Dynamic SHA
Zijie Xu

E-mail: xuzijiewz@gmail.com

Abstract. In this paper I describe the construction of Dynamic SHA
family of cryptographic hash functions. They are built with design
components from the SHA-2 family, but there is function R in the new
hash function. It enabled us to achieve a novel design principle: When
message is changed, different rotate right operation maybe done. It

makes the system can resistant against all extant attacks.
Key words: Cryptographic hash function, SHA, Dynamic SHA

1 Introduction

The SHA-2 family of hash functions was designed by NSA and adopted
by NIST in 2000 as a standard that is intended to replace SHA-1 in 2010
[6]. Since MD5, SHA-0 and SHA-1 was brought out, people have not
stopped attacking them, and they succeed. Such as: den Boer and
Bosselaers [2,3] in 1991 and 1993, Vaudenay [8] in 1995, Dobbertin [5]
in 1996 and 1998, Chabaud and Joux [4] in 1998, Biham and Chen [1] in
2004, and Wang et al. [9-12] in 2005. Most well known cryptographic
hash functions such as: MD4, MD5, HAVAL, RIPEMD, SHA-0 and
SHA-1, have succumbed to those attacks.

Since the developments in the field of cryptographic hash functions,
NIST decided to run a 4 year hash competition for selection of a new
cryptographic hash standard [7]. And the new cryptographic hash
standard will provide message digests of 224, 256, 384 and 512-bits.

In those attacks, we can find that when different message inputted, the
operation in the hash function is no change. If message space is divided
many parts, in different part, the calculation is different, the attacker will
not know the relationship between message and hash value. The hash
function will be secure. To achieve the purpose, I bring in data depend
function R to realize the principle.

My Work: By introducing a novel design principle in the design of hash

mailto:xuzijiewz@gmail.com

functions, and by using components from the SHA-2 family, I describe
the design of a new family of cryptographic hash functions called
Dynamic SHA. The principle is:

1. When message is changed, different rotate right operation maybe done.

The principle combined with the already robust design principles present
in SHA-2 enabled us to build a compression function of Dynamic SHA
that has the following properties:

1. There is not message expansion part.

2. The iterative part has 48 rounds. Message bits have been mixed three
times.

3. The iterative part has two different functions.

2 Preliminaries and notation

In this paper I will use the same notation as that of NIST: FIPS 180-2
description of SHA-2 [6].

The following operations are applied to 32-bit or 64-bit words in
Dynamic SHA:

1. Bitwise logical word operations:‘ /\’~AND ,‘\/’-OR,‘ ® "~XOR and
‘—’—Negation.

2. Addition ‘+> modulo2” or modulo2®.

3. The shift right operation,SHRn(X), where x 1s a 32-bit or 64-bit word
and n is an integer with 0<n<32 (resp. 0<n<64).

4.The shift left operation, SHL'(x) , Where x is a 32-bit or 64-bit word and
n 1s an integer with 0<n<32 (resp. 0<n<64).

5. The rotate right (circular right shift) operation, ROTR”(X), where x is a
32-bit or 64-bit word and n is an integer with 0 <n < 32 (resp. 0 < n <
64).

6. The rotate left (circular left shift) operation, ROTL“(X), where x is a
32-bit or 64-bit word and n is an integer with 0 <n < 32 (resp. 0 < n <

64).

Depending on the context I will sometimes refer to the hash function as
Dynamic SHA, and sometimes as Dynamic SHA-224/256 or Dynamic
SHA-384/512.

2.1 Functions
Dynamic SHA include two functions. The two functions are used in

compression function.

2.1.1 Function G(x1,x2, x3,t)
Function G operates on three words x1,x2, x3 and an integer t, produces a

word y as output. And function G as follow:
XI®x2D X3 t=0
Y =G (X1, X2, X3) = (XIAX2)®x3 t=1
(=(XIvX3)) v(XIA(x2®Dx3)) t=2

(~(XIv (2D X3)) v (x1n—x3) t = 3
Table 2.1 function G for Dynamic SHA
The truth table for logical functions as table 2.2.

x1 x2 x3 fl 2 3 4
0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 0 1 0
0 1 1 0 1 0 1
1 0 0 1 0 0 1
1 0 1 0 1 1 0
1 1 0 0 1 1 1
1 1 1 1 0 0 0

Table 2.2. truth table for logical functions

2.1.2 Function R(x1, x2, x3, x4, x5, X6, X7, X8)
Function R operates on eight words x1, x2, x3, x4, x5, x6, x7 and x8,
produces a word y as output. And function R as table 2.3.

t0 = ((((x1 +x2)® X3)+ x4) D X5) + X6) D X7
tl = (SHR " (10) ® t0) A 27 -1)

2 =(SHR " (t1) ®tl) A (2" -1)

SHA-224/256 | { _ (SHR*(12) @ 12) A 31

y = ROTR '(x8)

Dynamic

t0 = (((((X1 + X2) ® X3) + x4) ® X5) + X6) ® X7
t1 = (SHR * (t0) ® t0) A 2% -1)

Dynamic £2 = (SHR S (t1) ® t1) A 2" -1)

3 = (SHR 2 (2) ® ©2) A 22 -1)

t=(SHR °(13) ® 13) A 63

y = ROTR '(x8)

SHA-384/512

Table 2.3. Function R for Dynamic SHA

2.2 Preprocessing

Preprocessing in Dynamic SHA is exactly the same as that of SHA-2.
That means that these three steps: padding the message M, parsing the
padded message into message blocks, and setting the initial hash value,
H® are the same as in SHA-2. Thus in the parsing step the message is
parsed into N blocks of 512 bits (resp. 1024 bits), and the i-th block of
512 bits (resp. 1024 bits) is a concatenation of sixteen 32-bit (resp. 64-bit)

() () O]
MOM®D M

words denoted as . Dynamic SHA may be used to hash

a message, M, having a length of | bits, where 0<I<2"

2.2.1 padding

2.2.1.1 Dynamic SHA-224/256

Suppose that the length of the message M is L bits. Append the bit “1” to
the end of the message, followed by k zero bits, where k is the smallest,
non-negative solution to the equation L+1+k = 448 mod 512. Then
append the 64-bit block that is equal to the number L expressed using a
binary representation.

2.2.1.2 Dynamic SHA-384/512
Suppose that the length of the message M is L bits. Append the bit “1” to
the end of the message, followed by k zero bits, where k is the smallest,

non-negative solution to the equation L+1+k = 896 mod 1024. Then

append the 128-bit block that is equal to the number L expressed using a

binary representation.

2.3 Initial Hash Value H°’

The initial hash value, H’ for Dynamic SHA is the same as that of

SHA-2 (given in Table 2.4).

