance of) p40. We �x p and distinguish between the four possible ways p can �stay� in A:(a) The stay is initiated by A receiving p during T and then sending p at some later round of

T, and getting con�rmation of p's receipt as in De�nition 7.6. More speci�cally, the stayincludes an increase to some incoming signature bu�er SIGA[3] as on (12.75) and thenan increase to some outgoing signature bu�er SIGA[3] as on (12.49). Let B denote theedge along which A received p in this stay, and B′ denote the edge along which A sent p.Then SIGA[3]B,A will increase by HGP on (12.75) when p is accepted. Let M denote thevalue of HGP when p is received. The packet p is eventually re-shu�ed to the outgoingbu�er along E(A,B′). Let m denote the value of HFP when (12.49) is reached, so thatthe change to SIGA[3]A,B′ due to sending p is m. By Statement 3 of Claim 7.7 (whichremains valid by Lemma 11.1), any packet that is eventually deleted as on (12.50-51)will be the �agged packet, and so the packet that is deleted did actually have height min A's outgoing bu�er. In particular, the packet began its stay in an incoming bu�erat height M , and was eventually deleted when it had height m in some outgoing bu�er.In particular, since SIGA,A accurately tracks changes in potential due to re-shu�ing(Statement 1 of Lemma 11.16), we have that during this stay of p, SIGA,A changed by40A given packet p may have multiple stays in A during a single transmission, one for each time A sees p.97

M −m. Therefore, considering only p's a�ect on the following terms, we have that:
SIGA,A + SIGA[3]A,B′ − SIGA[3]B,A = (M −m) + m−M = 0 (37)(b) The stay begins at the outset of the protocol, i.e. p started the transmission in one of A'sbu�ers, and the stay ends when p is deleted (after having been sent across an edge) in someround of T. More speci�cally, there is no incoming signature bu�er SIGA[3] that changesvalue as on (12.75) due to this stay of p, but there is an increase to some outgoingsignature bu�er SIGA[3] as on (12.49). Using the notation from (a) above with theexception that M denotes the initial height of p in one of A's bu�ers at the start of T,then considering only p's a�ect on the following terms, we have that:

SIGA,A + SIGA[3]A,B′ = (M −m) + m = M (38)(c) The stay is initiated by A receiving p during T, but p then remains in A through the end of thetransmission (either as a normal or a �agged packet). More speci�cally, the stay includesan increase to some incoming signature bu�er SIGA[3] as on (12.75), but there is nooutgoing signature bu�er SIGA[3] that changes value as on (12.49) due to this stay of
p. Using the notation from (a) above with the exception that m denotes the �nal heightof p in one of A's bu�ers at the end of T, then considering only p's a�ect on the followingterms, we have that:

SIGA,A − SIGA[3]B,A = (M −m)−M = −m ≤ 0 (39)(d) The stay begins at the outset of the protocol, i.e. p started the transmission in one of A'sbu�ers, and p remains in A's bu�ers through the end of the transmission (either as a normalor a �agged packet). More speci�cally, there is no incoming signature bu�er SIGA[3]that changes value as on (12.75) due to this stay of p, and there is no outgoing signaturebu�er SIGA[3] that changes value as on (12.49) due to this stay of p. Letting M denotethe initial height of p in one of A's bu�ers at the start of T and m the �nal height of p inone of A's bu�ers at the end of T, then considering only p's a�ect on the following terms,we have that:
SIGA,A = M −m ≤M (40)We note that the above four cases cover all possibilities by Claim 6.8 (which remains validsince A is honest, and Lemma 11.1). We will now bound SIGA,A +

∑
B∈P\A SIGA[3]A,B −

SIGA[3]B,A by adding all contributions to SIGA,A and SIGA[3]A,B′ and SIGA[3]B,A fromall stays of all packets and for all adjacent nodes B,B′. Notice that ignoring contributionsas in Case (c) will only help our desired equality, and contributions as in Case (a) are zero,so we consider only packet stays as in (38) and (40). Since these contributions to potentialcorrespond to the initial height the packet had in one of A's bu�ers at the outset of T, thesum over all such contributions cannot exceed A's potential at the outset of T, which for anhonest node A is bounded by 2(n− 2)2n(2n + 1)/2 < 4n3 − 6n2 (see e.g. proof of Claim 6.2).7. Intuitively, this inequality means that because a node can hold at most 2(n − 2)(2n) packetsat any time, the di�erence between the number of packets received and the number of packetssent by an honest node will be bounded by 4n2 − 8n. Formally, during a transmission T, the98

only places the quantities SIG[1] change are on (12.74) and (12.48). As with the proof ofStatement 6 above, we consider the contribution of each packet p's stay in A41:(a) The stay is initiated by A receiving p during T and then sending p at some later round of
T, and getting con�rmation of p's receipt as in De�nition 7.6. More speci�cally, the stayincludes an increase to some incoming signature bu�er SIGA[1] as on (12.74) and thenan increase to some outgoing signature bu�er SIGA[1] as on (12.48). Let B denotethe edge along which A received p in this stay, and B′ denote the edge along which Asent p. Since A will be verifying that B (respectively B′) signed the correct values (seecomments on (12.84-86) and (12.88-90)), we have that SIGA[1]B,A will increase by 1on (12.74) due to receiving p for the �rst time, and SIGA[1]A,B′ will increase by 1 whenit receives con�rmation of receipt for sending p as on (12.48). Therefore, consideringonly p's a�ect on the following terms, we have that:

SIGA[1]B,A − SIGA[1]A,B′ = 1− 1 = 0 (41)(b) The stay is initiated by A receiving p during T, but p then remains in A through the end of thetransmission (either as a normal or a �agged packet). More speci�cally, the stay includesan increase to some incoming signature bu�er SIGA[1] as on (12.74), but there is nooutgoing signature bu�er SIGA[1] that changes value as on (12.48) due to this stay of
p. Using the notation from (a) above, then considering only p's a�ect on the followingterms, we have that:

SIGA[1]B,A = 1 (42)We note that the above two cases cover all possibilities by Claim 6.8 (which remains valid since
A is honest, see Lemma 11.1). We now add all contributions to SIGA[1]A,B′ and SIGA[1]B,Afrom all stays of all packets from all neighbors. Notice that the only non-zero contributionscome from packets stays as in (42), and these contributions will correspond to packets thatare still in A's bu�ers at the end of the transmission. Since an honest node A can end thetransmission with at most 2(n − 2)(2n) packets, summing over all such contributions resultscannot exceed 4n2 − 8n, as required.8. Intuitively, this is saying that an honest node cannot output a packet more times than itinputs the packet (see Claim 6.8). Note that this is the only place in the theorem thatdepends on status reports not originating from A (SIGB [p] is a status report parcel from
B). A priori, there is the danger that a corrupt B can return a faulty status report, therebyframing A. However, because SIGB [p]A,B includes a valid signature from A, the inforgibilityof the signature scheme guarantees that the only way a corrupt node B can frame A in thismanner is by reporting out-dated signatures. But if A is honest, then SIGB [p]A,B is strictlyincreasing in value as the transmission progresses (the only place it changes is (12.74), whichcomes from the value received on (12.62), corresponding to the value sent on (12.60)), andhence a corrupt B cannot �frame� A by reporting outdated signatures for SIGB [p]A,B; indeedsuch a course of action only helps the inequality stated in the theorem. Also notice that41Note that necessarily p is a packet corresponding to the current codeword, since packets corresponding to oldcodewords do not increment SIG[1], see comments on (11.59-60) and (11.11). Therefore, there are only two casesto consider. 99

(other than out-dated signatures) the only place B gets valid signatures from A is on (12.62),and this value is one higher than the value that A itself is recording (12.60) until A updates
SIGA[p]A,B on (12.48). We argue in case (b) below, that whenever B has received an updated
SIGB [p]A,B as on (12.74) but A has not yet updated SIGA[p]A,B as on (12.48) (and so thesetwo values di�er by one), then Case (b) will contribute -1 to the sum in (36), and thereforethe di�erence of +1 between SIGB [p]A,B and SIGA[p]A,B will exactly cancel. These two factsallow us to argue (36) by using SIGA[p]A,B instead of SIGB [p]A,B.Formally, during a transmission T, the only places the quantities SIG[p] change are on (12.74)and (12.48). As with the proof of Statement 3 above, we consider the contribution of eachpacket p's stay in A42:(a) The stay is initiated by A receiving p during T and then sending p at some later round of

