Precise Concurrent Zero Knowledge

Omkant Pandey* Rafael Pass' Amit Sahai* Wei-Lung Dustin Tseng!

Muthuramakrishnan Venkitasubramaniam?

Abstract

Precise zero knowledge introduced by Micali and Pass (STOC’06) guarantees that the view
of any verifier V' can be simulated in time closely related to the actual (as opposed to worst-
case) time spent by V in the generated view. We provide the first constructions of precise
concurrent zero-knowledge protocols. Our constructions have essentially optimal precision; con-
sequently this improves also upon the previously tightest non-precise concurrent zero-knowledge
protocols by Kilian and Petrank (STOC’01) and Prabhakaran, Rosen and Sahai (FOCS’02)
whose simulators have a quadratic worst-case overhead. Additionally, we achieve a statistically-
precise concurrent zero-knowledge property—which requires simulation of unbounded verifiers
participating in an unbounded number of concurrent executions; as such we obtain the first
(even non-precise) concurrent zero-knowledge protocols which handle verifiers participating in
a super-polynomial number of concurrent executions.

1 Introduction

Zero-knowledge interactive proofs, introduced by Goldwasser, Micali and Rackoff [GMRS5] are
constructs allowing one player (called the Prover) to convince another player (called the Verifier)
of the validity of a mathematical statement x € L, while providing no additional knowledge to the
Verifier. The zero-knowledge property is formalized by requiring that the view of any PPT verifier
V in an interaction with a prover can be “indistinguishably reconstructed” by a PPT simulator
S, interacting with no one, on input just x. Since whatever V' “sees” in the interaction can be
reconstructed by the simulator, the interaction does not yield anything to V' that cannot already be
computed with just the input x. Because the simulator is allowed to be an arbitrary PPT machine,
this traditional notion of ZK only guarantees that the class of PPT verifiers learn nothing. To
measure the knowledge gained by a particular verifier, Goldreich, Micali and Wigderson [GMW87]
(see also [Gol01]) put forward the notion of knowledge tightness: intuitively, the “tightness” of a
simulation is a function relating the (worst-case) running-time of the verifier and the (expected)
running-time of the simulator—thus, in a knowledge-tight ZK proof, the verifier is guaranteed not
to gain more knowledge than what it could have computed in time closely related to its worst-case
running-time.

*University of California Los Angeles, California. Contact: {omkant, sahai}@cs.ucla.edu. This research was
supported in part by NSF ITR and Cybertrust programs (including grants 0627781, 0456717, 0716389, and 0205594),
a subgrant from SRI as part of the Army Cyber-TA program, an equipment grant from Intel, an Okawa Research
Award, and an Alfred P. Sloan Foundation Research Fellowship. First author was supported in part from third
author’s grants.

fCornell University, New York. Contact: {rafael, wdtseng, vmuthu}@cs.cornell.edu. This material is based
upon work supported under a I3P Identity Management and Privacy Grant, a National Science Foundation Graduate
Research Fellowship, and a NSERC Canada Julie-Payette Fellowship.

Micali and Pass [MPO06] recently introduced the notion of precise zero knowledge (originally
called local ZK in [MPO6]). In contrast to traditional ZK (and also knowledge-tight ZK), precise
ZK considers the knowledge of an individual verifier in an individual execution—it requires that the
view of any verifier V', in which V takes ¢ computational steps, can be reconstructed in time closely
related to t—say 2t steps. More generally, we say that a zero-knowledge proof has precision p(-, -)
if the simulator uses at most p(n,t) steps to output a view in which V' takes ¢ steps on common
input an instance x € {0, 1}".

This notion thus guarantees that the verifier does not learn more than what can be computed in
time closely related to the actual time it spent in an interaction with the prover. Such a guarantee
is important, for instance, when considering knowledge of “semi-easy” properties of the instance
x, considering proofs for “semi-easy” languages L, or when considering deniability of interactive
protocols (see [MP06, Pas06] for more discussion).

The notion of precise ZK, however, only considers verifiers in a stand-alone execution. A more
realistic model introduced by Dwork, Naor and Sahai [DNS98], instead considers the execution of
zero-knowledge proofs in an asynchronous and concurrent setting. More precisely, we consider a
single adversary mounting a coordinated attack by acting as a verifier in many concurrent sessions
of the same protocol. Concurrent zero-knowledge proofs are significantly harder to construct and
analyze.

Richardson and Kilian [RK99] constructed the first concurrent zero-knowledge argument in the
standard model (without any extra set-up assumptions). Their protocol requires O(n€) number
of rounds. Kilian and Petrank [KP01] later improved the round complexity to O(log?n). Finally,
Prabhakaran, Rosen and Sahai [PRS02] provided a tighter analyis of the [KP01] simulator showing
that O(logn) rounds are sufficient. However, none of the simulators exhibited for these protocols
are precise, leaving open the following question:

Do there exist precise concurrent zero-knowledge proofs (or arguments)?

In fact, the simulators of [RK99, KP01, PRS02] are not only imprecise, but even the overhead
of the simulator with respect to the worst-case running-time of the verifier—as in the definition of
knowledge tightness—is high. The simulator of [RK99] had worst-case precision p(n,t) = tO0108t) —
namely, the running-time of their simulator for a verifier V' with worst-case running-time ¢ is p(n, t)
on input a statement z € {0,1}". This was significantely improved by [KP01] who obtained a
quadratic worst-case precision, namely p(n,t) = O(t?); the later result by [PRS02] did not improve
upon this, leaving open the following question:

Do there exist concurrent zero-knowledge arguments (or proofs) with sub-quadratic worst-
case precision?

Our Results. Our main result answers both of the above questions in the affirmative. In fact, we
present concurrent zero-knowledge protocols with essentially optimal precision. Our main lemma
shows the following.

Lemma 1 (Main Lemma). Assuming the existence of one-way functions, for every k,g € N such
that k/g € w(logn), there exists an O(k)-round concurrent zero knowledge argument with precision
p(t) € O(t - 2°%¢Y) for all languages in N'P.

By setting k£ and g appropriately, we obtain a simulation with near-optimal precision.

Theorem 1. Assuming the existence of one-way functions, for every e > 0, there ezists a w(logn)-
round concurrent zero knowledge argument for all languages in N'P with precision p(t) = O(t1+).

Theorem 2. Assuming the existence of one-way functions, for every ¢ > 0, there exists an
O(n®)-round concurrent zero knowledge argument for all languages in NP with precision p(t) =
O(tQ%IOg"t). As a corollary, we obtain the following: For every e > 0, there exists an O(nf)-round
protocol (P, V') such that for every ¢ > 0, (P,V) is a concurrent zero knowledge argument with
precision p(n,t) = O(t) with respect to verifiers with running time bounded by n for all languages

in NP.

Finally, we also construct statistically-precise concurrent ZK arguments for all of NP, which
requires simulation of all verifiers, even those having a priori unbounded running time.

Theorem 3. Assume the existence of claw-free permutations, then there exists a poly(n)-round

1
statistically precise concurrent zero-knowledge argument for all of N'P with precision p(t) = H Togm

As far as we know, this is the first (even non-precise) concurrent ZK protocol which handles
verifiers participating in an unbounded number of executions. Previous work on statistical concur-
rent ZK also considers verifiers with an unbounded running-time; however, those simulations break
down if the verifier can participate in a super-polynomial number of executions.

