
Impossibility Results for Universal Composability in

Public-Key Models and with Fixed Inputs∗

Dafna Kidron† Yehuda Lindell‡

June 6, 2010

Abstract

Universal composability and concurrent general composition consider a setting where secure
protocols are run concurrently with each other and with arbitrary other possibly insecure pro-
tocols. Protocols that meet the definition of universal composability are guaranteed to remain
secure even when run in this strongly adversarial setting. In the case of an honest majority, or
where there is a trusted setup phase of some kind (like a common reference string or the key-
registration public-key infrastructure of Barak et al. in FOCS 2004), it has been shown that any
functionality can be securely computed in a universally composable way. On the negative side,
it has also been shown that in the plain model where there is no trusted setup at all, there are
large classes of functionalities which cannot be securely computed in a universally composable
way without an honest majority.

In this paper we extend these impossibility results for universal composability. We study a
number of public-key models and show for which models the impossibility results of universal
composability hold and for which they do not. We also consider a setting where the inputs to
the protocols running in the network are fixed before any execution begins. The majority of our
results are negative and we show that the known impossibility results for universal composability
in the case of no honest majority extend to many other settings.

Keywords: universal composability, impossibility results, concurrent general composition, public-
key models.

∗This research was partially supported by the israel science foundation (grant No. 781/07).
†Department of Computer Science, Bar-Ilan University, Israel. Email: dafna.kidron@gmail.com
‡Department of Computer Science, Bar-Ilan University, Israel. Email: lindell@cs.biu.ac.il

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Brief Overview of Universal Composability . 5
2.2 The Impossibility Results of [12] . 6

3 UC-Security in Public-Key Models 8
3.1 Bulletin-Board Certificate Authority (CA) . 9
3.2 Bulletin-Board CA with Independent Keys . 14
3.3 The Bare Public-Key Model . 16
3.4 A Strong Bare Public-Key Model . 17
3.5 Active Key Registration by the CA . 18
3.6 CA Corruptions and UC Security . 19

3.6.1 Passive (Semi-Honest) CA Corruptions . 19
3.6.2 Indistinguishable Malicious CA Corruptions 20

4 Universal Composability with Fixed Inputs 20

1 Introduction

In the setting of secure multiparty computation, a set of parties with private inputs wish to jointly
compute some functionality of their inputs. Loosely speaking, the security requirements of such a
computation are that nothing is learned from the protocol other than the output (privacy), and
that the output is distributed according to the prescribed functionality (correctness). More exactly,
the result of an execution of a secure protocol must be like the result of an “ideal execution” with
an incorruptible trusted party who honestly computes the function for the parties (cf. [7] or [19,
Section 7.1]). These security requirements must hold in the face of a malicious adversary who
controls some subset of the parties and can arbitrarily deviate from the protocol instructions.
Powerful feasibility results have been shown for this problem in both the information-theoretic and
computational settings [32, 20, 6, 13]. In the computational setting, it has been shown that any
multiparty probabilistic polynomial-time functionality can be securely computed for any number
of corrupted parties, assuming the existence of enhanced trapdoor permutations [32, 20, 19].

Security under concurrent composition. The above-described feasibility results relate only
to the stand-alone setting, where a single protocol is run in isolation. However, in modern network
settings, protocols must remain secure even when many protocol executions take place concurrently
and are being attacked in a coordinated manner. Informally speaking, a protocol is said to be secure
under concurrent general composition if it is secure when run many times concurrently, alongside
other secure and insecure protocols. The question of what can and cannot be securely computed
in this strongly adversarial setting has been the topic of much research over recent years. In this
paper, we focus on the framework of universal composability [8]; this framework presents a definition
of security with the important property that any protocol meeting the definition is guaranteed to
remain secure under concurrent general composition. Such protocols are called UC-secure for short.

It has been shown that UC-secure protocols exist for essentially any functionality in the case of
an honest majority [8], or where there is a common reference string [14] or an active key-registration
functionality [2]. Thus, in these cases, the same broad feasibility results of the stand-alone model
hold (except that in the stand-alone model, neither an honest majority nor a trusted setup phase
is needed). When considering the case of no honest majority and no trusted setup in the setting of
universal composability, the situation is completely different. Specifically, it has been shown that
in such a setting, large classes of functionalities cannot be UC realized [10, 8, 12, 17]. Due to this,
a search has been initiated to find alternative models and definitions of security for this setting;
see for example [30, 31, 22, 4].

Our results - public-key models. In this paper, we extend the broad impossibility results
of [12]. The UC impossibility results proven in [12] hold for the plain model (where there is no
trusted setup whatsoever) and for the case of no honest majority. However, they do not consider the
case that some basic public-key infrastructure may be in place. This is especially serious because
standard secure computation can only really be carried out when there are authenticated channels
(see [1] for a study of this issue), and in practice such authenticated channels are implemented
using a public-key infrastructure. Thus, the actual impossibility results of [12] do not cover the
most interesting setting where a basic public-key infrastructure is used for obtaining authenticated
channels. The public-key infrastructure needed for obtaining authenticated channels was shown
in [9] to be a basic bulletin-board functionality (i.e., this functionality has the property that any
party can register any key and no checks are carried out on the registered key; the only guarantee is
that a key that is retrieved for a certain party is indeed the same as what was registered). We call

1

the ideal functionality that implements this bulletin board the bulletin-board CA, denoted Fbbca.
We use Fbbca as our starting point and show that all of the impossibility results of [12] actually
hold in the Fbbca-hybrid model as well (i.e., impossibility carries over even when all parties have
access to the ideal functionality that implements Fbbca). That is, we prove the following:

Impossibility with only a bulletin-board CA: There exist large classes of deterministic two-
party functionalities that cannot be UC realized by any protocol, even in the Fbbca-hybrid model.

Our proof works by showing that the main lemma of [12] can be adapted to hold even when
the parties are given access to the ideal functionality Fbbca. This lemma shows that there exists
a successful split adversarial strategy for every UC-secure two-party protocol. Loosely speaking,
this strategy means that it is possible for an adversary to extract the honest party’s input and
also bias the output that the honest party receives. This clearly implies that many (if not most)
functionalities cannot be UC realized. The importance of this result is in showing that UC security
is also impossible to achieve in the realistic model where a public-key infrastructure is in place for
obtaining authenticated channels. We remark that impossibility holds even if Fbbca enforces all
keys to be unique.

Before proceeding to describe our other results, one remark is in order. In reality, the Fbbca

ideal functionality would typically be implemented using digital certificates and a public key of
one or more certificate authorities. Could we not just use the public key of the CA as a common
reference string and thereby construct UC-secure protocols for any functionality using the result
of [14]? We argue that this is not the case. This is mainly due to the fact that the level of trust
needed from an authority choosing a common reference string is far higher than that needed from
a CA. In order to see this observe that the party choosing the common reference string may be
able to learn all of the parties’ inputs over all executions by simply passively eavesdropping on the
communication. Indeed, a close look at protocols in this model demonstrates that this is usually
the case. In contrast, a CA who posts false keys for honest parties must carry out an active attack
in every protocol execution. Furthermore, even if it does so, it can learn whatever a man-in-the-
middle attacker can learn in an unauthenticated channels setting, which is rather limited; see [1]
for more discussion on this. We conclude that although implementing Fbbca requires some trust,
and this trust in reality also boils down to some “string”, there is a fundamental difference between
trusting a public key that can be used for achieving authenticated channels and trusting a common
reference string. Thus, it would be highly desirable to have UC-secure protocols in the Fbbca-hybrid
model. Unfortunately, this is ruled out by the aforementioned result.

Having considered this basic CA functionality, we study stronger versions with the aim of
drawing the line between feasibility and impossibility, and of clarifying what is needed to bypass
the impossibility. In addition to the impossibility result described above, we obtain the following
informally stated results:

1. Feasibility for bulletin-board CA with independent keys: We consider a further strengthening
of the CA to one that prevents any party from retrieving a public key from the bulletin board
before all parties have registered their keys. This assumes that the registered keys are kept
secret during registration. Note that this forces the parties’ keys to be independent of each
other because no party can see any other party’s registered key before it registers its own.
We show that UC secure protocols can be constructed in this model. (In fact this is very
easy to achieve by simply observing that it is possible to securely toss coins in this model.)

2. Impossibility for the bare public-key model: A popular public-key model that has been used
in a number of settings in cryptography is the “bare” public-key model. In this model, the

2

CA is the same as the bulletin-board CA except that all keys must be registered before any
execution of the secure protocol begins. We note that there is no limitation on the arbitrary
other protocols that may run during the registration phase.1 In this case, we show that once
again, the UC impossibility results carry over. This is of special interest because this model
has recently be used to achieve stronger notions of non-malleable concurrent zero-knowledge
[18, 29]. It seems that the aim of this direction is to eventually achieve UC security (or
equivalently, security under concurrent general composition) in this model. We show that the
security achieved in this model must fall short of UC security.

3. Feasibility for a strong bare public-key model: We observe that if the bare public-key model
is strengthened so that no protocols whatsoever are run during the registration phase, then
it is possible to run a coin-tossing protocol that is secure in the stand-alone model in order
to construct a common reference string (and thereby achieve UC security [14]). The reason
that it suffices to consider the stand-alone model for the coin-tossing is due to the fact that
no protocols whatsoever are run during this period. Thus this strengthening trivially enables
UC security; unfortunately, we view it as highly unrealistic.

