
Dynamic SHA
Zijie Xu

E-mail: xuzijiewz@gmail.com

Abstract. In this paper I describe the construction of Dynamic SHA
family of cryptographic hash functions. They are built with design
components from the SHA-2 family, but there is function R in the new
hash function. It enabled us to achieve a novel design principle: When
message is changed, different rotate right operation maybe done. It
makes the system can resistant against all extant attacks.

Key words: Cryptographic hash function, SHA, Dynamic SHA

1 Introduction
The SHA-2 family of hash functions was designed by NSA and adopted
by NIST in 2000 as a standard that is intended to replace SHA-1 in 2010
[6]. Since MD5, SHA-0 and SHA-1 was brought out, people have not
stopped attacking them, and they succeed. Such as: den Boer and
Bosselaers [2,3] in 1991 and 1993, Vaudenay [8] in 1995, Dobbertin [5]
in 1996 and 1998, Chabaud and Joux [4] in 1998, Biham and Chen [1] in
2004, and Wang et al. [9–12] in 2005. Most well known cryptographic
hash functions such as: MD4, MD5, HAVAL, RIPEMD, SHA-0 and
SHA-1, have succumbed to those attacks.
Since the developments in the field of cryptographic hash functions,
NIST decided to run a 4 year hash competition for selection of a new
cryptographic hash standard [7]. And the new cryptographic hash
standard will provide message digests of 224, 256, 384 and 512-bits.
In those attacks, we can find that when different message inputted, the
operation in the hash function is no change. If message space is divided
many parts, in different part, the calculation is different, the attacker will
not know the relationship between message and hash value. The hash
function will be secure. To achieve the purpose, I bring in data depend
function R to realize the principle.
My Work: By introducing a novel design principle in the design of hash

mailto:xuzijiewz@gmail.com

functions, and by using components from the SHA-2 family, I describe
the design of a new family of cryptographic hash functions called
Dynamic SHA. The principle is:
1. When message is changed, different rotate right operation maybe done.

The principle combined with the already robust design principles present
in SHA-2 enabled us to build a compression function of Dynamic SHA
that has the following properties:

1. There is not message expansion part.
2. The iterative part has 48 rounds. Message bits have been mixed three
times.
3. The iterative part has two different functions.

2 Preliminaries and notation
In this paper I will use the same notation as that of NIST: FIPS 180-2
description of SHA-2 [6].
The following operations are applied to 32-bit or 64-bit words in
Dynamic SHA:

1. Bitwise logical word operations:‘∧’–AND ,‘∨’–OR,‘⊕’–XOR and
‘ ’–Negation. ¬

2. Addition ‘+’ modulo or modulo . 322 642

3. The shift right operation, , where x is a 32-bit or 64-bit word
and n is an integer with 0≤n<32 (resp. 0≤n<64).

)(xSHR n

4.The shift left operation, , where x is a 32-bit or 64-bit word and
n is an integer with 0≤n<32 (resp. 0≤n<64).

)(xSHLn

5. The rotate right (circular right shift) operation, , where x is a
32-bit or 64-bit word and n is an integer with 0 ≤ n < 32 (resp. 0 ≤ n <
64).

)(xROTRn

6. The rotate left (circular left shift) operation, , where x is a
32-bit or 64-bit word and n is an integer with 0 ≤ n < 32 (resp. 0 ≤ n <
64).

)(xROTLn

Depending on the context I will sometimes refer to the hash function as
Dynamic SHA, and sometimes as Dynamic SHA-224/256 or Dynamic
SHA-384/512.

2.1 Functions
Dynamic SHA include two functions. The two functions are used in
compression function.

2.1.1 Function G(x1,x2, x3,t)
Function G operates on three words x1,x2, x3 and an integer t, produces a
word y as output. And function G as follow:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

¬∧∨⊕∨¬
⊕∧∨∨¬

⊕∧
⊕⊕

==

)x3(x1)))32(1((
x3))x2((x1))31((

3)21(
321

)3,2,1(

xxx
xx

xxx
xxx

xxxGy t

3
2
1
0

=
=
=
=

t
t
t
t

Table 2.1 function G for Dynamic SHA

The truth table for logical functions as table 2.2.
x1 x2 x3 f1 f2 f3 f4

0 0 0 0 0 1 1

0 0 1 1 1 0 0

0 1 0 1 0 1 0

0 1 1 0 1 0 1

1 0 0 1 0 0 1

1 0 1 0 1 1 0

1 1 0 0 1 1 1

1 1 1 1 0 0 0

Table 2.2. truth table for logical functions

2.1.2 Function R(x1, x2, x3, x4, x5, x6, x7, x8)
Function R operates on eight words x1, x2, x3, x4, x5, x6, x7 and x8,
produces a word y as output. And function R as table 2.3.

Dynamic

SHA-224/256

)8(
31t2)t2)((t

1)-(2t1)t1)((t2
1)-(2t0)t0)((t1

7)6)5)4)3)2x1(((((t0

5

1010

1717

xROTRy
SHR

SHR
SHR

xxxxxx

t=

∧⊕=

∧⊕=

∧⊕=

⊕+⊕+⊕+=

Dynamic

SHA-384/512

)8(
63t3)t3)((t

1)-(2t2)t2)((t3
1)-(2t1)t1)((t2
1)-(2t0)t0)((t1

7)6)5)4)3)2x1(((((t0

6

1212

1818

3636

xROTRy
SHR

SHR
SHR
SHR

xxxxxx

t=

∧⊕=

∧⊕=

∧⊕=

∧⊕=

⊕+⊕+⊕+=

Table 2.3. Function R for Dynamic SHA

2.2 Preprocessing
Preprocessing in Dynamic SHA is exactly the same as that of SHA-2.
That means that these three steps: padding the message M, parsing the
padded message into message blocks, and setting the initial hash value,

0H are the same as in SHA-2. Thus in the parsing step the message is
parsed into N blocks of 512 bits (resp. 1024 bits), and the i-th block of
512 bits (resp. 1024 bits) is a concatenation of sixteen 32-bit (resp. 64-bit)
words denoted as . Dynamic SHA may be used to hash
a message, M, having a length of bits, where .

)(
15

)(
1

)(
0 ,.....,, iii MMM

l 6420 <≤ l

2.2.1 padding
2.2.1.1 Dynamic SHA-224/256
Suppose that the length of the message M is L bits. Append the bit “1” to
the end of the message, followed by k zero bits, where k is the smallest,
non-negative solution to the equation L+1+k ≡ 448 mod 512. Then
append the 64-bit block that is equal to the number L expressed using a
binary representation.

2.2.1.2 Dynamic SHA-384/512
Suppose that the length of the message M is L bits. Append the bit “1” to
the end of the message, followed by k zero bits, where k is the smallest,

non-negative solution to the equation L+1+k ≡ 896 mod 1024. Then
append the 128-bit block that is equal to the number L expressed using a
binary representation.

