
Efficient GF (3m) Multiplication Algorithm
for ηT Pairing

Gen Takahashi, Fumitaka Hoshino, Tetsutaro Kobayashi

Information Sharing Platform Laboratories NTT
3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan

{takahashi.gen, hoshino.fumitaka,kobayashi.tetsutaro}@lab.ntt.co.jp

Abstract. The computation speed of pairing based cryptosystems is
slow compared with the other public key cryptosystems even though
several efficient computation algorithms have been proposed. Thus more
efficient computation of the Tate pairing is an important research goal.
GF (3m) multiplication in GF (36m) in the pairing algorithm is the great-
est consumer of time. Past research concentrated on reducing the number
of GF (3m) multiplications, for instance the Karatsuba method. In this
article, we propose a new method to reduce the number of online pre-
computations(precomputations) in GF (3m) multiplications for the ηT
pairing. The proposed algorithm reduces 18 online precomputations in
GF (36m) in the ηT pairing to 4 online precomputations by reusing the in-
termediate products obtained in precomputation. We implement the pro-
posed algorithm and compare the time taken by the proposed algorithm
with that of the previous work. Our algorithm offers a 40% performance
increase for GF (3m) multiplications in GF (36m) on an AMD 64-bit pro-
cessor. Additionally, a completely new finding is obtained. The results
show that the reducing the number of the multiplications in GF (36m)
does not necessarily lead to a speed-up of the ηT pairing calculation.

1 Introduction

A lot of cryptosystems based on pairing have been proposed recently such
as ID-Based cryptosystems[1] and short signatures[2]. The pairing algo-
rithm is composed of the miller’s algorithm and final exponentiation[3].
Recently, Duursma-Lee[7] introduced a method of computing the miller’s
algorithm on the elliptic curve defined over GF (3m). The ηT pairing,
which reduces the number of the loops in the miller’s algorithm, was pro-
posed by Barreto et al[8]. Shirase et al. presented a more efficient variation
of final exponentiation[9]. Kawahara et al. introduced an algorithm that
efficiently uses registers and implemented the ηT pairing on an AMD
64-bit processor in 2007; the computation timing is 412.88 microseconds
(µs)[15]. The computation speed of pairing based cryptosystems is slow
compared with the other public key cryptosystems even though several
efficient computation algorithms have been proposed.

The computation time of the modified miller’s algorithm is three times
that of final exponentiation in these studies. Algorithm 1 summarizes the
ηT pairing algorithm using the tower fields proposed by Barreto et al. The
modified miller’s algorithm requires computations in GF (36m), denoted
fg, cubings, and cube rootings. Cubing and cube rooting are implemented
using frobenius maps. Computations in GF (36m) implemented using the
tower of extensions[5] require 18 GF (3m) multiplications according to the
Schoolbook method. Computations in GF (36m) are dominant in the ηT
pairing with regard to computation time because computation of frobe-
nius maps only requires memory operations and reduction. Thus, speeding
up the computations in GF (36m) is important for the efficient computa-
tion of the ηT pairing.

algorithm 1 Computation of ηT Pairing on E(GF (3m)):
y2 = x3 − x− 1, m±mod12

INPUT: P = (xp, yp), Q = (xq, yq) ∈ E(GF (3m))
OUTPUT: ηTParing(P, Q) ∈ GF (36m)

1. yp ← −yp

2. f ← −yp(xp + xq + 1) + yqσ + ypρ
3. for i ← 0 to (m− 1)/2 do
4. u ← xp + xq + 1
5. g ← −u2 + ypyqσ − uρ− ρ2

6. f ← fg (GF (36m) multiplication)

7. yp ← y
1/3
p , yq ← y

1/3
q

8. xq ← x3
q, yq ← y3

q

9. end for

10. return f (33m−1)(3m+1)(3m−3(m+1)/2+1)

Regarding the speeding up of a computation, several methods that
reduce the number of multiplications have been proposed, for intance the
Karatsuba[4] method shown in Section 2 other than the above method.
This article proposes an efficient multiplication algorithm and scheduling
in GF (36m) for ηT pairing. A multiplication is composed of an online pre-
computation(precomputation) and a multiplication of polynomials. One
multiplication of GF (3m) in GF (36m) in the ηT pairing requires one
online precomputation(precomputation) and one multiplication of poly-
nomials. The precomputed intermediate products are obtained from the
multiplier of GF (3m). In subsequent multiplications, if the multiplier is
the same, the intermediate products can be reused. The proposed al-
gorithm reduces the precomputations in GF (36m) in the ηT pairing by

reusing intermediate products. As a result, 18 precomputations reduce to
4 precomputations in the ηT pairing. We implement the proposed algo-
rithm on a 64-bit processor and compare the time taken by the proposed
algorithm with that of previous work. Our algorithm shortens the com-
putation time of GF (3m) multiplications in GF (36m) in the ηT pairing
by 40 %.