Our Techniques. Micali and Pass show that only trivial languages have black-box simulator with
polynomial precision [MPO06]. To obtain precise simulation, they instead “time” the verifier and
then try to “cut off” the verifier whenever it attempts to run for too long. A first approach would be
to adapt this technique to the simulators of [RK99, KP01, PRS02]. However, a direct application
of this cut-off technique breaks down the correctness proof of these simulators.

To circumvent this problem, we instead introduce a new simulation technique, which rewinds
the verifier obliviously based on time. In a sense, our simulator is not only oblivious of the content of
the messages sent by the verifier (as the simulator by [KP01]), but also oblivious to when messages
are sent by the verifier!

The way our simulator performs rewindings relies on the rewinding schedule of [KP01], and our
analysis relies on that of [PRS02]. However, obtaining our results requires us to both modify and
generalize this rewinding schedule and therefore also change the analysis. In fact, we cannot use
the same rewinding schedule as KP/PRS as this yields at best a quadratic worst-case precision.

2 Definitions and Preliminaries

Notation. Let L denote an NP language and Ry, the corresponding NP-relation. Let (P,V) denote
an interactive proof (argument) system where P and V are the prover and verifier algorithms
respectively. By V*(z, z, ®) we denote a non-uniform concurrent adversarial verifier with common
input z and auxiliary input (or advice) z whose random coins are fixed to a sufficiently long string
chosen uniformly at random; P(x,w, e) is defined analogously where w € Ry (z).

Note that V* is a concurrent adversarial verifier. Formally, it means the following. Adversary
V*, given an input = € L, interacts with an unbounded number of independent copies of P (all on
common input x)!. An execution of a protocol between a copy of P and V* is called a session.
Adversary V* can interact with all the copies at the same time (i.e., concurrently), interleaving
messages from various sessions in any order it wants. That is, V* has control over the scheduling

1We remark that instead of a single fixed theorem x, V* can be allowed to adaptively choose provers with different
theorems z’. For ease of notation, we choose a single theorem z for all copies of P. This is not actually a restriction
and our results hold even when V* adaptively chooses different theorems.

of messages from various sessions. In order to implement a scheduling, V* concatenates each
message with the session number to which the next scheduled message belongs. The prover copy
corresponding to that session then immediately replies to the verifier message as specified by the
protocol. The view of concurrent adversary V* in a concurrent execution consists of the common
input x, the sequence of prover and verifier messages exchanged during the interaction, and the
contents of the random tape of V*.

Let VIEWy«(, . 4) be the random variable denoting the view of V*(z, 2,) in a concurrent inter-
action with the copies of P(x,w,e). Let VIEWg ,(,.4) denote the view output by the simulator.
When the simulator’s random tape is fized to r, its output is instead denoted by VIEWs, (4.1
Finally, let TSV*(%Z’T) denote the steps taken by the simulator and let Ty« (VIEW) denote the steps
taken by V* in the view VIEW. For ease of notation, we will use VIEWy« to abbreviate VIEWy»(, . o),
and VIEWs,,, to abbreviate VIEWg . (s . 4), Whenever it is clear from the context.

Definition 1 (Precise Concurrent Zero Knowledge). Let p : N x N — N be a monotonically
increasing function. (P,V) is a concurrent zero knowledge proof (argument) system with precision
p if for every non-uniform probabilistic polynomial time V*, the following conditions hold:

1. For all x € L, z € {0,1}*, the following distributions are computationally indistinguishable
over L:

{VIEWV*(:E’Z,)} and {VIEWSV* (gc,z,o)}

2. Forallx € L, z € {0,1}*, and every sufficiently long r € {0,1}*, it holds that:
Tsv* (z,2,r) < P(‘$|, Ty~ (VIEWSV* (a:,z,r)))'

When there is no restriction on the running time of V* and the first condition requires the two
distributions to be statistically close (resp., identical), we say (P, V) is statistical (resp., perfect)
zero knowledge.

Next, we briefly describe some of the cryptographic tools used in our construction.

Special Honest Verifier Zero Knowledge (HVZK). A (three round) protocol is special-
HVZK if, given the verifier’s challenge in advance, the simulator can construct the first and the last
message of the protocol such that the simulated view is computationally indistinguishable from the
real view of an honest verifier. The Blum-Hamiltonicity protocol [Blu87] used in our construction
is special-HVZK. When the simulated view is identical to the real view, we say the protocol is
perfect-special- HVZK.

View Simulation. We assume familarity with the notion of “simulating the verifier’s view”. In
particular, one can fix the random tape of the adversarial verifier V* during simulation, and treat
V* as a deterministic machine.

Perfectly /Statistically Binding Commitments. An (interactive) perfectly /statistically bind-
ing commitment scheme is a protocol between a “sender” (with input a value v) and a “receiver”
(with no inputs) with two phases: Commit and Decommit. At the end of commit phase, the sender
is committed to the value v. Later, the sender can use the decommit phase to demonstrate that it
committed to the value v in the commit phase. We say that the scheme is “perfectly/statistically
binding and computationally hiding” if the following two properties hold:

Perfectly /Statistically Binding. The scheme is perfectly (resp., statistically) binding if, after
the commit phase, even a computationally unbounded sender cannot convincingly decommit

to two different values v # v with probability more than zero (resp., negligible in the security
parameter).

Computationally Hiding. The scheme is said to be computationally hiding if, after the commit
phase, a probabilistic polynomial time receiver cannot differentiate between the commitments
of any two values vy and v; with probability negligibly more than 1/2 (in the security para-
meter). This holds even if the values vy, v; are chosen by the receiver.

Such commitment schemes are known based on the existence of one way function [Nao91, HILL99].
Naor’s scheme has a two round commit phase where the first message is sent by the receiver.
Thereafter, the sender can create the commitment using a randomized algorithm, denoted ¢ «—
COMpg(v). The decommitment phase is only one round, in which the sender simply sends v and
the randomness used, to the receiver. This will be denoted by (v, r) «+— DCOMpg(c).

3 Our Protocol

We describe our Precise Concurrent Zero-Knowledge Argument, PCZK, in Figure 1. It is a slight
variant of the PRS-protocol [PRS02]; in fact, the only difference is that we pad each verifier message
with the string 0' if our zero knowledge simulator (found in Figure 5) requires [steps of computation
to produce the next message (I grows with the size of x). For simplicity, we use perfectly binding
commitments in PCZK, although it suffices to use statistically binding commitments, which in turn
rely on the existence of one way functions. The parameter k determines the round complexity of
PCZK.

Since our PCZK-protocol is just an instantiation of the PRS-protocol (with extra padding), it
is both complete and sound.

4 Owur Simulator and its Analysis

4.1 Overview

At a high level, our simulator receives several opportunities to rewind the verifier and extract the
“trapdoor” o that will allow it to complete the simulation. More precisely, our simulator will
attempt to rewind the verifier in one of the k “slots” (i.e. a message pair ((Pj), (Vj))) in the first
stage. If at any point it obtains the decommitment information for two different challenges (Pj),
the simulator can extract the secret o (that the verifier sends in the Stage 2) and simulate the rest
of the protocol using the special-HVZK property of the BH-protocol.