4. Feasibility for active key registration by the CA: We analyze the key-registration functionality
used by [2] to achieve UC security and show where the proof of impossibility fails with respect
to the functionality. This highlights what properties of the functionality are used to bypass
the impossibility results.

In addition to the above, we study what happens when the CA may be partially corrupted (if it is
fully corrupted, then the UC impossibility results clearly hold, irrespective of what the functionality
does). We show the following:

1. Passive CA corruptions: we observe that if the CA functionality behaves in a semi-honest
way and reveals its internal state to the adversary (but otherwise acts honestly), then UC
security can be achieved. This follows immediately from the fact that the CA can generate
a uniformly distributed common reference string (in which case there is no hidden internal
state), and thus the protocol of [14] can be used.

2. Indistinguishable malicious CA corruptions: we study what happens if the CA behaves mali-
ciously, yet generates messages that are indistinguishable from those generated by an honest
CA. We show that in this case the UC impossibility results also hold, irrespective of how the
CA is defined.

We believe that our results provide a comprehensive study of UC feasibility in public-key models.
It is our hope that they make sense out of the confusing myriad of public-key models that are in
the literature. (Of course, we do not claim to have covered all possible public-key models, nor all
that appear in the literature. Nevertheless, we hope that given the results here, an analysis of other
models is relatively simple.) Our results are summarized in the following table:

1Typically, the bare public-key model was considered for self composition where the only protocol running is the
secure one. Thus the issue of arbitrary other protocols was not raised. We interpret the bare public-key model in
the context of concurrent general composition in this way because we view it as a far more realistic model. The
interpretation whereby no protocol whatsoever is being run during the registration phase is considered next (and we
call it the “strong” bare public-key model).

3

The Model The Result Notes
Bulletin-board CA Impossibility holds Used by [9]

Bulletin-board with independent keys UC security achievable Generate a CRS and use [14]
Bare public-key model Impossibility holds A popular model

Strong bare public-key model UC security achievable Not a realistic model
Active key registration UC security achievable Result shown in [2]
Passive CA corruptions UC security achievable Generate a CRS and use [14]

Indistinguishable malicious CA corruptions Impossibility holds -

Concurrent general composition with fixed inputs. In addition to the above study on UC
security in public-key models we ask another question that relates to the possibility of obtaining
security under concurrent general composition. This question is concerned with how the parties’
inputs are chosen. It has been shown that when the honest parties chooses their inputs adaptively,2

then for a large class of functionalities (in fact, most functionalities), security under concurrent self
composition3 is equivalent to security under concurrent general composition [27]. Therefore all of
the impossibility results that hold for concurrent general composition also hold for concurrent self
composition with adaptively chosen inputs. This equivalence does not hold when the inputs are
all fixed ahead of time (i.e., where the honest parties receive a vector specifying the input for each
execution). The fact that there exist protocols that are secure under concurrent self composition
with fixed inputs but not with adaptively chosen inputs was demonstrated in [23]. Later, this
separation was shown to hold even for the zero-knowledge functionality. That is, it has been
shown that it is possible to construct zero-knowledge protocols that are secure under concurrent
self composition with arbitrary roles (meaning that players can simultaneously be provers and
verifiers), as long as the inputs are all fixed before any execution begins [3]. We stress that such a
construction is impossible to achieve when inputs are adaptively chosen. Thus, it is strictly easier
to achieve concurrent self composition with fixed inputs than it is to achieve with adaptively chosen
inputs. We ask the following question:

For what functionalities is it possible to construct protocols that remain secure when
run once concurrently together with an arbitrary other protocol, and the inputs are fixed
before any execution begins.

We call this setting minimal concurrent general composition with fixed inputs (it is minimal in the
sense that there are only two protocol executions). We remark that it has already been shown
that when inputs may be adaptively chosen, broad impossibility holds even if there are only two
executions as above [26]. The novelty in the question here is therefore the fact that the inputs are
a priori fixed. We show the following:

Impossibility for fixed inputs: There exist large classes of deterministic two-party functionalities
that cannot be securely realized by any protocol under minimal concurrent general composition with
fixed inputs.

We prove this theorem by defining a variant of the UC model where the environment first writes
the inputs to all parties, and only then does the execution begin. We then show that security under
minimal concurrent general composition with fixed inputs implies this UC variant, and finally that
all of the impossibility results of [12] hold for this variant.

2This adaptive choice of inputs means that the inputs used by honest parties may be determined as a function of
the outputs that they have already received in previous executions that have concluded. We stress that it is always
assumed that the adversary can chooses its inputs adaptively. The question of interest here is with respect to the
honest parties.

3In the setting of concurrent self composition, a single protocol is run many times concurrently.

4

Subsequent work. The question of finding a “minimal” setup assumption for UC security has
been studied recently in [16]. They show that it suffices to have a public-key infrastructure where
each party has “some knowledge” of a secret associated with their public key. Their model differs
from our bulletin-board and bare public-key models in this addition of guaranteed knowledge of a
secret. Thus, they manage to avoid the possibility results with this assumption. Another work of
relevance is that of [24] who provide a general framework for modeling different setup assumptions
for achieving UC security.

2 Preliminaries

2.1 Brief Overview of Universal Composability

We present a very brief overview of how security is defined in the UC framework. See [8] for further
details. As in other general definitions (e.g., [21, 28, 5, 7]), the security requirements of a given
task (i.e., the functionality expected from a protocol that carries out the task) are captured via a
set of instructions for a “trusted party” that obtains the inputs of the participants and provides
them with the desired outputs. Informally, a protocol securely carries out a given task if running
the protocol with a real adversary amounts to “emulating” an ideal process in which the parties
hand their inputs to a trusted party who computes the appropriate functionality and hands their
outputs back, without any other interaction. We call the algorithm run by the trusted party the
ideal functionality, and describe the interaction in the ideal model to be between the parties and the
ideal functionality (with the understanding that what we really mean is the trusted party running
this functionality).

In order to prove the universal composition theorem, the notion of emulation in this framework
is considerably stronger than in previous ones. Traditionally, the model of computation includes
the parties running the protocol and an adversary A that controls the communication channels and
potentially corrupts parties. “Emulating an ideal process” means that for every adversary A there
should exist an “ideal process adversary”, or simulator, S such that the distribution over all parties’
inputs and outputs is essentially the same in the ideal and real processes. In the UC framework, an
additional entity, called the environment Z, is introduced. The environment generates the inputs
to all parties, reads all outputs, and in addition interacts with the adversary in an arbitrary way
throughout the computation. A protocol is said to UC realize a given ideal functionality F if for
any “real-life” adversary A that interacts with the protocol and the environment there exists an
“ideal-process adversary” S, such that no environment Z can tell whether it is interacting with A
and parties running the protocol, or with S and parties that interact with F in the ideal process.
In a sense, here Z serves as an “interactive distinguisher” between a run of the protocol and the
ideal process with access to F . A bit more precisely, Let realπ,A,Z be the ensemble describing the
output of environment Z after interacting with parties running protocol π and with adversary A.
Similarly, let idealF ,S,Z be the ensemble describing the output of environment Z after interacting
in the ideal process with adversary S and parties that have access to the ideal functionality F .
We note that all entities run in time that is polynomial in the security parameter, denoted by k.
In addition, the environment receives an initial input z, and security is required to hold for all
such inputs (this makes the environment a non-uniform machine). Security in the UC framework
is formalized in the following definition.

Definition 2.1 Let F be an ideal functionality and let π be a two-party protocol. We say that π
UC realizes F if for every adversary A there exists an ideal-process adversary S such that for every
environment Z, the ensembles idealF ,S,Z and realπ,A,Z are indistinguishable.

5

Variants of the UC definition. As with the results of [12], our results hold for all known
variants of the UC definition and are resilient to changes in definition of polynomial-time, the order
of activations and so on. Nevertheless, in order to write our proofs we need to specify a model. We
take the model where all messages are sent via the adversary, including the messages that are sent
between parties and the ideal functionalities. In order to model private values that may be sent
between the parties and functionalities, we specify that these messages are composed of a public
header and possibly private contents (although in this work there will only be one functionality that
has private contents; all others are completely public). This convention was used in [14] (see [25,
Page 97]) and can be modeled in the regular UC framework (where messages are sent directly and
privately between honest parties and the ideal functionalities), by defining a canonical form for the
ideal functionality that always asks the adversary when to receive a message and when to send
it (and the query is based on sending the public header). We remark that the adversary cannot
modify messages sent between parties and the ideal functionality. The question of whether it can
or cannot modify messages sent between honest parties is of no relevance here because we always
consider the scenario where there are two parties, one of which is corrupted. For a full detailed
description of the exact UC definition that we use here, see [25].

Non-trivial protocols and the requirement to generate output. As we have mentioned
above, in the variant of UC that we consider here, the ideal-process adversary can choose when (if
ever) to deliver messages that are sent between the parties and the ideal functionality. Consequently,
the definition provides no guarantee that a protocol will ever generate output or “return” to the
calling protocol. Rather, the definition concentrates on the security requirements in the case that
the protocol generates output.

A corollary of the above fact is that a protocol that “hangs”, never sends any messages and
never generates output, UC realizes any ideal functionality. However, such a protocol is clearly
not interesting. We therefore use the notion of a non-trivial protocol [14]. Such a protocol has the
property that if the real-life adversary delivers all messages and does not corrupt any parties, then
the ideal-process adversary also delivers all messages (and does not corrupt any parties). Thus,
non-trivial protocols have the minimal property that when all participants are honest (and the
adversary does not prevent any messages from being delivered), then all parties receive output.
Again, as with [12], our impossibility results are for non-trivial protocols only.