2.3 Initial Hash Value 0H
The initial hash value, 0H for Dynamic SHA is the same as that of
SHA-2 (given in Table 2.4).

Dynamic
SHA-224

Dynamic
SHA-256

Dynamic SHA-384 Dynamic SHA-512

,fabefaH

,fafH

,H

,bffcH

,efH

,ddH

,cdH

,edcH

)(

)(

)(

)(

)(

)(

)(

)(

44

79864

68581511

3100

593970

173070

507367

81059

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

=

=

=

=

=

=

=

=

5be0cd19,

1f83d9ab,

9b05688c,

510e527f,

a54ff53a,

3c6ef372,

,bb67ae85

,6a09e667

)0(
7

)0(
6

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

)0(
0

=

=

=

=

=

=

=

=

H

H

H

H

H

H

H

H

fa4fa4,47b5481dbe

f98fa7,db0c2e0d64

581511,8eb44a8768

c00b31,67332667ff

0e5939,152fecd8f7
70dd17,9159015a30

,7cd507629a292a36

,059ed8cbbb9d5dc1

)0(
7

)0(
6

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

)0(
0

=

=

=

=

=

=

=

=

H

H

H

H

H
H

H

H

7e2179,5be0cd1913

41bd6b,1f83d9abfb

3e6c1f,9b05688c2b

e682d1,510e527fad

1d36f1,a54ff53a5f

94f82b,3c6ef372fe

,caa73bbb67ae8584

,bcc9086a09e667f3

)0(
7

)0(
6

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

)0(
0

=

=

=

=

=

=

=

=

H

H

H

H

H

H

H

H

Table 2.4. The initial hash value, 0H for Dynamic SHA

2.4 Constants
The Dynamic SHA has three constants (given in table 2.5):

Dynamic SHA-224/256 Dynamic SHA-384/512

,18
,196

,8279995

2

1

0

BBCDCFTT
EBAEDTT

ATT

=
=
=

,3703618
,12441596

,628827999505

2

1

0

EFDBBCDCFTT
DDCEBAEDTT

BEAATT

=
=
=

Table 2.5. The constants for Dynamic SHA

2.5 Dynamic SHA Hash Computation

The Dynamic SHA hash computation uses functions and initial values
defined in previous subsections. So, after the preprocessing is completed,
each message block, , is processed in order, using the
steps described algorithmically in Table 2.6.

)()1()0(,.....,, NMMM

For i = 1 to N:

{

1.Initialize eight working variables a, b, c, d, e, f, g and h with the hash value: thi)1(−
)1(

0
−= iHa , , , ,)1(

1
−= iHb)1(

2
−= iHc)1(

3
−= iHd

)1(
4
−= iHe , , ,)1(

5
−= iHf)1(

6
−= iHg)1(

7
−= iHh

2. For t=0 to 47

{

),,,,,,,(hgfedcbaRT =

gh =

fg =

ef =

de =

415)3,,,(>>∧ ++∧= tt TTWtcbaGd

bc =

ab =

Ta =

}

3.Compute the intermediate hash value thi)(iH :
)1(

0
)(

0
−+= ii HaH , , , ,)1(

1
)(

1
−+= ii HbH)1(

2
)(

2
−+= ii HcH)1(

3
)(

3
−+= ii HdH

)1(
4

)(
4

−+= ii HeH , , ,)1(
5

)(
5

−+= ii HfH)1(
6

)(
6

−+= ii HgH)1(
7

)(
7

−+= ii HhH

}

Table 2.6. Algorithmic description of Dynamic SHA hash function.

The algorithm uses 1) a message schedule of sixteen 32-bit (resp. 64-bit)
words, 2) eight working variables of 32 bits (resp. 64 bits) , and 3) a hash
value of eight 32-bit (resp. 64-bit) words. The final result of Dynamic
SHA-256 is a 256-bit message digest and of Dynamic SHA-512 is a
512-bit message digest. The final result of Dynamic SHA-224 and
Dynamic SHA-384 are also 256 and 512 bits, but the output is then
truncated as 224 (resp. 384) bits. The words of the message schedule are
labeled . The eight working variables are labeled

 and and sometimes they are called “state register”. The
words of the hash value are labeled , which will hold the
initial hash value,

1510 ,...,, WWW

gfedcba ,,,,,, h
)(

7
)(

1
)(

0 ,...,, iii HHH
)0(H , replaced by each successive intermediate hash

value (after each message block is processed),)(iH , and ending with the
final hash value,)(NH . Dynamic SHA also uses one temporary words T

and three constants.

3 Security of Dynamic SHA

In this section I will make an initial analysis of how strongly collision
resistant, preimage resistant and second preimage resistant Dynamic SHA
is. I will start by describing our design rationale, then I will discuss the
strength of the function against known attacks for finding different types
of collisions.

3.0 Cryptographic Hash Functions
After preprocess message, there are some message blocks that include
512(resp.1024) bits.
Let there exist message blocks M(1),M(2),…,M(n). Let f(h,Mi) is
compression function, it is as table 2.6. The operation of the iterated hash
function is as follows. First, an b-bit value h(0)=IV is fixed. Then the
message blocks are hashed in order. There exist f(h(i-1),M(i))=h(i) i =
1,2,...,n. As table 3.1

f f f…

M1 MnM2

IV F(x) f

Mj

…

 Table 3.1 The iterated construction of compression function f

When someone find collisions, he can randomly guess message blocks
except for one block M(j) ,where 0≤j≤n. Then he can calculate out h(j-1)
with function f and message blocks M(1),…,M(j-1) , and he can
backward function f with message blocks M(j+1),…,M(n) to calculate
out h(j). At last he can just find suitable M(j) that mak f(h(j-1),M(j))=h(j)
to complete findding collisions. So I will discuss the security of Dynamic
SHA in one block.

3.1 Properties of iterative part
In the iterative part, there are 48 rounds. In one round, there are functions
G, R, one message word will be mixed.

3.2 Design rationale

The reasons for the first principle: When message is changed, different
rotate right operation maybe done.
From the definition of function R, it is easy to know when the variable is
different, the parameter n in will be different, different rotate
left operation will be done.

)(xROTRn

It can guess the parameter n in . Function R is called 48 times
in Dynamic SHA, and in first round, the message words is not mixed, so
it can just guess the parameter n 48-1=47 times. Then there are

(resp.) 47-tuple (n(1),…,n(i),…,n(47)), where n(i) is
the parameter n of in i-th round.

)(xROTRn

23547 232 = 28247 264 =

)(xROTRn

If someone guess the parameter of function R. There are (resp.)
47-tuple (n(1),…, n(i),…,n(47)). A given 47-tuple define different
calculation, so 47-tuple (n(1),…, n(i),…,n(47)) divide the message space
into (resp.) parts. In different part, the calculation is different.
When message is changed, the 47-tuple (n(1),…, n(i),…,n(47)) maybe
change, different rotate right operation maybe done.

2352 2822

2352 2822

Controlling the differentials is hard in Dynamic SHA:

In Dynamic SHA, it is known that when message is changed, the
calculation will be different. To analyze Dynamic SHA, it need the
unchangeable formulas that represent function R. There are three ways to
analyze Dynamic SHA:

1. Guess the parameters of function R. This way is select a part in the
message value space. And the message space is divided into
(resp.) parts. In different part, the calculation is different. In a
part, the average number of message value is (resp.

). Then the average number of collisions for a hash
value is (resp. , ,), it less than

(resp. , ,). If attacker selects a part, he will

2352
2822

277235512 22 =−

7422821024 22 =−

53224277 22 =− 212 3582 2302
288224512 22 =− 2562 6402 5122

have a calculation. To a calculation, the average number of
collisions for a hash value is 288224512 22 =− (resp. , ,). If
someone develop an algorithm to find collision, then the
probability of find the collision is (resp.

, ,).

2562 6402 5122

23528853 22 −− =
2352− 2822− 2822−

2. Someone can use Algebraic Normal Form (ANF) to represent
Dynamic SHA, but the ANFs that represent function R has up to

(resp.) monomials. If constitute the Arithmetic function
based on ANF, the degree of the Arithmetic function represents
function R is up to 256(resp. 512), and has up to (resp.)
monomials.