To handle concurrency and precision, consider first the KP/PRS simulator. This simulator
relies on a static and oblivious rewinding schedule, where the simulator rewinds the verifier after
some fixed number of messages, independent of the message content. Specifically, the total number
of verifier messages over all sessions are divided into two halves. The KP/PRS-rewinding schedule
recursively invokes itself on each of the halves twice (completing two runs of the first half before
proceeding to the two runs of the second half). The first run of each half is called the primary
thread, and the latter is called the secondary thread. As shown in [KP01, PRS02], after the verifier
commits to o in any given session s, the KP/PRS-simulator gets several opportunities to extract
it before Stage 2 of session s begins. We also call the thread of execution in the final output by the
simulator the main thread. The KP/PRS-simulator keeps uses the secondary threads (recursively)
as the main thread; all other threads, used to gather useful information for extracting o, are called

PCZK(k): A Protocol for Precise Concurrent Zero Knowledge Arguments.
All verifier messages are padded with the string 0' where [is the running time required by our simulator
(Figure 5) to compute the next prover message.

(Stage 1)
PO: Select the first message of the perfectly binding commitment scheme (COMpg, DCOM;g) and send it
to V.
VO: Select o & {0,1}™ and set 3 — COMpg(c). Now select strings oy, £ 40,1} and i ; — {0,1}" such
that agj @ail,j =o,fori,j=1,2,...,k (total 2k? strings). Create commitments 63]‘ — COMPB(J%)
for all values of 7,5 and b =0,1. Send S, {ﬂ?,j}ﬁj:p {ﬁll] ﬁj:lv to P.

For j =1,2,...,k proceed as follows.
Pj: Select r; € {0,1}* uniformly at random and send it to the verifier.

Vj: Let r; ; denote the i*? bit of r;. Then, send 02 j (resp., O’ij) and the decommitment information

of 8; (resp., B;), if 7 j = 0 (resp., if r; j = 1) to the prover.

(Stage 2)

p1: If V failed to properly decommit in Step Vj, for any j € [k], abort the protocol. Otherwise, run n
parallel and independent copies of BH-prover (Figure 2) and send the n prover messages p1 to the
verifier.

vi: Reveal the challenge ¢ and send decommitment information for all commitments which are un-
opened so far. Each bit of o can be thought of as verifier’s challenge in Step vi of BH-protocol.

p2: Prover verifies that all the decommitments are proper and that o = 02 ;@ 01»17 ;- 1f yes, execute the
step p2 for each of the n parallel copies of the BH-protocol.

v2: Verify each of the n parallel proofs as described in v2. If all n v2 steps are accepting, accept the
proof, otherwise reject the proof.

Figure 1: Our Precise Concurrent Zero Knowledge Protocol.

look-ahead threads. However, since the verifier’s running time in look-ahead threads could be
significantly longer than its running time in the main thread, the KP/PRS-simulator is not precise.

On the other hand, consider the precise simulation by Micali and Pass [MP06]. When rewinding
a verifier, the MP simulator cuts off the second run of the verifier if it takes more time than the
first run, and outputs the view of the verifier on the first run. Consequently, the running time
of the simulator is proportional to the running time of the verifier on the output view. In order
to apply the MP “cut” strategy on top of the KP/PRS-simulator, we need to use the primary
thread (recursively) as the main output thread, and “cut” the secondary thread with respect to
the primary thread. However, this cut-off will cause the simulator to abort more often, which
significantly complicates the analysis.

To circumvent the above problems, we introduce a new simulation technique. For simplicity,
we first present a simulator that knows an upper bound to the running-time of the verifier. Later,
using a standard “doubling” argument, we remove this assumption. Like the KP/PRS-rewinding
schedule, our simulator is oblivious of the verifier. But instead of rewinding based on the number
of messages sent, we instead rewind based on the number of steps taken by the verifier (and thus

The BLum-HaMILTONICITY (BH) Protocol [Blu87].

—

p1: Choose a random permutation m of vertices V. Commit to the adjacency matrix of the permuted
graph, denoted 7(G), and the permutation 7, using a perfectly binding commitment scheme. Notice
that the adjacency matrix of the permuted graph contains a 1 in position (7 (¢),7(j)) if (i,5) € E.
Send both the commitments to the verifier.

vi: Select a bit o € {0,1}, called the challenge, uniformly at random and send it to the prover.

p2: If 0 = 0, send 7 along with the decommitment information of all commitments. If 0 = 1 (or
anything else), decommit all entries (7 (¢),n(j)) with (i,j) € C by sending the decommitment
information for the corresponding commitments.

v2: If o = 0, verify that the revealed graph is identical to the graph 7 (G) obtained by applying the
revealed permutation 7 to the common input G. If o = 1, verify that all the revealed values are 1
and that they form a cycle of length n. In both cases, verify that all the revealed commitments are
correct using the decommitment information received. If the corresponding conditions are satisfied,
accept the proof, otherwise reject the proof.

Figure 2: The Blum-Hamiltonicity protocol used in PCZK

this simulator is oblivious not only to the content of the messages sent by the verifier, but also to
the time when these messages are sent!). In more detail, our simulator divides the total running
time T of V* into two halves and executes itself recursively on each half twice. In each half, we
execute the primary and secondary threads in parallel. As we show later, this approach results in
a simulation with quadratic precision.

To improve the precision, we further generalize the KP/PRS rewinding schedule. Instead of
dividing T" into two halves, we instead consider a simulator that divides T into g parts, where
g is called the splitting factor. By choosing g appropriately, we are able to provide precision
p(t) € O(t'°) for every constant e. Furthermore, we show how to achieve essentially linear precision
by adjusting both k (the round complexity of our protocol) and g appropriately.

4.2 Worst Case Quadratic Simulation

We first describe a procedure that takes as input a parameter ¢ and simulates the view of the verifier
for t steps. The SIMULATE procedure described in Figure 3 employs the KP rewinding method with
the changes discussed earlier. In Stage 1, SIMULATE simply generates uniformly random messages.
SIMULATE attempts to extract ¢ using rewindings, and uses the special honest-verifier ZK property
of the BH protocol to generate Stage 2 messages. If the extraction of ¢ fails, it outputs L. The
parameter st is the state of V* from which the simulation should start, and the parameter H is
simply a global history of all “useful messages” for extracting o.2
Let stg be the initial state of V* and d = d; be the maximum recursion depth of SIMULATE(Z, sto, 0).

The actual precise simulator constructed in the next section uses SIMULATE as a sub-routine, for
which we show some properties below. In Proposition 2, we show that SIMULATE(Z,sto, () has a
worst case running time of O(t?), and in Proposition 3 we show that SIMULATE outputs | with
negligible probability.

“For a careful treatment of H, see [Ros04].
3In the case where ¢ does not divide evenly into two, we use [t/2] + 1 in step (2a), and [t/2] in step (2b).

