
Efficient Certificateless Signatures

Suitable for Aggregation

Rafael Castro∗ Ricardo Dahab

Abstract

This technical report describes a novel certificateless signature scheme suitable for
aggregation that requires no pairing computations for signing and only 3 pairing com-
putations for signature verification. We provide proofs for the security of single and
aggregate signatures.

1 Introduction

Public-key cryptography represented a giant step forward in the security of computer-aided
communications. However, the complexity of managing PKIs imposes a huge cost in the
widespread adoption of cryptography, and good solutions to simplify this task have been for
years a research goal for the cryptography community. One of the early proposals to solve
this was Identity-Based Cryptography [Sha85]. In ID-Based cryptography, no public keys
are needed: merely knowing some specific identity information about the person with whom
you wish to communicate (say, her e-mail address) is enough to encrypt messages and verify
signatures. Some central authority is responsible for managing the system, distributing the
correct secret keys only upon verification of the user’s identity. This way, no certification is
required: if the authority is trusted, only the correct person will have access to each secret
key.

The problem is that this trusted authority (TA) knows the secret keys of each and
every user of the system. So, while a certification authority (CA) in a PKI needs only
be trusted with verifying users’ identities, here the TA must also be trusted not to misuse
users’ secret keys. This may pose no problem for certain environments (say, for use within a
company or in the military), but is certainly not fit for widespread adoption. Certificateless
cryptography [ARP03] is a novel approach that aims to find a good compromise between
traditional certificate-based cryptography and identity-based cryptography. In the certifi-
cateless approach, a user’s private key is comprised of two parts: one generated by a Key
Generation Center (KGC) and associated with her identity; another generated by the user
herself, and unknown to any other parties. This way key escrow is avoided (because the
KGC does not know the whole private key) while no explicit certification of public keys is
needed (because part of the private key is generated by the KGC and trusted to be known
only by the legitimate user).

∗Research supported in part by FAPESP grant #2006/06146-3.

1

2 Castro, R. and Dahab, R.

Signature aggregation, as defined in [BGSL03], is a very useful generalization of multisig-
natures allowing multiple signatures on arbitrary messages to be combined in a single-length
signature. In this paper we present a novel efficient certificateless signature scheme that is
suitable for signature aggregation. This is, to our knowledge, the first treatment of signature
aggregation in the certificateless scenario so, before the actual scheme, we spend some time
discussing the security implications of signature aggregation in the certificateless scenario
and build a security model upon which we analyze our proposed scheme.

Organization. The rest of the paper is organized as follows: in Section 2 we review a few
important concepts used throughout our presentation; in Section 3 we review the idea of
certificateless signature schemes, it’s main properties and definitions; in Sections 4 and 5 we
present, and analyze the security of, our proposed scheme; Section 6 brings some concluding
remarks.

2 Preliminaries

2.1 Bilinear maps

Let G1, G2 and GT be groups such that |G1| = |G2| = |GT |. A bilinear map is a map
e : G1 ×G2 → GT that satisfies the following properties.

1. Bilinearity. For all P ∈ G1, Q ∈ G2 and a, b ∈ Z, e(aP, bQ) = e(P,Q)ab

2. Non-degeneracy. Let Q be a generator of G2 and ψ(.) an homomorphism from G2

to G1. Then e(ψ(Q), Q) 6= 1.

Additionally, we want the map e to be efficiently computable. Such a bilinear map is called
admissible. In the particular case where G1 = G2, the map is called symmetric. Examples
of bilinear maps widely used in cryptography are the Weil pairing (as in [BF01]) and the
Tate pairing [Sco05].

2.2 Security assumptions and hard problems

In this paper we base our security reductions on the Computational Diffie-Hellman Problem,
as defined below:

Definition 1. Computational Diffie-Hellman Problem (CDHP). Given a multi-
plicative group (G, .), and α, αa, αb ∈ G, compute αab.

The CDHP is widely regarded as a hard problem and is often used as the basis of
cryptographic schemes.

2.3 Signature aggregation

The idea of signature aggregation was first introduced by Boneh et al. in [BGSL03]. It
can be seen as a generalization of multisignatures, a concept some 20 years old [IN83].

Certificateless Aggregate Signatures 3

A multisignature on a message M is a bitstring σ that proves that a set of users U =
{U1, U2, . . . , Un} signed M . The main goal is to achieve a signature of constant size and a
verification time that is significantly shorter than that of checking n signatures on M . In
aggregate signatures, the unicity of the message is no longer a requirement. So, informally,
an aggregate signature is comprised of a list of users U = (U1, U2, . . . , Un) and a list of
messages M = (M1,M2, . . . ,Mn), and a bitstring that proves user Ui signed message Mi.
Once again, we would like this object to be time- and space-efficient when compared to
using n signatures.
We consider three types of signature aggregation:
• Type 1 - Signatures on a single message by different signers.
• Type 2 - Signatures on different messages by a single signer.
• Type 3 - Signatures on multiple messages by multiple signers.

Ideally a scheme should allow type-3 aggregation with no significant overhead, and will pose
no restrictions on the list of signed messages (such as forbidding repetition1). Our proposed
scheme is most efficient for type-2 aggregation, incurring in some (processing) overhead for
type-3 aggregation.

3 Certificateless signature schemes

The original definition of a CL-PKS scheme was given by Al-Riyami and Paterson in
[ARP03]. Since then, alternative formulations of that definition have been suggested [Den06,
HWZD06]. We use the definition below:

Definition 2. A Certificateless Public-Key Signature (CL-PKS) scheme consists of the
following five polynomial-time algorithms:

• Setup. Run by the KGC to initialize the system. Receives a security parameter 1k

and returns a list of system parameters params and the master key s.
• Extract Partial Private Key. Takes as input params, s, and the identity ID ∈
{0, 1}∗ and outputs the partial private key DID, which is assumed to be sent to the
correct user through a secure channel.

• Generate Key Pair. Takes as input params, DID and generates the user’s public
key PID and corresponding private key, SID.

• CL-Sign. Takes as input params, the user’s identity ID, the pair of keys (DID, SID)
and a message M . Outputs a correct signature σ on M .

• CL-Verify. This is the verification algorithm, that takes as input params, ID, PID,
M and the signature σ, and outputs ACCEPT if and only if σ is a valid signature by
user UID on M .

1In [BGSL03] Boneh et al. outline a simple attack that breaks their scheme if the signing of the same
message by multiple users is allowed; thus, they forbid this. Later on, they claim that if the user concatenates
their public key with the message prior to signing that restriction can be lifted. This is further discussed in
[BNN06], and the unrestricted BLS aggregate scheme (signing the concatenation of message and the user’s
public key with no restrictions on repetition) is proven to be secure.

4 Castro, R. and Dahab, R.

This is a more concise definition that still captures all the features of the original model, as
shown in [HWZD06].

It is interesting to point out that, even though the certificateless scenario provides a new
way to look at signatures, no new capabilities are gained by using certificateless signatures
when compared to the use of traditional digital signatures. That is the case because the
user needs to know all the private information before generating signatures, unlike the
encryption case in which the user can publish a public key without knowing his partial
key and anybody can encrypt messages for him (whose decryption will be possible after
obtaining the partial key).