In Section 2 we show the ηT pairing algorithm and previous multipli-
cation scheduling approach for the ηT pairing. Second, we describe our
idea of reusing intermediate products and the result of implementation in
Sections 3 and 4. Section 5 provides the reader with a comparison against
previous results.

2 Previous Multiplication Algorithms for ηT the Pairing
Calculation

In this section, we decribe 3 GF (3m) multiplication scheduling approaches
that use the tower of extensions for reducing the number of GF (3m)
multiplications in GF (36m); first the Schoolbook method, second the 2
Karatsuba methods. The number of GF (3m) multiplications is smaller
with the Karatsuba methods than with the Schoolbook method.

Calculations in GF (36m) are implemented using the tower of ex-
tensions. In the tower of extensions, GF (3m) extends to GF (33m) and
GF (33m) extends to GF (36m). Let A0, A1, B0, B1, C0, C1be ∈ GF (33m)
in Algorithm 1; the symbol fg indicates C0 +C1σ+C1σ

2 = (A0 +A1σ)×
(B0 + B1σ).

Let a0, a1, a2, b0, b1, b2, u, yp, yq be elemenents in GF (3m). The
values of A0, A1, B0, and B1 in the ηT pairing algorithm are indicated
in Table 1

A0 a0 + a1ρ + a2ρ
2

A1 b0 + b1ρ + b2ρ
2

B0 −u2 − uρ− ρ2

B1 ypyq

Table 1. A0, A1, B0, B1

The products in GF (36m), for instance C0 +C1σ+C1σ
2, are obtained

by multiplications in GF (33m) using the Schoolbook method or the Karat-
suba method. The products in GF (33m) are obtained by GF (3m) multi-
plications also using the Schoolbook method or the Karatsuba method.

The number of multiplications in GF (3m) in GF (36m) depends on the
multiplication method. This paragraph describes the schedule of multi-
plication and the number of multiplications in the ηT pairing.

– Schoolbook Multiplication
In the Schoolbook method, multiplications in GF (36m) consist of
A0B0, A0B1, A1B0, A1B1 multiplications in GF (33m) as shown in
Table 2.

C0 A0B0

C1 A0B1 + A1B0

C2 A1B1

Table 2. Products of Multiplication by Schoolbook method

Let the product, which is reduced by an irreducible polynomial −1−
ρ−ρ3, in GF (33m) be c0 +c1ρ+c2ρ

2, c0, c1, c2 ∈ GF (3m). c0, c1, c2 are
indicated in Table 3．In the ηT pairing, the above calculations are
performed and u2, ypyq is calculated. Therefore, the GF (3m) multipli-
cation in GF (36m) is calculated 18 times in the Schoolbook method.

in GF (33m) in GF (3m)

A0B0

c0 = −(a0u
2 + a1 + a2u)

c1 = −(a0u + a1u
2 + a1 + a2u + a2)

c2 = −(a0 + (a2u + a1)u + a2)

A0B1

c0 = a0ypyq

c1 = a1ypyq

c2 = a2ypyq

A1B0

c0 = −(b0u
2 + a1 + a2u)

c1 = −(b0u + b1u
2 + b1 + b2u + b2)

c2 = −(b0 + (b2u + b1)u + b2)

A1B1

c0 = b0ypyq

c1 = b1ypyq

c2 = b2ypyq

Table 3. Multiplications by Schoolbook method

– Karatsuba Multiplication 1
In the Karatsuba method described in [11](Karatsuba multiplication
1), multiplication in GF (36m) consists of A0B0, (A0 + A1)(B0 + B1),
A1B1 multiplications in GF (33m) as shown in Table 4. Let the product
in GF (33m) be c0 +c1ρ+c2ρ

2 +c3ρ
3 +c4ρ

4, c0, c1, c2, c3, c4 ∈ GF (3m).

c0, c1, c2, c3, c4 as indicated in Table 5．Therefore, the GF (3m) multi-
plication in GF (36m) is calculated 17 times in the Karatsuba method
1.