The SIMULATE(t, st, H) Procedure.
1 Ift =1,

(a) If the next scheduled message, p,, is a first stage prover message, choose p, uniformly.
Otherwise, if p,, is a second stage prover message, compute p, using the PROVE procedure
(Figure 4). Feed p,, to the verifier. If the next scheduled message is verifier’s message, run
the verifier from its current state st for exactly 1 step. If an output is received then set
vy — V*(hist,p,,). Further, if v, is a first stage verifier message, store v,, in H.

(b) Update st to the current state of V*. Output (st, H).
2. Otherwise (i.e., t > 1),

(a) Execute the following two processes in parallel:
i. (st1,H1) < SIMULATE(¢/2,st,H). (primary process)
il. (sta,H2) < SIMULATE(t/2,st,H). (secondary process)
Merge H; and Hs. Set the resulting table equal to H.
(b) Next, execute the following two processes in parallel, starting from sty
i. (st3, H3) < SIMULATE(¢/2,sty,H). (primary process)
ii. (sts,H4) < SIMULATE(t/2,st1, H)3. (secondary process)

(¢) Merge H3 and Hy. Set the resulting table equal to H.
Output (stz, H) and the view of V* on the thread connecting st, st;, and sts.

Figure 3: The time-based oblivious simulator

Proposition 2 (Running Time of SIMULATE). SIMULATE(t, -, -) has worst-case running time O(t?).

Proof. We partition the running time of SIMULATE into the time spent emulating V*, and the time
spent simulating the prover (i.e. generating prover messages). By construction, SIMULATE(Z, -, -)
spends time at most ¢ emulating V* on main thread. Furthermore, the number of parallel executions
double per level of recursion. Thus, the time spent in simulating V* by SIMULATE(t, -,-) is ¢ - 24,
where the d is the maximum depth of recursion. Since d = d; = [logyt| < 1+ logy t, we conclude
that SIMULATE spends at most 2% steps emulating V*. To compute the time spent simulating
the prover, recall that the verifier pads each messages with 0! if the SIMULATE requires [steps of
computation to generate the next message. Therefore, SIMULATE always spends less time simulating
the prover than V* giving us a bound of 2 - 2t = 4¢? on the total running time. O

Proposition 3. The probability that SIMULATE outputs L is negligible in n.

Proof. The high-level structure of our proof follows the proof of PRS. We observe that SIMULATE
outputs L only when it tries to generate Stage 2 messages. We show in Lemma 4 that for each
session, the probability of outputting L for the first time on any thread is negligible. Since SIMULATE
only runs for polynomial time, there are at most polynomial sessions and threads.* Therefore, we
conclude using the union bound that SIMULATE outputs L with negligible probability.

4 We will reexamine this claim in section 5, where simulation time is (a priori) unbounded.

The PROVE Procedure.

Let s € [m] be the session for which the prove procedure is invoked. The procedure outputs either p1 or
p2, whichever is required by Sy,.. Let hist denote the set of messages exchanged between S,,. and V* in
the current thread. The PROVE procedure works as follows.

1. If the verifier has aborted in any of the k first stage messages of session s (i.e., hist contains
Vj=ABORT for j € [k] of session s), abort session s.

2. Otherwise, search the table H to find values 0‘8 o 0117 ; belonging to session s, for some 7,5 € [k]. If
no such pairs are found, output L (indicating failure of the simulation). Otherwise, extract the

challenge 0 = 0103 ...0, as 0} ; ® 0} ;, and proceed as follows.

(a) If the next scheduled message is p1, then for each h € [n] act as follows. If o, = 0, act

according to Step pi of BH-protocol. Otherwise (i.e., if o, = 1), commit to the entries of
the adjacency matrix of the complete graph K,, and to a random permutation 7.

(b) Otherwise (i.e., the next scheduled message is p2), check (in hist) that the verifier has properly
decommitted to all relevant values (and that the A" bit of 0? ® crjl» equals oy, for all j € [k])
and abort otherwise.

For each h € [n] act as follows. If o, = 0, decommit to all the commitments (i.e., 7 and the
adjacency matrix). Otherwise (i.e., if o, = 1), decommit only to the entries (7(4), 7(j)) with
(i,j) € C where C is an arbitrary Hamiltonian cycle in K,,.

Figure 4: The PROVE Procedure used by SIMULATE for Stage 2 messages

Lemma 4. For any session sy and any thread ly (called the reference session and the reference
thread), the probability that session sy and thread ly is the first time SIMULATE oulputs L is negli-
gible.

Proof. Recall that for SIMULATE to extract o, V* needs to reply to two different challenges (Pj)
with corresponding (Vj) messages (j > 1) (after V* has already committed to o). Since SIMU-
LATE generates only polynomially many uniformly random (Pj) messages, the probability of any
two challenge being identical is exponentially small in n. Therefore, it is sufficient to bound the
probability conditioned on SIMULATE never repeating the same challenge.’

We now proceed using a random-tape counting argument similar to PRS. For a fixed session sg
and thread [y, we call a random tape p bad, if running SIMULATE with that random tape makes it
output L first on session sy in thread ly. The random tape is called good otherwise. As in PRS,
we show that every bad random tape can be mapped to a set of super-polynomially many good
random tapes. Furthermore, this set of good random tapes is unique. Such a mapping implies that
the probability of a random tape being bad is negligible. Towards this goal, we provide a mapping
f that takes a bad random tape to a set of good random tapes.

To construct f, we need some properties of good and bad random tapes. We call a slot (i.e. a
message pair ((Pj), (Vj))) good if the verifier does not ABORT on this challenge. Then:

1. When SIMULATE uses a bad random tape, all k£ slots of session sg on thread [y are good.
(Otherwise, SIMULATE can legitimately abort session sy without outputting L.)

5
°As in footnote 4, we will reexamine this claim in section 5, where simulation time is unbounded.

2. A random tape is good if there is a good slot such that (1) it is on a non-reference thread
[# lp, (2) it occurs after V* has committed to o with message (VO0) on thread Iy, and (3) it
occurs before the Stage 2 message (p1) takes place on thread ly. This good slot guarantees
that SIMULATE can extract o if needed.

Properties 1 and 2 together give the following insight: Given a bad tape, “moving” a good slot
from the reference thread g to a non-reference thread produces a good random tape. Moreover,
the rewind-schedule of SIMULATE enables us to “swap” slots across threads by swapping segments
of SIMULATE’s random tape. Specifically, whenever SIMULATE splits into primary and secondary
processes, the two processes share the same start state, and are simulated for the same number
of steps in parallel; swapping their random tapes would swap the simulation results on the corre-
sponding threads®.

We define a rewinding interval to be a recursive execution of SIMULATE on the reference thread
lo that contains a slot, i.e. a ((Pj), (Vj))-pair, but does not contain the initial message (V0) or the
Stage 2 message (p1). A minimal rewinding interval is defined to be a rewinding interval where
none of its children intervals (i.e. smaller recursive executions of SIMULATE on ly) contain the same
slot (i.e. both (Pj) and (Vj)). Following the intuition mentioned above, swapping the randomness
of a rewinding interval with its corresponding intervals on non-reference threads will generate a
good tape (shown in Claim 3).

