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Abstract. Recently, Eschenauer and Gligor [EG02] proposed a model (the EG-model) for random
key pre-distribution in distributed sensor networks (DSN) that allows sensors to establish private
shared keys. In this model, each sensor is randomly assigned a set of keys, called a key-ring, from
a secret key-pool. Two nodes can communicate securely by using a shared key (direct key) or via a
chain of shared keys (key-path). The authors show how the key-ring size can be chosen so that nodes
are guaranteed to be linked either by direct keys or by key-paths. Security of this system is proven
for an eavesdropping (passive) adversary.
In this paper we assume the same key pre-distribution set-up but consider a semi-honest adversary.
Semi-honest adversaries are privacy adversaries that have access to a fraction of the keys in the key
pool—the compromised keys, but are otherwise passive, in the sense that they do not cause nodes to
deviate from protocol executions (to remain undetectable). Since they can decrypt messages secured
by key-paths with compromised keys, the security guarantees of the EG model break down.
We revisit the security of key establishment in the presence of such adversaries and make a number
of contributions. First, we show that it is possible to choose the size of the key-rings so that any two
nodes can exchange a private key securely in the presence of a semi-honest adversary. Second, we
give a protocol that achieves this guarantee and prove its security. Third, we introduce a new effi-
ciency parameter for the EG-model that allows the protocol designer to trade-off the communication
required for key establishment with the key-ring size. Finally, we propose a concrete key establish-
ment protocol (based on the DSR protocol) that guarantees security in the presence of a semi-honest
adversary.

1 Introduction

A distributed sensor network (DSN) consists of large numbers of low powered wireless sensors that com-
municate with each other to provide information to a base station. Distributed sensor networks have found
wide application such as sensing environmental data or monitoring infrastructures and areas that need con-
stant surveillance [DS05,MCP+02]. In many applications, sensors are deployed in hostile environments
where sensor communication must be protected. Once deployed, the nodes must operate on battery power
and so traditional public-key cryptographic methods that require high computation and resource con-
sumption, are not applicable. For symmetric key cryptography nodes must be able to efficiently establish
private shared keys. Eschenauer and Gligor [EG02] pioneered an approach to solve this problem called
random key pre-distribution, that assigns to sensors sets of keys such that pairs of sensors can efficiently
establish a shared key, that is guaranteed to exist if the system parameters are chosen appropriately. In this
approach each sensor node is assigned a set of keys, called a key-ring, that are randomly selected from a
fixed pool of secret keys. Two nodes use a simple shared key discovery protocol to discover the keys they
have in common. If they share a key, then they can use this to communicate securely. The shared keys



establish a trust-graph that supports private communication. In particular, if two nodes S, T do not have
a common key, this graph can be used to exchange a private key through a multi-hop trust-path where a
secret key chosen by S will be sent to T by link-encryption (in which the key is encrypted and decrypted
at each trust-hop until it reaches T—see Section 2.3 for a discussion on link-encryptions in DSNs).

Let N be the set of sensor nodes and N t the trust-graph. Eschenauer and Gligor modeled N t as a
random graph and used the random graph theory of Erdös and Rényi [ER60] to determine the size of
the key-rings (for a given key-pool size) such that the trust-graph is guaranteed to be connected (that
is, there is a trust-path connecting any two nodes). The security of this system is guaranteed against
an eavesdropping (passive) adversary, i.e., an outsider adversary who can only observe communicated
messages but does not have access to the keys of the key-rings.

In this paper we consider semi-honest adversaries. A semi-honest adversary is an insider adversary
who has access to a fraction of the keys deployed in the network, for example by compromising a number
of sensor nodes and learning their key-rings. The adversary however adheres to the prescribed protocol(s)
(to remain undetectable while decrypting protected communication). Eschenauer and Gligor considered
the effect of such adversaries and showed that the compromise of a single node would result in each
trust-edge being compromised with probability k/N , where k and N are the sizes of the key-ring and
the key-pool, respectively.4 As the number of compromised nodes increases, the number of compromised
keys increases and a large portion of the trust-edges, and hence the communication network, will become
compromised. We note that a trust-path that has even one compromised edge will be compromised, as the
adversary can decrypt the (link-encrypted) communication over that path. This means that a path may be
compromised even if all the nodes on it are not compromised.

A number of authors [CPS03,DDHV03,LN03,ZXSJ03] have considered semi-honest adversaries and
proposed ways to strengthen the security of the DSN system in such settings. In all these cases, the original
random graph modeling and analysis remain the same and the modifications involve either strengthening
the requirement for establishing trust-edges, or exploiting multiple paths to strengthen the security of
trust-paths. The main shortcoming of all these approaches is that the security guarantee of the original
EG model is lost and although security against semi-honest adversaries may be improved, there is no
guaranteed security (in the sense of the EG model). Moreover, the improvements rely on assumptions
such as uniform deployment with a certain node density that may not hold in many applications. A more
complete review of these works is presented in Section 1.1.

Problem statement. We consider DSN deployments in which the adversary has access to a fraction of
the keys assigned to sensors. The adversary is semi-honest, that is, adheres to the protocol specification
but will use the compromised keys to undermine the privacy of DSN traffic. Our goal is to extend the
EG-model of random key pre-distribution to provide guaranteed privacy in the presence of semi-honest
adversaries.