The UC composition theorem. As mentioned, a universally composable protocol remains
secure under a very general composition operation. In particular, it maintains its security even
when run concurrently with other arbitrary protocols that are being run by arbitrary sets of possibly
different sets of parties, with possibly related inputs. Thus, universally composable protocols can
be used in modern networks, and security is guaranteed. It is therefore of great importance to
understand what functions can and cannot be UC realized under this definition. See [8] for more
details.

2.2 The Impossibility Results of [12]

The impossibility results of [12] are obtained by proving a lemma that describes an “attack” that is
possible against any two-party UC-secure protocol that securely realizes a deterministic function f .
The lemma is then used to derive a series of impossibility results for different classes of functions.
The lemma refers to deterministic, polynomial-time computable functions f : X ×X → {0, 1}∗ ×
{0, 1}∗, where X ⊆ {0, 1}∗ is an arbitrary, possibly infinite, domain (for simplicity it is assumed

6

that both parties’ inputs are from the same domain, but this makes no difference). The functions
considered have two outputs, one for each party and are denoted f = (f1, f2) where f1 denotes the
first party’s output and f2 denotes the second party’s output.

Motivation. The idea behind the main lemma of [12] is as follows. An ideal-model simulator in
the UC model works by interacting with an ideal functionality; namely, it sends the functionality
an input (in the name of the corrupted party) and receives back an output. Since the simulated
view of the corrupted party is required to be indistinguishable from its view in a real execution,
it must hold that the input sent by the simulator to the ideal functionality corresponds to the
input that the corrupted party (implicitly) uses. Furthermore, the corrupted party’s output from
the protocol simulation must correspond to the output received by the simulator from the ideal
functionality. That is, such a simulator must be able to “extract” the input used by the corrupted
party, in addition to causing the corrupted party to output a value that corresponds to the output
received by the simulator from the ideal functionality.

The main point behind the lemma of [12] is the observation that in the plain model, a malicious
adversary in the real model can do “whatever” the simulator can do. Thus, since the simulator
can extract the adversary’s input, a real adversary can extract the honest party’s input in a real
execution (something that should not be possible in a secure protocol). In other models of secure
computation and when some trusted setup assumptions are used, this attack cannot be carried
out because the simulator typically has some additional “power” that a malicious party does not.
(In stand-alone secure computation, this power is usually the ability to rewind the adversary,
something that cannot be done to a real party. In the UC model with setup assumptions like a
common reference string, this power is the ability to choose the string and make it not necessarily
uniform.)

Split adversarial strategies. We describe the notion of a split adversarial strategy for a cor-
rupted P2 as used in [12]. In our results on impossibility results for public-key models, we will
prove exactly the same lemma except that we will show that it holds in some public-key models
(rather than in the plain model).

Intuitively, the adversarial strategy that is constructed for a malicious P2 is one that consists
of two separate machines: P a

2 and P b
2 . Entity P a

2 interacts with (the honest) P1 and its aim is to
“extract” the input used by the honest P1 (it actually does this by running the ideal simulator for
the protocol who, as we have mentioned, is able to extract such inputs). In contrast, entity P b

2

emulates the ideal functionality for the simulator that is run by P a
2 . Loosely speaking, P a

2 first
“extracts” the input used by P1. Entity P a

2 then hands this input to P b
2 , who computes the function

output and hands it back to P a
2 . Entity P a

2 then continues with the emulation, and causes P1 to
output a value that is consistent with the input that is chosen by P b

2 (this last step must also be
carried it in any ideal simulation, and so once again can also be achieved by an attack in a real
execution). The formal definition of this strategy appears below. We first present the “structure”
of the attack and then what it means to be “successful”.

Definition 2.2 (split adversarial strategy): Let f : X×X → {0, 1}∗×{0, 1}∗ be a polynomial-time
function where f1 and f2 denote the first and second outputs of f , respectively, and let πf be a
protocol. Let X2 ⊆ X be a polynomial-size subset of inputs (i.e., |X2| = poly(k), where k is the
security parameter), and let x2 ∈ X2. Then, a corrupted party P2 is said to run a split adversarial
strategy if it consists of machines P a

2 and P b
2 such that:

1. Upon input (X2, x2), party P2 internally gives the machine P b
2 the input pair (X2, x2).

7

2. An execution between (an honest) P1 running Πf and P2 = (P a
2 , P

b
2) works as follows:

(a) P a
2 interacts with P1 according to some specified strategy.

(b) At some stage of the execution P a
2 hands P b

2 a value x′1.

(c) When P b
2 receives x′1 from P a

2 , it computes y′1 = f1(x
′
1, x

′
2) for some x′2 ∈ X2 of its choice

(chosen according to any efficient strategy).

(d) P b
2 hands P a

2 the value y′1, and P a
2 continues interacting with P1.

Informally speaking, a split adversarial strategy is said to be successful if the value x′1 procured
by P a

2 is “equivalent to” (the honest) P1’s input x1 with respect to f2. That is, the output of
P2, when computed according to f2 and when P2 has input x′2 ∈ X2, is the same whether x1 or
x′1 is used. (Note that x′1 may differ from x1 with respect to P1’s output, but only the effect on
P2’s output is considered.) Furthermore, P a

2 should succeed in causing P1 to output the value
y1 = f1(x1, x

′
2). That is, the output of P1 should be consistent with the value x′2 chosen by P b

2 .

Definition 2.3 (successful strategies): Let f be a polynomial-time function and πf a protocol, as
in Definition 2.2. Furthermore, let k be the security parameter and let Z be an environment who
hands an input x1 ∈ X to P1 and a pair (X2, x2) to P2, where X2 ⊆ X, |X2| = poly(k), and
x2 ∈R X2. Then, a split adversarial strategy for a malicious P2 is said to be successful if for every
Z as above and every input z to Z, the following two conditions hold in a real execution of P2 with
Z and an honest P1:

1. The value x′1 output by P a
2 in step 2b of Definition 2.2 is such that for every x2 ∈ X2,

f2(x
′
1, x2) = f2(x1, x2).

2. P1 outputs f1(x1, x
′
2), where x′2 is the value chosen by P b

2 in step 2c of Definition 2.2.

It is proven in [12] that a successful split adversarial strategy exists for any protocol that UC
realizes a two-party function in the plain model.

3 UC-Security in Public-Key Models

In this section we investigate the question of whether or not it is possible to achieve UC-security
when there is some type of public-key infrastructure (but there is no honest majority). In its basic
form, a public-key infrastructure is a type of “bulletin board” where public keys are published
(together with the identity of their owner) and can be retrieved by all parties in a trusted way. (By
trust here, we mean that we assume that an adversary cannot modify published keys or tamper
with a public-key while it is being retrieved by an honest party.) One of the central questions
that arises when considering such an infrastructure is the role of the Certificate Authority (CA)
who accepts keys and posts them on the bulletin board. For example, we may consider a very
basic public-key model where the CA receives keys without any conditions and posts them, and
we may consider a public-key model where the CA requires the users to send the secret-key that is
associated with the public-key to be published. As we have discussed in the introduction, we study
a number of different models, most of which have appeared in the literature in the past. For each
model, we investigate the possibility of obtaining UC-secure protocols in a hybrid model in which
the CA is modeled by an ideal functionality. Our proofs of impossibility are achieved by reproving
the main lemma of [12] in the different models.

8

3.1 Bulletin-Board Certificate Authority (CA)

We prove broad impossibility results for achieving UC security, even when the protocol may use an
ideal functionality that implements a basic bulletin-board CA. The functionality that we define for
this CA carries out no checks on the keys that are registered. The only limitation is that each party
can register at most one key (this actually makes no difference and our proofs carry through even if
parties can register different keys under different session identifiers or sub-session identifiers). See
Figure 1 for a formal description of the functionality.

Functionality Fbbca

Fbbca proceeds as follows, running with parties P1, P2, . . . and an adversary S:

• Register commands: Upon receiving a message (register, sid, v) from some party Pi, the func-
tionality checks that no pair (Pi, v

′) is already recorded. If this is the case, it records the pair
(Pi, v). Otherwise, it ignores the new message.

• Retrieve commands: Upon receiving a message (retrieve, sid, Pi) from some party Pj or the
adversary S, the functionality checks if some pair (Pi, v) is recorded. If yes, and v is the recorded
value, it sends (sid, Pi, v) to Pj (or S). Otherwise, it returns (sid, Pi,⊥).

Figure 1: The Bulletin-Board CA functionality

Note that Fbbca carries out no checks on the format of the key, and also does not prevent parties
from copying keys from other parties. Thus, this is arguably the most basic and simple type of CA
that one could imagine. Nevertheless, this does not mean that it is useless. In fact, this is far from
true as it suffices for obtaining authenticated channels [9]. Recall that authenticated channels are
almost always assumed for secure protocols and thus an assumption like the existence of Fbbca is
actually needed anytime that secure protocols are to be used.

We prove that the split adversarial strategy lemma of [12] holds in the Fbbca-hybrid model,
thereby implying that all of the impossibility results of [12] for deterministic functionalities hold
also in this model. See Section 2.2 for the definition of a successful split adversarial strategy and
for the intuition behind the lemma.

Lemma 3.1 Let f be a polynomial-time two-party function, and let Ff be the two-party ideal
functionality that receives x1 from P1 and x2 from P2, and hands them back their respective outputs
f1(x1, x2) and f2(x1, x2). If Ff can be UC-realized in the Fbbca-hybrid model by a non-trivial
protocol πf ,

4 then there exists a machine P a
2 such that for every machine P b

2 of the form described
in Definition 2.2, the split adversarial strategy for P2 = (P a

2 , P
b
2) is successful, except with negligible

probability.