T, and getting con�rmation of p's receipt as in De�nition 7.6. More speci�cally, the stayincludes an increase to some incoming signature bu�er SIGA[p] as on (12.74) and thenan increase to some outgoing signature bu�er SIGA[p] as on (12.48). Let B denotethe edge along which A received p in this stay, and B′ denote the edge along which Asent p. Since A will be verifying that B (respectively B′) signed the correct values (seecomments on (12.84-86) and (12.88-90)), we have that SIGA[p]B,A will increase by 1on (12.74) due to receiving p for the �rst time, and SIGA[p]A,B′ will increase by 1 whenit receives con�rmation of receipt for sending p as on (12.48). Therefore, consideringonly p's a�ect on the following terms, we have that:
SIGA[p]A,B′ − SIGA[p]B,A = 1− 1 = 0 (43)(b) The stay is initiated by A receiving p during T, but p then remains in A through the end of thetransmission (either as a normal or a �agged packet). More speci�cally, the stay includesan increase to some incoming signature bu�er SIGA[p] as on (12.74), but there is nooutgoing signature bu�er SIGA[p] that changes value as on (12.48) due to this stay of

p. Using the notation from (a) above, then considering only p's a�ect on the followingterms, we have that:
−SIGA[1]B,A = −1 (44)We note that the above two cases cover all possibilities by Claim 6.8 (which remains valid since

A is honest, see Lemma 11.1). We now add all contributions to SIGA[p]A,B′ and SIGA[p]B,Afrom all stays of p from all neighbors on P (note that it is enough to consider only neighborson P by Claim 11.18). Notice that (43) does not contribute anything, so we have that:
∑

B∈P

(SIGA[p]A,B − SIGA[p]B,A) = −x, (45)where x is the number of times Case (b) occurs. Notice that (36) is interested in SIGB [p]A,B(as opposed to SIGA[p]A,B). However, since B cannot report values of SIGB [p]A,B from42Note that necessarily p is a packet corresponding to the current codeword, since packets corresponding to oldcodewords do not increment SIG[p], see comments on (12.59-60) and (11.11). Therefore, there are only two casesto consider. 100

previous transmissions43, the only inaccurate value that B can report in its status reportparcel concerning SIGB [p]A,B is by using an older value from T. As discussed above, cheatingin this manner only serves to help (36). On the other hand, if B does report the validvalue for SIGB [p]A,B (i.e. not outdated), then Lemma 11.17 guarantees that SIGB [p]A,B −

SIGA[p]A,B ≤ 1, with equality if SIGB [p]A,B has been updated as on (12.74) and SIGA[p]A,Bhas not yet been updated after this point as on (12.48). Notice that every time this happens,we fall under Case (b) above, and in particular it can happen at most x times (see de�nitionof x above). Therefore:
∑

B∈P

(SIGB [p]A,B − SIGA[p]B,A) ≤ x +
∑

B∈P

(SIGA[p]A,B − SIGA[p]B,A) = x− x = 0, (46)which is (36).All Statements of the Theorem have now been proven. �We now prove a variant of Lemma 7.14.Lemma 11.10. Suppose that A,B ∈ G are both honest nodes, and that in round t, B accepts (asin De�nition 6.5) a packet from A. Let OA,B denote A's outgoing bu�er along E(A,B), and let Hdenote the height the packet had in OA,B when Send Packet was called in round t (11.20). Alsolet IB,A denote B's incoming bu�er along E(A,B), and let I denote the height of IB,A at the startof t. Let ∆ϕB denote the change in potential caused by this packet transfer, from B's perspective.More speci�cally, de�ne:
ϕB := SIGB [2]A,B − SIGB [3]A,B (47)and then ∆ϕB measures the di�erence between the value of ϕB at the end of t and the start of t.Then:

∆ϕB ≥ H − I − 1 OR ∆ϕB ≥ H (if B = R) (48)Furthermore, after the packet transfer but before re-shu�ing, IB,A will have height I + 1.Proof. By de�nition, B accepts the packet in round t means that (12.77) was reached in round
t, and hence so was (12.74-75). In particular, SIGB [3]A,B will increase by HGP on (12.75) (if
B = R, then SIGB [3]A,B will not change on this line- see comment there). By Statements 1 and2 of Lemma 7.1 (which remain valid since B is honest by Lemma 11.1), HGP ≤ I + 1, and hence
SIGB [3]A,B will increase by at most I + 1. Also, since B had height I at the start of the round,and B accepts a packet on (12.77) of round t, B will have I + 1 packets in I when the re-shu�ingphase of round t begins, which is the second statement of the lemma.Meanwhile, SIGB [2]A,B will change on (12.74) to whatever value B received on (12.62) (as sentby A on (12.60) earlier in the round). Since A is honest, this value is HFP larger than A's currentvalue in SIGA[3]A,B (12.60). By Lemma 11.17, the value of SIGA[3]A,B at the start of t equals thevalue of SIGB [2]A,B at the start (before B has accepted the packet) of t. Therefore, the change in
SIGB [2]A,B from the start of the round to the end of the round will be the value of HFP = H when
A reached (12.60) in round t (by de�nition of H and Statement 3 of Claim 7.7). Since these arethe only places SIGB [3]A,B and SIGB [2]A,B change, we have that ∆ϕB = H −HGP ≥ H − I − 1,as desired (if B = R, then ∆ϕB = H). �43We are only interested in packets p corresponding to the current codeword, and all signatures that A providesfor SIGB[p]A,B include the transmission index, so A's honesty plus the inforgibility of the signature scheme implythat B cannot have any valid signatures from A contributing to SIGB [p]A,B before the current transmission T.101

The following is a variant of Lemma 7.15.Lemma 11.11. Let C = N1N2 . . . Nl be a path consisting of l honest nodes, such that R = Nl and
S /∈ C. Suppose that in some non-wasted round t, all edges E(Ni, Ni+1), 1 ≤ i < l are active forthe entire round. For 1 ≤ i < l, let ∆φ denote the following changes to SIGNi,Ni

and SIGNi duringround t:1. Changes to ϕNi
(see notation of Lemma 11.10),2. Changes to SIGNi,NiThen if ON1,N2 denotes N1's outgoing bu�er along E(N1, N2), we have:- If ON1,N2 has a �agged packet that has already been accepted by N2 before round t, then:

∆φ ≥ O − l + 1 (49)- Otherwise,
∆φ ≥ O − l + 2 (50)where O denotes its height at the outset of t.Proof. Since A and B are honest, we use Lemma 11.1 and then follow exactly the proof of theanalogous claim for the edge-scheduling model (Lemma 7.15). In particular, the exact proof can befollowed, using the fact that signature bu�ers record accurate changes in non-duplicated potential(Statement 1 of Lemma 11.16), and using Lemma 11.9 in place of Lemma 6.11, and Lemma 11.10in place of Lemma 7.14. �Lemma 11.12. If at any point in any transmission T, the number of blocked rounds is βT, thenthe participating honest nodes of G will have recorded a drop in non-duplicated potential of at least

n(βT − 4n3). More speci�cally, the following inequality is true:
n(βT − 4n3) <

∑

A∈H\S

SIGA,A +
∑ ∑

A∈H\S B∈P\{A,S}

(SIGA[2]B,A − SIGA[3]B,A) (51)Proof. For every blocked, non-wasted round t, by the conforming assumption there exists a chain Ctconnecting the sender and receiver that satis�es the hypothesis of Lemma 11.11. Letting N1 denotethe �rst node on this chain (not including the sender), the fact that the round was blocked (andnot wasted) means that N1's incoming bu�er was full (see Lemma 11.1), and then by Lemma 6.3,so was N1's outgoing bu�er along E(N1, N2). Since the length of the chain l is necessarily less thanor equal to n, Lemma 11.11 says that the change of ∆φ (see notation there) in round t satis�es:
∆φ ≥ ON1,N2 − l + 1 ≥ 2n− n + 1 > n (52)Since ∆φ only records some of the changes to the signature bu�ers, we use Lemma 11.9 to arguethat the contributions not counted will only help the bound since they are strictly non-negative.Since we are not double counting anywhere, each non-wasted, blocked round will correspond to anincrease in ∆φ of at least n, which then yields the lemma since the number of wasted rounds isbounded by 4n3 (Lemma 10.9). �102

Lemma 11.13. If there exists A,B ∈ G such that one of the following inequalities is not true, theneither A or B is necessarily corrupt, and furthermore the sender can identify conclusively44 whichis corrupt45:
1. SIGB [2]A,B ≤ SIGA[3]A,B + 2n