Our contribution. We consider a semi-honest α-adversary: that is, a privacy adversary that has compro-
mised a fraction of up to α of the edges of the trust-graph; equivalently, an adversary that has access to a
fraction up to α of the keys of the key-pool—for instance, through the compromise of a subset of nodes.
We address the following challenges:

1. The existence of non-compromised trust-paths in the presence of an α-adversary. Since the adversary
is semi-honest, one cannot distinguish keys that are compromised from keys that are not. We show that
to protect an EG system against α-adversaries, it is sufficient to scale the edge probability of the trust-
graph by (1 − α), and use the connectivity of the resulting random graph to determine the size of the
key-rings. We give an upper-bound approximation for the new size mα of the key-rings, in terms of the

4 More precisely, a trust-edge is compromised with probability k/N∗, where N∗ is the size of the deployed key-pool.
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Fig. 1. The probability of successful multipath key establishment increases with the number of trust-paths
used: if in this graph links are compromised with probability 0.5, then the probability of successful key
establishment increases from 0.25, when using disjoint wireless paths, to 0.375 when using all (two)
paths.

original key-ring size m and α, the power of the adversary. A more precise value for mα can be obtained
from Appendix A in [EG02] in terms of the key-pool size and the desired link probability. We show
(Section 3.2) that this choice of key-rings ensures that, for any α-adversary: any two non-compromised
sensors are linked by a key-path that is not compromised.

2. Establish a private shared key between nodes. The existence of non-compromised trust-paths in an
EG system can be guaranteed by appropriate scaling of the key-ring size. However, in general, there
are many trust-paths connecting nodes. Since we cannot distinguish compromised trust-paths from non-
compromised paths when the adversary is semi-honest, it may be hard to find non-compromised paths.
Note that in the original EG model (with passive adversaries), the existence of a trust-path is sufficient to
guarantee private communication (by link-encryption)—more details in Section 2.2.

We propose (Section 3.2) a key establishment protocol that is secure (private) in the presence of semi-
honest α-adversaries. The protocol has three steps. In the first, the source S finds all the trust-paths that
link it to the target T . In the second S sends privately (link-encrypted) through each such path to T the
share of a secret key, using a (ν, ν) secret sharing scheme, where ν is the number of paths. In the last step,
T computes the key by combinining the shares it has received. If the size of the key-rings is determined
as in (1.), then at least one of the shares will be private and thus the established key will be private.
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Fig. 2. The probability that the privacy of multipath key establishment is compromised increases with
the length of trust-paths and decreases with the number of trust-paths—α is the fraction of compromised
trust-edges.
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We emphasize that using all paths together with key-rings of appropriate size is essential to our argu-
ment for providing privacy guarantees, and that no multipath protocol that uses the original key-ring size
and a subset of paths (e.g., wireless-disjoint or node-disjoint paths) can provide privacy guarantees against
an α-adversary. Figure 1 shows that the security of multipath key establishment improves as more paths
are used to transmit secret shares. Assume that each link has probability α = 0.5 to be compromised.
Nodes S, T are connected via two trust-paths SXY T and SXT . These paths have probability 0.53 and
0.52, respectively, of remaining uncompromised. If a single path is used to transport a private key, then
this is secure with probability no more than 0.25. However if both paths are used to transport shares of
the key, the probability increases to 0.375. Consequently the probability of successful key establishment
increases when more paths are used (even if these are not disjoint). This is reflected in Figure 2(b) which
illustrates that the probability that a multipath key establishment protocol is compromised decreases ex-
ponentially as more trust-paths are used to transmit key shares.

3. The efficiency of private communication. The protocol in (2.) establishes the existence of a secure
trust-path in the presence of a semi-honest adversary. In practice the total number of paths between two
nodes grows exponentially with the path length and so the communication cost of the protocol can be-
come unwieldy. Note that the communication cost of key establishment between two nodes in the original
EG model is linear in the length of the trust-path linking the nodes. However in the case of semi-honest
adversaries, the communication cost grows exponentially with the path length (see the protocol in Sec-
tion 4 and subsequent Remarks), and it is crucial to consider ways of reducing this cost. This is especially
important in resource-constrained sensor networks where it has been shown that radio energy dominates
total energy expenditure on a sensor [RSPS02].

We introduce bounds on the diameter of the trust-graph as a means of controlling the length of trust-
paths and ensuring that every two nodes are connected by at least one short trust-path: e.g., a path that
is shorter than a pre-specified number. We show how to choose the size of the key-rings such that the
diameter of the trust-graph is bounded byD (Section 4) and so effectively reduce the communication cost
of key establishment at the expense of increasing the size of key-rings. The protocol in (2.) above can be
easily modified to incorporate this restriction. The trade-off between communication cost and key-ring
size can be employed to design the parameters of the protocol for particular application scenarios. Note
that constraining the length of trust-paths also improves the security of the multipath key exchange—see
Figure 2(a).

4. Design a private key establishment protocol with flexible efficiency. We propose a concrete two-pass
key establishment protocol, based on the Dynamic Source Routing (DSR) [JMH] protocol that is secure
(private) in the presence of a semi-honest α-adversary (Section 5). The protocol has efficiency parameters
that can be tuned for particular applications. In the first pass, the source S uses depth restricted flooding
to allow the target T to discover all trust-paths of length at most D between S and T . In the second pass,
T selects a random key and sends a share of it (using a (ν, ν) secret sharing scheme, ν the number of
trust-paths) link-encrypted through each discovered path to S. S can then compute the key by combining
these shares.

The protocol has two efficiency parameters: the key-ring sizem and the diameterD of the trust-graph.
A higher value for D requires deeper flooding in the network and so increases the communication cost,
while a low value D, for example D = 2, 3, requires small flood depth and less communication. We show
how to choose m for a given D and key-pool such that there is at least one non-compromised path of
length at most D between S and T . This path will be discovered in the flooding stage in the first pass and
thus the established key will be private.