One direct consequence of this fact, in the signature case, is that it does not make any
difference if the user obtains his partial key before or after publishing his public key: either
way the partial key must be obtained before generating signatures. So the assumption in
our scheme that partial keys are obtained before the full public key can be generated is not
problematic and poses no restriction to the use of the scheme.

3.1 Certificateless aggregate signatures

Definition 3. An Aggregate Certificateless Public-Key Signature (ACL-PKS) scheme con-
sists of the five polynomial-time algorithms listed in Definition 2, and the two extra algo-
rithms below:

• Aggregate. Can be run by anyone. Takes as input a list σ = (σ1, σ2, . . . , σn) of
signatures, where σi is user’s Ui signature on message Mi. Outputs the aggregate γ.

• Aggregate verification. Receives as input an aggregate γ and the lists U, of users,
and M, of messages. Accepts if and only if γ was generated from the correct set σ of
individual signatures.

3.2 Security of (Aggregate) Certificateless Signatures

The standard definition of security, as introduced by [GMR88], is existential unforgeability
under adaptively chosen message attack. Since there is no certification of public keys, we
have to assume that attackers can always replace an user’s public key at will. On the other
hand, we don’t want to place unconditional trust on the KGC, so we must always take two
types of adversaries into consideration:
• Type I. An adversary AI that can replace public keys at will, but has no access to

the master key s.
• Type II. An adversary AII that knows the master key s but is not allowed to replace

the public key of the user being attacked.
It is clear that if we were to let the KGC replace public keys the scheme would be trivially
broken. Alternatives (e.g. key binding, as in [ARP03]) have been proposed to relax that
assumption about the KGC. The security of certificateless signatures is thus expressed by
two similar games, respectively against AI and AII . All our security analysis use the
Random Oracle Model and the adversaries have access to the following operations:
• CreateUser, RevealPartialKey, RevealSecretValue, RevealPublicKey, Sign,
QueryHash, ReplacePublicKey.

Certificateless Aggregate Signatures 5

If the oracle is required to generate signatures under public keys that were replaced by the
adversary (as in [ARP03]), it is called a StrongSign oracle. If this requirement is dropped,
then we have a WeakSign oracle. It is our opinion that, even though a proof using a
StrongSign oracle may be desirable, as it gives the adversary more power, efficiency should
not be sacrificed in order to achieve it. The power an adversary gets from a StrongSign
oracle has no analogous in a real-world situation. On the other hand, the fact that our
scheme is secure even against adversaries who are given access to a StrongSign oracle will
be crucial to our proof of security for signature aggregation. Interestingly enough, this
seems to be the first real-life justification for using such a model.

In the setting of aggregate signatures, a detail that seemed previously unimportant is
a lot more relevant: namely, are Type-II adversaries allowed to replace public keys other
than that of the target identity2? On the single signature case this is irrelevant, because
this would give no real extra power to an adversary. On the aggregate case this is a lot
more problematic, since the resulting aggregate forgery could include a signature under this
replaced public key. So, in our security model we allow replacement of public keys other
than that of (one of) the user(s) under attack.

We can now define the two following games, respectively, for AI and AII ;

Definition 4 (Game I: Single Signatures.). Let CI be the challenger algorithm and k be a
security parameter:

1. CI generates (mpk,msk) with the same distribution of (mpk,msk)← Setup(1k);

2. CI runs AI on 1k and mpk. During its run, AI has access to the following oracles:
RevealPublicKey, RevealPartialKey, RevealSecretValue, ReplacePublicKey,

QueryHash, Sign;

3. AI outputs (ID∗,M∗, σ∗).

AI wins the game if CL-Verify(params,ID∗,PID∗,M∗,σ∗)=ACCEPT and both conditions
below hold:
• Sign(ID∗,M∗) was never queried;
• RevealPartialKey(ID∗) was also never queried.

Definition 5 (Game II: Single Signatures). Let CII be the challenger algorithm and k be a
security parameter:

1. CII generates (mpk,msk) with the same distribution of (mpk,msk)← Setup(1k);

2. CII runs AII on 1k and (mpk,msk). During its run, AII has access to the following or-
acles: RevealPublicKey, RevealPartialKey, RevealSecretValue, ReplacePublicKey,

QueryHash, Sign;

3. AII outputs (ID∗,M∗, σ∗).

2The target identity is the one under which a forgery will be made.

6 Castro, R. and Dahab, R.

AII wins the game if CL-Verify(params,ID∗,PID∗ ,M∗,σ∗)=ACCEPT and all conditions
below hold:
• Sign(ID∗,M∗) was never queried;
• RevealSecretValue(ID∗) was never queried;
• ReplacePublicKey(ID∗, .) was never queried.

The two games used to prove the security of aggregation are very similar to these, except for
the output of the adversary (an aggregate forgery) and that the procedure CL-Agg-Verify is
used to check its validity. These will be defined in more detail prior to the proof of security
of aggregation. For a longer discussion on alternative CLS security models, we refer the
reader to [HWZD07].

4 Our scheme

In this section we present the main contribution of this paper, a novel certificateless signa-
ture scheme that is suitable for aggregation.

Setup. Let k be a security parameter;
let G and GT be groups such that:

– the CDH assumption holds in G;
– p← |G| = |GT |;
– ∃e : G×G→ GT an admissible bilinear pairing;

let P ∈ G be an arbitrary generator; choose the following hash functions:

– H1 : {0, 1}∗ ×G→ Z∗
p

– H2,H3 : {0, 1}∗ × {0, 1}∗ ×G×G→ G
choose s r← Z∗

p; let P0 = sP ;
output params = 〈G,GT , e, P, P0〉 and msk = s.

PartialKeyExt(IDi).
ri

r← Z∗
p; Ri = riP ;

dIDi = (ri + sH1(IDi, Ri)) mod p;
output 〈dIDi , Ri〉.

UserKeysGen(IDi).
xIDi

r← Z∗
p;

PIDi = xIDiP ;
output 〈PIDi , xIDi〉.

CL-Sign(Mi,IDi,dIDi,xIDi).
Output σ = dIDiH2(Mi, IDi, PIDi , Ri) + xIDiH3(Mi, IDi, PIDi , Ri).

CL-Verify(σ,Mi,IDi,PIDi,Ri).
Let h1 = H1(IDi, Ri);

Certificateless Aggregate Signatures 7

let H2 = H2(Mi, IDi, PIDi , Ri);
let H3 = H3(Mi, IDi, PIDi , Ri);
output ACCEPT if and only if

e(P, σ) ?= e(H2, Ri + h1P0)e(H3, PIDi).

Note that public keys in this scheme are comprised of two components: the R generated
by the KGC and the PID generated by the user. It is important to note that we do not
assume either of them to be authenticated and when we deal with key replacement attacks,
the adversary is allowed to replace either (or both) components of the public key.

4.1 Signature Aggregation

The following procedures are responsible for aggregating multiple signatures into one and
for verifying aggregates.
Aggregate. Given the set σ = {σ1, σ2, . . . , σn} to aggregate, output

γ =
∑
∀i

σi.