C0 A0B0

C1 (A0 + A1)(B0 + B1)− C0 − C2

C2 A1B1

Table 4. Product of Multiplication by Karatsuba

in GF (33m) in GF (3m)

A0B0

c0 = −(a0u)u
c1 = −(a0u)u− (a1u)u + a1u

c2 = −(a2u)u− a1u− a0

c3 = −a2u− a1

c4 = −a2

(A0 + A1)(B0 + B1)

c0 = (a0 + b0)(−u2 + ypyq)
c1 = (a1 + b1)(−u2 + ypyq)− a0u− b0u

c2 = −a1u− b1u− (a2 + b2)(−u2 + ypyq)− a0 − b0

c3 = −a2u− b2u− a1 − b1

c4 = −a2 − b2

A1B1

c0 = b0ypyq

c1 = b1ypyq

c2 = b2ypyq

Table 5. Multiplications by Karatsuba 1

– Karatsuba Multiplication 2
In the general Karatsuba method (Karatsuba multiplication 2), mul-
tiplications in GF (36m) consist of A0B0, (A0 + A1)(B0 + B1), A1B1

multiplications in GF (33m) as shown as Table 6. Let the product in
GF (33m) be c0 + c1ρ + c2ρ

2 + c3ρ
3 + c4ρ

4, c0, c1, c2, c3, c4 ∈ GF (3m).
c0, c1, c2, c3, c4 as indicated in Table 6．Therefore, the GF (3m) multi-
plication in GF (36m) is calculated 15 times in the Karatsuba method
2

3 Reuse of Intermediate Products

In this section we describe our key idea and the proposed algorithm.

in GF (33m) in GF (3m)

A0B0

c0 = −a0u
2

c1 = (a0 + a1)(−u2 − u)− c0 + a1u
c2 = (a0 + a1 + a2)(−u2 − u− 1)− c0 − c1 − c3 − c4

c3 = (a1 + a2)(−u− 1) + a1u + a2

c4 = −a2

(A0 + A1)(B0 + B1)

c0 = (a0 + b0)(−u2 + ypyq)
c1 = (a0 + b0 + a1 + b1)(−u2 + ypyq − u)− c0 + (a1 + b1)u

c2 = (a0 + b0 + a1 + b1 + a2 + b2)(−u2 + ypyq − u− 1)
−c0 − c1 − c3 − c4

c3 = (a1 + b1 + a2 + b2)(−u− 1) + (a1 + b1)u + a2 + b2

c4 = −a2 − b2

A1B1

c0 = b0ypyq

c1 = b1ypyq

c2 = b2ypyq

Table 6. Multiplications by Karatsuba 2

Key Idea

The Shift-Addition method using the windowing algorithm[10], which
is appropriate for software implementation of GF (3m) multiplication, is
composed of precomputation and multiplication of polynomials as shown
in Fig. 1.

Let k be window size. In precomputation, intermediate products are
obtained by multiplying all the polynomials of degree of at most k− 1 by
the multiplier and storing them in a table. In multiplication of polynomi-
als, the algorithm scans k coefficients at a time and accesses intermediate
products by table lookup. The intermediate products, accessed by table
lookup, are shifted and summed up in accumulator registers. The number
of scanning and summing up operations is dm/ke.

Past research concentrated on reducing the number of multiplications
as shown in Section 2 and the speed-up of multiplication such as the
Shift-Addition multiplication approach.

The proposed method reduces the number of precomputations in
GF (3m) multiplications for ηT pairing by reusing intermediate products.
Intermediate products accessed for the multiplication of polynomials are
obtained via the multiplier. In subsequent multiplication, if the multi-
plier is the same, the intermediate products can be reused as shown in
Fig. 2(the reduction step is omitted). For instance, the intermediate prod-
ucts are obtained for multiplier u when u is multiplied by a multiplicand.
In the following multiplication, which uses multiplier u, the intermediate
products obtained from the previous multiplication are reused.