2. SIGA[3]S,A − SIGS [2]S,A ≤ 2n

3. |SIGA[1]B,A − SIGB [1]B,A| ≤ 1 and |SIGA[1]A,B − SIGB [1]A,B | ≤ 1 (53)Proof. As in the �rst paragraph of the proof of Lemma 11.9, we may assume that both A and B havereceived the full Start of Transmission broadcast for T, so SIGA and SIGB should both be cleared(if A and B are both honest) of its values from the previous transmission before being updated withvalues corresponding to the current transmission T. We prove each Statement separately:1. That either A or B is necessarily corrupt follows from Lemma 11.17. It remains to showthat the sender can identify a node that is necessarily corrupt. We begin by assuming that
SIGB [2]A,B and SIGA[3]A,B have appropriate signatures corresponding to T (otherwise, theyeither would not have been accepted as a valid status report parcel on (14.161), or a node willbe eliminated as on 14.163). We now show that if the inequality in Statement 1 is not true forsome A,B ∈ G, then A is necessarily corrupt. Notice that if A is honest, then SIGA[3]A,B ismonotone increasing (other than being cleared upon receipt of the SOT broadcast, SIGA[3]A,Bis only updated on 12.49). Similarly, other than being cleared upon receipt of the SOTbroadcast, SIGB [2]A,B is only updated on (12.74), and tracing this backwards, this comesfrom the value received on (12.62) which in turn was sent on (12.60). Therefore, since Bcannot forge A's signature (except with negligible probability or in the case A and B areboth corrupt and colluding), SIGB [2]A,B can only take on values A sent B as on (12.60).Meanwhile, as mentioned, if A is honest, SIGA[3]A,B is monotone increasing, and thus anhonest A will never send a value for SIGA[3]A,B on (12.60) of some round that is smallerthan a value it sent for SIGA[3]A,B on (12.60) of some earlier round. Therefore, since thevalue A is supposed to send B is HFP ≤ 2n (the inequality follows from Statement 9 ofLemma 7.1 and Lemma 11.1), unless A is corrupt or B has broken the signature scheme, Bwill never have a signed value from A such that SIGB [2]A,B > 2n + SIGA[3]A,B . Therefore,if the inequality in the �rst statement is not satis�ed, A is necessarily corrupt (except withnegligible probability).2. That A is necessarily corrupt follows from Lemma 11.17 and the fact that the sender cannotbe corrupted by the conforming restriction placed on the adversary.3. Note that the two statements are redundant, since the second is identical to the �rst afterswapping the terms on the LHS and re-labelling. We therefore only consider the secondinequality of Statement 3. That either A or B is necessarily corrupt follows from Lemma11.17. It remains to show that the sender can identify a node that is necessarily corrupt. As44As long as the adversary does not break the signature scheme, which will happen with all but negligible probability,the sender will never falsely identify an honest node.45The values of the quantities SIGB and SIGA all correspond to a common transmission T and refer to values thesender has received in the form of status reports for T as on (14.161).103

in the proof of Statement 1 above, we begin by assuming that SIGB [1]A,B and SIGA[1]A,Bhave appropriate signatures corresponding to T (otherwise, they either would not have beenaccepted as a valid status report parcel on (14.161), or a node will be eliminated as on14.163). We now show that if |SIGA[1]A,B − SIGB [1]A,B | > 1 for some A,B ∈ G, theneither A or B is necessarily corrupt, and the sender can identify which one is corrupt.Notice that the quantities SIGB [1]A,B and SIGA[1]A,B include the round in which thequantity last changed ((11.11) and (12.60)). Let tB denote the round SIGB [1]A,B indicates itwas last updated (which has been signed by A), and tA denote the round SIGA[1]A,B indicatesit was last updated (which has been signed by B. Note that these quantities refer to the valuesreturned to the sender in the form of status report parcels, and node A (respectively B) hassigned the entire parcel SIGA[1]A,B (respectively SIGB [1]A,B), indicating this is indeed theparcel he wishes to commit to as his status report. We assume |SIGA[1]A,B−SIGB [1]A,B | > 1,and break the proof into the following two cases:Case 1: tA > tB. We will show that B is corrupt. Notice that the fact that A has avalid signature on SIGA[1]A,B from B for round tA means that (with all but negligibleprobability that A could forge B's signature, or if A and B are both corrupt, allowing
A to forge B's signature) B sent communication as on (11.11) of tA with the �fthcoordinate equal to the value A used for SIGA[1]A,B . In particular, this �fth coordinaterepresents the value B has stored for SIGB [1]A,B during tA. Since tB < tA, B does notupdate SIGB [1]A,B from tB through the end of T, and hence the value for SIGB [1]A,Bthat B returns the sender in its status report should be the same as the value B sentto A on (11.11) of round tA, which as noted above equals the value of SIGA[1]A,Bthat A returned in its status report. However, since this is not the case (SIGB [1]A,B 6=

SIGA[1]A,B), B has returned an outdated signature and must be corrupt.Case 2: tA ≤ tB . If tA = tB = 0, i.e. both nodes agree that they did not update theirsignature bu�ers along E(A,B) in the entire transmission (except to clear them whenthey received the SOT broadcast), then necessarily both SIGA[1]A,B and SIGB [1]A,Bshould be set to ⊥, so if one of them is not ⊥, the node signing the non-⊥ value canbe eliminated. So assume that one of the nodes has a valid signature from the otherfor some round in T (i.e. that tB > 0). We will show that A is corrupt in a mannersimilar to showing B was corrupt above. Indeed, since B has a valid signature from
A on SIGB [1]A,B from round tB , unless A and B are colluding or B has managed toforge A's signature, this value for SIGB [1]A,B comes from the communication sent by
A on (12.60). In particular, since tA ≤ tB and A claims he was not able to update
SIGA[1]A,B after round tA, the value A signed and sent on (12.60) should be exactlyone l more than the value stored in SIGA[1]A,B as of line (11.07) of round tA, the latterof which was returned by A in its status report (by de�nition of tA and the inforgibilityof the signature scheme). But since |SIGA[1]A,B − SIGB [1]A,B | > 1, this must not bethe case, and hence A is corrupt. �Corollary 11.14. If there exists a node A ∈ G such that:

4n3 − 4n2 < SIGA,A +
∑

B∈P\A

SIGB [2]A,B − SIGA[3]B,A, (54)104

then either a node can be eliminated as in Statement 1 of Lemma 11.13 or as in Statement 6 ofLemma 11.9.Proof. Suppose no node can be eliminated because of Statement 1 of Lemma 11.13, so that for all
B ∈ G:

SIGB [2]A,B ≤ SIGA[3]A,B + 2n. (55)Then if (54) is true, we have that:
4n3 − 4n2 < SIGA,A +

∑

B∈P\A

SIGB [2]A,B − SIGA[3]B,A

≤ SIGA,A + 2n2 +
∑

B∈P\A

SIGA[3]A,B − SIGA[3]B,A (56)where the second inequality follows from applying (55) to each term of the sum. Therefore, A canbe eliminated by Statement 6 of Lemma 11.9. �Corollary 11.15. In the case a transmission fails as in F2, the increase in network potential dueto packet insertions is at most 2nD + 2n2. In other words, either there exists a node A ∈ G suchthat the sender can eliminate A, or the following inequality is true46:
∑

A∈P\S

SIGA[3]S,A < 2nD + 2n2 (57)Proof. If the inequality in Statement 2 of Lemma 11.13 fails for any node A ∈ P \ S, the sendercan immediately eliminate A. So assume that the inequality in Statement 2 of Lemma 11.13 holdsfor every A ∈ P \ S. The corollary will be a consequence of the following observation:Observation. If a transmission T fails as in F2, then:
∑

A∈P\S

SIGS [2]S,A < 2nD (58)Proof. Let κT denote the value that κ had at the end of T. Then formally, a transmissionfalling under F2 means that κT is less than D. The structure of this proof will be to �rstshow that for any A ∈ P \ S, anytime SIGS [2]S,A is updated as on (12.48), it will alwaysbe the case that 2n ∗ SIGS [1]S,A ≥ SIGS [2]S,A (so that in particular that the �nal value for
SIGS [2]S,A at the end of T is less than or equal to 2n times the �nal value for SIGS [1]S,A).We will then show that at the end of T: ∑

A∈P\S SIGS [1]S,A = κT. From these two facts, wewill have shown:
∑

A∈P\S

SIGS [2]S,A ≤
∑

A∈P\S

2n ∗ SIGS [1]S,A = 2nκT < 2nD (59)as required.46The values of the quantities SIGA correspond to some transmission T and refer to values the sender has receivedin the form of status reports for T as on (14.161). 105

