Cryptanalysis of LASH

Scott Contini®, Krystian Matusiewicz!, Josef Pieprzyk!, Ron Steinfeld!,
Jian Guo?, San Ling?, and Huaxiong Wang!+?

! Advanced Computing — Algorithms and Cryptography,
Department of Computing, Macquarie University
{scontini ,kmatus, josef ,rons ,hwang}@ics .mq.edu.au
2 Nanyang Technological University,

School of Physical & Mathematical Sciences
{guojian,lingsan,hxwang}@ntu.edu.sg

Abstract. We show that the LASH-z hash function is vulnerable to
attacks that trade time for memory, including collision attacks as fast as
2717 and preimage attacks as fast as 2%, Moreover, we describe heuristic
lattice based collision attacks that use small memory but require very
long messages. Based upon experiments, the lattice attacks are expected
to find collisions much faster than 2%/2. All of these attacks exploit the
designers’ choice of an all zero IV.

We then consider whether LASH can be patched simply by changing the
IV. In this case, we show that LASH is vulnerable to a 98° preimage
attack. We also show that LASH is trivially not a PRF when any subset
of input bytes is used as a secret key. None of our attacks depend upon
the particular contents of the LASH matrix — we only assume that the
distribution of elements is more or less uniform.

Additionally, we show a generalized birthday attack on the final com-

x

pression of LASH which requires O (222¢+105) | ~ O(22%/*) time and

memory. Our method extends the Wagner algorithm to truncated sums,
as is done in the final transform in LASH.

1 Introduction

The LASH hash function [3] is based upon the provable design of Gol-
dreich, Goldwasser, and Halevi (GGH) [7], but changed in an attempt to
make it closer to practical. The changes are:

1. Different parameters for the m by n matrix and the size of its elements
to make it more efficient in both software and hardware.

2. The addition of a final transform [8] and a Miyaguchi-Preneel struc-
ture [10] in attempt to make it resistant to faster than generic attacks.

The LASH authors note that if one simply takes GGH and embeds it in a
Merkle-Damgard structure using parameters that they want to use, then

there are faster than generic attacks. More precisely, if the hash output
is x bits, then they roughly describe attacks which are of order 2/ if n
is larger than approximately m?2, or 2(7/29% otherwise®. These attacks
require an amount of memory of the same order as the computation
time. The authors hope that adding the second changes above prevent
faster than generic attacks. The resulting proposals are called LASH-z,
for LASH with an z bit output.

Although related to GGH, LASH is not a provable design: one can
readily see in their proposal that there is no security proof [3]. Both the
changes of parameters from GGH and the addition of the Miyaguchi-
Preneel and final transform prevent the GGH security proof from being
applied.

Our Results. In this paper, we show:

— LASH-z is vulnerable to collision attacks which trade time for memory
(Sect. 4). This breaks the LASH-z hash function in as little as 2(4/11)®
work (i.e. nearly a cube root attack). Using similar techniques, we can
find preimages in 24/7% operations. These attacks exploit LASH’s all
zero IV, and thus can be avoided by a simple tweak to the algorithm.

— Again exploiting the all zero IV, we can find very long message colli-
sions using lattice reduction techniques (Sect. 6). Experiments suggest
that collisions can be found much faster than 2%/2 work, and addition-
ally the memory requirements are low.

— Even if the IV is changed, the function is still vulnerable to a short
message (1 block) preimage attack that runs in time/memory O(2(7/8)%)
— faster than exhaustive search (Sect. 5). Our attack works for any
V.

— LASH is not a PRF (Sect. 3.1) when keyed through any subset of
the input bytes. Although the LASH authors, like other designers
of heuristic hash functions, only claimed security goals of collision
resistance and preimage resistance, such functions are typically used
for many other purposes [6] such as HMAC [2] which requires the PRF
property.

— LASH’s final compression (including final transform) can be attacked

in O <x22(1+i85>) ~ O(x2*/*) time and memory. To do this, we adapt
Wagner’s generalized birthday attack [13] to the case of truncated

3 The authors actually describe the attacks in terms of m and n. We choose to use
which is more descriptive.

sums (Sect. 6). As far as we are aware, this is the fastest known attack
on the final LASH compression.