We next construct the mapping f to carry out the swapping of rewinding intervals in a structured
way. Intuitively, f finds disjoint subsets of minimal rewinding intervals and performs the swapping
operation on them. The f we use here is exactly the same mapping constructed in PRS (see Figure
5.4 of [Ros04], or the appendix for a more detailed description). Even though our simulator differs
from that of PRS, the mapping f works on any simulator satisfying the following two properties: (1)
Each rewinding is executed twice. (2) Any two rewindings are either disjoint or one is completely
contained in the other.

We proceed to give four properties of f. Claim 1 bounds the number of random tapes produced
by f based on the number of minimal rewinding intervals, while Claim 2 shows that f maps different
bad tapes to disjoint sets of tapes. Both these properties of f syntactically follows by using the
same proof of PRS for any simulator that satisfy the two properties mentioned above and we inherit
them directly. In the following claims, p denotes a bad random tape.

Claim 1 (f produces many tapes). |f(p)| > 289, where k' is the number of minimal rewinding
intervals and d is the mazximum number of intervals that can overlap with each other.

Remark: We reuse the symbol d since the maximum number of intervals that can overlap each
other is just the maximum depth of recursion.

Claim 2 (f produces disjoint sets of tapes). If p' # p is another bad tape, f(p) and f(p') are
disjoint.

Proof. These two claims were the crux of [PRS02, Ros04]. See Claim 5.4.12 and Claim 5.4.11 in
[Ros04], for more details. We remark that Claim 1 is proved with an elaborate counting argument.
Claim 2, on the other hand, is proved by constructing an “inverse” of f based on the following
observation. On a bad tape, good slots appear only on the reference thread ly. Therefore, given a
tape produced by f, one can locate the minimal intervals swapped by f by searching for good slots
on non-reference threads, and invert those swappings. O

6V* is assumed to be deterministic.

10

In Claim 3 we show that, the tapes produced by f are good, while Claim 4 counts the number
of minimal rewinding intervals. These two claims depend on how SIMULATE recursively calls itself
and hence we cannot refer to PRS for the proof of these two claims; nevertheless, they do hold with
respect to our simulator as we prove below.

Claim 3 (f produces good tapes). The set f(p)\{p} contains only good tapes (for SIMULATE).

Proof. This claim depends on the order in which simulate executes its recursive calls, since that in
turn determines when o extracted. The proof of this claim by PRS (see Claim 5.4.10 in [Ros04])
requires the main thread of the simulator to be executed after the look-ahead threads. SIMULATE,
however, runs the two executions in parallel. Nevertheless, we provide an alternative proof that
handles such a parallel rewinding.

Consider p' € f(p), p' # p. Let I be the first minimal rewinding interval swapped by f, and let
J be the corresponding interval where [is swapped to. Since [is the first interval to be swapped,
the contents of I and J are exchanged on p’ (while later intervals may be entirely changed due to
this swap). Observe that after swapping, the ((Pj), (Vj)) message pair that originally occurred in
I will now appear on a non-reference thread inside J. Now, there are two cases depending on J:

Case 1: J does not contain the first Stage 2 message (p1) before the swap. After swap-
ping the random tapes, (p1) would occur on the reference thread after executing both I and
J. By property 2, we arrive at a good tape.

Case 2: J contains the first Stage 2 message (p1) before the swap. By the definition of a
bad random tape, SIMULATE gets stuck for the first time on the reference thread after I and
J are executed; Consequently, after swapping the random tape, SIMULATE will not get stuck
during I. SIMULATE also cannot get stuck later on thread [y, again due to property 2. In this
case, we also arrive at a good tape.

O]

Claim 4. There are at least k' = k — 2d minimal rewinding intervals for session sg on thread ly
(for SIMULATE).

Proof. This claim depends on the number of recursive calls made by SIMULATE. For now, SIMULATE(, -, -)
splits ¢ into two halves just like in PRS, thus this result follows using the same proof as in PRS.
Later, in Claim 8, we provide a self-contained proof of this fact in a more general setting. O

Concluding proof of Lemma 4: It follows from Claims 1, 2, 3 and 4 that every bad tape is
mapped to a unique set of at least 2573 good random tapes. Hence, the probability that a random
tape is bad is at most

1
9k—3d
Recall that d = [log, T'] € O(logn), since T is a polynomial in n. Therefore, the probability of a
bad tape occurring is negligible if k£ € w(logn). O
This concludes the proof of Proposition 3. O

11

4.3 Precise Quadratic Simulation

Recall that SIMULATE takes as input ¢, and simulates the verifier for ¢ steps. Since the actual
simulator S,,. (described in Figure 5) does not know a priori the running time of the verifier, it
calls SIMULATE with increasing values of £, doubling every time SIMULATE returns an incomplete
view. On the other hand, should SIMULATE ever output L, S,,. will immediately output L as will
and terminate. Also, §),. runs SIMULATE with two random tapes, one of which is used exclusively
whenever SIMULATE is on the main thread. Since, Sy. uses the same tape every time it calls
SIMULATE, the view of V* on the main thread proceeds identically in all the calls to SIMULATE.

Sy (p1, p2), where p; and py are random tapes.
1. Set = 1, st = initial state of V*, H = ().
2. While SIMULATE did not generate a full view of V*:
(a) £« 2t

(b) run SIMULATE(,st,), (p1, p2)), where random tape p; is exclusively used to simulate the
verifier on the main thread, and random tape ps is used for all other threads.

(¢) output L if SIMULATE outputs L

3. Output the full view V* (i.e., random coins and messages exchanged) generated on the final run of
SIMULATE(t, st, ()

Figure 5: The Quadratically Precise Simulator.

Lemma 5 (Concurrent Zero Knowledge). The ensembles {VIEWs,,. (z,z)} . and

zeL,z€{0,1}
{VIEWY (2, 2)} e, se g0y are computationally indistinguishable over L.

Proof. We consider the following “intermediate” simulator S’ that on input x (and auxiliary input
z), proceeds just like S (which in turn behaves like an honest prover) in order to generate messages
in Stage 1 of the view. Upon entering Stage 2, S’ outputs L if S does; otherwise, S’ proceeds as
an honest prover in order to generate messages in Stage 2 of the view. Indistinguishability of the
simulation by S then follows from the following two claims:

Claim 5. The ensembles {VIEWS{;* (z,2) }aer,ze{o1) and {VIEWy«(z,2) }ser,ze{0,1) are statisti-
cally close over L.

Proof. We consider another intermediate simulator S” that proceeds identically like S’ except that
whenever &’ outputs L in a Stage 2 message, S’ instead continues simulating like an honest prover.
Essentially, 8” never fails. Since 8" calls SIMULATE for several values of ¢, this can skew the
distribution. However, recall that the random tape fed by S” into SIMULATE to simulate the view
on the main thread is identical for every call. Therefore, the view on the main thread of SIMULATE
proceeds identically in every call to SIMULATE. Thus, it follows from the fact that the Stage 1
messages are generated uniform at random and that S” proceeds as the honest prover in Stage 2,
the view output by 8” and the view of V* are identically distributed.

It remains to show that view output by &’ and S” are statistically close over L. The only
difference between S’ and S” is that S’ outputs L sometimes. It suffices to show that S’ outputs
L with negligible probability. From Proposition 3, we know that SIMULATE outputs L only with

12

negligible probability. Since SIMULATE is called at most logarithmically many times due to the
doubling of ¢, using the union bound we conclude that 8" outputs L with negligible probability. [J

Claim 6. The ensembles {VIEWs,,, (7, 2) }ser 2e{0,1}+ and {VIEWS{;* (z,2) }eer,2e{0,1)+ are compu-
tationally indistinguishable over L.