Precomputation
Multiplication

Of
Polynomial

Reduction

Intermediate
products

Multiplier

Multiplicand

Product

Fig. 1. Multiplication of Polynomials

Multiplication Scheduling by Reusing Intermediate Products

As shown in Section 2 , the number of GF (3m) multiplications in GF (36m)
depends on the multiplication method. Furthermore, the number of pre-
computations and multiplications of polynomials differs. Next, we deter-
mine the number of precomputations and multiplications of polynomials
in GF (36m) in the Schoolbook method and the 2 Karatsuba methods.

– Schoolbook Multiplication
Table 7 shows the multiplication scheduling that enables the reuse of
intermediate products. u′, y′q,t′0 and t′1 denote intermediate products.
In this scheduling, the precomputation is done 4 times and the mul-
tiplication of polynomials is done 18 times. The reuse of intermediate
products occurs 14 times. The number of precomputations is reduced
to 4 from 18 by the proposed algorithm.

– Karatsuba Multiplication 1

Table 8 indicates the multiplication scheduling that enables the reuse
of intermediate products. u′, y′q,(−t3 + t4)′ and t5′ denote intermedi-
ate products. In this scheduling, precomputation is done 4 times and
the multiplication of polynomials is done 17 times. The number of
times the intermediate products can be reused is 13. The number of
precomputations is reduced to 4 from 17 by the proposed algorithm.

Precomputation
Multiplication

Of
Polynomial

Multiplication
Of

Polynomial

Multiplication

Multiplication

Intermediate
productsMultiplicand

: b

Product

Product

Multiplier
: a

Multiplicand
: c

Multiplier
: a

Precomputation

Fig. 2. Reuse of Intermediate Products

– Karatsuba Multiplication 2
Table 9 shows the multiplication scheduling that enables the reuse of
intermediate products. u′, t′0,(−t0−u)′ ,y′q,y′q,(−t0+t2)′ and (−t0+t2−
u)′ denote intermediate products. In this scheduling, precomputation
is done 7 times and the multiplication of polynomials is done 15 times.
The number of times the intermediate products can be reused is 8. The
number of precomputations is reduced to 7 from 15 by the proposed
algorithm.

4 Efficient Implementation

In this section, we describe an efficient computation implementation for
the polynomial multiplication in GF (3m). Let k be window size. Let m be
the degree of polynomials. Let w be the word size of the processor. The
precomputation is composed of 3k − 2− (k− 1) times addition and k− 1
times shift operations. The multiplication of polynomials is composed of
bm/kc times addition and shift operations. If the maximum degree of
polynomials is below the word size of the processor, addition is composed
of 7 instructions[12] and a shift operation is composed of 2 shift instruc-
tions. As illustrated in Fig. 3, a good compromise between the speedup
and the number of precomputations is to set k = 3. When using k = 3, the

multiplication intermediate products

1 t0 = uu u′

2 t1 = ypyq y′q(not used)

3 a0t0 t′0
4 t2 = a2u

′

5 a0u
′

6 a1t
′
0

7 (t2 + a1)u
′

8 b0t
′
0

9 t3 = b2u
′

10 b0u
′

11 b1t
′
0

12 (t3 + b1)u
′

13 a0t1 t′1
14 a1t

′
1

15 a2t
′
1

16 b0t
′
1

17 b1t
′
1

18 b2t
′
1

Table 7. Multiplication schedule of Schoolbook method

computing speed of the polynomial multiplication is slow compared with
the precomputation speed. Thus speed-up of polynomial multiplication is
helpful for reducing more efficient ηT pairing computation. We show an
efficient method of computating the multiplication of polynomials in this
section.

Prior Implementation Approach

The coefficients of the polynomials are represented by hi-bit registers and
low-bit registers[12]. The bits that express the coefficients are arranged
in order of either LSB or MSB as illustrated in Fig. 4. Owning to this,
it is necessary to pass the intermediate product between two or more
registers(multi-bit shift operation) in the multiplication of polynomials as
illustrated in Fig. 5. To pass the intermediate product between registers,
a rotate shift instructions or double shift instructions are commonly used.
Rotate shift instructions are not available here because they cannot pass
two bits or more at a time. To pass values between multiple registers,
double shift instructions are used for the above multi-bit shift operation,
however the operation cost of a double shift instruction is higher than
that of a shift instruction[13].

multiplication intermediate products

1 t0 = a0u u′

2 t1 = a1u′

3 t1u
′

4 t2 = a2u
′

5 t2u
′

6 t0u
′

7 t3 = ypyq yq (not used)