Aggregate Verification. Given the aggregate γ, the lists of signers U = {u1, u2, . . . , un}
and messages M = {M1,M2, . . . ,Mn}.
There may be repetitions both in the user list and in the message list.
For each user ui in U, define the set of messages Mui = {Mj , uj = ui} signed by that user.
Let U∗ be the set of users, i.e. eliminating repetitions from U. Let

hui = H1(IDui , Rui)

γ1 =
∏

∀ui∈U∗

e(
∑

∀Mi∈Mui

H2(Mui , IDui , PIDui
, Rui), Rui + huiPpub)

γ2 =
∏

∀ui∈U∗

e(
∑

∀Mi∈Mui

H3(Mui , IDui , PIDui
, Rui), PIDui

))

Accept the aggregate signature if and only if:

e(P, γ) ?= γ1γ2 (1)

5 Security of the scheme

5.1 Type-I Adversaries

We want to prove that our scheme is secure against Type-I adversaries, as defined in §3.2.
We achieve that by proving that if a Type-I adversary exists we can build an algorithm,
which we refer to as CI , capable of breaking the CDHP with related probability. Since we
assume the CDHP is hard in G, no efficient Type-I adversary exists. So, here is the theorem
we want to prove.

8 Castro, R. and Dahab, R.

Theorem 1. If there exists a Type-I adversary AI that can break the EU-CMA security
of our scheme with non-negligible probability λ(k), then the CDHP can be solved in G with
non-negligible probability approximately

Pr[W] ≈
(

λ(k)2

q2uq
2
mqh1

)
Proof. Let AI be a Type-I adversary against our scheme. We build a CI that simulates, in
the Random Oracle Model, an attack environment for AI . In an adaptive attack, AI has
access to the following oracles:

• H1(ID,R); H2(M, ID,PIDi , Ri); H3(M, ID,PIDi , Ri);
• PartialKeyExtract(ID);
• PublicKeyExtract(ID);
• PublicKeyReplacement(ID,R′,P ′

ID);
• SecretValueExtract(ID);
• Sign(M ,ID).

These must be simulated by CI .

Game Outline. We use games to simulate the attack environment for AI . This technique
is somewhat more limited than pure simulation, because something is assumed about the
adversary’s behavior. But even considering these limitations, game-based proofs are far
more common because they are much easier to understand and verify. The game we are
considering has the following standard structure:

1. Let k be a security parameter; CI generates suitable public parameters (params) and
a master secret (msk);

2. AI is run with params as input;

3. AI makes qH1 , qH2 , and qH3 queries respectively to the H1(.), H2(.), and H3(.) oracles,
and qS queries to the signing oracle;

4. after a polynomial number of steps T = poly(k), AI outputs

γ = 〈S, (σ∗,M∗, ID∗, P ∗
ID, R

∗)〉.

5. The success probability of AI is Pr[S = 1] = λ(k).

The attack is considered successful if λ(k) is non-negligible in k. We will use a technique
called game-hopping : we will design a series of games, each a little different from the pre-
vious one, but with related success probabilities. The last of this series of games describes
an CI capable of solving the CDHP with probability related to λ(k). This makes our proof
more readable and less error-prone.

Game 0. This initial game is a straight simulation of the outline above.
C0

I receives as input for the CDHP a group G and the tuple (P, aP, bP) ∈ G3.
C0

I chooses 〈GT , e〉 such that:

Certificateless Aggregate Signatures 9

• |G| = |GT |
• e : G×G→ GT is an admissible pairing.

Let p = |G| = |GT |.
C0

I chooses s r← Z∗
p and sets P0 = sP .

C0
I runs AI with input 〈G,GT , e, P, P0, 〉.
C0

I simulates oracle queries as follows:

• H1(IDi, Ri).
If undefined, choose h1i

r← Z∗
p and set H1(IDi, Ri) = h1i .

Return H1(IDi, Ri).
• H2(Mi, IDi, PIDi , Ri).

If undefined, choose h2i

r← Z∗
p and set H2(Mi, IDi, PIDi , Ri) = h2iP .

Return H2(Mi, IDi, PIDi , Ri).
• H3(Mi, IDi, PIDi , Ri).

If undefined, choose h3i

r← Z∗
p and set H3(Mi, IDi, PIDi , Ri) = h3iP .

Return H3(Mi, IDi, PIDi , Ri).
• SecretValueExtract(IDi).

If undefined, choose xIDi

r← Z∗
p and set PIDi = xIDiP .

Return xIDi .
• PartialKeyExtract(IDi).

If undefined, choose ri
r← Z∗

p and set Ri = riP .
Compute dIDi = ri + sH1(IDi, Ri) mod p.
Return 〈dIDi , Ri〉
• PublicKeyExtract(IDi)

If PIDi is undefined, call SecretValueExtract(IDi).
If Ri is undefined, call PartialKeyExtract(IDi).
Return 〈PIDi , Ri〉.

• PublicKeyReplace(IDi, P
′
IDi
, R′

i).
Set PIDi = P ′

IDi
and Ri = R′

i.
• Sign(Mi, IDi).

Let h1i = H1(IDi, Ri)
Let h2iP = H2(Mi, IDi, PIDi , Ri).
Let h3iP = H3(Mi, IDi, PIDi , Ri).
Output σi = h2iR+ h2ih1iP0 + h3iPIDi .

We’d like to point out that this is a so-called Strong-Sign oracle, because it is capable of
signing messages even under replaced public-keys whose respective secret key is unknown.
This will be very important for the security of signature aggregation. Simulated signatures
are correct because:

e(P, σi) = e(P, h2iR+ h2ih1iP0 + h3iPIDi)
= e(P, h2i(R+ h1iP0))e(P, h3iPIDi)
= e(h2iP,R+ h1iP0))e(h3iP, PIDi)
= e(H2(Mi, IDi, PIDi , Ri), R+H1(IDi, Ri)P0))e(H3(Mi, IDi, PIDi , Ri), PIDi).

10 Castro, R. and Dahab, R.

AI should, after interacting with the environment simulated by C0
I , output a tuple

〈S, (V ∗,M∗, ID∗, PID∗ , R∗)〉. In this initial game, C0
I is successful when AI is. Therefore,

Pr[C0
I] = Pr[AI] = Pr[S = 1] = λ(k)

Game 1. Now, C1
I uses the second input for the CDHP in the game. Instead of computing

s and then P0 = sP , C makes P0 = aP . AI is then run as before. P0’s distribution does
not change, so AI ’s behavior also does not change. The only problem is that now C1

I is
unable to compute partial keys as before. Therefore we have to take special measures when
computing H1(.) queries to assure that we are able to compute partial keys afterwards.
Here are the new H1(.) and PartialKeyExtraction oracle:

• H1(IDi, Ri)
If the partial key of IDi has not been computed yet

call PartialKeyExtract(IDi).

If H1(IDi, Ri) is undefined

choose h1i

r← Z∗
p;

set H1(IDi, Ri) = h1i .

Return H1(IDi, Ri)
• PartialKeyExtract(IDi).