2562 5122

2562 5122

3. Someone can constitute Arithmetic functions to represent Dynamic
SHA as in Appendix 2. But the Arithmetic function that represent
function R is complex exponential function with round-off
instruction. After 48 rounds, the Arithmetic function that represent
function R will be very huge.

3.3 Finding Preimages of Dynamic SHA
To a hash function f(·), it need satisfy:

Given hash value H=f(M), it is hard to find message M that meet
H=f(M).

There are two ways to find preimages of a hash function:
1,From the definition of Dynamic SHA it follows that from a given

hash digest it is possible to perform backward iterative steps by
guessing values that represent some relations between working
variables of the message words. For that purpose let us use the
following notation:

- For every iterative round t = 0,1,...,47, variables that are on the left
side of the assignment (equality sign '=') will be denoted by , ,...,
while variables that are on the right side of the assignment will be
denoted by , ,..., .

ta tb th

1−ta 1−tb 1−th

1. Initialize eight variables , ,..., 47a 47b 47h

2.For t=46 to -1

{

1+= taT

1+= tt ba

1+= tt cb

)3)1(),0(,,(4)1(11 ∧+−−= >>+++ tTTCdbaGc tttttt

1+= tt ed

1+= tt fe

1+= tt gf

1+= tt hg

),,,,,,,(1 TgfedcbaRh tttttttt =

}
 Table 3.2. Backward recurrence expressions of Dynamic SHA. Note that the relations

for the variables are given in (2) tC0

With that notation we can write the backward recurrence expressions as it
is done in Table 3.2. Function R1 as table 3.3:
-The initialization of the variables , , , ,

, , , , will be denoted as equations (2):

1
0
−= iHa 1

1
−= iHb 1

2
−= iHc 1

3
−= iHd

1
4
−= iHe 1

5
−= iHf 1

6
−= iHg 1

7
−= iHh

)1(

0
.....

0
0

.....
0
0

.....
0

1547

032

1531

016

1515

00

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

=
=

=
=

=

WC

WC
WC

WC
WC

WC

)2(......
1

71

1
01

⎪
⎩

⎪
⎨

⎧

=

=

−
−

−
−

i

i

Hh

Ha

Dynamic

SHA-224/256

)(
31t2)t2)((t

1)-(2t1)t1)((t2
1)-(2t0)t0)((t1

)))))(((((t0

32

5

1010

1717

TROTRy
SHR

SHR
SHR

gfedcba

t

ttttttt

−=

∧⊕=

∧⊕=

∧⊕=

⊕+⊕+⊕+=

Dynamic

SHA-384/512

)(
63t3)t3)((t

1)-(2t2)t2)((t3
1)-(2t1)t1)((t2
1)-(2t0)t0)((t1

)))))(((((t0

64

6

1212

1818

3636

TROTRy
SHR
SHR
SHR
SHR

gfedcba

t

ttttttt

−=

∧⊕=

∧⊕=

∧⊕=

∧⊕=

⊕+⊕+⊕+=

Table 3.3. functions R1 for Dynamic SHA

Now, we have the equations (1) as a one system of 48 equations with
16 unknown variables. It is a system over GF(2) or over 322 (resp.

642).
The size of space is , The size of space

is , where w is bit-length of , . The number of
the mwssage value that has same hash value is . he
probability of there is solution for equation (1) is .

470 0,...,0 CC w×482
150 ,...,WW

w×162
470 0,...,0 CC 150 ,...,WW

www ××−× = 8816 22
www ×−×−× = 40488 22

In first sixteen rounds, all message words are guessed. And there still are
32 words that had not been guessed. Backwarding iterative
steps by guessing values is not better than random guessing in Dynamic
SHA.

310 0,...,0 CC

2, The probability of random guess of finding preimages is (resp.
, ,).

2242−

2562− 3842− 5122−

3.4 Finding Second Preimages of Dynamic SHA
To a hash function f(·), it need satisfy:

Given M, it is hard to find M’≠ M s.t. f(M) = f(M’).

There are five ways to find second preimages of a hash function:
1, Get hash value H=f(M) of message M, and find different message

M’≠ M that has hash value H= f(M’). In section 3.3, it is known
that it is hard to calculate out the message M’ from given hash value
H.

2, Given M, and find out the relationship between the difference △M
and the difference △H=f(M+△M)-f(M). And find out △M≠0 that
make △H=0. To do this, someone will set up some system of
equations obtained from the definition of the hash function, then
trace forward and backward some initial bit differences that will
result in fine tuning and annulling of those differences and finally
obtain Second Preimages. It need know the unchangeable formulas
that represent hash function f. In Dynamic SHA, when message is
changed, the calculation maybe different. To get unchangeable
formulas that represent hash function f, it need get ANFs for
Dynamic SHA. And the ANFs for function R have up to (resp.

) monomials.

2562
5122

3. To get unchangeable formulas that represent hash function f. It can
constitute Arithmetic functions to represent Dynamic SHA. And the
Arithmetic functions that represent function R is exponential
function with round-off instruction. Or someone had to constitute
high degree Arithmetic function to represent function R. And the
degree of the Arithmetic function is up to 256-degree(resp.
512-degree), and have up to (resp.) monomials. 2562 5122

4. Guess the parameters of function R. This way is select a part in the
message value space. And the message space is divided into
(resp.) parts. In different part, the calculation is different. In a
part, the average number of message value is (resp.

). Then the average number of collisions for a hash
value is (resp. , ,), it less than

(resp. , ,). If attacker selects a part, he will
have a calculation. To a calculation, the average number of
collisions for a hash value is

2352
2822

277235512 22 =−

7422821024 22 =−

53224277 22 =− 212 3582 2302
288224512 22 =− 2562 6402 5122

288224512 22 =− (resp. , ,). If
someone develop an algorithm to find collision, then the probability
of find the second preimages is (resp.

, ,).

2562 6402 5122

23528853 22 −− =
2352− 2822− 2822−

5. The probability of random guess of finding second preimages is
(resp. , ,). 2242− 2562− 3842− 5122−

3.5 Finding Collisions in Dynamic SHA
To a hash function f(·), it need satisfy:

 It is hard to find different M and M’ s.t. f(M) = f (M’).

There are five ways to find Collisions of a hash function:

1, Fix message M, and find different message M’ that has hash value
H=f(M). then the problem become find Second Preimages of the
hash function.

2. Find out the relationship between the (M, M’) and the difference
△H=f(M)-f(M’). And find out (M,M’) that make △H=0. To do this,
someone will set up some system of equations obtained from the
definition of the hash function, then trace forward and backward
some initial bit differences that will result in fine tuning and
annulling of those differences and finally obtain collisions. It need
know the unchangeable formulas that represent hash function f. In
Dynamic SHA, when message is changed, the calculation maybe
different. To get unchangeable formulas that represent hash function
f, it need get ANFs for Dynamic SHA. And the ANFs for function R
have up to (resp.) monomials. 2562 5122

3. To get unchangeable formulas that represent hash function f. It can
constitute Arithmetic functions to represent Dynamic SHA. And the
Arithmetic functions that represent function R is exponential
function with round-off instruction. Or someone had to constitute
high degree Arithmetic function to represent function R. And the
degree of the Arithmetic function is up to 256-degree(resp.
512-degree), and have up to (resp.) monomials. 2562 5122

4. Guess the parameters of function R. This way is select a part in the
message value space. And the message space is divided into
(resp.) parts. In different part, the calculation is different. In a
part, the average number of message value is (resp.