An important contribution of our work is the clear separation of the deployment topology (e.g., the
wireless distribution of nodes) from the trust-graph properties in providing protection against node com-
promising adversaries. We use the properties of the trust-graph to model semi-honest adversaries and
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provide guaranteed security. This security will hold as long as the wireless (communication) graph and
the trust-graph are connected. This is the minimum assumption for a deployed DSN and is the same as
the assumption of the original EG model (see Section 2 for more details).

1.1 Related work

A number of papers in the literature have proposed improvements of the EG model to allow for semi-
honest adversaries. However these assume that the deployed network has a particular structure (e.g., the
nodes are uniformly distributed), and hence will not apply for some deployments. The distinctive aspect
of our approach is that we make no such assumption. To allow for semi-honest adversaries we modify the
parameters of the original random trust-graph by increasing the key ring-size. Our only assumption for
the deployed wireless network is that it is (wirelessly) connected.

Eschenauer and Gligor observed that a semi-honest adversary who compromises a single node has
probability k/N of learning the key of a trust-edge. Subsequent work improved the resiliency of the
original EG system against semi-honest adversaries by: (i) strengthening link security [CPS03], and (ii)
using multipath key establishment [CPS03,ZXSJ03,LZ05].

To strengthen the link-keys in the original EG model, q-composite schemes were proposed in [CPS03]
for which a trust-link is established if at least q keys are shared between two nodes. To ensure graph
connectivity, the key-ring size is increased. In the resulting scheme, a threshold is set such that, if the
adversary compromises fewer nodes than the threshold, the q-composite scheme will be more resilient
than the original EG system; otherwise it is less resilient. The scheme however, does not provide any
guarantees for the security of the key establishment for semi-honest adversaries.

We next discuss improvements based on multipath key establishment. Dispersing secret information
for improving security was first proposed by Rabin [Rab89] and later applied by Tsirigos and Haas [TH04]
to alleviate path failure (e.g., packet dropping) in routing. Chan et al. [CPS03] proposed this approach to
improve the security of the EG scheme against semi-honest adversary. This scheme, requires that pairs of
nodes find all 2-hop disjoint wireless paths between them, and send a share of secret key over each path.
They analyzed their scheme using a geometric approach, assuming a uniformly deployed network, and
computed the average number of 2-hop disjoint secure wireless paths between two nodes. This number
was used to determine the number of shares of the key. Du et al. [DDHV03] extended this analysis to 3-hop
disjoint paths. Although both schemes adjust the deployed node density and key-ring size to ensure that a
small average number of paths can be established between two nodes, they cannot offer any guarantee in
arbitrary deployments.

An important limitation of the geometric analysis is that for longer paths, the complexity of the com-
putation for finding the probability of the existence of disjoint paths becomes unmanageable. Huang et
al. [HMvdLM07] address this problem in non-adversarial settings and for uniformly deployed networks.
They computed the probability that a node is connected with its h-hop neighbors.

Note that if disjoint wireless paths are used (as in [CPS03]) then only a subset of all available trust-
paths will be used to transmit (link-encrypted) secret key shares. This means that even with proper scaling
of the key-ring size, there may be no non-compromised paths between some pairs of nodes and therefore
any protocol that uses subsets of possible paths will fail for such pairs.

Zhu et al. [ZXSJ03] also propose a multipath solution for improving security against a semi-honest
adversary. The scheme transports secret key shares overw 2-hop disjoint trust-paths between nodes, where
w is a security parameter. The scheme however, does not provide any guarantees that w paths can always
be found. When w paths are not found, the protocol is either aborted and delayed until network conditions
change (due to node movement), or a lower security level link is established. The first case works only in
dynamic networks and the second case reduces the security level of the whole system as a system is only
as secure as its weakest link.
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Li et al. [LZ05] present a node-disjoint multipath routing protocol that relies on [LC04] to first find the
node-disjoint paths and then exchanging shares of a secret key. The authors do not offer any guarantees
of success. Additionally by assuming node-disjoint paths, only a subset of all trust-paths is found, which
reduces the probability of success (refer to Figure 1).5

Finally the resilience of key pre-distribution systems can be improved by enforcing structure on the
key-pool [DDHV03,LN03,LS05]. Although schemes that use this approach have some interesting prop-
erties, they generally have the limitation that the security of the system completely breaks down if the
number of compromised nodes is higher than a certain threshold, a design parameter of the system. Also
the security guarantees in these systems are obtained at the expense of reduced flexibility in the system
parameters [LS05,cY07], lack of scalability [DDHV03] or extensibility [cY07] as well as pre-deployment
knowledge which is not always practical [LN03].

2 Preliminaries

2.1 Random Key Pre-distribution

A random key pre-distribution scheme has the following parameters:

– S = {S1, . . . , Sn} be a set of n sensors
– K = {K1, . . . ,KN} be a set of N keys, the key-pool
– {Ki}i∈S be a set of key-rings, where Ki ⊂ K and |Ki| = m is fixed.

Each sensor Si is given a key-ring Ki which is a randomly selected subset of a key-pool K. Two sensors
that share at least one key in their key-rings have a trust-link. This defines a graph N t, called the trust-
graph or key-graph, whose node-set is S and edge-set is the set of trust-links. Since the key-rings are
randomly selected, the probability p of two nodes having at least one shared key (and so being connected)
is independent of the two nodes. This means that the trust-graph can be modeled as a random graph
G(n, p) with n nodes and edge probability p.

Random graphs Erdös and Rényi [ER60,Bol01] studied random graphs G(n, p) on n nodes in which
each edge occurs independently with probability p. They showed that there are certain classes of (mono-
tone increasing) properties for which there are sharp thresholds for the probability p, which if crossed,
will cause the graphs to ‘almost surely’ acquire these properties as n→∞. As noted by Eschenauer and
Gligor, graph connectivity is one such property. The connectivity threshold is given by:

Theorem 1. [Bol01] Let G ∈ G(n, p) with p = 1
n (log n + c + o(1)), c is a fixed real number. Then the

probability Pcon that G is connected converges to e−e
−c

as n→∞.