8 b0u
′

9 b1u
′

10 b2u
′

11 t4 = uu′

12 (a0 + b0)(−t4 + t3) (−t4 + t3)
′

13 (a1 + b1)(−t4 + t3)
′

14 (a2 + b2)(−t4 + t3)
′

15 b0t3 t′3
16 b1t

′
3

17 b2t
′
3

Table 8. Multiplication Schedule of Karatsuba method

Modified Shift-Addition Multiplication

We propose a new polynomial multiplication strategy that does not use
the above multi-bit shift operation. Let I(x) be an intermediate product
looked up in a table. Let m′ be the degree of the intermediate product. Let
w be the word size of the target processor. The intermediate product I(x)

is divided into I ′(x)ix
i(d m′

dm′/we) e and loaded into the registers as shown in

Fig. 6 where I(x) =
∑dm′/we−1

i=0 I ′(x)ix
i(d m′

dm′/we) e

The intermediate product, accessed by table lookup, is shifted and
summed up in accumulator registers. Modified Shift-Addition multiplica-
tion does not pass the intermediate product between two or more registers
in the shift operation. The value loaded in each register is shifted respec-
tively(respective shift operation). This operation makes two or more val-
ues of the same degree appear in the accumulator registers as illustrated
in Fig 7. To obtain the result, adding the coefficients of the same degree
is required.

Multiplication of polynomials cannot be achieved by just shift instruc-
tions; it requires double shift instructions because the degree of multipli-
cand polynomial is greater than m−d m′

dm′/wee. To compose the polynomial
multiplication of more shift instructions, the multiplicand is divided into
partial multiplicands of degree at most (m−(d m′

dm′/wee)+k−1. The partial

multiplication intermediate products

1 t0 = uu u′

2 a0t0 t′0
3 t1 = −a1u

′

4 (a0 + a1)(−t0 − u) (−t0 − u)′

5 (a1 + a2)u
′

6 (a0 + a1 + a2)(−t0 − u)′

7 t2 = ypyq y′q(not used)

8 (a0 + b0)(−t0 + t2) (−t0 + t2)
′

9 −(a1 + b1)u

10 (a0 + b0 + a1 + b1)(−t0 + t2 − u) (−t0 + t2 − u)′

11 −(a1 + b1 + a2 + b2)u
′

12 (a0 + b0 + a1 + b1 + a2 + b2)(−t0 + t2 − u)′

13 b0t2 t′2
14 b1t

′
2

15 b2t
′
2

Table 9. Multiplication Schedule of Karatsuba method

products obtained by multiplying the partial multiplicands by intermedi-
ate products are summed up and placed in accumulator registers.

Implementation on a 64-bit Processor

We implemented modified Shift-Addition multiplication in GF (397), k =
3 on 64-bit platform in assembly code. We chose Athlon FX 57 which
implements the Intel instruction set. The FX 57 contains 2MB of second
cache and 16 64-bit registers. The FX57 is clocked at 2.8 GHz. Multipli-
cation of polynomials is composed of 3 steps as follows:

– Obtaining Intermediate Products
When k = 3, intermediate products are obtained by multiplying all
trinomials by the multiplier and reducing with irreducible trinomial
x97 + x12 + 2. Though usually the reduction step is done after the
multiplication of polynomials step, by reducing intermediate products,
the number of m − d m′

dm′/wee can be enlarged to m − d m
dm/wee. This

reduces the number of partial products.
By this reduction, the maximum degree of intermediate products is 96.
Let Pi, 0 < i < 27 be intermediate products. Pi is divided into PiLSB+
PiMSBx49. PiLSB and PiMSB are stored in 64-bit registers. Registers
holding PiLSB have 30 empty bits and registers holding PiMSB have
32 empty bits.

�
� �����
�������
� �����
� �����
���������
� � �����
���������
� � �����
� � �����

� � � � 	

��
�����
���� ���

� ��
� � �
��� ��
� �

�� �����! "�����#
$&%�' %�(�*)�" % �
$&%�' %�(�*)�" %+�

Fig. 3. Instructions of GF (36m)

– Multiplication of Polynomials
In the multiplication C(x) = A(x)B(x), the multiplicand A(x) is di-
vided into 6 partial multiplicands. To obtain the product, the partial
products obtained by multiplying the partial multiplicands by the
multiplier are summed up as C(x) =

∑5
i=0 Ci as shown below.