). Then the average number of collisions for a hash
value is (resp. , ,), it less than

(resp. , ,). If attacker selects a part, he will
have a calculation. To a calculation, the average number of

2352
2822

277235512 22 =−

7422821024 22 =−

53224277 22 =− 212 3582 2302
288224512 22 =− 2562 6402 5122

collisions for a hash value is 288224512 22 =− (resp. , ,). If
someone develop an algorithm to find collision, then the probability
of find the collision is

2562 6402 5122

23528853 22 −− = (resp. , ,). 2352− 2822− 2822−

5. The attack base on the birthday paradox. the workload for birthday
attack is of O() (resp. O() O() O()). 1122 1282 1922 2562

3.6 Finding collisions in the reduced compression function of
Dynamic SHA
If the bits in message are mixed one time, the system will be weak,
someone can backward Dynamic SHA as table 3.2 show.

If there are more than 32 rounds, the bits in message are mixed at least
twice, if attacker backward Dynamic SHA as table 3.2 show, he will have
a system of 32 equation with 16 unknown variables, The probability of
there is solution for the system is (resp.). And the message
space is divided into (resp.) parts, in a part, there are
(resp.) message values. The average number of collisions is
(resp. , ,). To a calculation, The average number of collisions
is (resp. , ,). If an algorithm is developed to find
collision for a calculation, then the probability of find the collision is

(resp. , ,).

5122− 10242−

1552 1862 3572
8382 1332
1012 4542 3262

2882 2562 6402 5122

1552− 1552− 1862− 1862−

4 Improvements
There are some improvements for Dynamic SHA:

1. To reduce the times that message bits mixed, the message words are
mixed three times. To get higher security, it can increase the number of
message words mixed times. It will increase the times that message bits
are mixed.

2. Function G can be design as data-dependent function. And it will
increase system calculation and the number of the parts that message
value space had been divided.

An examlep as follow:

The new function G operates on three words x1,x2, x3,
produces a word y as output. function G include two function.

And function G1 operates on two words x1,x2 and produce an
integer t. function G1 as follow:

Dynamic

SHA-224/256

3t2)t2)((t
t2t2)(t3
t1t1)(t2
t0t0)(t1

2x1t0

2

4

8

16

∧⊕=

⊕=

⊕=

⊕=

+=

SHR
SHR
SHR
SHR

x

Dynamic

SHA-384/512

3t4)t4)((t
t3t3)(t4
t2t2)(t3
t1t1)(t2
t0t0)(t1

2x1t0

2

4

8

16

32

∧⊕=

⊕=

⊕=

⊕=

⊕=

+=

SHR
SHR
SHR
SHR
SHR

x

Table 4.1. Function G1 for Dynamic SHA

Function G2 operates on three words x1,x2, x3 and an integer t
that produced in function G1, function G2 as follow:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

¬∧∨⊕∨¬
⊕∧∨∨¬

⊕∧
⊕⊕

==

)x3(x1)))32(1((
x3))x2((x1))31((

3)21(
321

)3,2,1(

xxx
xx

xxx
xxx

xxxGy t

3
2
1
0

=
=
=
=

t
t
t
t

Table 4.2 function G2 for Dynamic SHA

The ANFs and Arithmetic functions that represent message
expansion has up to monomials. The degree of Arithmetic
functions that represent message expansion is up to 65(resp.129), and has
up to monomials.

)2.(2 12965 resp

)2.(2 12965 resp

3. In Keyed Hash function, the initial hash value is random variable to
attacker. If Dynamic SHA is used in Keyed Hash function, by theorem 3,
it is easy know that the probability of hash value is (resp.

).

2242−

2562− 3842− 5122−

There are some ways that we can adopt to get random initial hash
value, for example: cIVIV ii += −1 , is i-th initial hash value, c is
constant and c is odd number. To do this, it need new communication

iIV

protocol.

4. If some algorithms that based on Arithmetic functions are developed to
break Dynamic SHA. The message expansions will increase the degree of
the Arithmetic function that represents Dynamic SHA. If the message
expansions is data depend function, the degree of the Arithmetic function
that represents the message expansions maybe be up to 512(resp.1024). It
will increase the ability that resists differential analysis

The message expansion maybe makes some hash values have more
probability than other hash value. With improvement 3, all hash value
will have same probability.

An examlep as follow:
Use a data-depend function as message expansion and the iterative

part include 64 rounds. The message expansion and the fourth iterative
part as follow:

Dynamic

SHA-224/256

15i0w

)(2t

15i8(15)1)()(p
7i0(15)0)()(p

16)15)14x13))12)11)109((((((t1
8x7))6)5)4)3)2x1((((((t0

2)(15

15

0

)8(4

4

≤≤⊕=

=

≤≤∧=

≤≤∧=

+⊕+⊕+⊕+=
+⊕+⊕+⊕+=

⊕+

=

−×

×

∑
tipii

i

i

i

ww

ip

tSHRi
tSHRi

xxxxxxx
xxxxxx

Dynamic

SHA-384/512

15i0w

)(1t

15i0(15)0)()(p
16)15)14x13))12)11)10)9)8

x7))6)5)4)3)2x1((((((((((((((t0

1)(15

15

0

4

≤≤⊕=

=

≤≤∧=

+⊕+⊕+⊕+⊕+
+⊕+⊕+⊕+=

⊕+

=

×

∑
tipii

i

i

ww

ip

tSHRi
xxxxxxxx

xxxxx

Table 4.3. message expansion for Dynamic SHA

150 ≤≤ iwi are message words and 3116 ≤≤ iwi are message
expansion words, and a new constant bbcdcfTT 183 = (resp.

) will be used, and the iterative part as table 4.4. 97667183 edabbcdcfTT =

 The ANFs and Arithmetic functions that represent message
expansion has up to monomials. The degree of
Arithmetic functions that represent message expansion is up to
512(resp.1024).

)2.(2 1024512 resp

2. For t=0 to 63

{),,,,,,,(hgfedcbaRT =

gh =

fg =

ef =

de =

431)3,,,(>>∧ ++∧= tt TTWtcbaGd

bc =

ab =

Ta =

}

Table 4.4 the iterative part for Dynamic SHA

5 Conclusions
Ronald L Rivest[14] had designed RC5, RC5 include data-depend

function, it make it hard to analyse RC5. And William Stallings[15] has
mentioned that data-depend function will make cipher system has good
nonlinear, and composite function of Boolean functions and Arithmetic
functions also make cipher system has good nonlinear. Dynamic SHA
carry out the two suggestions. It make Dynamic SHA is more nonlinear
than SHA-2.

Data-depend function function R divided the message space into
many parts, in different part, the calculation is different.

And based on components from the family SHA-2, I have
introduced the principle in the design of Dynamic SHA: When message is
changed, different rotate right operation maybe done. And I bring in data
depend function R to realize the principle. The principle enabled us to
build a compression function of Dynamic SHA that the iterative part has
48 rounds, it is more robust and resistant against generic multi-block
collision attacks, and it is resistant against generic length extension
attacks.