In other words to ensure connectivity with probability Pcon the required edge-probability p for a
network of size n is bounded by, p = lnn/n + c/n, as n → ∞. Here c determines the probability Pcon
that the graph is connected. This theorem is used to determine p, for a required Pcon and n, and hence the
key-ring size for a given key-pool.

In this paper we consider a second monotone property, the diameter of a graph. (The diameter of a
graph is the greatest distance between any two of its nodes.) The threshold for the graph diameter is given
by:

5 In fact, the number of disjoint paths between two nodes, is less than the number of wireless disjoint paths (as used
by Chan et al. [CPS03]), which is smaller than the total number of trust-paths.
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Theorem 2. [Bol01] Let c > 0 be a constant, D ≥ 2 a natural number, and p satisfy: pDnD−1 =
log(n2/c). Suppose that pn/(log n)3 → ∞. Then G ∈ G(n, p) has diameter D with probability PD =
e−c/2 and diameter D + 1 with probability 1− e−c/2 as n→∞.

For a graph of size n, for large enough n, Theorem 2 gives the threshold probability p implicitly by
pDnD−1 = log(n2/c), for which the value of the diameter is D with probability PD, where as before PD
is defined as a function of c.

Figures 3(a) and 3(b) respectively plot the points (p, Pcon) and (p, PD) for four values of n: 103, 2×
103, 104, 105, taking o(1) = 0 and log = ln. The figures show the rapid phase transition of the random
graphs with respect to graph connectivity and diameter D = 2.

2.2 Network model

A deployed key-ring DSN is associated with a wireless network Nw. The union of the trust-graph N t

and Nw is a network Nw+t with edge-set the union of the edge-sets of Nw and N t. The trust-graph N t

when projected onto Nw induces a trust infrastructure Nwt on the deployed network whose edge-set is
the intersection of the edge-sets of N t and Nw. Figure 4 shows the relationship between these graphs.

We shall assume that each node Xi in the network has a unique identifier id(Xi) and that all keys
have labels recognized by the nodes in the network. Once nodes are deployed, a neighbor discovery
algorithm is executed. We assume that the neighborhood relation is symmetric (bi-directional), that is,
a node discovers those and only those nodes that can discover it, and that neighborhood discovery is
asynchronous and distributed.

Discovering neighbors in N w and N t. Several wireless neighbor discovery algorithms have been pro-
posed in the literature (see e.g., [BE81,NNS98,ZHS03]). These algorithms are employed at the network
layer. Discovering the trust-neighbors of a node Xi requires identifying all nodes in the network that
share at least one key with Xi. A straightforward protocol is to have each node broadcast (flood through-
out the DSN) in clear-text its identifier and a list of the labels of all the keys that are in its key-ring. Using
this information a node can locally construct N t and find a path that links it between to non-neighbor
nodes in the trust-graph. Protocols discovering neighbors in N t are discussed in [EG02]. Note that these
algorithms can also be used to determine the wireless distance of trust-neighbors.
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Nw N t

Nwt Nw+t

Fig. 4. A deployment in which the wireless network Nw, the trust network N t and the union network
Nw+t are connected, but the deployed trust network Nwt is not.

2.3 Key establishment in non-uniform deployments

Let S be the source and T the target. We distinguish two ways in which S and T can exchange (establish)
a private key. Let κ be a random key selected by S.

Link-encryption in Nwt. This method is used when the source S and the target T are connected by a
path πwt(S, T ) = (S, S1, . . . , Su, T ) inNwt. In this case each wireless edge of the path is assigned a key
from the key-pool. To send the key κ to T privately, S encrypts κ with the key it shares with S1 and sends
the encryption to S1; S1 decrypts it to get κ, and then re-encrypts it with the key it shares with S2, and so
on, until κ reaches T encrypted with a key it shares with Su.

In practice the topology of the deployed wireless network Nw is not known in advance (i.e., when
the key-rings are assigned to sensors) and any assumption regarding its uniformity (e.g., the degree of
nodes) will not hold in some deployments. Figure 4 gives an example of a deployment with 7 nodes. The
wireless network Nw is a star topology and highly nonuniform, while the trust network N t is uniform
(degree 2). Both graphs are individually connected (as is their union Nw+t), but the intersection graph,
Nwt, is highly disconnected. However, the union network Nw+t is connected.

Eschenauer and Gligor showed in [EG02] how to adjust the key-ring size so as to guarantee con-
nectivity in Nwt for uniform deployments. However, for arbitrary deployments such as those above, the
network Nwt is not connected. The minimum connectivity requirement however is that N t and Nw are
individually connected. In such cases secure key establishment can be achieved with link-encryption in
Nw+t.

Link-encryption in Nw+t. This method is used when the source S and the target T are not connected in
Nwt but are connected in bothN t andNw. Suppose that S, T are connected by the trust-path πt(S, T ) =
(S, S1, . . . , Su, T ) inN t. To send κ to T privately, S encrypts it with the key it shares with S1 and sends
this to S1 over a wireless path that is guaranteed to exist inNw. When S1 gets the encryption, it decrypts
it and then re-encrypts it with the key it shares with S2 and forwards it through the wireless network to
the next node on the trust-path, until eventually the key reaches T .

We make the following observations regarding link-encryptions.