The �rst fact is immediate, since for any A ∈ P \ S, whenever SIGS [2]S,A is updated as on(12.48), the statement on (12.45) must have been satis�ed, and so the statement on (12.89)must have been false. In particular, the change in SIGS [1]S,A was exactly one, and the changein SIGS [2]S,A was at most HFP ≤ 2n, where the inequality comes from Statement 9 of Lemma7.1 and Lemma 11.1 (see comments on lines (12.88-90)). The second fact is also immediate,as κ and SIGS [1]S,A all start the transmission with value zero (or ⊥) by lines (10.54), (10.70),(15.199), and (15.213), and then κ is incremented by one on line (12.47) of the outgoingbu�er along some edge E(S,N) if and only if SIGS [1]S,N is incremented by one as on (12.48)(as already argued, changes to SIGS [1]S,A as on (12.48) are always increments of one, seee.g. the comments on lines (12.88-90)). �The corollary now follows immediately from the following string of inequalities:
2nD >

∑

A∈P\S

SIGS [2]S,A

≥ −2n2 +
∑

A∈P\S

SIGA[3]S,Awhere the top inequality is the statement of the Observation and the second inequality comes fromapplying the inequality in Statement 2 of Lemma 11.13 to each term of the sum. �Lemma 11.16. For any honest node N ∈ G and for any transmission T:1. Upon receipt of the complete Start of Transmission (SOT) broadcast for transmission T,
SIGN,N will be cleared. After this point through the end of transmission T, SIGN,N storesthe correct value corresponding to the current transmission T (as listed on 9.12).2. Suppose that N transfers at least one packet during T (i.e. N sends or receives at least onepacket, as on (12.60) or (12.74-78)). Then through all transmissions after T until the trans-mission and round (T′, t′ ∈ T

′) that N next receives the complete SOT transmission for T
′,one of the following must happen:(a) All of N 's signature bu�ers contain information (i.e. signatures from neighbors) pertain-ing to T, or(b) All of N 's signature bu�ers are clear and N 's broadcast bu�er47 contains all of the in-formation that was in the signature bu�ers at the end of T, or(c) (N, T, T′) is not on the blacklist for transmission T

′3. If N has received the full SOT broadcast for T, then all parcels in N 's broadcast bu�er47BBcorresponding to some node N̂ 's status report are current and correct. More precisely:(a) If (N̂ , T̂) is on the sender's blacklist, and at any time N has stored a parcel of N̂ 'scorresponding status report in its broadcast bu�er BB, then this parcel will not be deleteduntil (N̂ , T̂) is removed from the sender's blacklist.47Or the Data Bu�er in the case N = S. 106

(b) If (N̂ , T̂, T′) is a part of the SOT broadcast of transmission T
′, then upon receipt of thisparcel, all of N̂ 's status report parcels in N 's broadcast bu�er correspond to transmission

T
′ and are of the form as indicated on (14.141-144), where the reason for failure oftransmission T

′ was determined as on (15.190), (15.193), or (15.196).4. If at any time N is storing a parcel of the form (B, N̂, T̂) in its broadcast bu�er (indicating Bknows N̂ 's complete status report for transmission T̂), then this will not be deleted until (N̂ , T̂)has been removed from the blacklist.Proof. Fix an honest N ∈ G and a transmission T. We prove each Statement separately:1. The �rst part of statement 1 is Lemma 11.8. To prove the second part, we track all changesto SIGN,N and show that each change accurately records the value SIGN,N is supposed tohold. The only changes made to SIGN,N after receiving the full SOT broadcast occur onlines (7.76), (12.50), (12.80), and (12.82). Meanwhile, SIGN,N is supposed to track allpacket movement that occurs within N 's own bu�ers (i.e. all packet movement except packettransfers). The only places packets move within bu�ers of N are on lines (7.89-90), (12.50),(12.80), and (12.82). By the comments on lines (12.50), (12.53), (12.80), and (12.82), it isclear that SIGN,N appropriately tracks changes in potential due to the call to Fill Gap, whilepacket movement as on (12.53) does not need to change SIGN,N as packets are swapped, andso there is no net change in potential. In terms of re-shu�ing (7.89-90), we see that everypacket that is re-shu�ed causes a change in SIGN,N of M −m− 1 (7.76). Notice the actualchange in potential matches this amount, since a packet is removed from a bu�er at height
M (7.90), reducing the height of that bu�er from M to M − 1 (a drop in potential of M),and put into a bu�er at height m + 1, increasing the height of the bu�er from m to m + 1 (anincrease of m + 1 to potential).2. If N = S, there is nothing to show, since the sender's signature bu�ers' information is storedas needed on (15.191), (15.194), and (15.197), and they are then cleared at the end ofevery transmission on (15.171) or (15.199). For any N 6= S, we show that from the time Nreceives the full SOT broadcast in a transmission T through the next transmission T

′ in which
N next hears the full SOT broadcast, either all of N 's signature bu�ers contain informationfrom the last time they were updated in some round of T, or they are empty and either thisinformation has already been transferred to N 's broadcast bu�er or N is not on the blacklistfor transmission T

′ (this will prove Statement 2). During transmission T, there is nothing toshow, as all changes made to any signature bu�er over-write earlier changes, so throughout
T, the signature bu�ers will always contain the most current information. It remains to showthat between the end of T and the time N receives the full SOT broadcast of transmission T

′,the only change that N 's signature bu�ers can make is to be cleared, and this can happenonly if either the information contained in them is �rst transferred to N 's broadcast bu�er, orif (N, T, T′) does not appear in the SOT broadcast of transmission T
′ (and hence the signatureinformation will not be needed anyway). To do this, we list all places in the pseudo-codethat call for a change to one of the signature bu�ers or removing data from the broadcastbu�er, and argue that one of these two things must happen. In particular, the only placesthe signature bu�ers of N change (after initialization) are: (12.48-49), (12.50), (12.74-75),(12.80), (12.82), (14.128), (14.133), (14.141), (14.146), and (7.76). The only place that107

information that was once in one of N 's signature bu�ers is removed from the broadcast bu�eris (14.134).First notice that because N transfers a packet in transmission T, N must have received thecomplete SOT broadcast for transmission T (Lemma 11.8). For all rounds of all transmissionsbetween T + 1 and the time N receives the full SOT broadcast for transmission T
′, lines(12.48-51), (12.74-78), and (7.76) will never be reached by N (see Lemma 11.8 and itsproof). Similarly, line (12.80) will never be reached since (12.63) will always be satis�ed.Although (12.82) may be reached, we argue that it will not change SIGN,N by arguing thatfor all rounds between T+ 1 and the time N receives the full SOT broadcast for transmission

T
′, there will never be codeword packets occupying a higher slot than the ghost packet. Moreprecisely, we will show that for all rounds between T+1 and the time N receives the full SOTbroadcast for transmission T

′, either HGP = ⊥ or HGP = HIN + 1, and then by Statements1 and 2 of Lemma 7.1 (together with the fact that N is honest and so we may apply Lemma11.1), Fill Gap on (12.82) will not be performed (see comments on that line). That HGP = ⊥or HGP = HIN + 1 for all of these rounds follows from the fact that HGP will be set to ⊥at the end of T (15.209), after which it can only be modi�ed on (12.66), (12.72), (12.76),(12.78), (12.80), or (12.82). Notice that all of these set HGP to ⊥ or HIN + 1 and that
HIN + 1 cannot change for all rounds between T + 1 and the time N receives the full SOTbroadcast for transmission T

′ by Lemma 11.8.It remains to consider lines (14.128), (14.133), (14.141), (14.146), and (14.134); the�rst four clear the signature bu�ers, and the last clears the broadcast bu�er. So it remainsto argue that if any of these lines are reached, either the broadcast bu�er is storing all ofthe information that the signature bu�ers held at the end of T, or (N, T, T′) cannot appearas part of the SOT broadcast of transmission T
′. Line (14.128) is clearly covered by thelatter case, since if a parcel of this form is received in some transmission T̂ ∈ [T + 1..T′], then

(N, T) is not on the sender's blacklist as of T̂ > T, and hence (N, T) will never be able to bere-added to the blacklist after this point (see (15.188)). Similar reasoning shows that line(14.146) is covered by one of these two cases. In particular, if N reaches line (14.146) in sometransmission T̂ ∈ [T+1..T′], then either N will add the information in its signature bu�ers intoits broadcast bu�ers as on (14.142-145) before reaching (14.146), or else N was not on theblacklist as of T̂, and hence it is impossible for (N, T, T′) to be a part of the SOT broadcast fortransmission T
′. Now suppose N reaches (14.133-134) in some round of a transmission T̂ > Tindicating that a node N̂ is to be eliminated. In order to reach (14.133-134) in transmission