Dynamic
SHA-224

Dynamic
SHA-256

Dynamic SHA-384

Dynamic SHA-512

H (%) =c1059 ed 8,

H (%) =367¢d 507,
H{") =3070dd17,
H{%) = f70e5939,

H{%) = ffco0b31,
H{®) = 68581511 ,

H{") =64 198 fa7,

H{%) = befa 4 fa4,

H{” = 6209667 ,
H(® = bb67ae85 ,
H{ = 3c6ef372,
H{" = a54ff53a,
H{® = 510e527f,
H{® = 9b05688c,
H) = 1f83d9ab,
H (" = 5be0cd19,

H (" = cbbb9dsdel 059¢ds
H® = 6292292a36 7cd507 ,
H 2(0) =9159015a30 70dd17,
H 3(0) = 152fecd8f7 0e5939,
H 50) = 67332667ff c00b31,
H 5(0) = 8eb44a8768 581511,
H (50) = db0c2e0d64 {98fa7,
H (" = 47b5481dbe fadfad,

H{” = 6a09¢667f3bcc908,
H” = bb67ae8584caa73b,
H éo) =3c6ef3721e94182b,

H3(0) = a541t53a5f1d36f1,

H £0) =510e527fade682d1,
HS(O) =9b05688c2b3e6elf,
Héo) =1183d9abfb41bdo6b,
H.” = 5be0cd19137€2179,

Table 2.4. The initial hash value, H® for Dynamic SHA

2.4 Constants
The Dynamic SHA has three constants (given in table 2.5):

Dynamic SHA-224/256

Dynamic SHA-384/512

TT, = 5A827999 ,
TT, = 6ED9EBAL,
1T, =8F1BBCDC ,

TT, = 5A82799950 A28BE 6,
TT, =6ED9EBA15C4DD 124,
TT, =8F1BBCDC 6D 703 EF 3,

Table 2.5. The constants for Dynamic SHA

2.5 Dynamic SHA Hash Computation

The Dynamic SHA hash computation uses functions and initial values

defined in previous subsections. So, after the preprocessing is completed,

each message block,

0 1 N)
MO MO M

steps described algorithmically in Table 2.6.

, 1s processed in order, using the

Fori=1toN:
{

1.Initialize eight working variables a, b, c, d, e, f, g and h with the (i —1)th hash value:

a=H{™, b=H", c=HIV d=H{T",
o= Hii—l) , £ Hs(i—l)’ g= H(()i—l)’ h= Héi—l)
2. Fort=0to 47
{
T =R(a,b,c,d,e, f,g,h)
h=g
g=f
f=e
e=d
d=G(a,b,c,t A3)+W, s +TT._,
c=Db
b=a
a=T
H
3.Compute the i" intermediate hash value H o,
H"=a+H{™", HY=b+H™, HP=c+H{, HP=d+HID,
HO =e+HIY, HO =f+HI, HO =g+HI, HO =h+HID

Table 2.6. Algorithmic description of Dynamic SHA hash function.
The algorithm uses 1) a message schedule of sixteen 32-bit (resp. 64-bit)
words, 2) eight working variables of 32 bits (resp. 64 bits) , and 3) a hash
value of eight 32-bit (resp. 64-bit) words. The final result of Dynamic
SHA-256 is a 256-bit message digest and of Dynamic SHA-512 is a
512-bit message digest. The final result of Dynamic SHA-224 and
Dynamic SHA-384 are also 256 and 512 bits, but the output is then
truncated as 224 (resp. 384) bits. The words of the message schedule are
labeled W,W,,..,W,; . The eight working variables are labeled
a,b,c,d,e, f,g and n and sometimes they are called “state register”. The
words of the hash value are labeled H{”,H”,..,H{ which will hold the
initial hash value, y© replaced by each successi;/e intermediate hash
value (after each messaée block is processed), H® ’ and ending with the

final hash value, ™ Dynamic SHA also uses one temporary words T

and three constants.

3 Security of Dynamic SHA

In this section I will make an initial analysis of how strongly collision
resistant, preimage resistant and second preimage resistant Dynamic SHA
is. I will start by describing our design rationale, then I will discuss the
strength of the function against known attacks for finding different types
of collisions.

3.0 Cryptographic Hash Functions

After preprocess message, there are some message blocks that include
512(resp.1024) bits.

Let there exist message blocks M(1),M(2),...,.M(n). Let f(h,Mi) is
compression function, it is as table 2.6. The operation of the iterated hash
function is as follows. First, an b-bit value h(0)=IV is fixed. Then the
message blocks are hashed in order. There exist f(h(i-1),M(i1))=h(i) 1 =
1,2,...,n. As table 3.1

M1 M2 Mj Mn

.

IV — f

—
—

:
:

—>F(x)

Table 3.1 The iterated construction of compression function f

When someone find collisions, he can randomly guess message blocks
except for one block M(j) ,where 0<j<n. Then he can calculate out h(j-1)
with function f and message blocks M(1),...,M(j-1) , and he can
backward function f with message blocks M(j+1),...,M(n) to calculate
out h(j). At last he can just find suitable M(j) that mak f(h(j-1),M(j))=h(j)
to complete findding collisions. So I will discuss the security of Dynamic
SHA in one block.

3.1 Properties of iterative part
In the iterative part, there are 48 rounds. In one round, there are functions
G, R, one message word will be mixed.

3.2 Design rationale

The reasons for the first principle: When message is changed, different
rotate right operation maybe done.

From the definition of function R, it is easy to know when the variable is
different, the parameter n in ROTR"(x) will be different, different rotate
left operation will be done.

It can guess the parameter n in ROTR"(x). Function R is called 48 times
in Dynamic SHA, and in first round, the message words is not mixed, so
it can just guess the parameter n 48-1=47 times. Then there are
32 =2 (resp. 64" =2"") 47-tuple (n(1)....,n(i),...,n(47)), where n(i) is
the parameter n of ROTR"(x) in i-th round.

If someone guess the parameter of function R. There are 2** (resp. 2°%)
47-tuple (n(1),..., n(i),...,n(47)). A given 47-tuple define different
calculation, so 47-tuple (n(1),..., n(i),...,n(47)) divide the message space
into 2 (resp. 2°) parts. In different part, the calculation is different.
When message is changed, the 47-tuple (n(1),..., n(i),...,n(47)) maybe
change, different rotate right operation maybe done.

Controlling the differentials is hard in Dynamic SHA:

In Dynamic SHA, it is known that when message is changed, the
calculation will be different. To analyze Dynamic SHA, it need the
unchangeable formulas that represent function R. There are three ways to
analyze Dynamic SHA:

1. Guess the parameters of function R. This way is select a part in the
message value space. And the message space is divided into 2**
(resp. 2°7) parts. In different part, the calculation is different. In a
part, the average number of message value is 2’ =2°"" (resp.
2! =2 Then the average number of collisions for a hash

value is 2777%=2" (resp. 2", 2™ | 2"), it less than

M M
25127224 _ 2288

(resp. 27°,2°" 2°) If attacker selects a part, he will

have a calculation. To a calculation, the average number of

collisions for a hash value is 2’77 =2""(resp. 27°,2°",2°"). If

someone develop an algorithm to find collision, then the
probability of find the collision is 277" =27" (resp.
2—235 , 2—282 , 2—282).