1. For both types of encryption the session key κ is private if and only if the keys assigned to the edges of
πt(S, T ) are not compromised. If the key assigned to a trust-edge is compromised, then the path and
hence the session key and all future encrypted communication using this key, will be compromised.
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2. Link-encryption inNwt has lower communication cost than link-encryption inNw+t. This is because
sending a message over a trust-edge requires traversing a single edge inNw while inNw+t, sending
a message over a trust-edge requires traversing multiple edges of the wireless graph.

From the above discussion we see that:

Minimum connectivity requirement. To establish a private session key in the presence of a passive adver-
sary (an eavesdropper) it is necessary and sufficient that the trust-graphN t and the wireless networkNw

be connected.

3 Securing Communication Against Semi-Honest Adversaries

3.1 Adversary model

We shall assume that the random key pre-distribution process is trusted and that key-rings are assigned
to sensors prior to deployment in a secure environment. This implies that key pre-distribution and key
compromise are independent events.

We consider a privacy adversary that is semi-honest. The adversary has access to a fraction α of the
deployed keys in the key-pool, and is passive. The goal of the adversary is to undermine the privacy of
communication without being detected. The probability that a key associated with a trust-edge in N t is
not compromised is (1−α). We can therefore model the non-compromised trust-graph by a random graph
G(n, p(1− α)). This is a subgraph of N t which we denote by N t

α.

Security against α-adversaries. Assume that the key-ring sizem is designed for edge-probability p that
guarantees trust-connectivity with probability Pcon = A, against a passive adversary (the original EG
model). Here A can be seen as the level of security guarantee offered by the system.

To guarantee security in the presence of an α-adversary with probability A, we need to choose
key-rings of size mα, and hence the associated trust-graph G(n, pα) must be such that the subgraph
G(n, pα(1 − α)) is connected with probability Pcon = A. From Theorem 1 the edge-probability of ran-
dom graphs with fixed probability of connectivity Pcon = A, is a function of the number of nodes n and
c. To obtain Pcon = A in G(n, pα(1−α)), we therefore need to have pα(1−α) = p: that is, choose key-
rings such that probability that two arbitrary key-rings have at least one common key is pα = p/(1− α).

Scaling the key-ring size. Knowing the edge probability p of trust-graph allows us to precisely find the
key-ring sizemα that guarantees privacy for α-adversaries. This is done using the methodology described
in Appendix A of [EG02]. Table 1 shows how the key-ring size mα increases with the value of α.

α 0 0.1 0.2 0.3 0.4 0.5
mα 43 45 49 51 56 62
m∗α 43 64 67 72 78 86

Table 1. The relation between the exact key-ring sizemα and the upper bound of the key-ring sizem∗α for
α-adversaries to guaranteed privacy, in a network with 103 nodes and key-pool size 105. Note that α = 0
is equivalent to the case when we only consider a passive adversary.
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We also provide (in Appendix B) an upper bound m∗α for the key-ring size mα that will guarantee
privacy in the presence of a semi-honest α-adversary in terms of the key-ring size m that will guarantee
privacy for passive adversaries. We show that assuming N > m(2m − 1) (e.g., key ring size up to 70
for key-pool size 10000), we have m∗α ≤ 2m/(1− α). That is, security against an α-adversary requires
that key-rings be scaled up by a factor of no more than 2/(1 − α). Table 1 shows the actual relationship
between the exact key-ring size mα and the upper bound m∗α.

3.2 Protocol description

In Section 2.3 we showed how privacy for a passive adversary (an eavesdropper) in a DSN can be estab-
lished by using link-encryption when the networksN t andNw are connected. However, with semi-honest
adversaries, link-encryption becomes insecure and cannot be used to transport private keys. We now pro-
pose a key establishment protocol that guarantees privacy in the presence of an α-adversary, provided the
size of the key-rings is chosen appropriately. Let S be the source and T the target. The protocol has four
steps.

1. S finds all paths πti(S, T ) in N t that connect it to T . Let νST = |{πti(S, T )}|.
2. S chooses νST random numbers r1, . . . , rνST

∈ Zq , q large, and computes the key κST =
∑νST

i=1 ri mod
q.

3. For each i = 1, . . . , νST , S sends to the target T the share ri link-encrypted over the path πti(S, T ).
4. T receives link-encrypted shares r1, . . . , rνST

and computes κST =
∑νST

i=1 ri mod q.

Theorem 3. The key-establishment protocol described above guarantees privacy against semi-honest α-
adversaries in an EG key pre-distribution DSN, if we increase the size of the key-rings by a factor of no
more than 2/(1− α).

The proof is based on the fact that there is at least one uncompromised path between any two nodes and so
at least one of the shares of the key κST is not known to the adversary. The privacy of the key follows from
the fact that in the sum

∑νS,T

i=1 ri mod q, one unknown share will result in the key itself being unknown.

Remarks

1. Efficiency: The protocol requires that all trust-paths between the two nodes, are known. This infor-
mation can be obtained by using the key discovery protocol described in [EG02]. However, this could
be computationally expensive for low powered sensors. In the next section we show how cost can be
reduced by using larger key-rings.

2. Multipath protocols: Protocols that use disjoint multipaths to assure privacy with semi-honest adver-
saries will fail in the general case. The reason is that these protocols require that there are sufficiently
many disjoint paths so that at least one of them is not compromised. In our setting the (expected)
number of compromised edges (αpn(n − 1)/2 = O(n2)) can be much larger then the number of
disjoint paths (bounded by the expected degree of nodes p(n− 1) = O(n)).

3. Because the adversary is semi-honest, it is not possible to distinguish between compromised and non-
compromised paths. If the key-ring size is chosen at its minimum required value, then lower values
will fail to guarantee the existence of non-compromised paths. The protocol presented in this section
is minimal for the required security guarantee.