T̂, N must not have known that N̂ was to be eliminated before that point (14.131), and since
N received the complete SOT broadcast of transmission T (by Lemma 11.8 together with thehypotheses that N is honest and transferred a packet in T), N̂ must have been eliminatedin some transmission T̃ ≥ T. In particular, if T̃ = T, then (N, T) can never be added to theblacklist (since (14.188) cannot be reached in transmission T if Eliminate Node is reached inthat transmission); while if T̃ > T, then (N, T) will be cleared from the blacklist as on (14.171)(if it was on the blacklist), and as already remarked, (N, T) can never again appear on theblacklist after this.Now suppose (14.141) is reached in some transmission T̂ > T and the signature bu�ersare cleared on this line. Now before line (14.141) was reached, by induction, one of the threestatements (a), (b), or (c) was true. If (b) or (c) was true, then changes made on (14.141) will108

not a�ect the fact that (b) or (c) will remain true. Therefore, assume that we are in case (a)before reaching (14.141), i.e. that when (14.141) is reached in transmission T̂, N 's signaturebu�ers contain the information that they had at the end of T. Since (14.141) was reached,it must have been that (N, T̃, T̂) was received on (14.137) as part of the SOT broadcast fortransmission T̂, for some T̃. We �rst argue T̃ ≥ T. To see this, since N is honest, it will nottransfer any packets in T if it is on its own version of the blacklist ((11.31-33) and (11.35-37)). Since we know that N did transfer packets in transmission T (by hypothesis), and also
N received the full SOT broadcast of that same transmission (Lemma 11.8), either N was noton the blacklist as of the start of transmission T, or N received information as on (14.147)indicating N could be removed from the blacklist. Both of these cases imply that by the endof T, (N, T̃) can never be on the blacklist for any T̃ < T. Thus, T̃ ≥ T, as claimed. Since weare assuming case (a), if T̃ = T, then (14.141) will not be satis�ed. On the other hand, if
T̃ > T, then N has appeared on the blacklist for some transmission after T, and then Lemma11.6 guarantees that (N, T) is not on the blacklist as of T̂ > T, which as noted above implies
(N, T, T′) cannot be part of the SOT broadcast of transmission T

′.3. For Statement (a), we track all the times parcels are removed from N 's broadcast bu�er BB,and ensure that if ever N removes a status report parcel belonging to N̂ for some transmission
T̂, then (N̂ , T̂) is no longer on the sender's blacklist. If N = S, notice the only place thatinformation concerning other nodes' status report parcels is removed from the sender's databu�er is (15.171), and at this point N̂ is not on the blacklist since the blacklist is cleared onthis same line.If N 6= S, changes to BB occur only on lines (14.134), (14.139), (14.149), (14.142-145), and (14.154). The former three lines remove things from BB, while the latter linesadd things to BB. In terms of statement (a), we must ensure whenever one of the formerthree lines is reached, there will never be a status report parcel from N̂ and correspondingto transmission T̂ that is removed from BB if (N̂ , T̂) is on the blacklist. Looking �rst at line(14.134), suppose that N reaches line (14.134) in some transmission T̃ ≥ T. If (N̂ , T̂, T̃) wasnot a part of the SOT broadcast of transmission T̃, then there is nothing to show (since N̂ isnot on the blacklist as of the outset of T̃). So suppose that (N̂ , T̂, T̃) was a part of the SOTbroadcast of transmission T̃. Since reaching line (14.134) requires that N has newly learnedthat a node has been added to EN (14.131), let N ′ denote this node, and let T′ denote theround that N ′ was eliminated from the network as on (15.170). First note that necessarily
T
′ < T̂. After all, the blacklist will be cleared on line (15.171) of round T

′, and hence if (N̂ , T̂)is still on the blacklist as of the outset of T̃, it must have been added afterwards. We now arguethat because T
′ < T̂, the priority rules of transferring broadcast information will dictate thatall honest nodes will necessarily learn N ′ has been eliminated before they learn that (N̂ , T̂) ison the blacklist. From this, we will conclude that when N reaches (14.134) in transmission

T̃ and learns that N ′ should be eliminated, that N has not yet learned that (N̂ , T̂) is on theblacklist, and hence N 's broadcast bu�er will not be storing any of N̂ 's status report parcelsfor T̂ (14.152).It remains to show that any honest node A ∈ G will learn that N ′ has been eliminatedbefore they learn (N̂ , T̂) is on the blacklist. So �x an honest node A ∈ G. Suppose A �rstlearns (N̂ , T̂) is on the blacklist via a parcel of the form (N̂ , T̂, X) that it received as on (14.137)of transmission X. Clearly, X > T̂, since (N̂ , T̂) can only be put on the blacklist at the very109

end of transmission T̂. Therefore, since T′ < T̂ < X, we have that (N ′, X) will be a part of theSOT broadcast for transmission X, indicating that N ′ has been eliminated (15.200). Since
A is honest, it will therefore receive (N ′, X) before it receives (N̂ , T̂, X) (see priority rules forreceiving broadcast parcels, (13.110) and (13.115))We next consider when status report parcels are removed from BB as on (14.139). In thiscase, N has received a SOT broadcast parcel of form (N̂ , T̂, T′) (14.137), and N is removingfrom BB all of N̂ 's status report parcels corresponding to transmissions other than T̂. Firstnote that Lemma 11.6 guarantees that N̂ is on at most one blacklist at any time. Since Nreceived a SOT parcel of the form (N̂ , T̂, T′) during transmission T

′, it must be that (N̂ , T̂) wason the sender's blacklist at the outset of T′, and since nothing can be added to the blacklistuntil the very end of a transmission (15.188), only (N̂ , T̂) can be on the sender's blacklist atthe outset of T′. This case is now settled, as we have shown that N does not remove any of thestatus report parcels from N̂ corresponding to T̂ on (14.139), and this is the only transmissionfor which N̂ can be on the blacklist (at least through T
′).To complete Statement (a), it remains to consider line (14.149). But this is immediate,as if the sender at any time removes (N̂ , T̂) from the blacklist, then it can never again bere-added (since nodes are added to the blacklist at the very end of a transmission (15.188),they are not removed as on (14.166) or (15.171) until at least the next transmission, at whichpoint the same (node, transmission) pair (N̂ , T̂) can never again be added to the blacklist ason (15.188) since T̂ has already passed). Therefore, when N reaches (14.149), if the itemsdeleted from BB correspond to N̂ , then N must have received a broadcast parcel of form

(N̂ , 0, T) as on (14.147), indicating that N̂ was no longer on the blacklist. Consequently,the status parcels deleted will never again be needed since (N̂ , T̂) can never again be on theblacklist.Part (a) of Statement 3 of the lemma (now proven) states that no status report parcel stillneeded by the sender will ever be deleted from a node's broadcast bu�er. Part (b) states thata node's broadcast bu�er will not hold extraneous status report parcels, i.e. status reportscorresponding to multiple transmissions for the same node. This is immediate, since whenevera node N learns a node (N̂ , T′) is on the blacklist as on (14.137), then N will immediatelydelete all of its status report parcels from N̂ corresponding to transmissions other than T
′(14.139). The fact that the stored parcels have the correct information (i.e. that they addressthe appropriate reason for failure as on (14.142-145)) follows from the fact that N will onlyinitially store a status report parcel if it contains the correct information (14.153).4. There are three lines on which the broadcast parcels of the kind relevant to Statement 4) areremoved from N 's broadcast bu�er: (14.134), (14.139), and (14.149). We consider each ofthese three lines. Suppose �rst that the parcel (B, N̂ , T̂) is removed from N 's broadcast bu�eras on line (14.134) of some transmission T

′. In particular, N learns for the �rst time in theSOT broadcast of transmission T
′ that some node Ñ has been eliminated. Let T̃ denote thetransmission that the sender eliminated this node (as on (15.169-177)). If T̃ > T̂, then (N̂ , T̂)will be cleared from the blacklist on line (15.171) of T̃, and hence when (B, N̂, T̂) is removedfrom N 's broadcast bu�er in transmission T

′ > T̃, (N̂ , T̂) will no longer be on the blacklist, asrequired. Therefore, assume T̃ < T̂ (equality here is impossible since lines (15.169-177) and(15.188) can never both be reached in a single transmission, see e.g. (15.177)). Let X denotethe transmission in which N �rst learned that (N̂ , T̂) was on the blacklist, i.e. N received a110

parcel of the form (N̂ , T̂, X) on (14.137) of transmission X. Clearly, X > T̂, since (N̂ , T̂) can onlybe added to the blacklist at the end of T̂ (15.188). Also, X ≤ T
′, since by hypothesis a parcel ofthe form (B, N̂, T̂) is removed from N 's broadcast bu�er on line (14.134) of T′, and this parcelcan only have been added to N 's broadcast bu�er in the �rst place if N already knew that