2. Someone can use Algebraic Normal Form (ANF) to represent
Dynamic SHA, but the ANFs that represent function R has up to
2% (resp. 2’") monomials. If constitute the Arithmetic function
based on ANF, the degree of the Arithmetic function represents
function R is up to 256(resp. 512), and has up to 2”°(resp. 2°7)
monomials.

3. Someone can constitute Arithmetic functions to represent Dynamic
SHA as in Appendix 2. But the Arithmetic function that represent
function R is complex exponential function with round-off
instruction. After 48 rounds, the Arithmetic function that represent

function R will be very huge.

3.3 Finding Preimages of Dynamic SHA
To a hash function f(-), it need satisfy:
Given hash value H=f(M), it is hard to find message M that meet
H=f(M).

There are two ways to find preimages of a hash function:
1,From the definition of Dynamic SHA it follows that from a given
hash digest it is possible to perform backward iterative steps by
guessing values that represent some relations between working
variables of the message words. For that purpose let us use the
following notation:
- For every iterative round t = 0,1,...,47, variables that are on the left
side of the assignment (equality sign '=") will be denoted by at,bt,...,ht
while variables that are on the right side of the assignment will be

denoted by i b, yens h.

1. Initialize eight variables a,,,b,;,...,h,;
2.Fort=46to -1
{
T=a,
a =b,
b, =cC.,
¢, =G(a,,b,(d,, —CO, —TT,1)004), T+ A3)
d =e,
e = f.,
fi=0u
g =he.,
h, =Rl(a,,b,,c,.d,.e, f,,9,,T)

Table 3.2. Backward recurrence expressions of Dynamic SHA. Note that the relations
for the variables CO, are given in (2)

With that notation we can write the backward recurrence expressions as it
1s done in Table 3.2. Function R1 as table 3.3:
-The initialization of the variablesa=H;"', b=H", c=H)"' d=H;",

e=H;"', f=H", g=H', h=H" will be denoted as equations (2):

..... 1)

...... (2)

t0 = ((((a, +b)®c,)+d)®e)+ f,)D g,
tl = (SHR " (t0) ® t0) A (2" -1)

2 = (SHR " (t1) @ t1) A (2" -1)
t=(SHR’(2) ® t2) A 31

y = ROTR *7(T)

Dynamic

SHA-224/256

t0=(((((a,+b)®c)+d)®e)+ f)® g,
tl = (SHR * (10) ® t0) A (27 -1)

Dynamic 2 = (SHR " (t) ® t1) A (2" -1)
SHA-384/512 | 3= (SHRZ(2) ® 2) A (27 -1)
t=(SHR °(13) ® t3) A 63
y = ROTR “7Y(T)

Table 3.3. functions R1 for Dynamic SHA

Now, we have the equations (1) as a one system of 48 equations with
16 unknown variables. It is a system over GF(2) or over Z2” (resp.
72%).

The size of C0,....,C0,, space is 2", The size of W,,..,W,; space

is 2'"" where w is bit-length of C0,,..,C0,, W,...,W,,. The number of
the mwssage value that has same hash value is 2/ 5" =25 pe
probability of there is solution for equation (1) is 2" **" =27"",
In first sixteen rounds, all message words are guessed. And there still are
32 words CO0,,...,C0,, that had not been guessed. Backwarding iterative
steps by guessing values is not better than random guessing in Dynamic
SHA.

2, The probability of random guess of finding preimages is 2~ (resp.
2—256 2—384 2—512)

3.4 Finding Second Preimages of Dynamic SHA
To a hash function f{+), it need satisfy:
Given M, itis hard to find M= M s.t. (M) = f(M"’).

There are five ways to find second preimages of a hash function:

1, Get hash value H=f(M) of message M, and find different message
M’ M that has hash value H= f(M’). In section 3.3, it is known
that it is hard to calculate out the message M’ from given hash value
H.

2, Given M, and find out the relationship between the difference AM
and the difference AH=f(M+AM)-f(M). And find out AM+#0 that
make AH=0. To do this, someone will set up some system of
equations obtained from the definition of the hash function, then
trace forward and backward some initial bit differences that will
result in fine tuning and annulling of those differences and finally
obtain Second Preimages. It need know the unchangeable formulas
that represent hash function f. In Dynamic SHA, when message is
changed, the calculation maybe different. To get unchangeable
formulas that represent hash function f, it need get ANFs for
Dynamic SHA. And the ANFs for function R have up to 2*°(resp.
2°"*) monomials.

3. To get unchangeable formulas that represent hash function f. It can
constitute Arithmetic functions to represent Dynamic SHA. And the
Arithmetic functions that represent function R is exponential
function with round-off instruction. Or someone had to constitute
high degree Arithmetic function to represent function R. And the
degree of the Arithmetic function is up to 256-degree(resp.
512-degree), and have up to 2**(resp. 2°"*) monomials.

4. Guess the parameters of function R. This way is select a part in the
message value space. And the message space is divided into 2°%
(resp. 2**) parts. In different part, the calculation is different. In a
part, the average number of message value is 2°°7° =27 (resp.
2194282 =272y Then the average number of collisions for a hash

TR =% (resp. 27, 2%, 2¥°), it less than

221272 = 22 (resp. 27°,2%,2°%), If attacker selects a part, he will

have a calculation. To a calculation, the average number of

collisions for a hash value is 2°7* =2 (resp. 2°°,2%,2°"7). If

value 1s

someone develop an algorithm to find collision, then the probability
of find the second preimages is 277 =27 (resp.
2—235 2—282 2—282)

5. The probability of random guess of finding second preimages is
224 (I‘GSp. 9256 =384 H-S12)

3.5 Finding Collisions in Dynamic SHA
To a hash function f(-), it need satisfy:
It is hard to find different M and M’ s.t. f(M) =f (M’).

There are five ways to find Collisions of a hash function:

1, Fix message M, and find different message M’ that has hash value
H=f(M). then the problem become find Second Preimages of the
hash function.

2. Find out the relationship between the (M, M’) and the difference
AH=f(M)-f(M”). And find out (M,M") that make AH=0. To do this,
someone will set up some system of equations obtained from the
definition of the hash function, then trace forward and backward
some initial bit differences that will result in fine tuning and
annulling of those differences and finally obtain collisions. It need
know the unchangeable formulas that represent hash function f. In
Dynamic SHA, when message is changed, the calculation maybe
different. To get unchangeable formulas that represent hash function
f, it need get ANFs for Dynamic SHA. And the ANFs for function R
have up to 2%°(resp. 2°"*) monomials.

3. To get unchangeable formulas that represent hash function f. It can
constitute Arithmetic functions to represent Dynamic SHA. And the
Arithmetic functions that represent function R is exponential
function with round-off instruction. Or someone had to constitute
high degree Arithmetic function to represent function R. And the
degree of the Arithmetic function is up to 256-degree(resp.
512-degree), and have up to 2°(resp. 2°'*) monomials.