If undefined

choose dIDi , h1i

r← Z∗
p;

compute Ri = dIDiP − h1iP0;

Return 〈dIDi , Ri〉
This change is unnoticeable to AI : the partial keys and hash values generated are valid and
uniformly distributed in Z∗

p. Therefore, AI ’s output and success probability will remain
unchanged.

Pr[C1
I] = Pr[C0

I] = λ(k).

Game 2. Game 2 is the same as Game 1, except that C2
I randomly picks a target (ID,R)-

pair and only outputs success if the forgery is under this (ID,R). An important detail is
that C2

I cannot know a valid partial key for the target (ID,R). If coincidently the partial
keys for (ID,R) are known, C2

I must abort and output FAIL.

Let qu be the maximum number of distinct (ID,R) queried throughout the simulation.
A very conservative upper limit for qu is qu ≤ qH1 + qH2 + qH3 + qs + qpk.

Before the game starts, C2
I chooses t r← {1, . . . , qu}.

The H1(ID,R) oracle is changed to:
• H1(IDi, Ri)

If the partial key of IDi has not been computed yet

call PartialKeyExtract(IDi).

Certificateless Aggregate Signatures 11

If this is the tth distinct query

set IDt = IDi and Rt = Ri

if the known partial key for IDt includes Rt,
abort and FAIL.

If H1(IDi, Ri) is undefined

choose h1i

r← Z∗
p;

set H1(IDi, Ri) = h1i .

Return H1(IDi, Ri)
This change only affects AI if C2

I aborts. That happens with very low probability, only if
the randomly selected Ri in IDt’s partial key equals Rt. Let F1 be the event in which C2

I

aborts at this point. Then Pr[F1] = 1
p .

Let F2 be the event in which AI does not query H1(ID∗, R∗). Since H1(.) is a random
oracle, the probability of a valid forgery being generated without this value being queried
is Pr[F2] = 1

p . Additionally, we redefine C2
I ’s output to

outputC2
I

=
{
〈0,⊥〉, if S = 1 ∧ (ID∗ 6= IDt ∨R∗ 6= Rt)
outputAI

, otherwise

Now, C2
I ’s probability of success is smaller than AI ’s: the target (IDt, Rt)-pair must also

be correct. So we have

Pr[C2
I] = Pr[C1

I ∧ F1 ∧ F2 ∧ (ID∗ = IDt ∧R∗ = Rt)] = λ(k)
(

1− 1
p

)2 1
qu
.

Still, if λ(k) is non-negligible so is Pr[Y 2
I].

Game 3. In Game 3, C3
I chooses a target (Mi, IDi, PIDi , Ri)-tuple.

Let qm be the maximum number of distinct H2(Mi, IDi, PIDi , Ri) queried throughout
the simulation.
A very conservative upper limit for qm is qm ≤ qH2 + qs.
Before the game starts, C3

I chooses u r← Z∗
p.

The H2(Mi, IDi, PIDi , Ri) oracle is now changed to
• H2(Mi, IDi, PIDi , Ri).

If this is the uth distinct query

set Mu = Mi, IDu = IDi, PIDu = PIDi , Ru = Ri.

If undefined, choose h2i

r← Z∗
p and set H2(Mi, IDi, PIDi , Ri) = h2iP .

Return H2(Mi, IDi, PIDi , Ri).
Once again, this change has no consequences for the adversary, and its behavior will remain
the same. We redefine C3

I ’s output to be:

outputC3
I

=


〈0,⊥〉, if S = 1 ∧ (ID∗ 6= IDt ∨R∗ 6= Rt)
〈0,⊥〉, if S = 1 ∧ (M∗ 6= Mu ∨ ID∗ 6= IDu ∨ PID∗ 6= PIDu ∨R∗ 6= Ru)
outputAI

, otherwise

12 Castro, R. and Dahab, R.

C3
I ’s probability of success is smaller than C2

I ’s: the target (Mi, IDi, PIDi , Ri)-tuple must
also be correct.
Let

S∗2 be the event where (ID∗ = IDt ∧R∗ = Rt);
S∗3 be the event where (M∗ = Mu ∧ ID∗ = IDu ∧ PID∗ = PIDu ∧R∗ = Ru).

We have

Pr[S∗2] = 1/qu
(
1− 1

p

)
;

Pr[S∗3] = 1/qm
(
1− 1

p

)
;

Pr[C3
I] = Pr[Y 1

I ∧ S∗2 ∧ S∗3] = Pr[C2
I ∧ S∗3] = λ(k)

(
1
qu

)(
1

qm

)(
1− 1

p

)3
.

So, if λ(k) is non-negligible so is Pr[C3
I].

Game 4. Now C4
I uses the third input from the CDHP. C4

I sets the value ofH2(Mu, IDu, PIDu , Ru) =
bP . This does not change H2(.)’s distribution and is unnoticeable to AI . The only problem
is that, now, C4

I is unable to forge signatures on that exact input: if the Sign oracle receives
input (Mu, IDu, PIDu , Ru) it must fail. But this can only happen if the forgery output by
AI is not of (Mu, IDu, PIDu , Ru), in which case C3

I would already fail anyway. So this, in
fact, does not change C4

I ’s success probability

Pr[C4
I] = Pr[C3

I] =
λ(k)
quqm

(
1− 1

p

)3

Now, let’s analyze C4
I ’s output in case of success:

e(P, σ) = e(H2(.), R∗ +H1(.)P0)e(H3(.), PID∗).

Let W = σ − h3iPID∗ . We have

e(P,W) = e(H2(.), R∗ +H1(.)P0) = e(bP,R∗ +H1(.)aP).

Since we know the value of H1(ID∗, R∗), W almost gives the answer to our CDHP instance,
were it not for the R∗ factor: since we cannot assume the discrete log of R∗(r,R∗ = rP) is
known to the adversary we cannot get our answer directly from W . We can however use the
Oracle Replay Technique [PS00] and obtain another related forgery σ′ that helps us solve
the CDHP. In fact, we state the following claim, delaying its proof until §5.2:

Claim 1. Let λ̃(k) = λ(k) − 1
p , where λ(k) is the success probability of AI in the Game 4

above. We can use the Oracle Replay Technique to construct a W such that with probability

Pr[W] =

(
1

quqm

(
1− 1

p

)3
)2(

λ̃(k)2

8qh1

)(
1− 1

qh1

)
≈

(
λ̃(k)2

8qh1q
2
uq

2
m

)

a pair of forgeries ςi = (σi,Mi, IDi, PIDi , Ri) for i ∈ {1, 2} are obtained such that:
• ID1 = ID2 = ID∗;
• R1 = R2 = R∗;

Certificateless Aggregate Signatures 13

• H ′
1(ID1, R1) 6= H ′′

1 (ID2, R2)

We will give a formal proof of this claim on the next subsection, but assume for now it is
true. Now, since both forgeries are valid, we have that

e(P, σ1) = e(H ′
2(.), R

∗ +H ′
1(.)P0)e(H ′

3(.), P
′
ID1

),
e(P, σ2) = e(H ′′

2 (.), R∗ +H ′′
1 (.)P0)e(H ′′

3 (.), P ′
ID2

).

letting W ′ = σ′ − h′3i
PID1 and W ′′ = σ2 − h′′3i

PID2 , we have

e(P,W ′′) = e(H ′′
2 (.), R∗ +H ′′

1 (.)P0) = e(bP,R∗)e(bP,H ′′
1 (.)aP).

e(P,W ′′ −W ′) = e(bP,R∗)e(bP,H ′′
1 (.)aP)/[e(bP,R∗)e(bP,H ′

1(.)aP)]
e(P,W ′′ −W ′) = e(bP, (H ′′

1 −H ′
1)aP).