Proof: The proof is similar to the proof of the analogous lemma in [12] with the appropriate
changes made due to the fact that now we are working in the Fbbca-hybrid model rather than the
plain model. As we have mentioned in Section 2.2 the basic idea is that if Ff can be UC realized
by a protocol πF , then this implies the existence of an ideal-process adversary (or simulator) S
that can extract the input used by A. (It must be able to extract this input in order to send it
to the ideal functionality.) The key point in the proof is that S must essentially accomplish this

4Recall that a non-trivial protocol is such that if the real model adversary corrupts no party and delivers all
messages, then so does the ideal model adversary. This rules out the trivial protocol that does not generate output.
See Section 2.1 for details.

9

extraction while running a “straight-line black-box” simulation, meaning that it cannot rewind A
and also has no access to its code. Stated differently, S interacts with A just like real parties
interact in a protocol execution. We remark that technically, S is able to rewind A and inspect
its code. However, we will construct a specific A and Z for which these capabilities are rendered
useless. Now, if S can extract A’s input by interacting with it like in a real execution, and if A
behaves like an honest party (which will be the case, as will be shown), then this means that S
can extract an honest party’s input in an honest interaction. The next step from this observation
is that S can actually be used by an adversary to extract an honest party’s input (thus S can be
used to implement the role of P a

2 in a split adversarial strategy). We also must relate to the fact
that in the Fbbca-hybrid model, S has full control over the functionality and so can modify values
that are registered and so on. This is in contrast to A in a real execution that has no control over
the functionality. Nevertheless, we will show that the operations of the functionality are so basic
that this does not provide any real advantage to S (essentially, Z can verify that it is running in a
world with a proper Fbbca functionality and so can prevent S from gaining any advantage). The
proof works by considering three scenarios:

1. Scenario 1 – an Fbbca-hybrid scenario with a corrupted P1: In this scenario we consider
a specific real-world adversary A who has corrupted P1, a specific environment Z, and an
execution of the protocol πf in the Fbbca-hybrid model with an honest P2.

2. Scenario 2 – an ideal-world scenario with a corrupted P1: In this scenario, we consider an
ideal execution with the same Z and with the ideal-world adversary/simulator S that is
guaranteed to exist for A and πf . (Again here, P1 is corrupted and P2 is honest.)

3. Scenario 3 – an Fbbca-hybrid scenario with a corrupted P2: In this scenario we consider a new
real adversary A′ who has corrupted P2 and carries out a split adversarial strategy against
an honest P1.

The proof works by showing that certain properties hold in each of the scenarios. We proceed
to the formal proof. Assume that the functionality Ff can be securely realized by a non-trivial
protocol πf . This implies that for every Fbbca-hybrid adversary A there exist an ideal-process
adversary/simulator S such that no environment Z can distinguish between an execution of the
ideal process with S and Ff and an execution of the Fbbca-hybrid protocol πf with A. We begin
by defining a specific Fbbca-hybrid world scenario with a specific adversary A and environment Z.

Scenario 1 – the first Fbbca-hybrid scenario. The scenario consists of an environment Z and
adversary A, and honest parties P1 and P2. In this scenario, P1 is corrupted (and thus controlled
by A) and P2 is honest. Note that the protocol πf is run in the Fbbca-hybrid model. This means
that each party communicates with the ideal bulletin-board CA functionality during the execution
of the protocol. We describe each entity’s strategy separately:

• A’s strategy: A controls party P1 who does nothing except to respond to specific requests
of A, as follows. When P1 receives a message (register, sid, v) from A, it sends the message
(register, sid, v) to Fbbca. (Note that A cannot send this message for P1 and so P1 must
do it itself.) In addition, A mediates between Z and the Fbbca functionality. Specifically,
when Z sends a message (register, sid, v) to A, adversary A forwards this message to P1 to
forward to Fbbca. Likewise, when Z sends a message (retrieve, sid, P) to A for some party P ,
adversary A forwards this message to the Fbbca functionality. When A receives the response
(sid, P, v) from Fbbca it forwards this response to Z. Finally, A acts as a bridge between Z

10

and P2, delivering all messages from Z to P2 (except for register and retrieve messages), and
delivering all message from P2 to Z (that P2 sent to P1).

• Z’s strategy: Z chooses inputs for the parties: x1 for P1 and x2 for P2, where x2 ∈R X2 is
randomly chosen, and X2 is a polynomial-size set of inputs chosen by Z. The environment
Z writes x2 on P2’s input tape and keeps x1 to itself.

Next, Z plays the role of the honest P1 on input x1. That is, Z runs the honest P1’s protocol
instructions on input x1 and the incoming messages that it receives from A. When instructed
by the protocol πf to perform a key registration of some key v, Z sends (register, sid, v) to
A. When instructed by the protocol to retrieve a party P ’s key, Z sends (retrieve, sid, P) to
A. Upon receiving the answer (sid, P, v) from A, it continues with the protocol and relates
to the answer as if it was received directly from Fbbca. (We stress that Z cannot interact
directly with Fbbca in the UC model. Therefore, it must work through an intermediary.)

Z determines its output at the end of the protocol execution in the following way. First,
it carries out consistency checks with respect to registered and retrieved keys. That is, Z
outputs 0 if one of the following events occur during the execution:

1. Z asked to retrieve P1’s key but received a key that does not equal the one that Z
registered previously (or a key is retrieved but Z never registered one).

2. Z asked to retrieve the key of some party P more than once and received different keys
in the different requests.

If the above checks pass, then Z looks at the local output that it received for P1 and reads
P2’s output tape. (Recall that Z plays P1 so it receives some output from the protocol. We
call this output the local-P1 output.) Z outputs 1 if and only if the local-P1 output equals
f1(x1, x2) and P2’s output equals f2(x1, x2).

We have the following claim:

Claim 3.2 In the Fbbca-hybrid world described in scenario number 1, the environment Z outputs
1 with probability that is negligibly close to 1.

Proof: Observe that an execution of πf with the above Z and A looks exactly like an execution
between two honest parties P1 and P2 upon inputs x1 and x2, respectively. This is due to the fact
that Z plays the honest P1 and the adversary A honestly relays all messages between Z and P2 and
Z and Fbbca (where these latter messages are sent via P1 because only it can register keys for its
identity). It follows that since πf is a non-trivial protocol, both parties receive output. In the case
of honest P1 and P2 these outputs are f1(x1, x2) and f2(x1, x2) respectively, except with negligible
probability (otherwise, an environment would be able to distinguish the real and ideal models when
no party is corrupted). Since all consistency checks by Z pass in this scenario (because A always
“behaves well”), it follows that Z outputs 1 except with negligible probability.

Scenario 2 – the ideal world with Ff . In this scenario, we have the same environment Z as
above, dummy parties P1 and P2 (where P1 is corrupted), and the ideal adversary/simulator that
is guaranteed to exist by the security of the protocol πf ; denote this adversary by S. The strategy
of S is not determined by us. Nevertheless we prove that the following properties must hold:

11

1. Property 1: If Z sends a message (retrieve, sid, P1) to S and it previously sent a (register, sid, v)
message, then the value vs in S’s response equals v. Otherwise, if no register message was
sent, it holds that vs = ⊥.

2. Property 2: If Z sends a message (retrieve, sid, P2) to S and it has previously received a
response (sid, P2, v) for v ̸= ⊥, then the value vs in S’s response equals v.

The fact that these properties hold follow from the inspection of Z’s consistency checks. Specifically,
if with non-negligible probability one of the properties does not hold, then Z will output 0 with non-
negligible probability in the ideal execution. Since Z outputs 1 except with negligible probability in
the Fbbca-hybrid execution, this implies that Z distinguishes the Fbbca-hybrid and ideal executions,
in contradiction to the security of the protocol. (The above essentially proves that although S plays
Fbbca in this execution and so can theoretically do anything it wishes, it is actually very limited in
what it can do.) We are now ready to prove the following claim.

Claim 3.3 In the ideal execution, S must send Ff an input x′1 for which it holds that for every
x2 ∈ X2, f2(x1, x2) = f2(x

′
1, x2), except with negligible probability. Furthermore, Z’s local-P1 output

equals f1(x1, x2) except with negligible probability.

Proof: Assume by contradiction that with non-negligible probability S sends an input x′1 to Ff

such that for some x̃2 ∈ X2 it holds that f2(x
′
1, x̃2) ̸= f2(x1, x̃2). This implies that if P2 has input

x̃2, it will output f2(x
′
1, x̃2) ̸= f2(x1, x̃2). By the specification of Z, when this occurs Z outputs

0. In order to analyze the probability that P2’s input equals x̃2, recall that X2 is of polynomial
size and P2’s input is uniformly chosen from X2. Furthermore, the probability that S sends this
“bad” x′1 is independent of the choice of x2 for P2 (because S has no information about x2 when
it sends x′1). Therefore, the probability that Z outputs 0 is at least 1/|X2| times the probability
that S outputs the bad x′1 (which we have already said is non-negligible). Thus, Z outputs 0 in
the ideal process with non-negligible probability. This contradicts the security of πf because as we
have already seen, Z outputs 0 in an Fbbca-hybrid execution with at most negligible probability.

Regarding the “furthermore” part of the claim, this follows directly from the fact that if Z’s
local-P1 output does not equal f1(x1, x2) then it outputs 0.