4. Guess the parameters of function R. This way is select a part in the
message value space. And the message space is divided into 2
(resp. 2°*) parts. In different part, the calculation is different. In a

part, the average number of message value is 2°**%

1024-282
2

=27 (resp.
=2"). Then the average number of collisions for a hash
2T =% (resp. 2* , 2%, 270), it less than
271272 = 22 (resp. 27°,2%°,2°"%). If attacker selects a part, he will
have a calculation. To a calculation, the average number of

value 1is

collisions for a hash value is 2°77* =2 (resp. 27,2 ,2°"7). If
someone develop an algorithm to find collision, then the probability
of find the collision is 2% =27 (resp. 27°,27%,27%).

5. The attack base on the birthday paradox. the workload for birthday
attack 1s of O(2!12) (resp. O(2'2) O(22) O(22%)).

3.6 Finding collisions in the reduced compression function of
Dynamic SHA

If the bits in message are mixed one time, the system will be weak,
someone can backward Dynamic SHA as table 3.2 show.

If there are more than 32 rounds, the bits in message are mixed at least
twice, if attacker backward Dynamic SHA as table 3.2 show, he will have
a system of 32 equation with 16 unknown variables, The probability of
there is solution for the system is 272 (resp. 27'*). And the message
space is divided into 2'° (resp.2'®) parts, in a part, there are 2%
(resp.2™*) message values. The average number of collisions is 2'*
(resp.2'", 2%*,2%). To a calculation, The average number of collisions
is 27 (resp.2”, 2% ,2°7). If an algorithm is developed to find
collision for a calculation, then the probability of find the collision is
27 (resp. 271%°,271% 271,

4 Improvements
There are some improvements for Dynamic SHA:

1. To reduce the times that message bits mixed, the message words are
mixed three times. To get higher security, it can increase the number of
message words mixed times. It will increase the times that message bits

are mixed.

2. Function G can be design as data-dependent function. And it will
increase system calculation and the number of the parts that message
value space had been divided.

An examlep as follow:

The new function G operates on three words x1,x2, x3,
produces a word y as output. function G include two function.
And function G1 operates on two words x1,x2 and produce an

integer t. function G1 as follow:

10 = x1 + X2
tl = SHR 16(tO) @ t0

t2 = SHR *(tl) ® tl

Dynamic

t=(SHR*(12) ® 2) A3

t0 = x1 + x2

t1 = SHR * (10) ® 10
Dynamic t2 = SHR " (t1) @ t1

SHA-384/512 | 3=SHR'(2) & 2

t4 = SHR *(13) @ 13

t=(SHR>(t4) ® t4) A 3

Table 4.1. Function G1 for Dynamic SHA
Function G2 operates on three words x1,x2, x3 and an integer t
that produced in function G1, function G2 as follow:

XI®x2@D X3

(XIAX2)®x3
(HXIvX3)) v(xIAn(x2®Dx3)) t=
(—(xlv(x2®x3))) v (xla—x3) t =3

t=0
t=1
y =G, (X1, x2,X3) = 5

Table 4.2 function G2 for Dynamic SHA
The ANFs and Arithmetic functions that represent message
expansion has up to 2% (resp.2'”) monomials. The degree of Arithmetic
functions that represent message expansion is up to 65(resp.129), and has

up to 2%(resp.2"”) monomials.

3. In Keyed Hash function, the initial hash value is random variable to
attacker. If Dynamic SHA is used in Keyed Hash function, by theorem 3,
it is easy know that the probability of hash wvalue is 27* (resp.
270 7 7Y

There are some ways that we can adopt to get random initial hash
value, for example: IV,=IV_ +c, IV, is i-th initial hash value, c is
constant and ¢ 1s odd number. To do this, it need new communication

protocol.

4. If some algorithms that based on Arithmetic functions are developed to
break Dynamic SHA. The message expansions will increase the degree of
the Arithmetic function that represents Dynamic SHA. If the message
expansions is data depend function, the degree of the Arithmetic function
that represents the message expansions maybe be up to 512(resp.1024). It
will increase the ability that resists differential analysis

The message expansion maybe makes some hash values have more
probability than other hash value. With improvement 3, all hash value
will have same probability.

An examlep as follow:

Use a data-depend function as message expansion and the iterative
part include 64 rounds. The message expansion and the fourth iterative

part as follow:

t0 = ((((((x1+X2) @ x3) + x4) @ X5) + x6) @ x7) + X8
t1=((((((X9+ x10) D x11) + x12) D x13) + x14) D x15) + x16

N — 4xi .
Dynamic p(1) = SHR™'(t0) A (15) 0<i<7
N 4x(i-8) .
SHA-224/256 | P(D=SHR () A (15) 8<i<15
15 .
2= p()
Wi+15 :Wi ®Wp(i)@t2 O < 1 < 15

t0 = ((((((xT+x2) D x3) + X4) D X5) + x6) © xT7) +
+X8) @ x9)+x10) @ x11) + x12) @ x13) + x14) @ x15) + x16

Dynamic p(i) = SHR* (t0) A (15) 0<i<l15
SHA-384/512 R wlt .

th= Zi:o p(®)

Wins =W, QW o0 0<i<15

Table 4.3. message expansion for Dynamic SHA

w, 0<i<15 are message words and w, 16<i<31 are message
expansion words, and a new constant TT,=8flbbcdc (resp.
TT, =8 f1bbcdc7a6d 76e9) will be used, and the iterative part as table 4.4.

The ANFs and Arithmetic functions that represent message
expansion has up to 2°7(resp.2'™) monomials. The degree of
Arithmetic functions that represent message expansion is up to
512(resp.1024).

2. Fort=0to 63
{ T =R(a,b,c,d,e, f,g,h)
h=g
g=f
f=e
e=d
d =G(a,b,c,t A3)+W, ,, +TT,.,
c=b
b=a
a=T

Table 4.4 the iterative part for Dynamic SHA

5 Conclusions

Ronald L Rivest[14] had designed RC5, RC5 include data-depend
function, it make it hard to analyse RC5. And William Stallings[15] has
mentioned that data-depend function will make cipher system has good
nonlinear, and composite function of Boolean functions and Arithmetic
functions also make cipher system has good nonlinear. Dynamic SHA
carry out the two suggestions. It make Dynamic SHA is more nonlinear
than SHA-2.

Data-depend function function R divided the message space into
many parts, in different part, the calculation is different.

And based on components from the family SHA-2, I have
introduced the principle in the design of Dynamic SHA: When message is
changed, different rotate right operation maybe done. And I bring in data
depend function R to realize the principle. The principle enabled us to
build a compression function of Dynamic SHA that the iterative part has
48 rounds, it is more robust and resistant against generic multi-block
collision attacks, and it is resistant against generic length extension
attacks.

References
1. E. Biham and R. Chen, “Near-collisions of SHA-0,” Cryptology ePrint

Archive, Report 2004/146, 2004. http://eprint.iacr.org/2004/146

2. B. den Boer, and A. Bosselaers: “An attack on the last two rounds of

MD4”, CRYPTO 1991, LNCS, 576, pp. 194-203, 1992.

3. B. den Boer, and A. Bosselaers: “Collisions for the compression

function of MD5”, EUROCRYPT 1993, LNCS 765, pp. 293-304, 1994.

4. F. Chabaud and A. Joux, “Differential collisions in SHA-0,” Advances

in Cryptology, Crypto98, LNCS, vol.1462, pp.56-71, 1998.