Proof. The only difference between S and &’ is in the manner in which the Stage 2 messages
are generated. Indistinguishability follows from the special honest-verifier ZK property using a
standard hybrid argument, as given below.

Assume for contradiction that there exists a verifier V*, a distinguisher D and a polynomial
p(-) such that D distinguishes the ensembles {VIEWs . (x, 2)} and {VIEW%* (z, z)} with probability
Wln)' Furthermore, let the running time of V* be bounded by some polynomial g(n). We consider
a sequence of hybrid simulators, S; for i = 0 to ¢(n). S; proceeds exactly like S, with the exception
that in the first ¢ proofs that reach the second stage, it proceeds using the honest prover strategy
in the second stage for those proofs. By construction Sy = S and Sy,y = S’ (since there are at
most g(n) sessions, bounded by the running time of the simulators). By assumption the output

1

of Sp and Sy, are distinguishable with probability o0y SO there must exist some j such that the
1

output of S; and S are distinguishable with probability P OOR Furthermore, since S; proceeds
exactly as Sj41 in the first j sessions that reach the second stage, and by construction they proceed
identically in the first stage in all sessions, there exists a partial view v of S; and S;;1—which
defines an instance for the protocol in the second stage of the j + 1 session—such that the output
of S; and S;y; are distinguishable, conditioned on the event that S; and S;y; feed V* the view v.
Since the only difference between the view of V* in S; and Sj41 is that the former is a simulated
view, while the later is a view generated using an honest prover strategy, this contradicts the special

honest-verifier ZK property of the BH-protocol in the second stage of the protocol. O
O

Lemma 6 (Quadratic Precision). Let VIEWs,,, be the output of the simulator S,., and t be the
running time of V* on the view VIEWS,,.. Then, S),. runs in time O(t).

Proof. Recall that, S,,. runs SIMULATE with increasing values of t, doubling each time, until a
view is output. We again use the fact that the view on the main thread of SIMULATE proceeds
identically (in this case, proceeds as VIEWs,,.) since the random tape used to simulate the main
thread is identical in every call to SIMULATE. Therefore, the final value of ¢ when v is output
satisfies,

t<t<2t

The running time of S,,. is simply the sum of the running times of SIMULATE(t,st,()) with ¢ =
1,2,4,...,t. By Lemma 2, this running time is bounded by

>+ 22 44’ + -+ cf? < 2ct? < 8ct?

For some constant c. O

4.4 Improved Precision

We now consider a generalized version of SIMULATE. Let g > 2 be an integer; SIMULATE,(t, -, -)
will now divide ¢ in g smaller intervals. If ¢ does not divide into g evenly, that is if t = qg + r with

13

The SIMULATE,(t, st,’{) Procedure.
LoIft =1,

(a) If the next scheduled message, p,, is a first stage prover message, choose p, uniformly.
Otherwise, if p,, is a second stage prover message, compute p,, using the PROVE procedure.
Feed p, to the verifier. If the next scheduled message is verifier’s message, run the verifier
from its current state st for exactly 1 step. If the verifier outputs a message v,, store it in H.

(b) Update st to the current state of V*. Output (st, H).
2. Otherwise (i.e.,t > 1), fori=1,2,3,...,¢g:

(a) Execute the following two processes in parallel:

i. (st;, H1) < SIMULATE(t/g,st;_1,H). (primary process)

ii. (st—,Hsa) < SIMULATE(t/g,st;—1,H). (secondary process)
(b) Merge H; and Ha. Set the resulting table equal to H.

3. Output (sty,H), and the view of V* on the thread connecting st,sti, ..., and st,.

Figure 6: SIMULATE with splitting factor g.

r > 0, let the first r sub-intervals have length |t/g| 4+ 1, and the rest of the g — r sub-intervals have
length [t/g]. We call g the splitting factor, and assume k/g € w(logn) as stated in Theorem 1.
We first establish the precision of our new simulator.

Lemma 7 (Improved Precision). Let VIEWs,,, be the output of the simulator S,,. using SIMULATE,
and t be the running time of V* on the view VIEWs,,.. Then, Sy. runs in time O(t - 2logg t) —
O(tl—&-loggQ).

Proof. As in Lemma 6, the running time of S,,. is the sum of the running time of SIMULATE(, st, 0))
with t = 1,2,4,...,t, where t < { < 2t. By Lemma 2, SIMULATEg(Z, -, -) runs in time O(t2%). Since
the recursive depth d for SIMULATE, is [log, t], the running time of SIMULATE, is O(t2tHogsty =
O(t2"°8sY) = O(t'11°8¢2). Summing over the different values of ¢, we conclude that the running
time of §),. is bounded by:

011+10gg2 + C21+10gg2 + c4l+logg2 4ot C£1+10gg2 < 20£1+10gg2 < 80t1+10g92
for some constant c.]

Next, we proceed to show indistinguishability of the simulator’s output.

Lemma 8 (Concurrent Zero Knowledge). {VIEWs,,. (z, 2) }xEL e{0.1}" and {VIEWy+ (2, 2)} ;1 .eq0.1}*
are computationally indistinguishable over L.

Proof. Following essentially the same approach for the precise quadratic simulator in the previous
section, we prove this in two steps. First, we show that the probability that the simulator outputs
1 is negligible. Then, conditioned on the simulator not outputting L, the view output by the
simulator is “correctly” distributed. In fact, it suffices to show the first step, and the second step
follows identically using the argument as before, since the view output by the simulator (if it outputs
one) is the same independent of the splitting factor g.

14

Now, we proceed to show the first step. As shown in section 4.2, to prove that the simulator
outputs L with negligible probability, it is enough to show that every bad random tape can be
mapped to super-polynomially many good random tapes. In fact, we will use the same f as in
section 4.2, and reexamine the properties of f. Claims 1 and 2 remains unchanged since the
mapping f and the definition of minimal rewinding intervals have not changed. Claims 3 and 4,
however, may change since they depend on how SIMULATE, recursively calls itself. Below, we give
the modified versions of the two claims. Claim 7 is analogous to Claim 3:

Claim 7. The set f(p)\{p} contains only good tapes (for SIMULATE,).

Proof. The proof of Claim 3 does not depend on the splitting factor g, and therefore still holds
with respect to procedure SIMULATE,.]

Claim 8 is analogous to Claim 4. This claim however depends on the splitting factor g and is
modified as follows:

Claim 8 (Number of Minimal Rewinding Intervals). There are at least k' = —E5 — 2d minimal

rewinding intervals for session so on thread ly (for SIMULATEy), where d is the recursion depth.