We remark that the above proof does not use the properties that we proved regarding S and
the register/retrieve messages. These properties will be used below.

Scenario 3 – the second Fbbca-hybrid scenario. As with the first scenario, here we also
consider an Fbbca-hybrid execution of πf . However, here P1 is honest while P2 is corrupted (in
contrast to scenario 1). We describe a split adversarial strategy for P2 that uses S in this scenario,
and then show that it is successful. We begin by describing P a

2 (we will not refer to an adversary A′

since (P a
2 , P

b
2) is the adversary here). Machine P a

2 internally invokes the simulator S and emulates
an ideal process execution of S with Ff and the above Z, while actually running an Fbbca-hybrid
execution of πf with P1. It works as follows:

1. When P1 sends (register, sid, v) to Fbbca, machine P a
2 delivers the message to Fbbca and

internally hands the message to S as if it was received from Z. (Recall that the ideal messages
sent between the honest parties and ideal functionalities are sent via the adversary, and so
P a
2 receives these messages.) When P1 sends a (retrieve, sid, P1) request to Fbbca, P

a
2 hands

it to S and delivers the response when S sends the message (sid, P1, v) that is intended as a
reply to Z.

12

2. When P1 sends a (retrieve, sid, P2) to Fbbca, P
a
2 internally hands this message to S, as if S

received it from Z. When S outputs the response (sid, P2, vs), P
a
2 checks if there is a recorded

tuple (sid, P2, v) where v = vs (i.e., P a
2 checks if vs was already registered for this sid). If no

such tuple exists P a
2 sends the message (register, sid, vs) to Fbbca, and only then delivers the

retrieve request of P1. (In addition, P a
2 records the tuple (sid, P2, vs) internally.)

3. Every message that P a
2 receives from the honest P1 in the execution of πf , it forwards to S

as if S received it from Z.

4. Every message (other than responses to retrieve requests) that S sends to Z in the emulation,
P a
2 forwards to P1 in the real execution.

5. When S outputs a value x′1 that it intends to send to Ff , entity P a
2 hands it to P b

2 . Then,
when P b

2 hands it back a value y′1 it passes this to S as if it was received from Ff and continues
the emulation as above. (Recall that y′1 is computed by P b

2 choosing some x′2 ∈ X2 of its
choice and then computing y′1 = f1(x

′
1, x

′
2); see Definition 2.2.)

We now show that the distribution of messages received and sent by S and P1 in this Fbbca-
hybrid execution with P2 = (P a

2 , P
b
2) is statistically close to the distribution of messages received

and sent by S and Z in scenario 2. We focus first on the messages that relate to the Fbbca

functionality:

1. When P1 sends a (register, sid, v) message to Fbbca, machine P a
2 gives the message to S

before actually forwarding it to the functionality. Likewise, in scenario 2, S receives the same
message from Z.

2. When P1 sends a (retrieve, sid, P2) message to Fbbca, machine P a
2 first gives the message to

S, just as in scenario 2. Furthermore, in scenario 3, P1 receives (sid, P2, vs) in response from
Fbbca, where vs is chosen by S. This is exactly the same as what happens in scenario 2.

3. When P1 sends duplicate retrieve messages with the same sid in scenario 3, P a
2 does not

perform another registration of vs since the value is already registered inside Fbbca. As a
result, P1 receives the same vs from Fbbca in both requests. Nevertheless, by property 2
described above in scenario 2, S returns the same value in scenario 2 (except with negligible
probability).

4. When P1 sends (retrieve, sid, P1) to Fbbca in scenario 3, S receives this message from P a
2 . In

scenario 2, S receives the same message from Z. Now, in scenario 3, P1 receives the retrieved
value from Fbbca and S cannot modify its value (this value was previously registered by
P1). Nevertheless, by property 1 described above in scenario 2, S returns the same value in
scenario 2 (except with negligible probability).

Finally, we observe that since Z plays the honest P1 strategy with input x1, the distribution over
the messages that it interchanges with S in scenario 2 is statistically close to the distribution over
the messages that P1 interchanges with S via P a

2 in scenario 3 (the only difference is due to the
negligible probability that properties 1 and 2 may not hold). We conclude that up until the point
that P a

2 hands x′1 to P b
2 , the distributions in the two scenarios are statistically close. Therefore,

the distribution over the value x′1 that P a
2 hands to P b

2 in scenario 3 is statistically close to the
distribution over the value x′1 that S sends to Ff in scenario 2. This implies that P2 = (P a

2 , P
b
2)

is a successful split adversarial strategy with respect to requirement (1) of Definition 2.3 (see
Section 2.2).

13

It remains to show that P2 is also a successful split adversarial strategy with respect to re-
quirement (2) of Definition 2.3. This can be shown in exactly the same way as in [12]. Namely, by
Claim 3.3 we have that Z’s local-P1 output must equal f1(x1, x2) except with negligible probability.
Now, assume by contradiction that with non-negligible probability P1 outputs a value ỹ1 that does
not equal f1(x1, x

′
2) in scenario 3. Recall that P b

2 hands P a
2 the value y′1 that is computed by first

choosing x′2 following an arbitrary (polynomial-time) strategy of its choice, and then computing
y′1 = f1(x

′
1, x

′
2). Now, modify P b

2 to a machine P̃ b
2 who chooses x′2 uniformly from X2. Since X2

is of polynomial-size, it follows that with probability 1/poly(n), the value x′2 chosen by P̃ b
2 equals

that chosen by P b
2 . Thus, if P1 outputs ỹ1 ̸= f1(x1, x

′
2) with non-negligible probability with P b

2 then
it will also output ỹ1 ̸= f1(x1, x

′
2) with non-negligible probability in the modified scenario with P̃ b

2 .
However, now notice that in this modified scenario, the value x′2 is chosen in exactly the same way
as Z chooses it in scenario 2 (namely, it is chosen uniformly from X2). Furthermore, the value
y′1 handed to P a

2 by P b
2 in scenario 3 is distributed exactly like the value that S receives from Ff

in scenario 2 (because the ideal functionality received x′1 from S and x2 from the honest P2 and
x2 is distributed exactly like x′2). Now, as we have mentioned, Z outputs 0 if its local-P1 output
is different from f1(x1, x2) (which has exactly the same distribution as f1(x1, x

′
2)). We therefore

conclude that P1 must also output f1(x1, x
′
2) in scenario 3, except with negligible probability (here

we again apply the fact that the distribution over all messages seen in the two scenarios are sta-
tistically close). Thus, P2 = (P a

2 , P
b
2) is also a successful split adversarial strategy with respect to

requirement (2) of Definition 2.3. This completes the proof of the Lemma 3.1.

Extension to unique keys. The above proof can be extended in a straightforward way to the
case that the bulletin-board functionality Fbbca ensures that all public keys are unique. This is
due to the fact that after Z registers its own key it can retrieve P2’s key and check that it is
different from its own. Thus, such a strengthening of Fbbca is not helpful for constructing UC
secure protocols.

3.2 Bulletin-Board CA with Independent Keys

We now further strengthen the public-key model and require that all the public keys be independent
of one another. This is achieved by requiring that all parties complete registration before any
retrieval requests are made. Of course, we also require that the adversary not see the public-keys
before all registration has finished. Technically, this is achieved by defining the public-key to be part
of the “private contents” of the messages sent between the honest parties and ideal functionality.
The functionality is denoted Findca (for independent-key CA) and is defined in Figure 2.

We have the following theorem:

Theorem 3.4 Assume that enhanced trapdoor permutations and dense cryptosystems exist. Then,
for any multi-party ideal functionality F , there exists a non-trivial protocol π that UC realizes F
in the Findca-hybrid model in the presence of malicious, static adversaries, and for any number of
corruptions.

The theorem is proven by showing how the common reference string functionality Fcrs with a
uniformly distributed string can be UC realized in the Findca-hybrid model. We then apply the
results of [14] that show that any functionality can be UC realized in the Fcrs-hybrid model. (We
remark that the above theorem can also be stated for adaptive adversaries. We state the static
version for the sake of simplicity.)

14

Functionality Findca

Findca initializes a variable allow to 1 and proceeds as follows, running with parties P1, P2, . . . and an
adversary S:

• Register commands: Upon receiving a message (register, sid, v) from some party Pi, the func-
tionality checks that allow = 1 and that Pi has not already registered a key v′. If the checks
pass, then it records the pair (Pi, v). Otherwise, it ignores the new message. (The public-header
of the register command consists of (register, sid) and the private contents consists of v.)

• Retrieve commands: Upon receiving a message (retrieve, sid, Pi) from some party Pj or the
adversary S, the functionality checks if some pair (Pi, v) is recorded. If yes, and v is the recorded
value, it sets allow = 0 and sends (sid, Pi, v) to Pj (or S). Otherwise, it returns (sid, Pi,⊥). (The
entire retrieve command can be placed in the public header.)

Figure 2: The Independent-Key CA functionality

Functionality Fcrs

Fcrs proceeds as follows, running with parties P1, P2, . . . and an adversary S:

• Upon receiving a message (crs, sid) from some party Pi, the functionality checks if a pair (sid, r)
has been recorded. If yes, it returns (crs, sid, r) to Pi. Otherwise, it chooses a uniformly dis-
tributed r (of a given length), records (sid, r) and returns (crs, sid, r) to Pi.

Figure 3: The uniformly distributed common reference string functionality

For the sake of completeness, we present the Fcrs functionality in Figure 3. We note that the
functionality is fixed with a given polynomial, mandating the length of the reference string. We
prove the following:

Claim 3.5 The Fcrs functionality can be UC realized in the Findca-hybrid model, for any number
of corrupted parties.