5. H. Dobbertin: “Cryptanalysis of MD4”, J. Cryptology 11, pp. 253-271,

1998.

6. NIST, Secure Hash Signature Standard (SHS) (FIPS PUB 180-2),

United States of American, Federal Information Processing Standard

(FIPS) 180-2, 2002 August 1.

7. NIST Tentative Timeline for the Development of New Hash Functions,

http://csrc.nist.gov/groups/ST/hash/timeline.html

8. S. Vaudenay, “On the need for multipermutations: Cryptanalysis of

MD4 and SAFER”, Fast Software Encryption- FSE95, LNCS 1008, pp.

286-297, 1995.

9. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, “Cryptanalysis of the

Hash Functions MD4 and RIPEMD”, EUROCRYPT 2005, LNCS 3494,

pp. 1-18, 2005.

10. X. Wang and H. Yu , “How to Break MD5 and Other Hash

Functions”, EUROCRYPT 2005, LNCS 3494, pp. 19-35, 2005.

11. X. Wang, H. Yu, Y. L. Yin “Effcient Collision Search Attacks on

SHA-0”, CRYPTO 2005, LNCS 3621, pp. 1-16, 2005.

12. X. Wang, Y. L. Yin, H. Yu, “Collision Search Attacks on SHA-1",

CRYPTO 2005, LNCS 3621, pp. 17-36, 2005.

13. Gupta and Sarkar “Computing Walsh Transform from the Algebraic

Normal Form of a Boolean Function”

http://citeseer.ist.psu.edu/574240.html

14 Ronald L Rivest “The RC Encryption Algorithm”
http://people.csail.mit.edu/rivest/Rivest-rc5.pdf

15. William Stallings “Cryptography and Network Security Principles
and Practices, Third Edition”, ISBN 7-5053-9395-2

http://citeseer.ist.psu.edu/574240.html

Appendix 1: Constitute Boolean functions to represent function.

We can use Algebraic Normal Form (ANF) to represent function. Gupta
and Sarkar[13] have studied it.

Let n>r>1 be integers and let F:{0,}" — {0,}" be a vector valued
Boolean function. The vector valued function F can be represented as
an r-tuple of Boolean functions F=(F",F® . ,F") , where
F®:{0,1}" > {0,1}(s =1,2,...,r), and the value of F®(x,x,,..,x) equals the
value of the s-th component of F(x,X,,....x,). The Boolean functions
F®(x,X,,.,%,) can be expressed in the Algebraic Normal Form (ANF)
as polynomials with n variables x,x,,..,x, of kind a ®ax @..®ax, ®
Da XX .08, XX, .08, X.,X,....X,, where a, €{0,1}. Each ANF has

n—1,n"*n—1n

up to 2" monomials, depending of the values of the coefficients a, .

Function R

Function R operates on eight words x1, x2, x3, x4, x5, x6, x7 and x8 and
produces a word y as output. So we have R:{0,11*" — {0,1}", It is easy to
know that one-bit different in words x1, x2, x3, x4, x5, x6, x7 will make
the different rotate right operation be done. So the bit in output maybe
changed. And when one-bit different in word x8, the bit in output maybe
changed. So the ANFs to represent function R has up to 2" monomials,

where w is bit length of the word.

Appendix 2: Constitute Arithmetic functions to represent
function.

Gupta and Sarkar [13] had studied how to use Algebraic Normal Form
(ANF) to represent function. In a similar way, all function will be
represented as polynomials.

In appendix 2, the following operations are used:
1.abs(x) 1is absolute value of x

2.]¥ is round-off instruction on x

3. “+” 1is arithmetic addition.

. 1s arithmetic subtraction.

5. “x” 1s arithmetic multiplication.

1. Constitute Arithmetic functions to represent Boolean
function:
In Boolean function, 1 is True, 0 is False.

1. To one bit word. The Boolean function can represented with arithmetic
functions as follow:

i arithmetic
operand function ,
function
X,y Z=X®Yy Z=X+Yy—-2xXxYy
X,y I=XAY Z=XxY
X,y Z=XVYy Z=X+Yy—XxYy
X Z=—X z=1-X

Tables B.1 represent Boolean function with arithmetic function
To Boolean polynomial, it can replace every calculation of polynomial
base on table B.1.

2. To n-bit word.
If there are three n-bit words X, y, z. if there exist z= f(x,y) where f is
Boolean function that in table B.1.

X, y, Z are n-bit words. Let

where x,y;,z, is i-th bit of word x, y, z. There exists z =f(x,y,), where
0<i<n-l1.

To Boolean polynomial, it can replace every calculation base on table B.1
for every bit of variables.

3. If function F includes a series functions f,,..., f._, as follow:
fO(Xa y) k = O

Z(X, ¥,k)=x+...
ft—l(xay) k=t-1

Then it can represent as follow:
2 abs (k-1i)

z(x,y,k) =D (2% - x 2)x (f,(X,y))

Base on above-mentioned three ways, it can represent Boolean function
with arithmetic functions. And there exists:
Theorem 1. If xe{0,1}, there exists x*=x k>0.

Proof.
Ifx=0, x*=0"=0=x
Ifx=1, x*=1"=1=x]

2. Constitute Arithmetic functions to represent function with
ANF

Functions F : {0,1}" — {0,1}" can be expressed in the ANF as polynomials
with n variables x,x,,...x, of kind a ®ax ®..®ax, ®a XX ®..0a,, X, X, ®
®a,, .X..X,, where a efl. If replace every calculation in the ANF base on
table B.1 and simplified by theorem 1, it can constitute Arithmetic
functions to represent ANF. The Arithmetic functions will be polynomials
with n variables x,x,..x, of kind Iy+yxx +.:x% +. 4y, % <X 4., 3% 3,
where b, are integer. The Arithmetic functions have up to 2"
monomials. The degree of Arithmetic functions is up to n. And there

exists =Y, FO(X,%....x)x2 , where fis r-bit word.

3. Constitute Arithmetic functions to represent SHR operation:
The shift right operation SHR*(x) can be represented as follow:

y = SHR*(x) = (2.0)

X
2¢

4. Constitute Arithmetic functions to represent data-depend
function G:
The function G can be represented as follow:

2abs(t—i)

y(XLx2,x3,0) = > (220 — x 2)x (G, (X1, X2, X3)) (2.1)

By Theorem 1 and table B.1, function G,(x1,x2,x3) can be represented as

follow:
ZH(XL + X2, + X3, —=2x X1, x X2, =2x X1, xX3, — (=0
0% X2, X X3, +4x X1 x X2, x X3,) x 2 -
1 i
G, X2,)3) = g (K1 X2, 433, =2 X1, X X2, %5 x 2 t=1 (22

D (1=Xl =33, +2%X, %03, + XL X2, —2x XL xX2 x5 %2 t=2

D A=K X3, +2%X2, 303, + X 03, —2xXl, x X2 x03) %2 1=3

x1;,x2;,x3; 1s i-th bit of x1, x2, x3. In system (2.2), it is known that
G, are cubic equations, and has 7, 3, 6, 6 monomials. It is easy to know
that the equation (2.1) is cubic equation. It is hard to represented equation
(2.1) with linear function. And there exists:

d*(y) _
d(x1,)d(x2,)d(x3,)

And c is constant.