C0(x) = (a0 + a1x + ... + a17x
17)×B(x)

C1(x) = (a18 + a19x + ... + a35x
17)x18 ×B(x)

C2(x) = (a36 + a37x + ... + a53x
17)x36 ×B(x)

C3(x) = (a54 + a55x + ... + a71x
17)x54 ×B(x)

C4(x) = (a72 + a73x + ... + a89x
17)x72 ×B(x)

C5(x) = (a90 + a91x + ... + a96x
6)x90 ×B(x)

(1)

– Computation of Partial Products
In the computation of Ci(x), untile empty bits of registers, where
PiLSB and PiMSB are stored, are disappeared, the value of each reg-
ister is shifted and added in GF (397) repeatedly. After 5 times shift-
ing and adding, 2 values of the same degree from x49 to x63 ap-
pear in the accumulator registers. Next, PiLSB is divided into PiLSB1

and PiLSB2x
49 and PiLSB2and PiMSBare added. The above-mentioned

step calculates the partial product. The calculation of the partial prod-

LSB MSB

0 127

�����

�����

0 1

0 0

0

1

0

1

Hi Registers:

Lo Registers:

0

x0 22x 962x

Fig. 4. Storage of Register Polynomials

uct was implemented by 5 multi-bit shift operations and 10 addititive
operations. Our method replaces 5 multi-bit shift operations by 5 shift
operations and 1 addition.

5 Results and Comparison

In this section, we show the time taken by the precomputation and multi-
plication of polynomials using the modified Shift-Addition multiplication
algorithm on a 64-bit processor. Next, by multiplying the time taken for
multiplication in GF (397) by the number of multiplications in GF (36m),
we obtain the time taken for multiplications in GF (36m) in the ηT pair-
ing.

Evaluation of modified Shift-Addition multiplication

Table 10 shows the evaluation environment. Table 11 shows average mod-
ified Shift-Addition multiplication execution times. Average times are es-
timated by 100000000 times execution. Shift-Addition multiplication time
was measured on an AMD Opteron Processor 275 clocked at 2.2GHz. To
allow a valid comparison, we multiply 0.5009µs by 2.2/2.8.

.

.

.

accumulation registers

shift

intermediate product passing the values between registers

Fig. 5. Layout of Polynomial

Table 10. Measurement environment

CPU Athlon FX 57 2.8GHz

memory 2GBytes 　　　
OS SUSE Linux 10.1 　　　

Language C/assembly 　　　
Compiler gcc 4.1.0

Compiling option O2

Time Taken by Multiplications in GF (36´97) in ηT Pairing

The computation timing of GF (3m) multiplications in GF (36m) of ηT
pairing is shown in Table 12. This result shows that our algorithm, which
reuses the intermediate products, yielded a 40% performance increase for
multiplications of GF (3m) in GF (36m) in the ηT pairing on an AMD 64-
bit processor. Moreover, the computation time of Karatsuba 1 is shorter
than that of Karatsuba 2 though the number of multiplications is slightly
fewer in Karatsuba 2. Namely, the reduction in the number of the poly-
nomial multiplications is more important than the reduction in the mul-
tiplication time; a result that goes against previous research on speeding
up the ηT pairing.

LSB MSB

0 127

�����

�����

0 1

0 0

0

1

0

1

Hi Registers:

Lo Registers:

Fig. 6. Modified Shift-Addition Multiplication 1

Table 11. Comparison with prioir methods(µs)

Precomputation Multiplication of polynomials Multiplication

Modified Shift-Addition 0.13485 0.15509 0.28994

Shift-Addition 0.395

6 Conclusion and Future Research Topics

We have presented a novel multiplication algorithm GF (36m) that signif-
cantly reduces the number of precomputations in ηT pairing and an effi-
cient implementation approach that is suitable for ηT pairing. These algo-
rithms led to a 40% performance increase for multiplications of GF (3m)
in GF (36m) in ηT on an AMD 64-bit processor. In this article, to ob-
tain the time taken by multiplications in GF (36m) in the ηT pairing, the
time taken by multiplication in GF (397) was multiplied by the number
of multiplications in GF (36m)