So, Y = (W ′′ −W ′)/(H ′′
1 −H ′

1) = abP is the answer to our CDHP instance.

5.2 The Oracle Replay technique

Now we have to prove claim 1 and the proof of theorem 1 will be complete. Take an
execution of the game 4 above. Let ε be the success probability of A4

I , i.e. the probability
that AI outputs S = 1 in the Game 4 above. The probability that S = 1 but the hash
H1(ID∗, R∗) was never queried is 1

p , due to the randomness of H1(.). Let β be the index of
the H1(ID∗, R∗) query (β =∞ if the query was never made).

Corollary 1. Pr[S = 1 ∧ β 6=∞] ≥ ε− 1
p

We will define the machine W, which acts exactly as C4
I up until the point where a forgery

is output by AI and then “forks” the execution. Let χ be the set of all possible random
tapes appearing in a simulation by C4

I (and thus by W).
Let Q1,1, Q1,2, . . . , Q1,qh1

be the different queries made by AI to H1(.) throughout the sim-
ulation. Let ρ = (ρ1, ρ2, . . . , ρqh1

) be the list of answers computed by C4
I .

Fact. We know that Q1,β = (ID∗, R∗).
Let ψ be the set of executions of AI such that S = 1 and β 6=∞.
Let ψi be the subset of ψ such that β = i.
Fact. ψ =

⋃
∀i ψi, and Pr[(χ,H1(.)) ∈ ψ] = ε− 1

p ,
where the probability is computed over the possible executions χ and oracle instantiations
of H1. Let I be the set of indexes of the more likely ψi, i.e.

I =
{
i,Pr[(χ,H1) ∈ ψi|(χ,H1) ∈ ψ] ≥ 1

2qh1

}
(2)

Now let ψI = {(χ,H1) ∈ ψi, i ∈ I}. Then ∀i ∈ I,

Pr[(χ,H1) ∈ ψi] = Pr[(χ,H1) ∈ ψ].Pr[(χ,H1) ∈ ψi|(χ,H1) ∈ ψ] ≥
(
ε− 1

p

)(
1

2qh1

)
Lemma 1. Pr[(χ,H1) ∈ ψI |(χ,H1) ∈ ψ] ≥ 1

2 .

14 Castro, R. and Dahab, R.

Proof. Since the sets are disjoint,

Pr[(χ,H1) ∈ ψI |(χ,H1) ∈ ψ] =
∑
i∈I

Pr[(χ,H1) ∈ ψi|(χ,H1) ∈ ψ]

= 1−
∑
i/∈I

Pr[(χ,H1) ∈ ψi|(χ,H1) ∈ ψ]

From the definition of I (eq. (2)),

∀i /∈ I,Pr[(χ,H1) ∈ ψi|(χ,H1) ∈ ψ] <
1

2qh1

and since there are at most qh1 i-indexes we have that

Pr[(χ,H1) ∈ ψI |(χ,H1) ∈ ψ] = 1−
∑
i/∈I

Pr[(χ,H1) ∈ ψi|(χ,H1) ∈ ψ]

≥ 1− qh1

(
1

2qh1

)
≥ 1

2

That proves the fact that the probability of a successful execution being in the most likely
set is at least 1

2 . We proceed by using the following Splitting Lemma.

Lemma 2. (The Splitting Lema.) Let X and Y be two finite sets where two probabilities
distributions are considered. Let A ⊂ X × Y be a set such that Pr[A] ≥ γ, where the proba-
bility distribution in X × Y is the joint probability distribution induced by the distributions
in X and Y . For any α < γ, let us define

B = {(x, y) ∈ X × Y |Pry′∈Y [(x, y′) ∈ A] ≥ γ − α}.

and B = X × Y −B, then the following statements hold:

1. Pr[B] ≥ α;

2. for any (x, y) ∈ B,Pry′∈Y [(x, y′) ∈ A] ≥ γ − α;

3. Pr[B|A] ≥ α/γ.
This lemma allows us to “split” the execution in two: the queries made before and after
Q1,β . By doing this we can apply the splitting lemma to prove that there are enough valid
executions starting with the same queries so that we can expect two successful attacks
coinciding up to the point the query Q1,β is made to exist.

More specifically, we can use the Splitting Lemma with the following values:

X = (χ,H1β−)
Y = H1β+

γ = ε̃/2qh1

α = ε̃/4qh1 = γ/2

where:

Certificateless Aggregate Signatures 15

• H1i− denotes the hash queries {H1,1,H1,2, . . . ,H1,i−1};
• H1i+ denotes the hash queries {H1,i,H1,i+1, . . . ,H1,qh1

};

• ε̃ = Pr[S = 1 ∧ β 6=∞] = ε
(
1− 1

p

)
.

Thus, if we let A = ψβ, there exists a Ωβ ⊂ ψβ (the B in the Splitting Lemma definition
above) such that:

Pr[(χ,H1) ∈ Ωβ|(χ,H1) ∈ ψβ] =
α

γ
=

1
2

and ∀(χ,H1) ∈ Ωβ

Pr[(χ,H1β− ||H1β+) ∈ ψβ] = γ − α =
ε̃

4qh1

So, let W be the algorithm that, on a successful execution of C4
I , repeats the simulation

with a fixed (χ,H1β−) and random ˜H1β+ . We know that:

Pr
[(

(χ,H1β− || ˜H1β+) ∈ ψβ

)
∧ (ρ̃β 6= ρβ)

]
=

ε̃

4qh1

(
1− 1

qh1

)
LetW output 〈S, (V1,M1, ID1, PID1 , R1), (V2,M2, ID2, PID2 , R2)〉, where ςi = (Vi,Mi, IDi, PIDi , Ri)
is the forgery obtained on the ith execution of the attack, and S = 1 if and only if
(ID1 == ID2 ∧ R1 == R2) and both forgeries are valid. For W to be successful four
things need to happen:

1. The first execution of AI has to belong to the set of most likely successful executions,
I. Let this event be called W1.