4 Improving Efficiency

The protocol in Section 3.2 requires that a share of a private key be sent (link-encrypted) over each one
of the trust-paths that link the nodes S, T . Since the communication overhead over long paths can be
excessive for DSNs with constrained resources this protocol is not practical.
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In this section we show how to use a result from random graph theory to increase the communication
efficiency at the cost of higher node storage (larger key-ring size). The basic idea is to ensure that the
value D of the diameter of the non-compromised trust-graph is small. (Graphs that are not connected
have diameter D =∞.)

Restricting the diameter of N t. Using Theorem 2, the key-ring size can be chosen so that for any two
nodes there is at least one trust-path of length at most D that links them with probability PD. Suppose the
adversary is α-semi-honest. Then the non-compromised trust-graphN t

α is a random graph G(n, p(1−α)),
and we can take the size of the key-rings in Theorem 2 to be such that the value of the diameter of G is
small, say D = 3 or D = 4, with probability PD. This will reduce the communication cost of the key
establishment protocol significantly. We use the same protocol as in Section 3.2, except for the first step
which is replaced by:

1. (Revised) The source S finds all paths πti,D(S, T ) of length at most D inN t that link it to the target T .
Let νST = |{πti,D(S, T )|.

4.1 Analysis

The protocol has four parameters, (n, α, PD, len∗).

n: is the minimum size of the network for the provided security guarantee.
α: is the fraction of the compromised keys tolerated by the protocol.
PD: is the success probability of the protocol.
len∗: the efficiency parameter of the protocol.

Choosing the algorithm parameters. We determine the edge probability pα of the non-compromised
trust-graph N t

α as follows—refer to Theorem 2.

1. From PD = e−c/2 we get: c = −2 · logPD.
2. From plen

∗
nlen

∗−1 = log(n2/c) we get: p = (log(n2/c)/nlen
∗−1)1/len

∗
.

3. From (1− α)pα = p we get pα = p/(1− α).

The probability pα can then be used to determine the size mα of the key-ring as in [EG02]. Observe that
the security guarantee will hold for larger n because the diameter D is a monotone property for random
graphs.

4.2 An example

To understand our scheme, we present a simple example. We consider a sensor network with 104 nodes,
where the key-pool size is 105 and the adversary has compromised α = 25% of the deployed keys in the
network. In this example, we first compute the key-ring size that would secure the sensor network against
a semi-honest 0.25-adversary without efficiency considerations and then show how the key-ring size must
be increased when efficiency is a requirement. In particular, we show that by constraining the diameter
of the trust-graph to D = 3 with probability PD = 0.999 (and D = 4 with probability 0.001), in the
presence of a semi-honest 0.25-adversary, the key-ring size increases from 13 keys to 29 keys.

To compute the key-ring size for a non-constrained trust-graph (i.e., when no graph diameter constraint
is imposed), we simply use the method presented in the original EG scheme. Given a graph connectivity
probability of Pc = 0.999 in a network of P = 104 nodes and a key-pool size N = 105, we first find
c = 6.91 so that two nodes can establish a secure connection with probability p = 0.0016. If 25% of the
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edges of the trust-graph are compromised, then the new edge-probability is pα = p/(1−0.25) = 0.0021.
Therefore, to secure the system against a semi-honest adversary without efficiency constraints, the size of
the key-rings must be at least 13 keys.

Next, we constrain the diameter of the trust-graph so that with probability PD = 0.999 the diameter
D = 3. We use the algorithm described in Section 3.2. From Step 1, we get c = 0.002. Using this value
and len∗ = 3, Step 2 gives us the trust-edge probability p = 0.00627. Therefore, the random graph
G(104, 0.00627) has diameter D = 3 with probability PD = 0.999 as n → ∞, see Figure 3(b). If 25%
of the edges of the trust-graph are compromised, then the new edge-probability is pα = p/(1 − 0.25) =
0.00836. For this configuration, assuming a key-pool size N = 105, we see that the key-ring size should
be at least 29 keys, by using the approach in [EG02].

Discussion 1. Our analysis is for the trust-graph N t and its non-compromised subgraph N t
α. The key-

ring sizes can be determined for deployments with uniform neighborhood distribution as in [EG02]. That
is, assuming a uniform node density (degree), the probability p can be adjusted to guarantee connectivity
or diameter D, in Nwt.

2. If all the trust-paths linking S and T are compromised then S, T cannot communicate privately and it
will not be possible to establish a private key between S and T . A trust-graph designed to have diameterD
puts an upper-bound on the cost of establishing a secure key between two arbitrary points. For a deployed
network with fixed key-ring size, one can determine len∗ for the first pass of the protocol to guarantee
security at a desired level.

3. Our key establishment protocol uses all paths of up to certain trust-length. The two main advantages
of this approach are: (i) security guarantees for correctly chosen key-ring sizes and (ii) efficiency, as we
do not require any processing of the paths to verify properties such as node or edge disjointness.

5 A Practical Protocol

We next propose a practical key establishment protocol that guarantees privacy in the presence of semi-
honest adversaries. To improve the efficiency of the protocol, we select the parameters of the system so
that the diameter of the non-compromised trust-graph is reduced to len∗.

The protocol is based on the widely used DSR protocol [JMH] and has two passes. The first pass
discovers all the trust-paths in the trust networkN t between the source S and target T that have length at
most len∗. In the second, T sends shares of a private key link-encrypted over each discovered path to S.

Note that every trust-path πt(S, T ) between S and T can be extended to a wireless route πw(S, T )
between S and T . Let πt be a discovered partial trust-path, starting at S, and πw one of its wireless
extensions. We use the following convention: a node X ∈ πw that belongs to πt is denoted as X∗ on πw;
in particular the source is denoted by S∗. If X 6∈ πti it is simply denoted as X . This notation will make
it possible to use the route πw for link-encryption: starred nodes will decrypt/encrypt data and forward
it whereas non-starred nodes will simply forward data. Finally, the subpath of πw consisting of its last
starred node and all following (non-starred) nodes is denoted by trunc(πw).