References
1. E. Biham and R. Chen, “Near-collisions of SHA-0,” Cryptology ePrint

Archive, Report 2004/146, 2004. http://eprint.iacr.org/2004/146
2. B. den Boer, and A. Bosselaers: “An attack on the last two rounds of
MD4”, CRYPTO 1991, LNCS, 576, pp. 194-203, 1992.
3. B. den Boer, and A. Bosselaers: “Collisions for the compression
function of MD5”, EUROCRYPT 1993, LNCS 765, pp. 293-304, 1994.
4. F. Chabaud and A. Joux, “Differential collisions in SHA-0,” Advances
in Cryptology, Crypto98, LNCS, vol.1462, pp.56-71, 1998.
5. H. Dobbertin: “Cryptanalysis of MD4”, J. Cryptology 11, pp. 253-271,
1998.
6. NIST, Secure Hash Signature Standard (SHS) (FIPS PUB 180-2),
United States of American, Federal Information Processing Standard
(FIPS) 180-2, 2002 August 1.
7. NIST Tentative Timeline for the Development of New Hash Functions,
http://csrc.nist.gov/groups/ST/hash/timeline.html
8. S. Vaudenay, “On the need for multipermutations: Cryptanalysis of
MD4 and SAFER”, Fast Software Encryption- FSE95, LNCS 1008, pp.
286–297, 1995.
9. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, “Cryptanalysis of the
Hash Functions MD4 and RIPEMD”, EUROCRYPT 2005, LNCS 3494,
pp. 1–18, 2005.
10. X. Wang and H. Yu , “How to Break MD5 and Other Hash
Functions”, EUROCRYPT 2005, LNCS 3494, pp. 19–35, 2005.
11. X. Wang, H. Yu, Y. L. Yin “Effcient Collision Search Attacks on
SHA-0”, CRYPTO 2005, LNCS 3621, pp. 1–16, 2005.
12. X. Wang, Y. L. Yin, H. Yu, “Collision Search Attacks on SHA-1”,
CRYPTO 2005, LNCS 3621, pp. 17–36, 2005.
13. Gupta and Sarkar “Computing Walsh Transform from the Algebraic
Normal Form of a Boolean Function”
http://citeseer.ist.psu.edu/574240.html
14 Ronald L Rivest “The RC Encryption Algorithm”
 http://people.csail.mit.edu/rivest/Rivest-rc5.pdf
15. William Stallings “Cryptography and Network Security Principles
and Practices, Third Edition”, ISBN 7-5053-9395-2

http://citeseer.ist.psu.edu/574240.html

Appendix 1: Constitute Boolean functions to represent function.
We can use Algebraic Normal Form (ANF) to represent function. Gupta
and Sarkar[13] have studied it.
Let n≥r≥1 be integers and let be a vector valued
Boolean function. The vector valued function can be represented as
an r-tuple of Boolean functions , where

, and the value of equals the
value of the s-th component of . The Boolean functions

 can be expressed in the Algebraic Normal Form (ANF)
as polynomials with n variables of kind

rnF }1,0{}1,0{: →

F

),...,,()()2()1(rFFFF =

),...,2,1}(1,0{}1,0{:)(rsF ns =→),...,,(21
)(

n
s xxxF

),...,,(21 nxxxF

),...,,(21
)(

n
s xxxF

nxxx ,...,, 21 ⊕⊕⊕⊕ nnxaxaa ...110
, where nnnnnn xxxaxxaxxa ,...,,...... 21,...,2,11,1212,1 ⊕⊕⊕⊕⊕ −− }1,0{∈λa . Each ANF has

up to monomials, depending of the values of the coefficients . n2 λa

Function R
Function R operates on eight words x1, x2, x3, x4, x5, x6, x7 and x8 and
produces a word y as output. So we have , It is easy to
know that one-bit different in words x1, x2, x3, x4, x5, x6, x7 will make
the different rotate right operation be done. So the bit in output maybe
changed. And when one-bit different in word x8, the bit in output maybe
changed. So the ANFs to represent function R has up to monomials,
where w is bit length of the word.

wwR }1,0{}1,0{: 8 →×

w×82

Appendix 2: Constitute Arithmetic functions to represent
function.
Gupta and Sarkar [13] had studied how to use Algebraic Normal Form
(ANF) to represent function. In a similar way, all function will be
represented as polynomials.

In appendix 2, the following operations are used:
1. is absolute value of)(xabs x
2. x is round-off instruction on x
3. “+” is arithmetic addition.
4. “-” is arithmetic subtraction.
5. “×” is arithmetic multiplication.

1. Constitute Arithmetic functions to represent Boolean
function:
In Boolean function, 1 is True, 0 is False.

1. To one bit word. The Boolean function can represented with arithmetic
functions as follow:

operand function
arithmetic
function

x,y yxz ⊕= yxyxz ××−+= 2

x,y yxz ∧= yxz ×=
x,y yxz ∨= yxyxz ×−+=
x xz ¬= xz −=1

Tables B.1 represent Boolean function with arithmetic function
To Boolean polynomial, it can replace every calculation of polynomial
base on table B.1.

2. To n-bit word.
If there are three n-bit words x, y, z. if there exist),(yxfz = where f is
Boolean function that in table B.1.
x, y, z are n-bit words. Let

∑
∑
∑

−

=

−

=

−

=

×=

×=

×=

1

0

1

0

1

0

2

2

2

n

i
i

i

n

i
i

i

n

i
i

i

zz

yy

xx

where is i-th bit of word x, y, z. There exists iii zyx ,,),(iii yxfz = , where
. 10 −≤≤ ni

To Boolean polynomial, it can replace every calculation base on table B.1
for every bit of variables.

3. If function F includes a series functions as follow: 10,..., −tff

⎪
⎩

⎪
⎨

⎧

−=

=
=

− 1),(
...

0),(
),,(

1

0

tkyxf

kyxf
kyxz

t

Then it can represent as follow:

)),(()2
2

22(),,(1

0

)(
)(yxfkyxz i

t

i

ikabs
kiabs ××−= ∑ −

=

−
−

Base on above-mentioned three ways, it can represent Boolean function
with arithmetic functions. And there exists:
Theorem 1. If , there exists . }1,0{∈x 0>= kxxk

Proof.
If x=0, xx kk === 00

If x=1, □ xx kk === 11

2. Constitute Arithmetic functions to represent function with
ANF
Functions can be expressed in the ANF as polynomials
with n variables of kind

rnF }1,0{}1,0{: →

nxxx ,...,, 21 ⊕⊕⊕⊕⊕⊕⊕ −− nnnnnn xxaxxaxaxaa 1,1212,1110
, where . If replace every calculation in the ANF base on

table B.1 and simplified by theorem 1, it can constitute Arithmetic
functions to represent ANF. The Arithmetic functions will be polynomials
with n variables n of kind

nn xxa ...1,...,2,1⊕ }1,0{∈λa

xxx ,...,, 21 nnnnnnnn xxbxxbxbxbb ××++××++×++×+ −− 1,...,2,11,1110 ,
where are integer. The Arithmetic functions have up to
monomials. The degree of Arithmetic functions is up to n. And there

λb
n2

exists , where f is r-bit word. ∑−

=
×=

1

0 21
)(2),...,,(r

i
i

n
s xxxFf

3. Constitute Arithmetic functions to represent SHR operation:
The shift right operation can be represented as follow:)(xSHRk

)0.2(
2

)(k
k xxSHRy ==

4. Constitute Arithmetic functions to represent data-depend
function G:
The function G can be represented as follow:

)1.2())3,2,1(()2
2

22(),3,2,1(3

0

)(
)(xxxGtxxxy ii

itabs
tiabs ××−=∑ =

−
−

By Theorem 1 and table B.1, function can be represented as
follow:

)3,2,1(xxxGi

)2.2(

32)321231322321(

22)321221312311(

12)3212321(

0
2)3214322

312212321(

)3,2,1(

1

0

1

0

1

0

1

0

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=××××−×+××+−−

=××××−×+××+−−

=××××−+×

=
××××+××

−××−××−++

=

∑
∑
∑

∑

−

=

−

=

−

=

−

=

txxxxxxxxx

txxxxxxxxx

txxxxxx

t
xxxxx

xxxxxxx

xxxG

w

i
i

iiiiiiiii

w

i
i

iiiiiiiii

w

i
i

iiiiii

w

i i
iiiii

iiiiiii

t

iii xxx 3,2,1 is i-th bit of x1, x2, x3. In system (2.2), it is known that
 are cubic equations, and has 7, 3, 6, 6 monomials. It is easy to know

that the equation (2.1) is cubic equation. It is hard to represented equation
(2.1) with linear function. And there exists:

iG

c
xdxdxd

yd

iii

=
)3()2()1(

)(3

And c is constant.