In the future, the computation time of the ηT pairing over GF (397),
GF (3163), GF (3197), GF (3239), GF (3313) will be measured. We plan to
verify the effectiveness of the proposed methods on 32-bit, 16-bit and 8-bit
CPUs. There are many multiplication schedules other than the Karatsuba
method, for instance FFT[17]. We also plan to implement multiplication

accumulation registers

shift

The values of the same degree

intermediate product

Fig. 7. Modified Shift-Addition Multiplication 2

Table 12. Comparison with prior methods(µs)

Schedule Precomputation Multiplication of polynomial in GF (36·97)

Schoolbook
Proposed Method 0.5394 2.79162 3.33102

Prior Method 0.28994 5.21892

Karatsuba 1
Proposed Method 0.5394 2.63653 3.17593

Prior Method 0.28994 4.92898

Karatsuba 2
Proposed Mehotd 0.94395 2.32635 3.2703

Prior Method 0.28994 4.3491

of GF (36m) on other schedules. The adjustment area and the effect of the
proposed methods will be clarified.

References

1. D. Boneh and M.K. Franklin, ”Identity-Based Encryption from the Weil Pairing”,
Proceedings of CRYPTO 2001 on Advances in cryptology, 2001

2. D. Boneh, B. Lynn, and H. Shacham, ”Short signatures from the Weil pairing”,
Proceedings of ASIACRYPT 2001 on Advances in cryptology, 2001

3. I. F. Blake, G. Seroussi, and N. P. Smart, ”Advances in Elliptic Curve Cryptogra-
phy”, London Mathematical Society Lecture Note Series 317, Cambridge Univer-
sity, pp196–197

4. H. COHEN and G. Frey, ”Handbook of Elliptic and Hyperelliptic Curve Cryp-
tography”, Discrete Mathematics and Its Applications. Chapman and Hall/CRC,
2006, pp176–177

5. T. Kerins, W. P. Marnane, E. M. Popovici, and P.S.L.M. Barreto, ”Efficient hard-
ware for the Tate pairing calculation in characteristic three”, Cryptographic Hard-
ware and Embedded Systems, CHES 2005. Volume 3659 of Lecture Notes in Com-
puter Science,pp412–426, Springer-Verlag

6. T. Izu and T. Takagi, Efficient Computations of the Tate Pairing for the Large
MOV Degrees, Conference on Information Security and Cryptology, ICISC 2002

7. I.M Duursma and H.-S Lee, Tate Pairing implementation for hyperelliptic curves,
Advances in Cryptology ASIACRYPT 2003

8. P. S. L. M. Barreto and M. Naehrig, Pairing-friendly elliptic curves of prime order,
Selected Areas in Cryptography?SAC 2005

9. M. Shirase, T. Takagi, and E. Okamoto, ”Some Efficient Algorithms for the Final
Exponentiation of ηT Pairing”, 3rd Information Security Practice and Experience
Conference, ISPEC 2007, LNCS 4464, pp.254-268, 2007, Springer-Verlag.

10. H. COHEN and G. Frey, ”Handbook of Elliptic and Hyperelliptic Curve Cryptog-
raphy”,ser. Discrete Mathematics and Its Applications. Chapman and Hall/CRC,
2006, pp216–217

11. J. Beuchat, M. Shirase, T. Takagi, and E. Okamoto, ”An Algorithm for the ηT
Pairing Calculation in Characteristic Three and its Hardware Implementation”,
the 18th IEEE International Symposium on Computer Arithmetic.

12. K.Harrison, D.Page, and N.P. Smart, ”Software Implementation of Finite Fields
Of Characteristic Three, For User In Pairing-Based Cryptosystems”, LMS Journal
Computation and Mathematics, Vol 5, pp 181-193, 2002

13. AMD, Software Optimization Guide for AMD64 Processor, 2005
14. AMD, AMD Athlon 64 FX Processor, http://www.amd.com/
15. Y. Karahara, M. Shirase, T. Takagi, and E. Okamoto, ”Efficient Software Impli-

mentation of ηT Pairing” , Symposium on Cryptography and Information Security
2007, 2E3-2, 2007

16. R. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems, Communications of the ACM 1978

17. E. Gorla, C. Puttmann, and J, Shokrolliahi ”Efficient formulas for efficient mul-
tiplication in F 6m

3 ” The 22nd Annual ACM Symposium on Applied Computing,
2007