5. Constitute Arithmetic functions to represent data-depend
function R:

There are two ways to constitute Arithmetic functions to represent
data-depend function R:

1. Constitute ANFs that represent function R. And replace the Boolean
function base on table B.1. In this way, it will constitute huge Arithmetic
function. The ANFs represents function R has up to 2%°(resp. 2°"?)
monomials. By theorem 1 and the input has 261(resp. 518) bits, so the
degree of the Arithmetic function represents function R is up to 256(resp.
512), and has up to 2*°(resp. 2°"*) monomials. There exiset:

d”(y) _
d(Xy)-...d(X)...d (X, ;)

where c is constant, x is i-th input bit of function R, bn is bit number of

input, and bn equal 256(resp. 512).

2. At first, there exist rotate right (circular right shift) operation
ROTR*(x), where x is n-bit word, and 0<k<n. It can represent
y = ROTR*(x) as follow:

y = ROTR*(x)

X X e
:?+(X—2—kx2k)x2 X (2.3)
— xx 2"k 2ik x(2" -1

If function y=ROTR*(x) is not data-depend function, the k in
equation (2.3) is constant, and equation (2.3) is linear equation. The
derivative function of linear equation is constant. This means the
difference of function value depend on the difference of input and the
difference of function value dose not depend on the input. In SHA-2, the
ROTR operation is not data-depend function, it can constitute linear
equation to represent the ROTR operation in SHA2.

If function y=ROTR*(x) is data-depend function, the k in equation
(2.3) is variable, and equation (2.3) is exponential function. And equation
(2.3) will be exponential function with round-off instruction. It is hard to
represent exponential function with linear equation. The derivative
function of exponential function is exponential function. This means the
difference of function value depend the difference of input and input.
When the input changes, the different of function value maybe change. In
Dynamic SHA, function R is data-depend function. And if use equation

(2.3) represents function R, the k is function of working variables a,b,c, d,
e, f, g, and k=K(a,b,c,d,e, f,g,h) as table B.2, the equation (2.2) will be
complex exponential function. After several rounds, equation (2.3) will
be iteration function with equation (2.3), it will be very huge and
complex, and there exists no mathematical theory that reduces the size of
equation (2.3). It is hard to analyses Dynamic SHA that includes function
R.

t0=(((((a+b)y®c)+d)®e)+ f)®g
Dynamic tl = (SHR "7 (10) ® t0) A (2" -1)

SHA-224/256 | 22 =(SHR™(t) @ tl) A (2" -1)

k = (SHR’(£2) ® t2) A 31

0=((((a+b)®c)+d)@e)+ f)® g
t1 = (SHR * (10) ® t0) A 2% -1)

©2 = (SHR ®(t1) ® t1) A 2" -1)
SHA-384/512 | 3 = (SHR 2(2) @ 2) A (2" -1)

k = (SHR *(13) @ 13) A 63

Dynamic

Table B.2. function K for Dynamic SHA

Compare the Arithmetic function that represent SHA2, The Arithmetic
function that represent functions in Dynamic SHA include exponential
function. Or the Arithmetic function that represents functions in Dynamic
SHA has higher degree than the Arithmetic function that represents
functions in SHA2. This make it is harder to analyses Dynamic SHA.

Appendix 3: Function G and Function R.
Let p(x) is probability of x.

Function G

Function G operates on three words x1,x2, x3 and an integer t, produces a
word y as output. t is constant, x1,x2, x3 are w-bit words and 0<t<w.
And function G as follow:

XI®Xx2@® X3 t=0

(XIAX2)@®x3 t=1
y=G,(X,x2,X3) =

(=(X1vx3)) v(xIA(x2®x3)) t=2

(~(XIv (2D X3))) v (xIA—x3) t =3

If x1, x2, x3 are random and uncorrelated. There is:

P =3 0 S S (| (X1, X215, X3,)) % POXT,) % P(X2,) % POX3,,)

2% 2%—1 2

P(Y) = P(XL;)x P(X2,)x POBL)x 3o S S 2y | (X1, X2,5,X3,,))

To a given y’, there are 2> 2-tuple (x1,x2), there is relation:

XIex2ay' t=0
G (XIAx2)®y' t=1
(=(XIvy)v(EIA(X2®Y')) t=2
(—(xXlv(x2@y)))vxla—y)t=3

it can compute the value for x3. x1, x2, x3 are random and uncorrelated
variable, there 1s

p(x1) = p(x2) = p(x3)=27"
Then there is:

|

P(Y) = POXL)X PO, X POG)X Dy S S p(y | (X, X2, 33,)) =27 X2 x 2 x 22 =27

If x1, x2, x3 are random and uncorrelated, function G will produce
random word and p(y)=2".

Function R

Function y=R(x1,x2,x3,x4,x5,x6,x7,x8) operates on eight words
x1,x2,x3,x4,x5,x6,x7 and x8, produce a word as output as table 2.3. x1,
x2, X3, x4, X5, x6, x7, x8 are w-bit words. If x1, x2, x3, x4, x5, x6, X7, x8

are random and uncorrelated.

There exists:
PtO) = 3 S S D0 | (XL e XT,)) % POXL) X o P(XT,,)
P(t0) = P(XL,) X x P(XT) 0 Y (O] (Xl s X))

To given value t0’, There is 2™ 7-tuple (x1°,x2°,x3’,x4’,x5°,x6°,X7’),
There is relation: X7 = (X1 +X2) @ x3) + x4) ® x5) + x6) ®t0 . it can compute
the value for x7. and x1, x2, x3, x4, x5, x6, x7 are random and

uncorrelated variable. There exists:

P(XLiy) = P(X2;,) = P(X3;3) = p(X4,) = P(X5;5) = p(X6;) = p(X7;;) =27"

P(t0") = p(X1;)x P(X2;,) % P(X355) % P(X4;,) X P(X5;5) % P(X6y6) x P(XT;;)x 2 = 27",
t0 is w-bit word, let t is log," -bit word, let: t0=(t0,,..,t0, ,) and
t=(t,,-...,t_,), t0,t 1si-th bit of t0 and t, and there is
t, =t0, ®t0, ®t0,, ®0,, ®10,, ®10,, D0,

t, =t0, ®t0, D10, ®0,, D10,, D10,, D10,
t, =10, t0, Dt0,, Dt0,, Dt0,, D10,
t, =t0, ®t0, D0, D10,, D10,, D10,
t, =t0, ®t0, ®t0,, ®t0,, D10, ®10,,

t, =t0, D10, D0, B0, Dt0,, Dt0,, D10, Dt0,, D10, B0, D10,

t, =t0, D10, Bt0,, D10,, D10, D10, Bt0,, B0, 10,, D10, B0,
Dynamic t, =t0, D0, D10, D0, 10, 10, Bt0,, Dt0,, Bt0,, B0, t0,,