Pr[W1] = Pr[(χ,H1) ∈ ψI] =
1
2

(
ε− 1

p

)
=
ε̃

2

2. The execution must also be in the B set of the Splitting Lemma definition. Let this
event be called W2.

Pr[W2] = Pr[(χ,H1) ∈ Ωβ|(χ,H1) ∈ ψβ] =
1
2

3. The replay of the oracle must also be successful. Let this event be called W3.

Pr[W3] = Pr[((χ,H1β− || ˜H1β+) ∈ ψβ) ∧ (ρ̃β 6= ρβ)] =
(

ε̃

4qh1

)(
1− 1

qh1

)
4. Finally, the conditions that make C4

I successful must also hold in both executions. Let
this event be called W4:

Pr[W4|W1 ∧W2 ∧W3] =

(
1

quqm

(
1− 1

p

)3
)2

That gives us the overall success probability of W and concludes the proof of claim 1:

Pr[W] = Pr[W1] Pr[W2] Pr[W3] Pr[W4] =
(

ε̃2

8qh1

)(
1− 1

qh1

)((
1

quqm

)(
1− 1

p

)3
)2

16 Castro, R. and Dahab, R.

5.3 Type-II Adversaries

The security proof against Type-II adversaries follows the same general ideas as the one
against Type-I adversaries.

Theorem 2. If there exists a Type-II adversary AII that can break the EU-CMA security
of our scheme with non-negligible probability λ(k), then the CDHP can be solved in G with
non-negligible probability

Pr[C5
II] =

λ(k)
qIDqm

(1− 1
p
)2.

Proof. Let AII be a Type-II adversary against our scheme. During the attack simulation,
AII may query the following oracles:
• H1(ID,R); H2(M, ID,PID, R); H3(M, ID,PID, R);
• PartialKeyExtract(ID);
• PublicKeyExtract(ID);
• PublicKeyReplacement(ID,P ′

ID,R′);
• SecretValueExtract(ID);
• Sign(M ,ID).

The game goes roughly as follows:

1. Let k be a security parameter; CII creates suiting (mpk,msk);

2. AII is run with input (mpk,msk);

3. AII makes qH1 , qH2 , and qH3 queries respectively to theH1(.), H2(.), andH3(.) oracles,
and qS queries to the signing oracle;

• remember that all qH1 , qH2 , qH3 , qs ∈ O(poly(k)).

4. after a polynomial number of steps T = O(poly(k)), AII outputs

γ = 〈S, (σ∗,M∗, ID∗, P ∗
ID, R

∗)〉.

5. The attack is deemed successful (S = 1) if:

• A valid forgery is generated;
• AII has not replaced ID∗’s public key;
• AII has not queried ID∗’s secret value.

6. The success probability of AII is Pr[AII] = Pr[S = 1] = λ(k)

Game 0. CII receives as input to the CDHP the group G and (P, aP, bP) ∈ G3.
C0

II chooses 〈e,GT 〉, such that e : G×G→ GT is an admissible pairing.
Let p = |G| = |GT |.
C0

II chooses s r← Z∗
p. Let P0 = sP .

C0
II runs AII with input params = 〈G,GT , e, P, P0〉, and msk = s.
C0

II simulates oracle queries as follows:

Certificateless Aggregate Signatures 17

• H1(IDi, Ri).
If undefined, choose h1i

r← Z∗
p and set H1(IDi, Ri) = h1i .

Return H1(IDi, Ri).
• H2(Mi, IDi, PIDi , Ri).

If undefined, choose h2i

r← Z∗
p and set H2(Mi, IDi, PIDi , Ri) = h2iP .

Return H2(Mi, IDi, PIDi , Ri).
• H3(Mi, IDi, PIDi , Ri).

If undefined, choose h3i

r← Z∗
p and set H3(Mi, IDi, PIDi , Ri) = h3iP .

Return H3(Mi, IDi, PIDi , Ri).
• SecretValueExtract(IDi).

If undefined, choose xIDi

r← Z∗
p and set PIDi = xIDiP .

Return xIDi .
• PartialKeyExtract(IDi).

If undefined, choose ri
r← Z∗

p and set Ri = riP .
Compute dIDi = ri + sH1(IDi, Ri).
Return 〈dIDi , Ri〉
• PublicKeyExtract(IDi)

If PIDi is undefined, call SecretValueExtract(IDi).
If Ri is undefined, call PartialKeyExtract(IDi).
Return 〈PIDi , Ri〉.

• PublicKeyReplace(IDi, P
′
IDi
, R′

i).
Set PIDi = P ′

IDi
and Ri = R′

i.
• Sign(Mi, IDi).

Let h1i = H1(IDi, Ri)
Let h2iP = H2(Mi, IDi, PIDi , Ri).
Let h3iP = H3(Mi, IDi, PIDi , Ri).
Output σi = h2iR+ h2ih1iP0 + h3iPIDi .

The simulated signature is correct because

e(P, σi) = e(P, h2iR+ h2ih1iP0 + h3iPIDi)
= e(P, h2i(R+ h1iP0))e(P, h3iPIDi)
= e(h2iP,R+ h1iP0))e(h3iP, PIDi)
= e(H2(Mi, IDi, PIDi , Ri), R+H1(IDi, Ri)P0))e(H3(Mi, IDi, PIDi , Ri), PIDi).

AII should, after interacting with the environment simulated by C0
II , output a tuple

〈S, (V ∗,M∗, ID∗, PID∗ , R∗)〉. In this initial game, C0
II outputs exactly the same as AII .

Therefore, they have the same success probability

Pr[C0
II] = Pr[S = 1] = λ(k)

18 Castro, R. and Dahab, R.

Game 1. Game 1 is the same as Game 0, except that C1
II randomly picks a target identity

and only outputs success if the forgery is under this target identity.

Let qID be the total number of different identities queried throughout the simulation;
before the game starts, C1

II chooses t r← {1, . . . , qID}.
To keep track of how many different identities have been queried we can define a proce-

dure called at the beginning of every oracle call, CreateUserIDi, that simply checks if any
query has been made on IDi and increments a global counter in case this is the first.
The CreateUser oracle is defined as:
• CreateUser(IDi).

If IDi has not been queried before

id count = id count+1;

If this is the tth distinct ID queried (i.e., id count == t):

set IDt = IDi.
Since this change has no consequences for the adversary, its behavior will remain the

same and so will its probability of outputting a forgery. Now we redefine C1
II ’s output to

be:

outputCII
=
{
〈0,⊥〉, if S = 1 ∧ (ID∗ 6= IDt)
outputAII

, otherwise

Now, C1
II ’s probability of success is smaller than AII ’s: the target ID must be correctly

guessed. So we have

Pr[C1
II] = λ(k)

(
1
qID

)(
1− 1

p

)
So, if λ(k) is non-negligible (in k) so is Pr[C1

II].

Game 2. Now the game is altered so that two queries, extraction of the secret value and
the replacing of the public key, cannot be made on IDt:

• SecretValueExtract(IDi).
Call CreateUser(IDi).
If IDi = IDt, FAIL.
If xIDi and PIDi are undefined,

choose xIDi

r← Z∗
p and set PIDi = xIDiP .

Return xIDi .
• PublicKeyReplace(IDi, P

′
IDi
, R′

i).
Call CreateUser(IDi).
If IDi = IDt, FAIL.
Set PIDi = P ′

IDi
and Ri = R′

i.

Certificateless Aggregate Signatures 19

The probability of success remains the same, since by definition in every execution where
C2

II was successful, i.e. ID∗ = IDt, the two oracles above couldn’t have been queried on
ID∗.