Proof: The proof of this claim is straightforward and follows from the simple observation that in
the Findca-hybrid model it is possible to carry out perfect coin-tossing. Namely, all parties register
uniformly distributed strings (of a given length). Once a party has registered its string, it sends a
message saying that it has done so to all others. When a party receives messages from all others
that they have registered, it retrieves all the strings and defines the common reference string to
be the exclusive-or of all the strings. (We stress that the party checks that all parties have indeed
registered keys. If not, it aborts.) Clearly the result is uniformly distributed, because the adversary
does not know any of the honest parties’ registered strings when the corrupted parties register their
strings.

We conclude by commenting on where the proof of Lemma 3.1 fails in this setting. This can
be seen by noting that in scenario 2, Z must register its public-key via S. Thus, S essentially
learns P1’s key before it needs to register its own. This is in contrast to scenario 3 where the key
registered by P1 is secret until P2 registers its own key.

15

3.3 The Bare Public-Key Model

The bare public-key model, as introduced by [11], has the property that parties can only register
public keys before the protocol executions begin. Typically, this model has been considered for
concurrent self composition where the secure protocol is the only protocol running. There are
two ways of interpreting this in the setting of concurrent general composition. An interpretation
leading to a more realistic model is one that states that the only limitation is that the public keys
are registered before the secure protocol begins. In particular, other protocols may be running
during the key registration phase. (Stated differently, the requirement that the public keys all be
registered before the secure protocol begins is one that is local to the secure protocol, and is not a
global network requirement.) We remark that this model is very realistic because it is possible to
set a date where the secure protocol begins running and to close key registration before this time.
A second interpretation is that no protocols may run during the key registration phase. We view
this as highly unrealistic, but nevertheless study it in Section 3.4.

We remark that the bare public-key model has been used in a number of papers in order to
bypass lower bounds and impossibility results. For example, it was used by [11] (and many later
works) in order to construct constant-round resettable zero-knowledge protocols (something that is
impossible in the plain model). Recently, it has been used to achieve stronger notions of concurrent
non-malleable zero-knowledge [18, 29].5 Our results here show that it is impossible to further
strengthen these results to achieve protocols that are UC-secure (or equivalently, secure under
concurrent general composition).

We define the bare-public key functionality in Figure 4. The functionality has an internal
Boolean flag, called allow, which is set to 0 once one of the parties sends the message HaltRegistration.
This step represents the end of the registration phase and from this point on, the functionality rejects
any registration request from any party. We allow any party to call HaltRegistration to ensure that
no honest party begins running the secure protocol before the registration phase is halted. We
stress that as with all the CA functionalities we have seen so far, with the exception of Findca, the
public keys are not secret during the registration phase. (If this were the case, then Fbpk would
just be a special case of Findca.)

Functionality Fbpk

Fbpk initializes a variable allow to 1 and proceeds as follows, running with parties P1, P2, . . . and an
adversary S:

• Register commands: Upon receiving a message (register, sid, v) from some party Pi, the func-
tionality checks that allow = 1 and that Pi has not already registered a key v′. If the checks
pass, then it records the pair (Pi, v). Otherwise, it ignores the new message.

• Retrieve commands: Upon receiving a message (retrieve, sid, Pi) from some party Pj or the
adversary S, the functionality checks if some pair (Pi, v) is recorded. If yes, and v is the recorded
value, it sends (sid, Pi, v) to Pj (or S). Otherwise, it returns (sid, Pi,⊥).

• Halt registration commands: Upon receiving a message (HaltRegistration, sid) from any party
Pi or the adversary S, the functionality sets allow = 0.

Figure 4: The bare public-key model functionality

5We remark that [18] call their model the “authenticated public-key model”. Nevertheless, this is the same as the
bare public-key model that was considered previously and is considered here.

16

We have the following lemma:

Lemma 3.6 Let f be a polynomial-time two-party function, and let Ff be the two-party ideal func-
tionality that receives x1 from P1 and x2 from P2, and hands them back their respective outputs
f1(x1, x2) and f2(x1, x2). If Ff can be UC-realized in the Fbpk-hybrid model by a non-trivial pro-
tocol πf , then there exists a machine P a

2 such that for every machine P b
2 of the form described in

Definition 2.2, the split adversarial strategy for P2 = (P a
2 , P

b
2) is successful, except with negligible

probability.

Proof: Without loss of generality, we focus on canonical secure protocols that begin with the
following steps (the instructions are stated for party Pi and are the same for all parties):

1. Party Pi chooses a public-key vi (according to the protocol instructions) and sends (register, sid, vi)
to Fbpk.

2. For each j ̸= i, party Pi sends (retrieve, sid, Pj) to Fbpk and saves the retrieved key. If it
receives back a tuple (sid, Pj ,⊥), as would be the case if Pj has not yet registered a key, then
it continues trying to retrieve the key.

3. After retrieving all the parties’ keys, Pi sends (HaltRegistration, sid) and begins the secure
protocol execution.

4. Whenever Pi is instructed to retrieve a key within the secure protocol, it takes the appropriate
key that was previously stored.

Our focus on canonical protocols is without loss of generality because under the assumption that
all key registration takes place before the protocol executions begin, nothing is lost by having the
parties retrieve all keys before the protocol begins.

Once we are given that the secure protocol is as above, the proof of the lemma here is almost
identical to that Lemma 3.1. The only important observation relates to scenario 3. Recall that
the corrupted P2 does not run the canonical protocol described above, but rather works as in
Lemma 3.1. In particular, the strategy of machine P a

2 within P2 is such that when P1 first asks to
retrieve P2’s key, P a

2 sends this request to S who returns a key vs. Party P2 registers this key vs
with the CA functionality and only then delivers the retrieve request from P1 to the functionality.
In principle, this is a problem in the bare public-key model because the key vs is chosen later (and
may depend on the protocol messages). Nevertheless, observe that this registration of vs only takes
place in the first retrieve request. In contrast, in all later retrieve requests P2 does nothing but
deliver the retrieve requests and responses between P1 and the functionality. Now, in the canonical
protocol form, P1 retrieves P2’s key before sending a HaltRegistration message. This ensures that
the first retrieval of P2’s key is carried out during the registration phase, and thus P a

2 can still
register the key vs that S chooses.

3.4 A Strong Bare Public-Key Model

As we have mentioned, it is possible to consider an even stronger bare public-key model in which
it is guaranteed that no protocols whatsoever are executing during the key registration phase. This
can be formally modeled in the UC framework by having a period where Z cannot interact with A.
In this case, it is easy to see that UC security can be achieved by just having all parties run a
single coin-tossing protocol that is secure in the stand-alone model (since no other protocols are

17

running, the protocol runs “stand-alone”). The result of the coin-tossing is then taken as a common
reference string, thereby allowing the use of [14] to UC-realize any functionality. We personally do
not find this setting very interesting because it seems highly unrealistic to expect that there be a
sterile period where no protocols whatsoever are executed.

Of course, the proof of Lemma 3.1 in this case is due to the fact that Z cannot register the
public key in scenarios 1 and 2. Thus, the key must be chosen by A (or S), giving S an advantage.

3.5 Active Key Registration by the CA

All of the public-key models that we have seen above have the property that the CA is passive in
that it merely accepts keys (albeit while invoking certain checks). In this section, we consider the
key registration functionality introduced by [2] that plays a more active role.

Functionality Ff
kr

Ff
kr is parameterized by a function f and a security parameter n. It initializes a set R of strings to

be empty at the first activation and then proceeds as follows, running with parties P1, P2, . . . and an
adversary S:

• Register commands: Upon receiving a message (register, sid) from some party Pi (that is
either corrupted or uncorrupted), the functionality sends (register, sid, Pi) to S and receives a
value p′ back. Then, if p′ ∈ R, it sets p = p′. Otherwise, it chooses a random string r ∈R {0, 1}n,
sets p = f(r) and adds p to R. Finally, it records the pair (Pi, f(r)) and sends (registered, sid, p)
to Pi and S.

• Register by a corrupted party: Upon receiving a message (register, sid, r) from a corrupted
party Pi, the functionality records (Pi, f(r)). In this case, f(r) is not added to R.

• Retrieve commands: Upon receiving a message (retrieve, sid, Pi) from some party Pj , the func-
tionality sends a message (retrieve, sid, Pi, Pj) to S and obtains a value p back from S. If (Pi, p)
is recorded, then the functionality returns (sid, Pi, p) to Pj . Else, it returns (sid, Pi,⊥) to Pj .

Figure 5: The key registration functionality of [2]

In [2] it has been shown that essentially any functionality can be UC-realized in the Ff
kr-hybrid

model, for any number of corrupted parties. Thus, clearly an analogue to Lemma 3.1 cannot
be proven for this model. Our aim in this section is therefore to explain where the proof of
Lemma 3.1 fails when considering the Ff

kr functionality. This highlights the crucial property of the
Ff
kr functionality that enables the construction of protocols and thus can be useful when attempting

to design other CA functionalities that can be used for constructing UC-secure protocols.