SHA-384/512 | |t, =t0, D10, ®t0,, D10, ®t0,, D0, Dt0,, D10, D0, Dt0,, Bt0,,

t, =t0, ®t0,, D10, D0,, D0,, D10, Bt0,, D10, Dt0,, DO,

t, =t0, ®t0,, ®t0,, D10, Dt0,, D10, B0, Bt0,, B0, Dt0,,

Dynamic
SHA-224/256

And there is relation:

t0, =t, ®t0, ®0,, ®10,, ®10,, D10,, D10,
t0, =t, @10, ®10,, ®10,, 10,, ®10,, D10,
t0, =t, ®t0, ®10,, 10, D10,, D10,
t0, =t, 10, ®10,, ®10,, Dt0,, D10,,
t0, =t, ®t0, 10, ®0,, D10, S10,,

t0, =t, ®t0, Dt0,, D0, D10,, Dt0,, B0, t0,, D10,, D10, D10,

t0, =t, ®t0, D10,, B10,, 10, Bt0,, D10, B0,, Bt0,, Bt0,, D10,
Dynamic t0, =t, ®t0, D10, D0,, D10, 10, D10, Dt0,, Bt0,, B0,, 10,

SHA-384/512 | |t0, =t, ®t0, ®t0,, D10, ®t0,, D0, Bt0,, D10, B0, D10, Bt0,,

t0, =t, ®t0,, ®10,, D0,, D10, 10;, B10,, D10, D10, B0,

t0, =t, ®10,, ®10,, Bt0,, Dt0,, D0, D10, Dt0,, Dt0,, D0,

Dynamic
SHA-224/256

iven log, — tuple p=(t' t' is HWw-logy
To a given log, —tuplet’=(t ¢ »s L w_;), there is 2 2

(W—logév)—tuple(t(?ogzw,---,tow_l). To a given (w-log))—tuple

w
(t0' v »-t0,,), it can compute the log, —tuple for (to,,..t0 ,). And

logy -1
there is

p) =", PEItOG)x p(to) = 2% x p(t0) =2""% x 2 = 2F =w

x1, x2, x3, x4, x5, x6, x7, x8 are random and uncorrelated words, and t is
produced from x1, x2, x3, x4, x5, x6, x7. Toy=ROTR'(x8), there is
relation X8 =ROTR"™(y). To a given value y’, there are w value t, to a
given t’, it can compute the value for x8. And there is:

DY) = 3 S (Y (1, X8,)) X P() x P(X8yg) = Wx W x 27" = 27"

If x1, x2, x3, x4, x5, x6, x7, x8 are random and uncorrelated words,

function R will produce random word and p(y)=2".

In function R, one bit difference in x1, x2, x3, x4, x5, x6, x7, different
ROTR will be done, this will make every bit in x8 maybe changed.

Appendix 4: Some thing about Dynamic SHA
1. Why Dynamic SHA use function G and function R
As mentioned at appendix 3, if the variables are random word, function G
and R will produced random word.

Function G operates on three words, produces a word as output.
What function G does is produce confusion word.

Function R operates on eight words, produces a word as output. What
function R do is confuse the place of bit.

The reason that Dynamic SHA use function G and function R is:

1. To get better property of spreading, Dynamic SHA use function G
and R.

2. With function G, function R makes it hard to find out the
relationship between message change and bit place change. If
function G is data-depend function, function G and R will make it
hard to find out the relationship between message value and what
logical function is called and where the bit is placed. And it is
hard to analyze data-depend function with differential analysis. It
needs construction Arithmetic function to describe function, the
degree of the Arithmetic function is up to 256(resp. 512). Or
construction exponential function to describe function R. And the
ANFs that describe function R has up to 27 (resp. 2°%)
monomials.

2. Why there are 48 rounds in Dynamic SHA

The reason that there are 48 rounds in Dynamic SHA is as follow:

1. It is easy to know mix message words too many times will reduce
the randomness of variable of function G and R. So the message bits are
mixed no many times in Dynamic SHA.

2. It is easy to backward function R and G, so it must repeatedly mix
message words. When someone backward iterative steps by guessing
message word, then he will has one system include equations like (1), the
system has 48 equations with 16 unknown variables.

So message words will be mixed three times in Dynamic SHA, and

in one round, one message word will be mixed. So there are 48 rounds in

Dynamic SHA.

3. Why there is no message expansion part in Dynamic SHA

Mixing message words many times will reduce the randomness of
variable of function G and R. and the degree of Arithmetic function that
describe function R is up to 256(resp.512), and there are up to 27 (resp.
2°") monomials in the Arithmetic function. It is enough now.

4. It is hard to analyses Dynamic SHA

Dynamic SHA include function R. To analyses Dynamic SHA, it
need unchangeable representation of function R. As mentioned in
Appendix 1 and Appendix 2, the ANFs that describe function R has up to
2100 [(resp. 2%) monomials, and the Arithmetic functions that describe
function R is exponential function with round-off instruction like
equation (2.3) or arithmetic function that the degree is up to 256 (resp.
512).

5. Avalanche of Dynamic SHA.
From the definition of function R, it is enough to known that all bits in
working variables a,b,c,d,e,f,g will affect all bits in temporary words T.
After 16 rounds, all message bits are mixed. There are 32 rounds
after all message bits are mixed. And after call function R 9 times, all bits
in working variables that before 17-th round will affect all bits in
working variables after 26-th round. Some bits in message will not affect
all bits in last hash value. So all message bits will affect all bits in last
hash value.

Appendix 5: Spreading of Dynamic SHA
Let:
1. hv(i)=(a(i), b(i), c(i), d(i),e(i), f(i), g(i), h(i)). Where a(i), b(i), c(i),
d(i),e(1), f(1), g(i), h(i) are working variables at i-th round.
2.MWI1=(W(0),W(1),W(2),W(3),W(4),W(5),W(6),W(7)),
MW2=(W(8),W(9),W(10),W(11),W(12),W(13),W(14),W(15))
W(j) is the message word.
3.H,(MW1, MW2) =hv(i) 15<i.

Divide the iterative part into some parts, and a part includes 8 rounds.
The iterative part will be as table E.1. hv(-1) is initiation of eight working
variables

D) = M -

MW1
VT ED) hv39) FAWVZ 3fhv(47)

Table E.1. Iterative part of Dynamic SHA
And there is:
H,,(MW1,MW2) =hv(15)
H,;(MWI,MW2) = hv(23)
H;,(MW1,MW2)=hv(31)
H,,(MW1,MW2) =hv(39)
H,,(MWI1,MW2) =hv(47)

At first there are two theorems:

Theorem 2. Let:

1. hv(i)=(a(i), b(i), c(i), d(i),e(i), f(i), g(i), h(i)). Where a(i),
b(i), c(i), d(i),e(i), (i), g(i), h(i) are working variables at
I-th round. working variables are b-bit word.

2.MW=(W(i),W(i+1),W(i+2),W(i+3),W(i+4), W(i+5),W(i+6),
W(i+7)), where W(j) is the word mixed in j-th round.