Proof. First, we ignore that minimal rewinding intervals do not contain the messages (V0) and (p1),
and focus on “potential” minimal rewinding intervals that contain a slot. For each slot, there exists
a corresponding rewinding interval of minimal size that contains the slot. Note that at most g — 1
slots may share the same minimal rewinding interval (if g slots share the same minimal rewinding
interval, then at least one slot is properly contained in one of the g child rewinding intervals).
Therefore, among the k& minimum rewinding intervals there are at least k/(g — 1) “potential”
minimum rewinding intervals. Recall again, that at each level of recursion, at most two intervals
may contain (VO0) or (p1). Thus, there are at least k/(g — 1) — 2d minimum rewinding intervals.
By setting g = 2, we also obtain a proof for Claim 4. O

It now follows from Claim 1, 2, 7 and Claim 8 that a random tape is bad with probability at

most
1

k

which is negligible if % € w(logn). O

4.5 Proof of Main Lemma and Consequences

Lemma 1 (Main Lemma). Assuming the existence of one-way functions, then for every k,g € N
such that k/g € w(logn), there exists an O(k)-round concurrent zero knowledge argument with
precision p(t) € O(t - 2'°8s ') for all languages in N'P.

Proof. Using Lemmata 7 and 8, we conclude that the simulator S,,. (using SIMULATEy) outputs a
verifier view of the right distribution with precision O(t - 2'°8¢1). O

We can derive the following results using Lemma 1 with appropriate parameters for k£ and g:

Theorem 1. Assuming the existence of one-way functions, for every e > 0, there exists a w(logn)-
round concurrent zero knowledge argument for all languages in N'P with precision p(t) = O(t1+).

15

Proof. Taking g = 2'/¢ and k € w(logn), we have that k/g € w(logn), then it follows from Lemma 1
that we have a simulation with precision

p(n,t) = O(t-2"%8s ") = O(t - 1% 2) = O(t11%)
O

Theorem 2. Assuming the existence of one-way functions, for every € > 0, there exists an
O(n®)-round concurrent zero knowledge argument for all languages in NP with precision p(t) =
O(t2%10g"t). As a corollary, we obtain the following: For every € > 0, there exists an O(n®)-round
protocol (P, V') such that for every ¢ > 0, (P,V) is a concurrent zero knowledge argument with
precision p(n,t) = O(t) with respect to verifiers with running time bounded by n¢ for all languages

in NP.

Proof. Taking, g = n/? and k = nf, again we have that k/g = n°/? € w(logn) and it follows from
Lemma 1 that we have a simulation with precision

et

p(n,t) = O(t . 2logn2) — O(t2%10gnt)

5 Statistically Precise Concurrent Zero-Knowledge

In this section, we construct a statistically precise concurrent ZK argument for all of N'P. Recall
that statistically precise ZK requires the simulation of all malicious verifiers (even those having a
priori unbounded running time) and the distribution of the simulated view must be statistically
close to that of the real view. A first approach is to use the previous protocol and simulator with
the splitting factor fixed appropriately. Recall that the probability of the simulator failing on a
single thread is

9~ (9751_2 log,, t)

where k is the number of rounds, g is the splitting factor, and ¢ is the running time of the verifier.
Notice that when the running time t of the verifier is “big”, e.g. O(nP°%(™) (n is the security
parameter), even if the splitting factor g is set to n, we need the number of rounds k to be super
polynomial in n to ensure that the probability is exponentially small. Hence we can not hope to
obtain a statistically precise simulation by using this simulator directly.

We modify this simulator to work for all verifiers. On a high level, our simulator runs the
original simulate procedure Sy,. with ¢ = n for a fixed number of steps, say up to the iteration
when £ = 271°87” | If actual running time exceeds that, our simulator, rather than investing time in
rewinding the verifier, instead proceeds with a “straight-line” simulation of the verifier, extracting
the “challenge” ¢ using a brute-force search.

Theorem 3. Assume the existence of claw-free permutations, then there exists a poly(n)-round
statistically precise concurrent zero-knowledge argument for all of NP with precision p(n,t) =

Ot).

16

Description of protocol: We essentially use the same protocol described in Section 37 setting
the number of rounds k& = 5n%logn (n is the security parameter), with the following exception: In
Stage 2 of the protocol, the prover uses perfectly hiding commitments in the BH-protocol instead
of computational hiding. This makes the BH-protocol perfect-special-HVZK.

Description of simulator S: The simulator S executes S,,. with ¢ = n and outputs whatever
Sy« outputs, with the following exception: while executing SIMULATE,, (inside S,), if the verifier
in the main thread runs for more than 21982 steps, it terminates the execution of SIMULATE,, and
retrieves the partial history hist simulated in the main thread so far. Then, it continues to simulate
the verifier from hist in a “straight-line” fashion—it generates uniformly random messages for the
Stage 1 of the protocol, and when it reaches Stage 2 of the protocol for some session, it runs the
brute-force-PROVE procedure instead. We provide the formal description of the brute-force-PROVE
procedure in Figure 7, which is essentially the PROVE procedure in Figure 4, with the exception
that the challenge o is extracted using brute-force search.

The brute-force-PROVE Procedure.

Let s € [m] be the session for which the prove procedure is invoked. The procedure outputs either p1 or
p2, whichever is required by S,,.. Let hist denote the set of messages exchanged between S,,. and V*.

1. If the verifier has aborted in any of the k first stage messages of session s (i.e., hist contains
Vj=ABORT for j € [k] of session s), abort session s.

2. Otherwise, use brute-force search to find a value o, such that § is a valid commitment for 5. If no
such ¢ is found, abort session s (indicating invalid commitment from the verifier). Otherwise, and
proceed as follows.

(a) If the next scheduled message is p1, then for each h € [n] act as follows. If o, = 0, act
according to Step pi of BH-protocol. Otherwise (i.e., if o, = 1), commit to the entries of
the adjacency matrix of the complete graph K, and to a random permutation 7.

(b) Otherwise (i.e., the next scheduled message is p2), check (in hist) that the verifier has properly
decommitted to all relevant values (and that the A" bit of O’? ® crjl» equals oy, for all j € [k])
and abort otherwise.

For each h € [n] act as follows. If oj, = 0, decommit to all the commitments (i.e., 7 and the
adjacency matrix). Otherwise (i.e., if o, = 1), decommit only to the entries (7 (), 7(j)) with
(i,7) € C where C is an arbitrary Hamiltonian cycle in K.

Figure 7: Description of the brute-force PROVE procedure

We now analyze the output and the running time of the simulator.

Running time of S: Let v denote the view output by S. We show that the running time of S
is O(t'71°822) if ¢ is the running time of V* on view v. Depending on the size of ¢, there are two
cases:

Case t > 219827 In this case, the simulator terminates the procedure SIMULATE,, and continues
with a straight-line simulation. The procedure SIMULATE,, runs for at most (2710827)1+108, 2 <

"We remarked earlier that to obtain precise simulation for p.p.t verifier, it was sufficient to use computationally
binding commitments in Stage 1 of the protocol, but to achieve statistically precise simulation it is necessary to use
perfectly binding commitments.