5. Constitute Arithmetic functions to represent data-depend
function R:
There are two ways to constitute Arithmetic functions to represent
data-depend function R:

1. Constitute ANFs that represent function R. And replace the Boolean
function base on table B.1. In this way, it will constitute huge Arithmetic
function. The ANFs represents function R has up to (resp.)
monomials. By theorem 1 and the input has 261(resp. 518) bits, so the
degree of the Arithmetic function represents function R is up to 256(resp.
512), and has up to (resp.) monomials. There exiset:

2562 5122

2562 5122

c
xdxdxd

yd

bni

bn

=
−)()....()....(

)(

10

where c is constant, is i-th input bit of function R, bn is bit number of
input, and bn equal 256(resp. 512).

ix

2. At first, there exist rotate right (circular right shift) operation
, where x is n-bit word, and)(xROTRk nk <≤0 . It can represent

 as follow:)(xROTRy k=

)12(
2

2

)3.2(2)2
2

(
2

)(

−×−×=

××−+=

=

−

−

n
k

kn

knk
kk

k

xx

xxx
xROTRy

If function is not data-depend function, the k in
equation (2.3) is constant, and equation (2.3) is linear equation. The
derivative function of linear equation is constant. This means the
difference of function value depend on the difference of input and the
difference of function value dose not depend on the input. In SHA-2, the
ROTR operation is not data-depend function, it can constitute linear
equation to represent the ROTR operation in SHA2.

)(xROTRy k=

If function is data-depend function, the k in equation
(2.3) is variable, and equation (2.3) is exponential function. And equation
(2.3) will be exponential function with round-off instruction. It is hard to
represent exponential function with linear equation. The derivative
function of exponential function is exponential function. This means the
difference of function value depend the difference of input and input.
When the input changes, the different of function value maybe change. In
Dynamic SHA, function R is data-depend function. And if use equation

)(xROTRy k=

(2.3) represents function R, the k is function of working variables a,b,c, d,
e, f, g, and as table B.2, the equation (2.2) will be
complex exponential function. After several rounds, equation (2.3) will
be iteration function with equation (2.3), it will be very huge and
complex, and there exists no mathematical theory that reduces the size of
equation (2.3). It is hard to analyses Dynamic SHA that includes function
R.

),,,,,,,(hgfedcbaKk =

Dynamic

SHA-224/256
31t2)t2)((k

1)-(2t1)t1)((t2
1)-(2t0)t0)((t1

)))))a(((((t0

5

1010

1717

∧⊕=

∧⊕=

∧⊕=

⊕+⊕+⊕+=

SHR
SHR
SHR

gfedcb

Dynamic

SHA-384/512

63t3)t3)((k
1)-(2t2)t2)((t3
1)-(2t1)t1)((t2
1)-(2t0)t0)((t1

)))))a(((((t0

6

1212

1818

3636

∧⊕=

∧⊕=

∧⊕=

∧⊕=

⊕+⊕+⊕+=

SHR
SHR
SHR
SHR

gfedcb

Table B.2. function K for Dynamic SHA

Compare the Arithmetic function that represent SHA2, The Arithmetic
function that represent functions in Dynamic SHA include exponential
function. Or the Arithmetic function that represents functions in Dynamic
SHA has higher degree than the Arithmetic function that represents
functions in SHA2. This make it is harder to analyses Dynamic SHA.

Appendix 3: Function G and Function R.

Let is probability of)(xp x .

Function G
Function G operates on three words x1,x2, x3 and an integer t, produces a
word y as output. t is constant, x1,x2, x3 are w-bit words and .
And function G as follow:

wt <≤0

⎪
⎪
⎩

⎪
⎪
⎨

⎧

¬∧∨⊕∨¬
⊕∧∨∨¬

⊕∧
⊕⊕

==

)x3(x1)))32(1((
x3))x2((x1))31((

3)21(
321

)3,2,1(

xxx
xx

xxx
xxx

xxxGy t

3
2
1
0

=
=
=
=

t
t
t
t

If x1, x2, x3 are random and uncorrelated. There is:

∑ ∑ ∑
∑ ∑ ∑

−

=

−

=

−

=

−

=

−

=

−

=

×××=

×××=
12

01

12

02

12

03 321321

12

01

12

02

12

03 321321

))3,2,1(|()3()2()1()(

)3()2()1())3,2,1(|()(
w w w

w w w

i i i iiiiii

i i i iiiiii

xxxypxpxpxpyp

xpxpxpxxxypyp

To a given y’, there are 2-tuple (x1,x2), there is relation: w×22

⎪
⎪
⎩

⎪
⎪
⎨

⎧

¬∧∨⊕∨¬
⊕∧∨∨¬

⊕∧
⊕⊕

=

)y'(x1)))'2(1((
))y'x2((x1))'1((

')21(
'21

3

yxx
yx

yxx
yxx

x

3
2
1
0

=
=
=
=

t
t
t
t

it can compute the value for x3. x1, x2, x3 are random and uncorrelated
variable, there is

wxpxpxp −=== 2)3()2()1(
Then there is:

wwwww
i i i iiiiii

w w w

xxxypxpxpxpyp −×−−−−

=

−

=

−

=
=×××=×××= ∑ ∑ ∑ 22222))3,2,1(|()3()2()1()(212

01

12

02

12

03 321321
If x1, x2, x3 are random and uncorrelated, function G will produce
random word and . wyp −=2)(

Function R
Function y=R(x1,x2,x3,x4,x5,x6,x7,x8) operates on eight words
x1,x2,x3,x4,x5,x6,x7 and x8, produce a word as output as table 2.3. x1,
x2, x3, x4, x5, x6, x7, x8 are w-bit words. If x1, x2, x3, x4, x5, x6, x7, x8
are random and uncorrelated.