(N̂ , T̂) was blacklisted (14.151). Lastly, X ≥ T
′, since T̃ < T̂ implies that Ñ was eliminatedbefore (N̂ , T̂) was added to the blacklist, and therefore by the priorities of sending/receivingbroadcast parcels ((13.110) and (13.115)), we have that an honest N will learn that Ñ hasbeen eliminated before it will learn that (N̂ , T̂) is on the blacklist. Combining these inequalitiesshows that X ≥ T

′ and X ≤ T
′, so X = T

′. But this implies that when (14.134) is reached in
T
′, N does not yet know that (N̂ , T̂) is on the blacklist, and consequently the parcel (B, N̂ , T̂)cannot yet be stored in N 's broadcast bu�er, which contradicts the fact that it was removedon (14.134) of T′. Therefore, whenever (14.134) is reached, either (N̂ , T̂) will no longer beon the blacklist, or there will be no parcels of the form (B, N̂, T̂) that are removed.Suppose now that the parcel (B, N̂, T̂) is removed from N 's broadcast bu�er as on line(14.139) or (14.149) of some transmission T

′. In either case, by looking at the comments onthese lines together with Lemma 11.6, (N̂ , T̂) has already been removed from the blacklist ifa parcel of the form (B, N̂, T̂) is removed on either of these lines. �Lemma 11.17. If A,B ∈ G are honest (not corrupt), in any transmission T for which both A and
B have received the full SOT broadcast:1. Between the time B accepts a packet from A on line (12.77) through the time A gets con�r-mation of receipt (see De�nition 7.6) for it as on (12.50), we have:

• SIGB [1]A,B = 1 + SIGA[1]A,B
48

• SIGB [p]A,B = 1 + SIGA[p]A,B
48

• SIGB [2]A,B = M + SIGA[3]A,B, where M is the value of HFP on (12.60) (according to
A's view) in the same round in which (12.77) was reached by B

• SIGB [3]A,B = m + SIGA[2]A,B, where m is the value of HGP on (12.75) (according to
B's view) in the same round in which (12.77) was reached by B2. At all other times, we have that SIGB [1]A,B = SIGA[1]A,B, SIGB [2]A,B = SIGA[3]A,B,

SIGB [3]A,B = SIGA[2]A,B, and SIGB [p]A,B = SIGA[p]A,B for each packet p that is part ofthe current codeword.Proof. The structure of the proof will be as follows. We begin by observing all signature bu�ers areinitially empty (10.48) and (10.54), and that for any transmission T, both SIGA and SIGB arecleared before any packets are transferred (Lemma 11.8). We will then focus on a single transmissionfor which A and B have both received the full SOT broadcast, and prove that all changes made to
SIGA and SIGB during this transmission (after the bu�ers are cleared upon receipt of the SOTbroadcast) respect the relationships in the lemma. Since the only changes occur on lines (12.48-49)and (12.74-75), it will be enough to consider only these 4 lines. Furthermore, if lines (12.48-49)were reached x times by A in the transmission, and lines (12.74-75) were reached y times by B,then:48If the packet accepted corresponds to an old codeword, then SIGB [1]A,B = SIGA[1]A,B and SIGB[p]A,B =
SIGA[1]A,B = ⊥. 111

(a) Either y = x or y = x + 1,(b) Neither set of lines can be reached twice consecutively (without the other set being reachedin between)(c) Lines (12.74-75) are necessarily reached before lines (12.48-49) (i.e. in any transmission,necessarily y will change from zero to 1 before x does).Notice that the the top statement follows from the second two statements, so we will only provethem below.We �rst prove the three statements above. We �rst de�ne x more precisely: x begins eachtransmission set to zero, and increments by one every time line 50 is reached (just after A's signaturebu�ers are updated on lines (12.48-49)). Also, de�ne y to begin each transmission equal to zero,and to increment by one when line (12.74) is reached (just before B's signature bu�ers are updatedon lines (12.74-75)). Statement (c) is immediate, since RR begins every round equal to −1 (lines(10.50) and (15.209)), and can only be changed to a higher index on (12.78). Therefore, (12.46)can never be satis�ed before (12.78) is reached, which implies (12.48) is never reached before(12.74) is. We now prove Statement (b). Suppose lines (12.48-49) are reached in some round t.Notice since we are in round t when this happens, and because RR can never have a higher indexthan the current round index, and the most recent round RR could have been set is the previousround, we have that B's value for RR (and the one A is using on the comparison on (12.45-46))is at most t − 1. Also, HFP and FR will be set to ⊥ on (12.51) of t. If FR ever changes to anon-⊥ value after this, it can only happen on (12.56), and so the value it takes must be at least t.Therefore, if at any time after t we have that FR 6= ⊥, then if RR has not changed since t − 1,then (12.46) can never pass, since RR ≤ t− 1 < t ≤ FR. Consequently, (12.78) must be reachedbefore (12.48-49) can be reached again after round t, and hence so must (12.74-75). This showsthat (12.48-49) can never be reached twice, without (12.74-75) being reached in between.Conversely, suppose lines (12.74-75) are reached in some round t. Notice since we are in round
t when this happens, and because FR can never have a higher index than the current round index,we have that A's value for FR (and the one B is using on the comparison on (12.73)) is at most t.Also, RR will be set to t on (12.78) of round t, and RR cannot change again until (at some laterround) (12.73) is satis�ed again (or the end of the transmission, in which case their is nothing toshow). If line (12.56) is NOT reached after (12.74-75) of round t, then FR can never increase to alarger round index, so FR will remain at most t. Consequently, line (12.73) can never pass, since if
B receives the communication from A on line (12.62), then by the above comments RR ≥ t ≥ FR.Consequently, (12.56) must be reached before (12.73) can be reached again after round t. However,by Statement 3 of Lemma 7.7, (12.56) cannot be reached until A receives con�rmation of receiptfrom B (see De�nition 7.6), i.e. (12.56) can be reached after (12.74-75) of round t only if lines(12.48-49) are reached.We now prove the lemma by using an inductive argument on the following claim:Claim. Every time line (12.74) is reached (and y is incremented), we have that equalities ofStatement 2 of the lemma are true, and between this time and the time line (12.48) is reached (orthe end of the transmission, whichever comes �rst), we have that the equalities of the �rst statementof the lemma are true.To prove the base case, notice that before lines (12.74-75) are reached for the �rst time, but afterboth nodes have received the transmission's SOT broadcast, all entries to both signature bu�ers are112

⊥, and so the induction hypothesis is true. Now consider any time in the transmission for which
y is incremented by one in some round t (i.e. line (12.74) is reached). Since neither x nor y canchange between lines (11.20) and (11.22), by the induction hypothesis we have that the equalitiesof the second statement of the lemma are true when A sends the communication as on (12.60)of round t. Since A has actually sent (SIGA[1] + 1, SIGA[p] + 1, SIGA[3] + HFP), and these arethe quantities that B stores on lines (12.74-75), we have that the �rst statement of the lemmawill be true after leaving line (12.75) (and in particular the claim remains true). More speci�cally,letting M denote the value of HFP (respectively letting m denote the value of HGP) when (12.60)(respectively (12.74)) is reached in round t, we will have that immediately after leaving (12.75):1. SIGB [1]A,B = 1 + SIGA[1]A,B2. SIGB [p]A,B = 1 + SIGA[p]A,B3. SIGB [2]A,B = M + SIGA[3]A,B4. SIGB [3]A,B = m + SIGA[2]A,Bas required by Statement 1 of the Lemma. By Statement (b) above, either the signature bu�ers along
E(A,B) do not change through the end of the transmission, or the next change necessarily occursas on (12.48-49). In the former case, the Claim certainly remains true. In the latter case, let t′denote the time that (12.48) is next reached. Notice that t′ > t, as Statement (b) above guarantees(12.48) is reached after (12.74), and by examining the pseudo-code, this cannot happen until atleast the next round after t. In particular, the values received on (11.07) of round t