3. H(hv(i-1), MW)=hv(i+7)

hv(i), MW are random and uncorrelated.

Then there are:
(1),p(hv(i+7))=2"*
(2),p(hv(i+7)|MW)=2"*
(3),p(hv(i+7)| hv(i-1))=2"%*

Proof.

(1),(2)

Before i-th round, we have (hv(i-1),MW), after 8 rounds, MW is
mixed, then we have hv(i+7), so we have H: {0,13'° > {0,11**°

There are 2 **° MW. To given MW’, there is
Hy (vG-1) =hv(i+7) and Hy :{0,1%° = {0,13%" .

To given hv(i-1)’, there is relation Hyw (hv(i-1)") =hv(i+7),
it can compute the value for hv(i+7).

To given hv(i+7)’, it is easy to backward iterative steps as table 3.2
show. Then there is relation Hpyw '(hv(i+7)) =hv(i-1) it can
compute the value for hv(i).

hv(i), MW are random and uncorrelated, there is

p(hv(i—1)) =27 . P(MW) = 27 S0 there is:
p(hv(i+7)) = Z?li‘JZ?;;; p(hv(i+7) | (hv(i —1);,, MW (i2))) x p(hv(i —1));, x p(MW (i2))

p(hv(i+7)) = p(hv(i = 1)) x (MW) x 32 S gy i+ 7) | (hw(i 1), MW (i2)))
D(V(i +7)) = 278 x 280 5 b — -8

p(hV(i+7) | MW) = 3~ p((hv(i +7) | MW) | Bv(i = 1),) x p(hv(i—1);,) = 2750 = 275

3)

To given hv(i-1)’:

To a given hv(i+7)’, it is easy to backward iterative steps as table 3.2
show. We will have a system of 8 equations with 8 unknown variables. It
is easy to compute the value for MW.

To a given MW’, it is easy to compute the value hv(i+7).

MW are random, there exist P(MW) = 27%b

So there exist:

p(hv(i+7) | hv(i—1)) = Zi: p((hv(i +7) [hv(i —1)) | MW (i1)) x p(MW (i1))

— 2—8><b — 2—8><b

By theorem 2, it is easy to know that:

In 8 round, to a given hv(i-1)’, mix different message words MW,
the hv(i+7) will be different.

In 8 round, mix given message words MW’, if the hv(i-1) is
different, the hv(i+7) will be different.

The relationship is as Table E.2, hv(i-1); is j-th value in hv(i-1) space.
hv(i+7); is j-th value in hv(i+7) space. MW; is j-th value in MW space.

. MWkO(O) -
hv(i—1), S hv(i+7),
MW i) MW o)
MWkO(ZM’—
hv(i-1) T i
i hv(i +7),
MW e Wt ()
MW klast (0,
hv(i =1) s, hv(i + 7)o
) MW klast (25 —1)

Table E.2 relationship between hv(i-1), hv(i+7), MW

Theorem 3. In Dynamic SHA, there exist:
. —8xb
(@) p(hv(i)=2" b
(2),p(hv(i)IMW1)= 2‘8*b
3).p(hv(j)Mw2)= 27
j=15+8xk k=01,2,...

Proof.

hv(-1), MW1 and MW?2 are random and uncorrelated, so there exist:
p(hv(-1)) =27
p(MW1) =275
p(MW2) =275

To simplification, Let F(hv(i-8),MW)=hv(i), MW is mixed words MW1
or MW2.

. . : 16xb
To a given hv(i)> i=15+8xk k=012,... , there are 27

2-tupleMW1,MW?2).
8xb

To a given 2-tuple(hv(i)’,MW1°), there are 2 MW?2. To a given

2-tuple (hv(i)’,MW2’), there are 2% Mwl.

To a given 3-tuple(hv(i)’,MW1°’ MW2’), It is easy to backward
iterative steps, and it is easy to compute the value for hv(-1), and the
hv(-1) make H,(hv(-1), MWI' ,MW2') = hv(1)' .

So there exist:

b_ b_ b_)
pV@) =D > > " (i) | (W(=1)i0. MWL, MW24))x p(V(=1)i0, MWL, MW2;5)

2° 121

p(hv(i)) = p(hv(-1), MWI, MW2)x Z?;;;Z

i1=0 &=di2=0
p(hV(l)) — 2—8><b % 2—8><b % 2—8><b % 28><b % 28><b _ 2—8><b

p(hv(D) | (Mv(=D);p, MWI;;, MW2;))

p(hv(i) | MW = 37215 (i) | MW | (B(=1)10, MW24))x UV 1), MW,

2b

p(hv(i) | MW = p(hv(—D), MW2)x 3™ 1S ot | MW | (=D, MW2,)

p(hV(l) | MWI) — 2—8><2—8><28><b _ 2—8><b

p(hv(i) | MW2) = 375 () | MW2) | (=D, MW,) p(v(=1)0, MWL)

p(hV(i) | MW2) = p(hv(—1), MWD x 372 1S oty | MW2) | (hv(—Dy, MW)
p(hV(l) | MW2) — 2—8><b % 2—8><28><b _ 2—8><b

Theorem 4. In Dynamic SHA, to a given hv(-1), there exist:
(1) p(hv(23)| hv(-1))=2"**

Proof. To simplification, Let F(hv(i-8),MW)=hv(i), MW is mixed
words MW1 or MW2.

To a given 2-tuple (hv(23)’,hv(-1)’), there are 2% Mwi1.

To a given 2-tuple (hv(23)’, MW1’), by theorem 2, there is p(hv(23)|
MWI1) = 2% , so to a given 2-tuple(hv(23)’, MWI1’), there is
230 %2* =1 hy(15) that make F(hv(15),MW1°)= hv(23)".

To a given 2-tuple (hv(-1)’, MW1’), from the definition of iterative
steps, it is enough to know that there is a hv(7) that make
F(hv(-1)’,MW1°)= hv(7).

To a given 2-tuple (hv(7)’, hv(15)’), by theorem 2, there is p(hv(15)|
hv(7)) = 2% , so to a given 2-tuple(hv(7)’, hv(15)’), there is
2% %2* =1 MW2 that make F(hv(7)’, MW2) = hv(15)’.

So there exist:

2P

p(hv(23) [hv(=1)) = 32 1S p(hu(23) | hv(=1) | (MW1,,, MW2,) x p(MW1,., MW 2,)

p(hv(23)| hv(=1)) = p(MW1, MW 2) x 220; Zfli‘ol p((hv(23) | hv(=1)) | (MW1,,, MW 2,))
p(hv(23) | hv(=1)) = 2780 x 278 x 2% = 5

By theorem 3 and 4, it is enough to know that:
1. When hv(-1) is random variable, the probability of hash
valueis 275 .
2. To a given hv(-1), the probability of different hash value
maybe different.

After 23-th round, the message has been mixed, the mixed message
words and working variables value are not uncorrelated, it is hard to
analyze the probability of hash value. To get better property of spreading,
Dynamic SHA adopts ways as follow:

1. Function G and R are used in Dynamic SHA. When the variables of
function G, R are random and uncorrelated, function G, R will

produce random value.