There exists:

∑ ∑ ∑
∑ ∑ ∑

−

=

−

=

−

=

−

=

−

=

−

=

×××=

×××=
12

01

12

02

12

07 7171

12

01

12

02

12

07 7171

))7,...,1(|0(...)7(...)1()0(

)7(...)1())7,...,1(|0(...)0(
w w w

w w w

i i i iiii

i i i iiii

xxtpxpxptp

xpxpxxtptp

To given value t0’, There is 7-tuple (x1’,x2’,x3’,x4’,x5’,x6’,x7’),
There is relation:

w×72

0)6)5)4)3)21(((((7 txxxxxxx ⊕+⊕+⊕+= . it can compute
the value for x7. and x1, x2, x3, x4, x5, x6, x7 are random and
uncorrelated variable. There exists:

w
iiiiiii xpxpxpxpxpxpxp −======= 2)7()6()5()4()3()2()1(7654321

ww
iiiiiii xpxpxpxpxpxpxptp −× =×××××××= 22)7()6()5()4()3()2()1()'0(6
7654321 .

t0 is w-bit word, let t is -bit word, let: t0=() and
t=(), is i-th bit of t0 and t, and there is

w
2log 10 0,...,0 −wtt

1log0
2

,...,
−wtt ii tt ,0

Dynamic
SHA-224/256

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕=

31262114944

30252013833

29241912722

1628231811611

1527221710500

000000
000000
000000

0000000
0000000

ttttttt
ttttttt
ttttttt

tttttttt
tttttttt

Dynamic
SHA-384/512

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

59534741352923171155

58524640342822161044

635751453933272115933

625650443832262014822

615549433731251913711

605448423630241812600

0000000000
0000000000

00000000000
00000000000

00000000000
00000000000

ttttttttttt
ttttttttttt

tttttttttttt
tttttttttttt

tttttttttttt
tttttttttttt

And there is relation:

Dynamic
SHA-224/256

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕=

31262114944

30252013833

29241912722

1628231811611

1527221710500

000000
000000
000000

0000000
0000000

ttttttt
ttttttt
ttttttt

tttttttt
tttttttt

Dynamic
SHA-384/512

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

59534741352923171155

58524640342822161044

635751453933272115933

625650443832262014822

615549433731251913711

605448423630241812600

0000000000
0000000000

00000000000
00000000000

00000000000
00000000000

ttttttttttt
ttttttttttt

tttttttttttt
tttttttttttt

tttttttttttt
tttttttttttt

To a given t’=(), there is

. To a given

(), it can compute the for (). And

there is

tuplelog
w

2 − 1log0
2

',...,'
−wtt ww 2log2 −

)t0,...,tuple(t0)log(1-wlog2
2

w
ww −− tuplew w −−)log(2

1log
'0,...,'0

2
−wtt w

tuplelog
w

2 −
1log0

2
0,...,0

−wtt

=×=∑ −

=

12

0
)0())(0|'()'(

w

i
tpittptp 1logloglog 222 222)0(2 −−−−− ==×=× wtp

www www .

x1, x2, x3, x4, x5, x6, x7, x8 are random and uncorrelated words, and t is
produced from x1, x2, x3, x4, x5, x6, x7. To , there is
relation . To a given value y’, there are w value t, to a
given t’, it can compute the value for x8. And there is:

)8(xROTRy t=

)(8 yROTRx tw−=

www

i i iiii wwxptpxtypyp
w

−−−−

=

−

=
=××=××= ∑ ∑ 22)8()())8,(|()(11

0

12

08 88

If x1, x2, x3, x4, x5, x6, x7, x8 are random and uncorrelated words,
function R will produce random word and . wyp −=2)(

In function R, one bit difference in x1, x2, x3, x4, x5, x6, x7, different
ROTR will be done, this will make every bit in x8 maybe changed.

Appendix 4: Some thing about Dynamic SHA
1. Why Dynamic SHA use function G and function R
As mentioned at appendix 3, if the variables are random word, function G
and R will produced random word.

Function G operates on three words, produces a word as output.
What function G does is produce confusion word.

Function R operates on eight words, produces a word as output. What
function R do is confuse the place of bit.

The reason that Dynamic SHA use function G and function R is:
1. To get better property of spreading, Dynamic SHA use function G

and R.
2. With function G, function R makes it hard to find out the

relationship between message change and bit place change. If
function G is data-depend function, function G and R will make it
hard to find out the relationship between message value and what
logical function is called and where the bit is placed. And it is
hard to analyze data-depend function with differential analysis. It
needs construction Arithmetic function to describe function, the
degree of the Arithmetic function is up to 256(resp. 512). Or
construction exponential function to describe function R. And the
ANFs that describe function R has up to (resp.)
monomials.

2562 5122

2. Why there are 48 rounds in Dynamic SHA

The reason that there are 48 rounds in Dynamic SHA is as follow:
1. It is easy to know mix message words too many times will reduce

the randomness of variable of function G and R. So the message bits are
mixed no many times in Dynamic SHA.

2. It is easy to backward function R and G, so it must repeatedly mix
message words. When someone backward iterative steps by guessing
message word, then he will has one system include equations like (1), the
system has 48 equations with 16 unknown variables.

So message words will be mixed three times in Dynamic SHA, and
in one round, one message word will be mixed. So there are 48 rounds in

Dynamic SHA.

3. Why there is no message expansion part in Dynamic SHA
Mixing message words many times will reduce the randomness of

variable of function G and R. and the degree of Arithmetic function that
describe function R is up to 256(resp.512), and there are up to (resp.

) monomials in the Arithmetic function. It is enough now.

2562
5122

4. It is hard to analyses Dynamic SHA

Dynamic SHA include function R. To analyses Dynamic SHA, it
need unchangeable representation of function R. As mentioned in
Appendix 1 and Appendix 2, the ANFs that describe function R has up to

,(resp.) monomials, and the Arithmetic functions that describe
function R is exponential function with round-off instruction like
equation (2.3) or arithmetic function that the degree is up to 256 (resp.
512).

1602 3202

5. Avalanche of Dynamic SHA.
From the definition of function R, it is enough to known that all bits in
working variables a,b,c,d,e,f,g will affect all bits in temporary words T.

After 16 rounds, all message bits are mixed. There are 32 rounds
after all message bits are mixed. And after call function R 9 times, all bits
in working variables that before 17-th round will affect all bits in
working variables after 26-th round. Some bits in message will not affect
all bits in last hash value. So all message bits will affect all bits in last
hash value.

Appendix 5: Spreading of Dynamic SHA
Let:

1. hv(i)=(a(i), b(i), c(i), d(i),e(i), f(i), g(i), h(i)). Where a(i), b(i), c(i),
d(i),e(i), f(i), g(i), h(i) are working variables at i-th round.

2.MW1=(W(0),W(1),W(2),W(3),W(4),W(5),W(6),W(7)),
MW2=(W(8),W(9),W(10),W(11),W(12),W(13),W(14),W(15))
W(j) is the message word.

3. i51hv(i)MW2)(MW1,H i ≤= .

Divide the iterative part into some parts, and a part includes 8 rounds.
The iterative part will be as table E.1. hv(-1) is initiation of eight working
variables

MW2

MW2
MW2

MW1 MW1
hv(-1) hv(7) hv(15) hv(23)

hv(31) hv(39) hv(47)
MW1

Table E.1. Iterative part of Dynamic SHA

And there is:

hv(47)MW2)(MW1,H
hv(39)MW2)(MW1,H
hv(31)MW2)(MW1,H
hv(23)MW2)(MW1,H
hv(15)MW2)(MW1,H

47

39

31

23

15

=
=
=
=
=

At first there are two theorems:

Theorem 2. Let:
1. hv(i)=(a(i), b(i), c(i), d(i),e(i), f(i), g(i), h(i)). Where a(i),

b(i), c(i), d(i),e(i), f(i), g(i), h(i) are working variables at
i-th round. working variables are b-bit word.

2.MW=(W(i),W(i+1),W(i+2),W(i+3),W(i+4),W(i+5),W(i+6),
W(i+7)), where W(j) is the word mixed in j-th round.

3. H(hv(i-1),MW)=hv(i+7)
hv(i), MW are random and uncorrelated.

Then there are:
(1),p(hv(i+7))=

b×−82

(2),p(hv(i+7)|MW)=
b×−82

(3),p(hv(i+7)| hv(i-1))=
b×−82

Proof.