Failure of Lemma 3.1 in the Ff
kr-hybrid model. In the second scenario of Lemma 3.1 the

simulator S plays the role of the CA functionality Ff
kr. In particular, this means that it determines

the value r to be used in computing a new key f(r). The main issue that arises here is that,
depending on the choice of the function f , it may not be possible for Z to distinguish the case
that a key p is correctly formed (i.e., by choosing r and computing f(r)) from the case that is
not correctly formed. Indeed, in the construction by [2], they utilize the fact that keys can be
generated in alternate ways that all look indistinguishable from the defined generation f(r). Of
course, this is crucial when moving to scenario 3, because party P2 cannot choose the keys as
it wishes and so cannot emulate scenario 2 while in scenario 3. The conclusion is that in order

18

to overcome these impossibility results, a CA functionality is needed that breaks the symmetry
between the capabilities of the ideal simulator S when “playing the role” of the functionality and
a true corrupted party who interacts with the actual functionality.

3.6 CA Corruptions and UC Security

In this section we investigate the possibility of obtaining UC secure protocols even when the CA
may be corrupted. Of course, this is of interest only for public-key models for which it is possible
to achieve UC security (without corruptions). Thus, for example, this is of interest in the Fcrs,

Ff
kr and Findca models. We also note that if full malicious corruptions are allowed, then there is no

difference between the public-key model and the plain model (the functionality can be viewed as a
regular party). Thus, UC security can clearly not be realized in such a case. We therefore consider
weaker corruptions. We will state out results for general CA functionalities and not specific ones;
see below.

3.6.1 Passive (Semi-Honest) CA Corruptions

We say that a CA functionality is passively corrupted if the adversary has access to the internal
state of the functionality, but the functionality continues to act according to its specification. (Thus,
the adversary has malicious corruptions of regular parties but only semi-honest corruptions of the
CA functionality). We show that there exists a CA functionality that enables the construction of
UC secure protocols even under passive corruptions. The functionality is the common-reference
string functionality Fcrs defined with a uniformly distributed string, as in Figure 3. We have the
following theorem:

Theorem 3.7 Assume that enhanced trapdoor permutations and dense cryptosystems exist. Then,
for any multi-party ideal functionality F , there exists a non-trivial protocol π that UC realizes F
in the Fcrs-hybrid model in the presence of malicious, static adversaries, and for any number of
corruptions. This holds even when the Fcrs functionality is run by a party that is corrupted in a
semi-honest fashion.

The proof of the theorem follows from the fact that UC secure protocols can be achieved in
the uniformly distributed Fcrs, as shown in [14]. This is due to the fact that when the common
reference string is uniformly distributed, the functionality has no additional internal state. Thus,
the semi-honest corruption provides no advantage to the adversary.

There is one important point to note regarding the above. Namely, in order to prove security in
this model (where the adversary has access to the internal state of Fcrs) it must be the case that
the common reference string is generated truly randomly and not pseudorandomly. Formally, this
is achieved by having Fcrs simply output random bits taken directly from its random tape. This is
needed because the UC simulator must be able to choose the random tape as it wishes (typically
so that it includes some type of trapdoor), and if Fcrs takes a smaller part of its random tape and
applies a pseudorandom generator, the simulator will not be able to do this. Note that in practice,
this means that a (semi) trusted party who provides the Fcrs service must generate the common
reference string using a pure hardware method. In particular, it cannot take a small random seed
and apply a pseudorandom generator.

19

3.6.2 Indistinguishable Malicious CA Corruptions

An indistinguishable malicious corruption of the CA entity means that the adversary has full control
over the CA, with the limitation that the distribution over the messages produced by the corrupted
CA is indistinguishable from the distribution over the messages produced by an honest CA. Stated
differently, the CA behaves in an honest-looking manner; see [15].6 We show that Lemma 3.1 holds
also in this scenario.

Lemma 3.8 Let f be a polynomial-time two-party function, and let Ff be the two-party ideal
functionality that receives x1 from P1 and x2 from P2, and hands them back their respective outputs
f1(x1, x2) and f2(x1, x2). If Ff can be UC-realized in the Fbbca-hybrid model by a non-trivial
protocol πf , then there exists a machine P a

2 such that for every machine P b
2 of the form described

in Definition 2.2, the split adversarial strategy for P2 = (P a
2 , P

b
2) is successful, except with negligible

probability. This holds even if Fbbca is only honest-looking, as defined in [15].

Proof: Once again, the proof is very similar to the proof of Lemma 3.1. Recall that in scenario
3, party P2 is corrupted and internally runs the code of the simulator S that is guaranteed to exist
in scenario 2. In scenario 3, P2 emulates the ideal process with Z for S, while interacting with a
real honest party P2. The central point here is that since the CA is also corrupted, the adversarial
P2 can determine the messages that the CA sends to P1 in scenario 3, and make them be exactly
the CA functionality messages that S sends to Z in scenario 2 (recall that in scenario 2, S plays
the role of the CA functionality).

The only additional point to prove is that in scenario 2, the messages generated by the ideal ad-
versary S when it plays the role of the CA functionality are indistinguishable from the messages that
the real honest CA functionality generates (even when viewed together with the entire transcript).
However, this is derived from the basic UC definition that guarantees that the environment outputs
1 with at most negligible difference between the real and ideal models. More specifically, if it were
true that these messages of S are distinguishable, then there exists an appropriate polynomial-time
distinguisher D that distinguishes them. Now, all that needs to be done is to modify Z so that at
the end of the execution it runs D on the transcript and outputs whatever D outputs. This implies
that Z also distinguishes, in contradiction to the assumed security of the protocol. Given this, Z
can be modified back to the way it was and the proof continues as before.

4 Universal Composability with Fixed Inputs

An interesting question that arises in the setting of concurrent composition is how inputs are cho-
sen. As we have mentioned in the introduction, when honest parties choose their inputs adaptively
(as a function of previous outputs), concurrent self composition is equivalent to concurrent gen-
eral composition [27]. Therefore all of the impossibility results that hold for concurrent general
composition also hold for concurrent self composition with adaptively chosen inputs. In contrast,
when the honest parties’ inputs are all fixed ahead of time, there exist functionalities that can be
securely computed under concurrent self composition but not under concurrent general composi-
tion [23, 3, 26].

In this section we ask whether or not an analogous situation holds for concurrent general
composition. That is, is it possible to achieve concurrent general composition with fixed inputs

6We note that [15] differentiates between global honest-looking behavior and local honest-looking behavior. In the
setting of two-party computation where one party is corrupted, this makes no difference.

20

in cases that it is impossible where the inputs may be chosen adaptively? To be more exact, we
investigate for which functions f it is possible to construct a secure protocol πf for the functionality
Ff (as defined above) such that π remains secure when run concurrently with a single other protocol
π′, and when the inputs to πf and π′ are fixed before either execution begins.

Defining concurrent general composition with fixed inputs. We define the real and hybrid
models exactly as in [26] with the exception that we denote the vector of inputs for πf by xπf

and
for π′ by xπ′ , and we fix these inputs at the onset.7 We denote by realπf ,π′,A(n, xπf

, xπ′ , z) a real
concurrent execution of protocols πf and π′ with adversary A, where n is the security parameter,
xπf

is the vector of inputs for the parties in πf , xπ′ is the vector of inputs for the parties in π′,

and z is the auxiliary input for the adversary. Likewise, we denote by hybrid
Ff

π′,S(n, xπf
, xπ′ , z)

an execution of the protocol π′ together with an ideal call to Ff that takes the place of the real
execution of πf ; the inputs are the same as above. Intuitively, πf is secure in this setting if
the output distributions of the real and hybrid executions are indistinguishable. We call this
minimal concurrent general composition because only two protocol executions take place. We have
the following formal definition:

Definition 4.1 Let πf be a polynomial-time protocol and let Ff be an ideal functionality. Then,
πf securely realizes Ff under minimal concurrent general composition with fixed inputs if for every
polynomial-time protocol π′ and every probabilistic non-uniform polynomial-time real-model ad-
versary A for the concurrent executions of πf and π′, there exists a probabilistic non-uniform
polynomial-time hybrid-model adversary S such that for all xπf

, xπ′ ∈ ({0, 1}∗)m and z ∈ {0, 1}∗:{
hybrid

Ff

π′,S(n, xπf
, xπ′ , z)

}
n∈IN

c≡
{
realπf ,π′,A(n, xπf

, xπ′ , z)
}
n∈IN

where
c≡ denotes computational indistinguishability.

In order to prove our results, we introduce a restricted UC model where the environment first
writes the inputs to all parties’ input tapes and only once it has finished do the parties begin
executing the protocol. Everything else remains the same and so it is possible to define this
modification as a restriction on the environments considered if one wishes. A protocol π that UC
realizes a functionality F in this model is said to securely realize F in the UC model with fixed inputs.
We first prove the following lemma:

Lemma 4.2 Let πf be a polynomial-time protocol and Ff a functionality. If πf securely realizes
Ff under minimal concurrent general composition with fixed inputs, then πf securely realizes Ff in
the UC model with fixed inputs.

Proof Sketch: This is proven in almost exactly the same way as the main theorem in [26]. Recall
that πf is the secure protocol and π′ an arbitrary other protocol. Then, in [26] it is shown that the
second protocol π′ can essentially be used to emulate the behavior of the environment Z in the UC
model. This is achieved by π′ defining designated parties PZ and PA, where PA is corrupted and
PZ is not. The party PZ runs the internal code of an environment Z from the UC setting and PA
does the same for a UC adversary A. Party PZ sends inputs to the parties (instead of writing them
directly on their input tapes as Z would), receives back their outputs (instead of reading them

7In [26] there is a distinction between arbitrary and fixed sets of parties. Here we focus on arbitrary sets of parties
only, although the analogous results there can be carried through here.