We shall assume that each nodeX knows all its wireless neighbors Y ∈ nw(X) as well as all its trust-
neighbors Z ∈ nt(X) and their wireless distance dw = dw(X,Z) (the minimum number of wireless hops
that separate them).

We now present a high-level description of the protocol. The detailed algorithm is provided in Ap-
pendix A. Figure 5 illustrates how all the trust-paths of length at most 3 are discovered between nodes S
and T for a particular network.
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Pass 1: Discover all trust paths of length at most 3

Rnd 1 S → : 〈(S∗), A, 1, 3〉, 〈(S∗), F, 3, 3〉, 〈(S∗), D, 1, 3〉
Rnd 2 A → : 〈(S∗, A∗), T, 2, 2〉, 〈(S∗, A), F, 2, 3〉

C → : 〈(S∗, C), F, 2, 3〉
D → : 〈(S∗, D), F, 2, 3〉, 〈(S∗, D∗), C, 1, 2〉 , 〈(S∗, D∗), E, 1, 2〉

Rnd 3 B → : 〈(S∗, A∗, B), T, 1, 2〉, 〈(S∗, A,B), F, 1, 3〉
T → : 〈(S∗, C, T ), F, 1, 3〉
D → : 〈(S∗, C,D), F, 1, 3〉
C → : 〈(S∗, D, C), F, 1, 3〉
E → : 〈(S∗, D, E), F, 1, 3〉

Rnd 4 T stops : 〈(S∗, A∗, B, T ∗)〉.
F → : 〈(S∗, C, T, F ∗), T, 1, 2〉

Rnd 5 T stops : 〈(S∗, C, T, F ∗, T ∗)〉.

Fig. 5. An example of the execution of Pass 1, in which all trust-paths between S and T are discovered.
Note: 〈path,X, d, len∗〉 is a route request bounded by the wireless-distance d to X and the trust-distance
len∗ to T . Initially len∗ ← 3.

Pass 1. Discovering trust-paths (downstream)
The source S broadcasts a route request

mrreq = 〈sn, πw, dw, X, T, len∗〉
for each one of its trust-neighbors X ∈ nt(S): sn is a sequence number, πw = (S∗), dw is the wireless
distance between S and T , and len∗ is an upper bound on the trust-length.

Suppose that an intermediate node Xi receives the route request mrreq. We distinguish two cases:
Xi 6= X and Xi = X . In the first case, if dw > 1 and Xi 6∈ trunc(πw) (to prevent wireless cycles), Xi

broadcasts mrreq with: πw ← πw||Xi and dw ← dw − 1. If dw = 1 and X ∈ nw(Xi) then Xi unicasts
mrreq with: πw ← πw||Xi and dw ← 0.

Next let Xi = X . If len∗ = 1 and T ∈ nt(Xi) then Xi broadcasts mrreq with: πw ← πw||X∗i ,
X ← T , dw ← dw(Xi, T ) and len∗ = 0. If len∗ ≥ 2 then Xi broadcasts to each one of its trust-
neighbors Z ∈ nt(Xi), Z 6∈ πt (to prevent trust-path cycles) mrreq with: πw ← πw||X∗i , X ← Z,
dw ← dw(Xi, Z) and len∗ = len∗ − 1.

Pass 2. Key establishment (upstream)
When target T receives mrreq with wireless path πw and sequence number sn, it selects a random key
share ri ∈ Zq and unicasts a route reply,

mrrep = 〈sn, πw, E〉 ,
where E = EK(ri) is the encryption of ri with key K shared with the last starred node on πw. The
route reply is sent upstream link-encrypted to S: starred nodes will decrypt/encrypt E and unicast the
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new encryption, while unstarred nodes will simly unicast it. The source S will decrypt all encryptions E
with sequence number sn, and compute the sum kST =

∑
i ri mod q.

In this protocol all nodes have timers. When they first receive mrreq with sequence number sn they
set an sn-timer. The timers are used to control their actions for the flows sn. On timeout, the node actions
are terminated. In particular, the source node S will compute the key kST for session sn, which is shared
with T .

The algorithm will discover all trust-paths of length at most len∗ and so the established key will be
private if there is at least one non-compromised trust-path of at most this length linking S and T .

Analysis. For any α-adversary we can choose the parameters of the key-ring DSN so that the key estab-
lishment algorithm will succeed with a pre-determined probability PD. Indeed, if the edge probability of
trust-graph N t is p then the probability that a link is not compromised is (1 − α)p. The algorithm will
succeed with probability PD if p is chosen such that (1−α)p is sufficiently large to guarantee with prob-
ability PD that the diameter of this graph (the non-compromised graph) is len∗—for example, D = 2 or
D = 3 (this implies that this graph is also connected).

6 Concluding Remarks

Eschenauer and Gligor launched a new direction of research with their seminal paper on random key pre-
distribution in distributed sensor networks. They used a random graph to model the trust infrastructure
of their system, with the sensors corresponding to nodes and the edges corresponding to trust-links. This
system is proven secure for passive (eavesdropping) adversaries. Although there have been numerous sub-
sequent works where stronger adversary scenarios are considered, none extended the security guarantees
of the key establishment against stronger adversaries in the random graph model. This is important as it
allows security guarantees to be made independent of the deployment model.