(1),(2)
Before i-th round, we have (hv(i-1),MW), after 8 rounds, MW is

mixed, then we have hv(i+7), so we have . bbH ×× → 816 }1,0{}1,0{:
There are MW. To given MW’, there is

 and :

b×82
7)hv(i1))-(hv(i' +=MWH bb

MWH ×× → 88
' }1,0{}1,0{:

To given hv(i-1)’, there is relation ,
it can compute the value for hv(i+7).

7)hv(i)1)'-(hv(i' +=MWH

To given hv(i+7)’, it is easy to backward iterative steps as table 3.2
show. Then there is relation 1)-hv(i7))(hv(i'' =+MWH , it can
compute the value for hv(i).

hv(i), MW are random and uncorrelated, there is
, . So there is:

bihvp ×−=− 82))1((bMWp ×−= 82)(

bbbb
i i i

i i ii

ihvp

iMWihvihvpMWpihvpihvp

iMWpihvpiMWihvihvpihvp
b b

b b

×−××−×−

−

=

−

=

−

=

−

=

=××=+

−+××−=+

×−×−+=+

∑ ∑
∑ ∑

8888

12
01

12
02 1

12
01

12
02 11

2222))7((

)))2(,)1((|)7(()())1(())7((

))2(())1(()))2(,)1((|)7(())7((

bb
i ii

b

ihvpihvMWihvpMWihvp ×−×−−

=
==−×−+=+ ∑ 8812

01 11 22))1(())1(|)|)7((()|)7((

(3)
To given hv(i-1)’:
To a given hv(i+7)’, it is easy to backward iterative steps as table 3.2

show. We will have a system of 8 equations with 8 unknown variables. It
is easy to compute the value for MW.

To a given MW’, it is easy to compute the value hv(i+7).
MW are random, there exist bMWp ×−= 82)(
So there exist:

bb
i

b

iMWpiMWihvihvpihvihvp
×−×−

−

=

==

×−+=−+ ∑
88

12

01

22

))1(())1(|))1(|)7((())1(|)7((

 □

By theorem 2, it is easy to know that:

In 8 round, to a given hv(i-1)’, mix different message words MW,
the hv(i+7) will be different.

In 8 round, mix given message words MW’, if the hv(i-1) is
different, the hv(i+7) will be different.

The relationship is as Table E.2, jihv)1(− is j-th value in hv(i-1) space.

 is j-th value in hv(i+7) space. is j-th value in MW space. jihv)7(+ jMW

)(jklastMW

)12(8 −×bklast
MW

)0(klastMW

)12(8 −×bkjMW

)(jkjMW

)0(kjMW

)12(0 8 −×bkMW

0)1(−ihv

….. …..

….. …..

jihv)1(−

128)1(
−×− bihv

0)7(+ihv

jihv)7(+

128)7(
−×+ bihv

)0(0kMW

)(0 jkMW

Table E.2 relationship between hv(i-1), hv(i+7), MW

Theorem 3. In Dynamic SHA, there exist:
(1) p(hv(j))= b×−82
(2),p(hv(j)|MW1)=

b×−82
(3),p(hv(j)|MW2)=

b×−82
,......2,1,0815 =×+= kkj

Proof.
hv(-1), MW1 and MW2 are random and uncorrelated, so there exist:

p(hv(-1)) = b×−82
p(MW1) = b×−82
p(MW2) = . b×−82

To simplification, Let F(hv(i-8),MW)=hv(i), MW is mixed words MW1
or MW2.

To a given hv(i)’ ,......2,1,0815 =×+= kki , there are
2-tuple(MW1,MW2).

b×162

To a given 2-tuple(hv(i)’,MW1’), there are MW2. To a given
2-tuple (hv(i)’,MW2’), there are MW1.

b×82
b×82

To a given 3-tuple(hv(i)’,MW1’,MW2’), It is easy to backward
iterative steps, and it is easy to compute the value for hv(-1), and the
hv(-1) make hv(i)')MW2',MW1'(hv(-1),H i = .

So there exist:

bbbb
i i ii

i i iiii

bbbb
i i ii

i i iiii

bbbbbb
i i i iii

i i i iiiiii

MWihvp

MWhvMWihvpMWhvpMWihvp

MWhvpMWhvMWihvpMWihvp

MWihvp

MWhvMWihvpMWhvpMWihvp

MWhvpMWhvMWihvpMWihvp

ihvp

MWMWhvihvpMWMWhvpihvp

MWMWhvpMWMWhvihvpihvp

b b

b b

b b

b b

b b b

b b b

×−××−×−

−

=

−

=

−

=

−

=

×−××−×−

−

=

−

=

−

=

−

=

×−×××−×−×−

−

=

−

=

−

=

−

=

−

=

−

=

=××=

−×−=

−×−=

=××=

−×−=

−×−=

=××××=

−×−=

−×−=

∑ ∑
∑ ∑

∑ ∑
∑ ∑

∑ ∑ ∑
∑ ∑ ∑

8888

12
00

12
01 10

12
00

12
01 1010

8888

12
00

12
01 10

12
00

12
01 1010

888888

12
00

12
01

12
02 210

12
00

12
01

12
02 210210

2222)2|)((

))1,)1((|)2|)((()1),1(()2|)((

)1,)1(())1,)1((|)2|)((()2|)((

2222)1|)((

))2,)1((|)1|)((()2),1(()1|)((

)2,)1(())2,)1((|)1|)((()1|)((

222222))((

))2,1,)1((|)(()2,1),1(())((

)2,1,)1(())2,1,)1((|)(())((

 □

Theorem 4. In Dynamic SHA, to a given hv(-1), there exist:

(1) p(hv(23)| hv(-1))= b×−82

Proof. To simplification, Let F(hv(i-8),MW)=hv(i), MW is mixed
words MW1 or MW2.

To a given 2-tuple (hv(23)’,hv(-1)’), there are MW1. b×82
To a given 2-tuple (hv(23)’, MW1’), by theorem 2, there is p(hv(23)|

MW1) = , so to a given 2-tuple(hv(23)’, MW1’), there is

 hv(15) that make F(hv(15),MW1’)= hv(23)’.

b×−82
122 88 =× ××− bb

To a given 2-tuple (hv(-1)’, MW1’), from the definition of iterative
steps, it is enough to know that there is a hv(7) that make
F(hv(-1)’,MW1’)= hv(7).

To a given 2-tuple (hv(7)’, hv(15)’), by theorem 2, there is p(hv(15)|
hv(7)) = , so to a given 2-tuple(hv(7)’, hv(15)’), there is

 MW2 that make F(hv(7)’, MW2) = hv(15)’ .

b×−82
122 88 =× ××− bb

So there exist:

bbbb
i i ii

i i iiii

hvhvp

MWMWhvhvpMWMWphvhvp

MWMWpMWMWhvhvphvhvp
b b

b b

×−××−×−

−

=

−

=

−

=

−

=

=××=−

−×=−

×−=−

∑ ∑
∑ ∑

8888

12

00

12

01 10

12

00

12

01 1010

2222))1(|)23((

))2,1(|))1(|)23((()2,1())1(|)23((

)2,1())2,1(|))1(|)23((())1(|)23((

 □

By theorem 3 and 4, it is enough to know that:
1. When hv(-1) is random variable, the probability of hash

value is . b×−82
2. To a given hv(-1), the probability of different hash value

maybe different.

After 23-th round, the message has been mixed, the mixed message

words and working variables value are not uncorrelated, it is hard to
analyze the probability of hash value. To get better property of spreading,
Dynamic SHA adopts ways as follow:

1. Function G and R are used in Dynamic SHA. When the variables of
function G, R are random and uncorrelated, function G, R will
produce random value.