′ necessarilyre�ect the most recent values of SIGB (i.e. B's signature bu�ers have already been updated as on(12.74-75) when B sends A the communication on (12.11)). Consequently, A will change SIGA[1],
SIGA[2], and SIGA[p] to the values B is storing in SIGB [1], SIGB [3], and SIGB [p], respectively.Therefore, the claim (and hence the lemma) will be true provided we can show that when A updates
SIGA[3] as on (12.49), that the new value for SIGA[3] equals the value stored in SIGB [2]. Sincebefore (12.49) is reached, we have by the induction hypothesis that SIGB [2]A,B = M+SIGA[3]A,B ,it is enough to show that when SIGA[3] is updated on (12.49), that the value of HFP there equals
M . We argue that this by showing HFP will not change from line (12.60) of round t (when M wasset to HFP) through line (12.49) of round t

′. To see this, notice that the only possible places HFPcan change during a transmission are lines (12.51), (12.53), and (12.56). Clearly, (12.51) cannotbe reached between these times, since (12.49) is not reached during these times. Also, Statement 3of Lemma 7.7 implies that (12.56) cannot be reached between these times either. Finally, (12.53)cannot be reached, since RR will be set to t on (12.78) of round t, and by statement (b), (12.78)cannot be reached again until after (12.49) is reached in round t
′, and hence RR will be equal to

t from (12.78) of round t through (12.49) of round t
′. Also, FR will not change between thesetimes (also by Statement 3 of Lemma 7.7), and since the only non-⊥ value FR is ever set to is thecurrent round as on (12.56), we have that FR ≤ t. Putting these facts together, we have thatfor all times between line (12.60) of round t through line (12.49) of round t

′, either A does notreceive RR (in which case RR = ⊥ when (12.52) is reached) or A receives RR, which as notedobeys RR = t ≥ FR. In either case, (12.52) will fail, and (12.53) cannot be reached. �Lemma 11.18. For any transmission T, recall that PT denotes the list of nodes that participatedin that transmission, and it is set at the end of each transmission on (15.187). For any honest (not113

corrupt) node A ∈ G, during any transmission T, A will not exchange any codeword packets withany node that is not put on PT at the end of the transmission.Proof. Restating the lemma more precisely, for any node N that is NOT put on PT as on (15.187)and for any honest node A ∈ G, then along (directed) edge E(A,N), A will never reach line (11.60),and along (directed) edge E(N,A), A will never reach lines (12.67-82). Fix a transmission T inwhich (12.187) is reached (i.e. a node is not eliminated as on (15.169-177) of T), let N /∈ PT beany node not put on PT on (15.187) of T, and let A ∈ G be an honest node. Since N /∈ PT, we havethat either N ∈ EN or N ∈ BL when (15.187) is reached. Since no nodes can be added to EN or
BL from the outset of T through line (15.187) of T, we must have that N ∈ EN or N ∈ BL as ofeither line (15.188) or (15.170) of the previous transmission. Therefore, either (N, T) or (N, T′, T)is added to the SOT broadcast of transmission T (on (15.176) or (15.200) of transmission T− 1),indicating N is an eliminated/blacklisted node. If A has not received the full Start of Transmission(SOT) broadcast for T yet, then the lemma is true by Lemma 11.8. If on the other hand A hasreceived the full SOT broadcast, then in particular A has received the parcel indicating that N iseither eliminated or blacklisted. Thus, by lines (12.59), (11.31-33), (12.63) and (11.35-37), Awill not transfer any packets with N . �Lemma 11.19. The receiver's end of transmission broadcast takes at most n rounds to reach thesender. In other words, the sender will have always received the end of transmission broadcast bythe time he enters the Prepare Start of Transmission Broadcast segment on (11.29).Proof. By the conforming assumption, for every round t of every transmission there is a path Ptbetween the sender and receiver consisting of edges that are always up and nodes that are notcorrupt. We consider the �nal n rounds of any transmission, and argue that for each round, eitherthe sender already knows the end of transmission parcel Θ, or there is a new honest node N ∈ Gthat learns Θ for the �rst time. Since the latter case can happen at most n− 1 times (the receiveralready knows Θ when there are n rounds remaining, see (11.28) and (15.178-179)), it must bethat the sender has learned Θ by the end of the transmission. Therefore, let 4D − n < t ≤ 4D beone of the last n rounds of some transmission. If the sender already knows Θ, then we are done.Otherwise, let Pt = N0N1 . . . NL (here N0 = S and NL = R) denote the active honest path forround t that connects the sender and receiver. Since S does not know Θ but R does, there existssome index 0 ≤ i < L such that Ni does not know Θ but Ni+1 does know Θ. Since edge E(Ni, Ni+1)is active and the nodes at both ends are honest (by choice of Pt), node Ni+1 will send Ni a broadcastparcel on (11.15). Looking at the manner in which broadcast parcels are chosen (13.115), it mustbe that Ni+1 will send Θ to Ni in round t, and hence Ni will learn Θ for the �rst time, which wasto be showed. �Lemma 11.20. If the receiver has received at least D − 6n3 distinct packets corresponding to thecurrent codeword, he can decode the codeword (except with negligible probability of failure).Proof. Fact 1′ guarantees that if the receiver obtains D − 6n3 distinct packets corresponding toa codeword, then he can decode. Since all codeword packets are signed by the sender to preventmodifying them, the security of the signature scheme guarantees that any properly signed codewordpacket the receiver obtains will be legitimate (except with negligible probability of failure). �Lemma 11.21. For every transmission T: S,R ∈ PT.114

Proof. The participating list PT is set at the end of every transmission on line (15.187). By lookingat the code there, we must show that S,R /∈ EN ∪ BL at the end of any transmission. That anhonest node can never be identi�ed as corrupt and eliminated is the content of the proof of Theorem8.1, so S,R /∈ EN . Since S is never put on the blacklist (15.188), it remains to show R /∈ BLwhen (15.187) is reached. Since nodes are removed from the blacklist on line (14.166) and not puton it again until (15.188), it is enough to show that if R is ever placed on the blacklist at the endof some transmission T− 1, then it will be removed as on (14.166) of transmission T. If R is everplaced on the blacklist, we argue that: 1) R will learn what status report parcels the sender requiresof it after at most 2n2 rounds; and 2) S will receive all of these parcels by at most 4n3 roundslater. Therefore, R will necessarily be removed from the blacklist by round 4n3 + 2n2 < 4D (since
D ≥ 6n3), as required. To prove 1), �rst note that all honest nodes remove the receiver's end oftransmission parcel for T− 1 at the very end of T− 1 (15.203). Therefore, no honest node will haveany End of Transmission Parcel in its broadcast bu�er at any point during T until one is createdfor the current transmission on (15.178-179). Therefore, for the �rst n3 rounds, the sender's SOTbroadcast will have top priority in terms of sending/receiving broadcast parcels (13.115). Since Sand R are connected by an active honest path at each round, we follow the proof as in Lemma 11.19to argue that for every round between the outset of T and round n3, either R has learned the fullSOT broadcast, or there is an honest node that is learning a new SOT broadcast parcel for the �rsttime. Since there are (at most) n nodes, and the SOT broadcast has at most 2n parcels (see proofof Lemma 11.2, and Statement 2 of the Broadcast Bu�er therein), it takes at most 2n2 rounds for
R to receive the full SOT broadcast, and hence to learn it has been blacklisted. This proves 1).Upon receipt of this information, R adds the necessary information (i.e. its status report)to its broadcast bu�er (14.137-145). Looking at the proof of Theorem 10.9 and in particularClaim 2 within the proof, edges along the active honest path can take at most 4n3 < 4D roundsto communicate across their edges the broadcast information of priorities 1-6 on lines (13.115),and since the receiver is connected to the sender every round via some active honest path (by theconforming assumption), its requested status report information will necessarily reach the senderwithin 4n3 rounds, proving 2). �Lemma 11.22. For any transmission T, if PT = {S,R}, then the transmission was necessarilysuccessful.Proof. PT is set on line (15.187). Since the only place the sender adds nodes to the blacklistis on (15.188), which happens at the very end of each transmission, and because the hypothesisstates that every non-eliminated node except for S and R is on the blacklist when line (15.187) oftransmission T is reached, it must be the case that transmission T began with every non-eliminatednode on the blacklist, with the possible exception of the receiver (and the sender who is neverblacklisted). Since all internal nodes are still blacklisted by the end of the transmission, the senderwill never transfer any packets to any node other than R during transmission T (line (12.59) willalways fail for any other node, see (11.31-33)). Theorem 10.9 indicates there are at most 4n3 roundsthat are wasted, and since the only edge the sender can ever use to transfer codeword packets during
T is E(S,R), the conforming assumption implies edge E(S,R) is active every round of T. We maytherefore view the graph as reduced to a single edge connecting S and R (see Lemma 11.18), wherethere are at least 4D − 4n3 > 3D (non-wasted) rounds per transmission. Since both S and R arehonest, correctness is guaranteed as in the edge-scheduling protocol by Lemma 11.1. In particular,the transmission will necessarily be successful. �115