In this work, we consider semi-honest adversaries that have access to a fraction of the deployed keys
of the network, but do not cause nodes to deviate from the specified protocol. We show how the original
key pre-distribution system can be strengthened to account for semi-honest adversaries in the random
graph model. We also introduce an efficiency parameter that constrains the trust-path length between two
nodes. Finally, we present and analyze a practical key exchange protocol that guarantees privacy between
all nodes in the presence of a semi-honest adversary.

Our contribution is a first step in extending the random graph model of Eschenauer and Gligor. In the
future we plan to consider more powerful Byzantine adversaries that can cause nodes to behave arbitrarily.
Additionally, we plan to use simulations and example deployment scenarios that allow us to quantify our
efficiency parameter.
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A Protocol Description

We assume that each node X has: a counter ctr to generate sequence numbers sn, timers timerX , and
a cache cache(X). Initially route ← ⊥ and cache(X) ← ⊥. Each node has a time-to-live ttlsn timer
associated with each sequence number it stores in its cache. When ttlsn timeouts, the sequence num-
ber sn in the cache is discarded. We use the syntax defined in Section 5 for route requests, mrreq =
〈sn, route, dw, X, T, len∗〉, and mrrep = 〈sn, route, E〉, for route replies. The value of route is a list of
nodes that specifies a wireless route (inNw). Some of the nodes are starred: these define a trust-graph (in
N t). As in Section 5, the subroute of route consisting of its starred nodes is denoted by routet, and the
subroute consisting of its last starred node and all following nodes is denoted by trunc(route).

A key establishment algorithm
Pass 1 (downstream)
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Source node S
Set: sn← ctr, ttlsn

S ← timerS , route← (S∗), kST ← 0.
For each Z ∈ nt(S) set: X ← Z, dw ← dw(S, Z)

Broadcast: mrreq

Intermediate node Xi

If mrreq is received
If Xi 6= X , Xi 6∈ trunc(route), dw ≥ 1

Then set: route← route||Xi, dw ← dw − 1

If dw > 1 then broadcast mrreq; else if X ∈ nw(Xi) unicast mrreq

If Xi = X , len∗ = 1, T ∈ nt(Si), then set: route← route||X∗i , X ← T , dw ← dw(Xi, T ), len∗ = 0

Broadcast mrreq

If Xi = X , len∗ ≥ 2, then for each Z ∈ nt(Xi), Z 6∈ routet

Set route← route||X∗i , X ← Z, dw ← dw(Xi, Z), len∗ = len∗ − 1

Broadcast mrreq

Pass 2 (upstream)
Target node T
If mrreq is received and X ∈ nt(T ) then

If sn 6∈ cache(T ) then set ttlsn
T ← timersn

T , store sn in cache(T ), select r ∈R Zq

Compute the encryption EK(r) with the key K shared with with X

Set E ← EK(r), route← route||T ∗, kST ← r

Unicast mrrep

If sn ∈ cache(T ) and ttlsn
T 6= 0, then select r ∈R Zq , compute EK(r) with the key K shared with X

Set E ← EK(r), route← route||T ∗, kST ← kST + r

Unicast mrrep

If mrreq is received and X 6∈ nt(T ) then
If sn 6∈ cache(T ) then set ttlsn

T ← timersn
T , store sn in cache(T )

If dw > 0 then set route← route||T
Unicast mrrep.

If sn ∈ cache(T ), ttlsn
T 6= 0, dw > 0 then set route← route||T

Unicast mrrep.

Intermediate node Xi

If mrrep is received then
If sn ∈ cache(Xi), ttlsn

Xi
6= 0, X∗i ∈ route then

Decrypt E with key K shared with the downstream starred neighbor of Xi on route to get r

Re-encrypt r with key K′ shared with the upstream starred neighbor of Xi on route to get EK′(r)

E ← EK′(r)

Unicast mrrep

Source node S

While ttlsn
S 6= 0 do

If mrrep is received with sequence number sn then
Decrypt E with key K shared the downstream starred neighbor of S to get r

kST ← kST + r mod q

When ttlsn
S = 0 output kST

B An Approximation For the Key-ring Size

Let G(n, pm) be the random graph of an EG system, m the key-ring size and 0 < α < 1.
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Theorem 4. A key-ring size M = 2m/(1−α) guarantees random graph probability pM > pm/(1−α),
when N > m(2m− 1).

Proof. Assume that node Y has been assigned a key-ring with m keys, and that we start drawing keys
for the key-ring of node X from a key-pool of size N . We are interested in collisions when the drawn
keys are not replaced. The probability that the first key drawn for Y is one of the m keys of Y is m/N.
The probability of no collision is 1 −m/N . The probability of no collision for the second drawn key is:
1−m/(N − 1); and so on. So the probability that X,Y have a shared key is:

pm = 1− (1− m

N
)(1− m

N − 1
) · · · (1− m

N −m+ 1
).

This can be expended to get:

pm =
∑

0≤i<m

m

N − i −
∑

0≤i<j<m

m2

(N − i)(N − j) + · · · . (1)

The second term is bounded by,∑
0≤i<m

m

(N − i)
∑

i<j<m

m

N − j <
∑

0≤i<m

m

(N − i)
m(m− i− 1)
N −m+ 1

,

which if we assume that N > m(2m− 1). is less than

1
2

∑
0≤i<m

m

N − i .

The absolute values of the terms in (1) are decreasing. It follows that:

1
2

∑
0≤i<m

m

N − i < pm <
∑

0≤i<m

m

N − i . (2)

Take M = 2m/(1− α). Then the edge probability of the random graph G(n, pM ) is bounded by

1
1− α

∑ m

N − i =
1
2

∑ M

N − i < pM ,

from (2), and also
pm

1− α <
1

1− α
∑ m

N − i .

It follows that: pM > pm/(1− α).
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