Pr[C2
II] = Pr[C1

II] = λ(k)
(

1
qID

)(
1− 1

p

)

Game 3. In game 3 the third input to the CDHP is used as the target ID’s public-key.
• PublicKeyExtract(IDi).

Call CreateUser(IDi).
If IDi = IDt set PIDi = bP and xIDi = ⊥.
If PIDi is undefined, call SecretValueExtract(IDi).
If Ri is undefined, call PartialKeyExtract(IDi).
Return 〈PIDi , Ri〉.

Since bP is uniformly chosen, the distribution of PIDi is unchanged, yielding

Pr[C3
II] = Pr[C2

II] = λ(k)
(

1
qID

)(
1− 1

p

)

Game 4. In Game 4 C4
II chooses a target (Mi, IDi, PIDi , Ri)-tuple.

Let qm be the maximum number of distinct H3(Mi, IDi, PIDi , Ri) queried throughout
the simulation.
A conservative upper limit for qm is qm ≤ qH3 + qs.
Before the game starts, C chooses u r← {1, . . . , qm}.

The H3(Mi, IDi, PIDi , Ri) oracle is now changed to
• H3(Mi, IDi, PIDi , Ri).

Call CreateUser(IDi);
if this is the uth distinct query;

set Mu = Mi, IDu = IDi, PIDu = PIDi , Ru = Ri.

If undefined, choose h3i

r← Z∗
p and set H3(Mi, IDi, PIDi , Ri) = h3iP .

Return H3(Mi, IDi, PIDi , Ri).
Once again, this change is unnoticeable for the adversary, and its behavior will remain

the same. We redefine C4
II ’s output to be:

outputC4
II

=


〈0,⊥〉, if S = 1 ∧ ID∗ 6= IDt

〈0,⊥〉, if S = 1 ∧ (M∗ 6= Mu ∨ ID∗ 6= IDu ∨ PID∗ 6= PIDu ∨R∗ 6= Ru)
outputAII

, otherwise

C4
II ’s probability of success is even smaller than C4

II ’s: the target (Mi, IDi, PIDi , Ri)-tuple
must also be correct. Let S∗2 be the event where (ID∗ = IDt) and S∗3 be the event where

20 Castro, R. and Dahab, R.

(M∗ = Mu ∧ ID∗ = IDu ∧ PID∗ = PIDu ∧R∗ = Ru).
So we have

Pr[S∗2] = 1/qu(1− 1
p);

Pr[S∗3] = 1/qm(1− 1
p);

Pr[C4
II] = Pr[C3

II ∧ S∗3] = Pr[C0
II ∧ S∗2 ∧ S∗3] = λ(k)

qIDqm
(1− 1

p)2.

So, if λ(k) is non-negligible so is Pr[C4
II].

Game 5. Now, the last input of the CDHP is used, and H3(Mu, IDu, PIDu , Ru) ← bP .
Once again this change is unnoticeable for AII , so

Pr[C5
II] = Pr[C4

II] =
λ(k)
qIDqm

(1− 1
p
)2.

Solving the CDHP. If C5
II outputs 〈S, (σ∗,M∗, ID∗, PID∗ , R∗)〉 such that S = 1, we know

that:

e(P, σ∗) = e(H2(M∗, ID∗, PID∗ , Ri), R∗ +H1(ID∗, R∗)P0)e(H3(M∗, ID∗, PID∗ , Ri), PID∗).

where
• PID∗ = aP

• H3(M∗, ID∗, PID∗ , Ri) = bP
So we can compute W = σ∗ − h2∗R

∗ − h2∗H1(ID∗, R∗)P0, which gives us:

e(P,W) = e(H3(M∗, ID∗, PID∗ , Ri), PID∗)
= e(bP, aP).

So, W is the answer to our CDHP instance.

5.4 Security of aggregation

To prove the security of aggregation we will use the technique from [BNN06]. Basically we
will reduce forging a single signature to the forgery of an aggregate, thus proving that if the
plain signature scheme is secure, so is its aggregation. An important point of this proof is
that we need our scheme to be secure even if the adversary is provided with a StrongSign
oracle, which is the case of the proof from the previous section. This fact will be crucial for
the proof of security of aggregation.

Let’s assume there is an adversary A capable of forging aggregate signatures. We create
an algorithm B, that uses A to forge a single signature, thus breaking the security of the
signature scheme. B, being an adversary itself, is provided with an attack environment just
like the adversaries in previous proofs of security. It then simulates an attack environment
for A and makes sure that if A is capable of generating an aggregate forgery, B generates
a single forgery. The basic execution of B looks like this:

Certificateless Aggregate Signatures 21

1. B runs and receives the system parameters paramsB;

2. B computes paramsA (possibly equal to paramsB);

3. B runs A with paramsA as parameter;

4. A runs for a polynomial number of steps

• B has to simulate the usual oracles for A, probably using the oracles it (B) was
given as part of the attack.

5. A outputs an aggregate forgery γ∗ with associated lists of users (U∗) and messages
(M∗).

• For the attack to be successful, there must be at least one i such that the signature
of (Ui,Mi) has not been queried by A to the signing oracle and, relative to which,
the conditions of the specific type of attack (Type-I or Type-II adversary) are
respected.

6. B uses γ∗ to create a forgery σ by U∗ on message M∗, such that B has not queried
(U∗,M∗) to its signing oracle.

If we can construct such a B, we prove that aggregate signatures are as secure as single
signatures in our scheme.

Theorem 3. If the standard version of our scheme is secure then so is its aggregate version

Proof. B “simulates” oracle queries simply by forwarding them to the oracles it (B) has
access to. The oracles defined for the single-signature games and for the aggregate-signature
games are exactly the same, and the restrictions on the operation of an aggregate adversary
of each type are the same of those of a single-signature adversary. So, B does not have to
take any special precautions throughout this simulation.

After a valid simulation, A outputs 〈γ∗,U,M〉 as specified above. Let (U∗,M∗) be an
arbitrary pair that has not been queried to the signing oracle by A. We know (eq. 1) that,
if γ∗ is a valid aggregate forgery,

e(P, γ∗) =
∏
ui

e(∑
Mi∈Mui

H2(.), Rui + huiPpub)e(
∑

Mi∈Mui

H3(.), PIDui
))


We will now divide the (ui,mi) pairs in three types:

1. If ui 6= U∗, then i ∈ C1;

2. If ui = U∗ but mi 6= M∗, then i ∈ C2;

3. If ui = U∗ and mi = M∗, then i ∈ C3;

What B does next is “remove” each σi corresponding to i ∈ (C1 ∪C2) from γ∗ by querying
its oracle for signatures σi on (ui,mi) and subtracting them from γ∗. Two features of our
signature scheme guarantee that this procedure works as expected:

22 Castro, R. and Dahab, R.

1. Signatures are not randomized; when B queries its oracle for (ui,mi) it will receive
the only valid σi, making sure that if γ∗ is an aggregate signature on 〈U,M〉, γ∗ − σi

is an aggregate signature on 〈U− ui,M−mi〉.