17

t1+1o8n 2 steps before it is cut-off (since the verifier runs for at most 271°82™ before the proce-
dure is cut-off), while the straight-line simulation takes at most 2" (since there are at most
t sessions, and for each session it takes at most 2™ steps to brute-force extract the challenge
o). Thus, the total running time of the simulator is at most ¢!71°822 4 27 < 2¢1+108. 2 (since
2" < tlo8n2),

Case t < 2719827; Tp this case, the simulator executes SIMULATE,, to completion and from Lemma 7,
it follows that the running time of the simulator is ¢! 198 2,

Therefore, in both the cases the running time of the simulator is bounded by 2t1+1°8: 2,

Indistinguishability of simulation: First, we show in Lemma 2 that the simulator fails with
exponentially small probability. Then, the indistinguishability of the simulation essentially follows
from the special honest-verifier ZK property of the protocol in the second stage. For completeness,
we give the proof below in Lemma 3.

Lemma 2. For all z € L,z € {0,1}* and all verifiers V*, Sy«(x, z) outputs L with exponentially
small probability.

Proof. There are two cases when the simulator fails. We describe each of these cases and show that
with exponentially small probability the simulator fails in each case. Lemma 2 then follows using
the union bound.

The simulator gets stuck on a thread due to a bad random tape: This case occurs only
when SIMULATE,, runs for less than 271°82" steps. From the analysis presented in the previous
section, it follows that with probability at most nTom i_mgn 77 the procedure outputs L on

each thread and there are at most ¢! 719822 threads. Hence, the overall probability of simulator

outputting L in this case is

1 < 2(n logy n+n) 1

tl—i—logn 2
2(5nlogy n—2log, t) — 23nlogy 1

when ¢t < 2719827 Therefore, the probability that the simulator fails due to a bad random
tape is exponentially small.

The simulator gets stuck on a session because it sends the same P; message: This hap-
pens with probability 2% for every slot, where k is the length of the prover challenge (this is
the same k as the round complexity of the protocol). Since, there are at most 1108, 2 glots,
using the union bound, we obtain that the simulator fails with probability at most

1

t1+logn ZL < 2(n logy n+mn)
2k — 95n2 logy n

which is again exponentially small.

O]

Lemma 3. The ensembles {VIEWs,,. (z,2)} - and {VIEWy« (2, 2)} e, eqo1yr are statis-

z€L,z€{0,1}
tically close over L.

18

Towards the goal of proving the ensembles are statistically close, as in Lemma 5, we consider
the “intermediate” simulator S’ that on input z (and auxiliary input z), proceeds just like S in
order to generate Stage 1 of the view, but proceeds as the honest prover in order to generate
messages in Stage 2 of the view. Using the same argument presented in Claim 5, it follows that
the {VIEWSL* (z,2)} and {VIEWy«(z, 2)} are statistically close over L. Therefore, it suffices to show
that the ensembles {VIEWS{}* (x,2)} and {VIEWs,,. (z,2)} are statistically close. In fact, we show
below in Claim 9 that they are identically distributed and the proof of the lemma follows.

Claim 9. The ensembles {VIEWs,,, (2,2)} and {VIEWS{}* (z,2)} are identical.

Proof. Using similar hybrid arguments presented in Claim 6, we can show that the ensembles are
identical.

Assume for contradiction, that the claim is false, i.e. there exists a deterministic verifier V*
(we assume w.l.o.g that V* deterministic, as its random-tape can be fixed) such that the ensembles
in the statement of the claim are not identical. We consider several hybrid simulators, S; for
i =0 to 271°82" G proceeds exactly like S, with the exception that in the first i proofs that
reach the second stage, it proceeds using the honest prover strategy in the second stage for those
proofs. By construction Sy = S and Synice,n = S’ (since there are at most onloga ™ gegsions,
after which the simulator is cut off). Since, by assumption the output of Sy and Synics, » are not
identically distributed, there must exist some j such that the output of S; and S;11 are different.
Furthermore, since S; proceeds exactly as Sj41 in the first j sessions that reach the second stage,
and by construction they proceed identically in the first stage in all sessions, there exists a partial
view V' of S; and S;1—which defines an instance for the protocol in the second stage of the j + 1
session—such that the output of S; and S;;1 are not identical conditioned on the event that S; and
Sjy1 feed V* the view v. Since the only difference between the view of V* in S; and S is that
while the former simulates a view using the special honest-verifier ZK property of the BH-protocol,
the later follows the honest prover strategy, we contradict the perfect special honest-verifier ZK
property of the protocol in the second stage of the protocol.]

Remark: We require the commitments in BH protocol to be perfectly hiding to show that the
ensembles are identical, since we consider a large number of intermediate hybrids (e.g. 2"2) in the
proof.

Acknowledgements

We would like to thank Alon Rosen for several helpful discussions.

References

[Blu87] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of
the International Congress of Mathematicians, pages 1444-1451, 1987.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero knowledge. In Proc. 30th
STOC, pages 409-418, 1998.

[GMRS85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems. In Proc. 17th STOC, pages 291-304, 1985.

19

[GMWR87] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In ACM,

[Gol01]

[Gol04]

[HILL99)

[KPO1]

[MP06]

[Nao91]

[Pas06]

[PRS02]

[RK99]

[Ros04]

editor, Proc. 19th STOC, pages 218-229, 1987. See [Gol04, Chap. 7] for more details.

Oded Goldreich. Foundations of Cryptography, volume Basic Tools. Cambridge Univer-
sity Press, 2001.

Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge Univer-
sity Press, 2004.

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364—
1396, 1999. Preliminary versions appeared in STOC’ 89 and STOC’ 90.

Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-
logarithm rounds. In Proc. 33th STOC, pages 560-569, 2001. Preliminary full version
published as cryptology ePrint report 2000/013.

Silvio Micali and Rafael Pass. Local zero knowledge. In Jon M. Kleinberg, editor, STOC,
pages 306-315. ACM, 2006.

Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151—
158, 1991. Preliminary version in CRYPTOQO’ 89.

Rafael Pass. A Precise Computational Approach to Knowledge. PhD thesis, MIT, July
2006.

Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In Proc. 43rd FOCS, 2002.

R. Richardson and J. Kilian. On the concurrent composition of zero-knowledge proofs.
In Furocrypt ’99, pages 415432, 1999.

Alon Rosen. The Round-Complexity of Black-Box Concurrent Zero-Knowledge. PhD
thesis, Department of Computer Science and Applied Mathematics, Weizmann Institute
of Science, Rehovot, Israel, 2004.

20

A The Mapping f [PRS02, Ros04]

Recall that two distinct rewinding intervals are either disjoint, or one is entirely contained in the
other. Let S denote a maximal set of disjoint minimal rewinding intervals determined by the
reference thread. Further, let §; denote the number times the 4™ interval in S is simulated after
the very last run of the (j — 1) interval. Let A = [§;] X ...[d|g]. Then every element of A
corresponds to a way f may swap the minimal rewinding intervals, as shown in Figure 8 and 9.

Mapping f: R — 27
e Let 4 € A. Set

G = ths(p.i)}

UEA

e Output G.

Figure 8: Mapping f.

Mapping hg : R X A - R

The input is a random tape p € R, and a sequence @ = uy,us,...,us) € A. The output is a random
tape pu,,..u5 € R.

e Set py, < p.

e Forj=1,....|9

b yun of 5" minimal interval in S.

j—1

1. Let p, denote the portion of Pus ... u; used in wt

2. Swap locations of Pu; and p; within Pus,..yuj_1s and denote the resulting tape by Pun,...u; -

o OUtpUt ... -

Figure 9: Mapping hg.

21