Lemma 11.23. No honest node will accept more than one distinct parcel (per node N̂ per trans-mission) indicating that N̂ should be removed from the blacklist.Proof. Line (13.110) guarantees that any node A will only accept the parcel if it has alreadyreceived the sender's start of transmission broadcast corresponding to the current transmission. Inparticular, this means that A has received an updated blacklist (and a list of eliminated nodes)before it accepts any removals from the blacklist. Therefore, in some transmission T, if A ever doesaccept the information that a node N̂ should be removed from the blacklist, then this informationwill not become out-dated until (if) N̂ is added to the blacklist again, which can happen at theearliest at the very end of transmission (15.188). Therefore, after receiving the information forthe �rst time that N̂ should be removed, the comments on line (14.123) will guarantee A will notaccept additional blacklist information regarding N̂ until the following transmission, proving thelemma. �Lemma 11.24. For any node N̂ ∈ G, after receiving the complete SOT broadcast, an honest node
N will transmit along each edge at most once per transmission the fact that it knows N̂ 's completestatus report.Proof. Each parcel stored in N 's broadcast bu�er BB is accompanied by a list of which edges theparcel has been successfully transmitted across (see comments on line (14.123)). Therefore, as longas the parcel is not deleted from the broadcast bu�er, line (13.115) guarantees that each parcelof broadcast information will only pass along each edge once, as required. Therefore, it remainsto prove the lemma in the case that the relevant broadcast parcel is deleted at some point in atransmission. Fix a transmission T and an arbitrary N̂ ∈ G. Since broadcast parcels of the relevanttype (i.e. that N has N̂ 's complete status report) are only removed on (14.139) and (14.149), weneed only consider the case that (14.149) is reached in transmission T (the former line can onlybe reached as part of the SOT broadcast, and therefore lies outside the hypotheses of the lemma).In particular, we will show that if (14.149) deletes from N 's broadcast bu�er the parcel indicatingthat N knows N̂ 's complete status report, then N will never again add a parcel of this form toits broadcast bu�er (as on (14.155)) for the remainder of T. But this is immediate, since if Nremoves this parcel from BB on (14.149) of T, then N̂ must have been removed from the blacklist(see (14.147)), and since N̂ cannot be re-added to the blacklist until the end of T (15.188), line(14.152) (of N 's code, with the N̂ that appears there equal to the N̂ used in the present notation)cannot be satis�ed for the remainder of T, and hence (14.155) cannot be reached. This proves thatonce the parcel is deleted, it cannot be later added in the same transmission, proving the lemma. �12 Conclusion and Open ProblemsIn this paper, we have described a protocol that is secure simultaneously against conformingnode-controlling and edge-scheduling adversaries. Our results are of a theoretical nature, withrigorous proofs of correctness and guarantees of performance. Surprisingly, our protocol showsthat the additional protection against the node-controlling adversary, on top of protection againstthe edge-scheduling adversary, can be achieved without any additional asymptotic cost in terms ofthroughput.While our results do provide a signi�cant step in the search for protocols that work in a dynamicsetting (edge-failures controlled by the edge-scheduling adversary) where some of the nodes are116

susceptible to corruption (by a node-controlling adversary), there remain important open questions.The original Slide protocol49 requires each internal node to have bu�ers of size O(n2 log n), whileours requires O(n4 log n), though this can be slightly improved with additional assumptions50. Inpractice, the extra factor of n2 may make our protocol infeasible for implementation, even foroverlay networks. While the need for signatures inherently force an increase in memory per nodein our protocol verses the original Slide protocol, this is not what contributes to the extra O(n2)factor. Rather, the only reason we need the extra memory is to handle the third kind of maliciousbehavior, which roughly corresponds to the mixed adversarial strategy of a corrupt node replacinga valid packet with an old packet that the node has duplicated. Recall that in order to detect this,for every packet a node sees and for every neighbor, a node must keep a (signed) record of howmany times this packet has traversed the adjacent edge (the O(n3) packets per codeword and O(n)neighbors per node yield the O(n4) bound on memory). Therefore, one open problem is �nding aless memory-intensive way to handle this type of adversarial behavior.Our model also makes additional assumptions that would be interesting to relax. In particular, itremains an open problem to �nd a protocol that provides e�cient routing against a node-controllingand edge-scheduling adversary in a network that is fully asynchronous (without the use of timingassumptions, which can be used to replace full synchrony in our solution) and/or does not restrictthe adversaries to be conforming. As mentioned in the Introduction, if the adversary is not conform-ing, then he can simply permanently disconnect the sender and receiver, disallowing any possibleprogress. Therefore, results in this direction would have to �rst de�ne some notion of connectednessbetween sender and receiver, and then state throughput e�ciency results in terms of this de�nition.References[1] Y. Afek, E. Gafni �End-to-End Communication in Unreliable Networks.� PODC, pp.. 1988.[2] Y. Afek, B. Awebuch, E. Gafni, Y. Mansour, A. Rosen, and N. Shavit. �Slide� The Key to PolynomialEnd-to-End Communication.� Journal of Algorithms 22, pp. 158-186. 1997.[3] Y. Afek, E. Gafni, and A. Rosén. �The Slide Mechanism With Applications In Dynamic Networks.�Proc. of the 11th ACM Symp. on Principles of Distributed Computing, pp. 35-46. 1992.[4] W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosén. �Adaptive Packet Routing For Bursty Adver-sarial Tra�c.� J. Comput. Syst. Sci. 60(3): 482-509. 2000.[5] B. Awerbuch, D. Holmer, C. Nina-Rotaru, and H. Rubens. �A Secure Routing Protocol Resilient toByzantine Failures.� WiSE, pp. 21-30. 2002. ACM, 2002.[6] B. Awerbuch and T. Leighton. �Improved Approximation Algorithms for the Multi-Commodity FlowProblem and Local Competitive Routing in Dynamic Networks.� STOC. 1994.[7] B. Awerbuch, Y Mansour, N Shavit �End-to-End Communication With Polynomial Overhead.� Proc.of the 30th IEEE Symp. on Foundations of Computer Science, FOCS. 1989.[8] B. Barak, S. Goldberg, and D. Xiao. �Protocols and Lower Bounds for Failure Localization in theInternet.� Proc. of Advances in Cryptology- 27th EUROCRYPT 2008, Springer LNCS 4965, pp. 341-360. 2008.49In [12], it was shown how to modify the Slide protocol so that it only requires O(n log n) memory per internalnode. We did not explore in this paper if and/or how their techniques could be applied to our protocol to similarlyreduce it by a factor of n.50If we are given an a-priori bound that a path-length of any conforming path is at most L, the O(n4 log n) can besomewhat reduced to O(Ln3 log n). 117

[9] S. Even, O. Goldreich, and S. Micali. �On-Line/O�-Line Digital Signatures.� J. Cryptology 9(1): pp.35-67. 1996.[10] O. Goldreich. �The Foundations of Cryptography, Basic Applications.� Cambridge University Press.2004.[11] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford. �Path-Quality Monitoring in the Presenceof Adversaries.� ACM SIGMETRICS Vol. 36, pp. 193-204. June 2008.[12] E. Kushilevitz, R. Ostrovsky, and A. Rosén. �Log-Space Polynomial End-to-End CommunicIation.�SIAM Journal of Computing 27(6): 1531-1549. 1998.[13] S. Micali, C. Peikert, M. Sudan, and D. Wilson. �Optimal Error Correction Against ComputationallyBounded Noise.� TCC LNCS 3378, pp. 1-16. 2005.[14] S. Rajagopalan and L. Schulman �A Coding Theorem for Distributed Computation.� Proc. 26th STOC,pp. 790-799. 1994.[15] C. E. Shannon (Jan. 1949). �Communication in the presence of noise�. Proc. Institute of Radio Engi-neers vol. 37 (1): pp. 10-21.[16] A. Shamir and Y. Tauman. �Improved Online/O�ine Signature Schemes.� CRYPTO 2001, pp. 355-367. 2001.[17] L. Schulman. �Coding for interactive communication.� Special issue on Codes and Complexity of theIEEE Transactions on Information Theory 42(6), Part I: pp.1745-1756. 1996. (Preliminary versions:Proc. 33rd FOCS 724-733, 1992 and Proc. 25th STOC 747-756, 1993).

118