2. The oracles B has access to are StrongSign oracles; so even if A replaces public keys
for some uj ∈ U and outputs the forgery under these public keys, B can still obtain
valid signatures under these replaced public keys from the StrongSign oracle.

After computing γ′ = γ∗ −
∑

i∈(C1∪C2) σi, B is basically left with (possibly) multiple copies
of the same signature3, because γ′ = kσ∗, where k = |C3|. So, B can easily compute
σ∗ = k−1γ′.

This proves that signature aggregation is secure if the underlying signature scheme is.

5.5 Efficiency

Most known secure certificateless signature schemes require at least 4 pairing computations
for signature verification [LCS05, ZWXF06]. Recently, 2 similar schemes requiring only 1
pairing have proposed in [CPHL07] and [DW07], but doubts have been raised about their
security claims in [CD07]. If these schemes are in fact secure, the biggest atraction of our
scheme would the possibility of aggregating signatures. If they are proven to be insecure,
our scheme would be the most efficient available also on the single-signature case.

Our scheme becomes specially attractive in situations where Type-2 aggregation is desir-
able. Recall that in Type-2 aggregation, an user U wants to sign a set M = {M1,M2, . . . ,Mn}
of messages. We achieve this for the verification-cost of 3 pairings, regardless of how many
messages are aggregated. For Type-3 aggregation (the most general case of all: distinct
signers, multiple messages for each), we still incur in some (processing) overhead, needing
an extra 2 pairings for each distinct signer. Even though the processing overhead highly
depends on the type of aggregation being performed, the scheme is very space efficient:
regardless of the aggregation type, aggregates are constant-size, requiring only one elliptic
curve point.

6 Conclusion

In this paper we presented the first treatment of signature aggregation in certificateless
cryptography. Our scheme uses many ideas from the scheme of [Her06]. In that paper,
however, the author does not deal with the possibility of replacing the public component R
on the proof of security; it is not clear whether R is supposed to be authenticated or not.
Many other certificateless signature schemes have been proposed lately. The first schemes
requiring less than 4 pairing for signature verification have just been proposed in [CPHL07]
and [DW07] but have their security proofs questioned in [CD07]. The security mediated

3Remember that since signatures are deterministic and all elements of C3 are of the form (U∗, M∗), this
must be true.

Certificateless Aggregate Signatures 23

scheme from [YCHG07] looks very promising as the authors claim it can be easily turned
into a certificateless scheme and it requires no pairing computation whatsoever.

To our knowledge, no signature aggregation scheme for certificateless cryptography has
been proposed prior to this work. In this technical report, we developed a suitable security
model for aggregate signatures which is a natural extension of standard models for certifi-
cateless signatures. Then we proposed a scheme suitable for aggregation and proved its
security using the aforementioned model. Our scheme is efficient, requiring 3 pairings for
signature verification and becomes specially attractive for Type-2 aggregation, in which re-
gardless of the number of messages signed, only 3 pairings are needed for verification. This
scheme still leaves however certain questions open, specially whether more efficient schemes
(similar overhead for Type-3 aggregation to what we could get for Type-2 aggregation or
less than 3 pairings for signature verification) can be developed.

References

[ARP03] Sattam S. Al-Riyami and Kenneth G. Paterson. Certificateless public key cryp-
tography. In Chi-Sung Laih, editor, ASIACRYPT, volume 2894 of Lecture Notes
in Computer Science, pages 452–473. Springer, 2003.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in
Computer Science, pages 213–229. Springer, 2001.

[BGSL03] D. Boneh, C. Gentry, H. Shacham, and B. Lynn. Aggregate and verifiably
encrypted signatures from bilinear maps, 2003.

[BNN06] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted
aggregate signatures. Cryptology ePrint Archive, Report 2006/285, 2006.
http://eprint.iacr.org/.

[CD07] Rafael Castro and Ricardo Dahab. Two notes on the security of certificateless
signatures. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, The 1st Interna-
tional Conference on Provable Security (ProvSec) 2007, volume 4784 of Lecture
Notes in Computer Science. Springer, 2007.

[CPHL07] Kyu Young Choi, Jong Hwan Park, Jung Yeon Hwang, and Dong Hoon Lee.
Efficient certificateless signature schemes. In Katz and Yung [KY07], pages
443–458.

[Den06] Alexander W. Dent. A survey of certificateless encryption schemes and security
models. Cryptology ePrint Archive, Report 2006/211, 2006.

[DW07] Hongzhen Du and Qiaoyan Wen. Efficient and provably-secure certificateless
short signature scheme from bilinear pairings. Cryptology ePrint Archive, Re-
port 2007/250, 2007. http://eprint.iacr.org/.

24 Castro, R. and Dahab, R.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ron L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

[Her06] Javier Herranz. Deterministic identity-based signatures for partial aggregation.
Comput. J., 49(3):322–330, 2006.

[HWZD06] Bessie C. Hu, Duncan S. Wong, Zhenfeng Zhang, and Xiaotie Deng. Key re-
placement attack against a generic construction of certificateless signature. In
Lynn Margaret Batten and Reihaneh Safavi-Naini, editors, ACISP, volume 4058
of Lecture Notes in Computer Science, pages 235–246. Springer, 2006.

[HWZD07] Bessie C. Hu, Duncan S. Wong, Zhenfeng Zhang, and Xiaotie Deng. Certifi-
cateless signature: a new security model and an improved generic construction.
Des. Codes Cryptography, 42(2):109–126, 2007.

[IN83] K. Itakura and K. Nakamura. A public key cryptosystem suitable for digital
multisignatures. In NEC Research & Development, volume 71, pages 1–8, 1983.

[KY07] Jonathan Katz and Moti Yung, editors. Applied Cryptography and Network
Security, 5th International Conference, ACNS 2007, Zhuhai, China, June 5-8,
2007, Proceedings, volume 4521 of Lecture Notes in Computer Science. Springer,
2007.

[LCS05] X. Li, K. Chen, and L. Sun. Certificateless signature and proxy signature
schemes from bilinear pairings. Lithuanian Mathematical Journal, 45(1):76–83,
2005.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. Journal of Cryptology: the journal of the International
Association for Cryptologic Research, 13(3):361–396, 2000.

[Sco05] Michael Scott. Computing the tate pairing. In Alfred Menezes, editor, CT-RSA,
volume 3376 of Lecture Notes in Computer Science, pages 293–304. Springer,
2005.

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceed-
ings of CRYPTO 84 on Advances in cryptology, pages 47–53, New York, NY,
USA, 1985. Springer-Verlag New York, Inc.

[YCHG07] Wun-She Yap, Sherman S. M. Chow, Swee-Huay Heng, and Bok-Min Goi. Se-
curity mediated certificateless signatures. In Katz and Yung [KY07], pages
459–477.

[ZWXF06] Zhenfeng Zhang, Duncan S. Wong, Jing Xu, and Dengguo Feng. Certificateless
public-key signature: Security model and efficient construction. In Jianying
Zhou, Moti Yung, and Feng Bao, editors, ACNS, volume 3989 of Lecture Notes
in Computer Science, pages 293–308, 2006.