21

directly from their tapes like Z would), and interacts with PA in the same way that Z interacts
with A. Party PA behaves similarly for the UC-adversary A. The other honest parties in π′ are
simply instructed to receive values from PZ and use them as inputs for the ideal functionality Ff

(in the ideal model) or in the protocol πf (in the real model). They then send their outputs back
to PZ when they finish. Finally, PZ outputs the same bit that Z would output given its view. The
crucial point is that it is possible to set up the protocol π′ so that when it is run together with Ff

the output of PZ is distributed identically to the output of Z in an ideal execution of Ff in the UC
model. Furthermore, if π′ is run together with πf , then the output of PZ is distributed identically
to the output of Z in a real execution of πf in the UC model. The conclusion is therefore that if πf
is not UC secure, then it is also not secure under concurrent general composition. (This is because
when run with π′ the outputs in the real and hybrid distributions will be distinguishable. In
particular, PZ outputs 1 with probability that is non-negligibly different in both.)

The proof here is almost the same with the exception being how the parties’ inputs to πf are
chosen. In [26] these are sent by the party PZ playing Z in π′ (and PZ chooses them by internally
running Z on its auxiliary input z). However here the inputs must be a priori fixed. In order to
do this, first observe that since we are in the UC model with fixed inputs, the environment writes
the inputs to the honest parties before any interaction takes place. Thus, by using an averaging
argument it is easy to see that if the environment distinguishes the real and ideal executions with
non-negligible probability in the UC model with fixed inputs, then there exists a vector of inputs
xπf

for which the environment distinguishes the real and ideal with non-negligible probability.
(Note that the environment may choose the inputs as a function of its auxiliary input z and its
random coins. Thus, the averaging argument is needed to fix a specific input vector. Note also
that this works only because Z determines the parties’ inputs based on its auxiliary input and own
random tape only; in particular, the inputs are determined independently of the honest parties’
random tapes.) Next, party PZ ’s input in π′ is set to the value z and random-tape for Z that
results in the environment writing xπf

. Furthermore, all the parties’ inputs in πf are set to xπf
.

When the inputs are set in this way, the execution in the setting of concurrent general composition
perfectly emulates the setting of the UC model with fixed inputs (when Z has the appropriate
z and random tape). More specifically, the output of PZ in a real execution of πf with π′ will
be distributed exactly like the output of the environment Z in a real execution in the UC model
with fixed inputs (when Z has the appropriate z and random tape). Likewise, the output in a
hybrid execution of π′ with Ff will be exactly like an ideal execution in the UC model with fixed
inputs. Thus, PZ will distinguish the real and hybrid models with the same probability that Z
distinguishes the real and ideal executions in the UC model with fixed inputs. We conclude that
if πf is not secure in the UC model with fixed inputs then it is not secure under minimal concurrent
general composition with fixed inputs. This implies the lemma.

We note that the above lemma holds as long as the order of quantifiers between S and Z
can be switched (as is the case with the definition of universal composability in the latest version
of [8]). Otherwise, minimal concurrent general composition only implies a weaker form of universal
composability. In any case, the known impossibility results all hold for this weaker form and so for
our purposes here there is no difference. See [26] for more discussion on this (note that the issues
that arise here and in [26] in this respect are exactly the same).

We are now ready to prove our impossibility results, and we begin once again with an analogue
to Lemma 3.1.

Lemma 4.3 Let f be a polynomial-time two-party function, and let Ff be the two-party ideal
functionality that receives x1 from P1 and x2 from P2, and hands them back their respective outputs

22

f1(x1, x2) and f2(x1, x2). If Ff can be securely realized in the UC model with fixed inputs by a
non-trivial protocol πf (in the plain model or in the Fbbca, Fukca or Fbpk-hybrid models), then
there exists a machine P a

2 such that for every machine P b
2 of the form described in Definition 2.2,

the split adversarial strategy for P2 = (P a
2 , P

b
2) is successful, except with negligible probability.

Proof: Note that in the proof of Lemma 3.1, the environment Z chooses the inputs for P1 and
P2 at the onset. Thus, in the UC model with fixed inputs the entire proof goes through without
change. (One small technicality is that the actual P1 should not receive x1 since this is the input
used by Z who plays P1. Thus, x2 can be written to P2’s input tape at the onset, and Z can
write the all-zero string to P1’s input tape. In this way, x1 is kept secret by Z who uses it in its
computation.)

Next, we use the following observation:

All of the impossibility results of [12] that use successful split adversarial strategies hold
even for the UC model with fixed inputs.

Note that unlike the impossibility results from Section 3, we need the above observation because
the impossibility results of [12] were proven for the standard UC model, and not for the variant
with fixed inputs. Combining Lemmas 4.2 and 4.3 with this observation, we conclude that there
exist large classes of functionalities for which it is impossible to achieve minimal concurrent general
composition with fixed inputs.

We stress that this impossibility result is extremely strong. It is not possible to achieve con-
current general composition even when only two protocol executions take place and even when the
inputs to these executions are a priori fixed.

Acknowledgements

We would like to thank the anonymous referees for their helpful comments.

References

[1] B. Barak, R. Canetti, Y. Lindell, R. Pass and T. Rabin. Secure Computation Without
Authentication. In CRYPTO 2005, Springer-Verlag (LNCS 3621), pages 361–377, 2005.

[2] B. Barak, R. Canetti, J. Nielsen and R. Pass. Universally Composable Protocols with
Relaxed Set-up Assumptions. In 45th FOCS, pages 186–195, 2004.

[3] B. Barak, M. Prabhakaran and A. Sahai. Concurrent Non-Malleable Zero-Knowledge. In
47th FOCS, pages 345–354, 2006.

[4] B. Barak and A. Sahai How To Play Almost Any Mental Game Over The Net – Concurrent
Composition via Super-Polynomial Simulation. In 46th FOCS, pages 543–552, 2005.

[5] D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91, Springer-Verlag
(LNCS 576), pages 377–391, 1991.

[6] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages 1–10, 1988.

23

[7] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[8] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Proto-
cols. In 42nd FOCS, pages 136–145, 2001.

[9] R. Canetti. Universally Composable Signature, Certification, and Authentication. In the
17th Computer Security Foundations Workshop, pages 219–235, 2004.

[10] R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO 2001,
Springer-Verlag (LNCS 2139), pages 19–40, 2001.

[11] R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Resettable Zero-Knowledge. In 32nd
STOC, pages 235–244, 2000.

[12] R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of Universal Composable
Two-Party Computation Without Set-Up Assumptions. Journal of Cryptology, 19(2):135-
167, 2006.

[13] D. Chaum, C. Crépeau and I. Damg̊ard. Multi-party Unconditionally Secure Protocols. In
20th STOC, pages 11–19, 1988.

[14] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and
Multi-Party Computation. In 34th STOC, pages 494–503, 2002.

[15] R. Canetti and R. Ostrovsky. Secure Computation with Honest-Looking Parties: What If
Nobody Is Truly Honest? In the 31st STOC, pages 255–264, 1999.

[16] I. Damg̊ard, J.B. Nielsen and C. Orlandi. On the Necessary and Sufficient Assumptions for
UC Computation. In the 7th TCC, Springer-Verlag (LNCS 5978), pages 109–127, 2010.

[17] A. Datta, A. Derek, J.C. Mitchell, A. Ramanathan and A. Scedrov. Games and the Impos-
sibility of Realizable Ideal Functionality. In the 3rd TCC, Springer-Verlag (LNCS 3876),
pages 360–379, 2006.

[18] Y. Deng, G.D. Crescenzo and D. Lin. Concurrently Non-Malleable Zero Knowledge in the
Authenticated Public-Key Model. Cryptology ePrint Archive, Report #2006/314, 2006.

[19] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, 2004.

[20] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229, 1987.

[21] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of Immoral
Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77–93, 1990.

[22] Y. Kalai, Y. Lindell and M. Prabhakaran. Concurrent General Composition of Secure
Protocols in the Timing Model. In the 37th STOC, pages 644–653, 2005.

[23] E. Kushilevitz, Y. Lindell and T. Rabin. Information-Theoretically Secure Protocols and
Security Under Composition. In 38th STOC, pages 109–118, 2006.

24

[24] H. Lin, R. Pass and M. Venkitasubramaniam. A Unified Framework for Concurrent Security:
Universal Composability from Stand-Alone Non-Malleability. In the 41st STOC, pages 179–
188, 2009.

[25] Y. Lindell. Composition of Secure Multi-Party Protocols – A Comprehensive Study. Lecture
Notes in Computer Science Vol. 2815, Springer-Verlag, 2003.

[26] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party Com-
putation. In 44th FOCS, pages 394–403, 2003.

[27] Y. Lindell. Lower Bounds for Concurrent Self Composition. In the 1st Theory of Cryptog-
raphy Conference (TCC), Springer-Verlag (LNCS 2951), pages 203–222, 2004.

[28] S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Preliminary
version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–404, 1991.

[29] R. Ostrovsky, G. Persiano and I. Visconti. Concurrent Non-Malleable Witness Indistin-
guishability and its Applications. Cryptology ePrint Archive, Report #2006/256, 2006.

[30] R. Pass. Simulation in Quasi-Polynomial Time, and Its Application to Protocol Composi-
tion. In Eurocrypt 2003, Springer-Verlag (LNCS 2656), pages 160–176, 2003.

[31] M. Prabhakaran and A. Sahai. New Notions of Security: Universal Composability Without
Trusted Setup. In 36th STOC, pages 242–251, 2004.

[32] A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167, 1986.

25