Before we begin, we would like to make a remark concerning the use of
large memory. Traditionally in cryptanalysis, memory requirements have
been mostly ignored in judging the effectiveness of an attack. However,
recently some researchers have come to question whether this is fair [4,
5,14]. To address this issue in the context of our results, we point out
that the design of LASH is motivated by the assumption that GGH is
insufficient due to attacks that use large memory and run faster than
generic attacks [3]. We are simply showing that LASH is also vulnerable
to such attacks so the authors did not achieve what motivated them to
change GGH.

After doing this work, we have learnt that a collision attack on the
LASH compression function was sketched at the Second NIST Hash Work-
shop [9]. The attack applies to a certain class of circulant matrices. How-
ever, after discussions with the authors [11], we determined that the four
concrete proposals of z equal to 160, 256, 384, and 512 are not in this
class (although certain other values of z are). Furthermore, the attack is
on the compression function only, and does not seem to extend to the full
hash function.

2 Description of LASH

2.1 Notation

Let us define rep() : Zasg — Z555 as a function that takes a byte and
returns a sequence of elements 0,1 € Zoass corresponding to its binary
representation in the order of most significant bit first. For example,
rep(128) = (1,0,0,0,0,0,0,0). We can generalize this notion to sequences
of bytes. The function Rep(-) : Zhts — Z57% is defined as Rep(s) =
rep(s1)l] ... ||rep(sm), e.g. Rep((192,128)) = (1,1,0,0,0,0,0,0,1,0,0,0,0,
0,0,0). Moreover, for two sequences of bytes we define @ as the usual
bitwise XOR of the two bitstrings.
We index elements of vectors and matrices starting from zero.

2.2 The LASH-x Hash Function

The LASH-z hash function maps an input of length less than 22 bits to
an output of z bits. Four concrete proposals were suggested in [3]: = =
160, 256, 384, and 512.

The hash is computed by iterating a compression function that maps
blocks of n = 4z bits to m = x/4 bytes (2z bits). The measure of n in
bits and m in bytes is due to the original paper. Always m = n/16. Below
we describe the compression function, and then the full hash function.

Compression Function of LASH-x. The compression function is of
the form f : Z3% — Z5s. It is defined as

f(r,s) = (r @ s) + H - [Rep(r)|[Rep(s)]" (1)

where 7 = (rg,...,"m—1) and s = (so,...,Sm—1) belong to Z3jts. The
vector r is called the chaining variable.

The matrix H is a circulant matrix of dimensions m x (16m) defined
as

Hj k=0 (k) mod 16m -
where a; = y; (mod 2%) is a reduction modulo 256 of elements of the
sequence ¥; based on the Pollard pseudorandom sequence

Yo = 54321, Yir1 =y2 +2 (mod 231 —1) .

Our attacks do not use the circulant matrix properties or any properties
of this sequence.

A visual diagram of the LASH-160 compression function is given in
Figure 1, where t is f(r,s).

640 columns

Rep(r)

40
bytes

Rep(s)

Fig. 1. Visualizing the LASH-160 compression function.

The Full Function. Given a message of [bits, padding is first applied
by appending a single ‘1’-bit followed by enough zeros to make the length
a multiple of 8m = 2x. The padded message consists of Kk = [(I +1)/8m]
blocks of m bytes. Then, an extra block b of m bytes is appended that
contains the encoded bit-length of the original message, b; = [I/2%]
(mod 256), 1 =0,...,m — 1.

Next, the blocks s, s ... s() of the padded message are fed to
the compression function in an iterative manner,

r© = 0,...,0) ,
rOD = p(r0) s j=0,... Kk .
The r© is call the IV. Finally, the last chaining value r**1) is sent
through a final transform which takes only the 4 most significant bits of

each byte to form the final hash value h. Precisely, the ith byte of h is
h; = 16LT2i/16J + LT2i+1/16J (0 <1< m)

3 Initial Observations

3.1 LASH is Not a PRF

In some applications (e.g. HMAC) it is required that the compression
function (parameterized by its IV) should be a PRF. Below we show that
LASH does not satisfy this property.

Assume that r is the secret parameter fixed beforehand and unknown
to us. We are presented with a function g(-) which may be f(r,-) or a
random function and by querying it we have to decide which one we have.

First of all, note that we can split our matrix H into two parts H =
[Hr||HR] and so (1) can be rewritten as

f(r,s)=(r@s)+ Hy, -Rep(r)T + Hp - Rep(s)T .
Sending in s = 0, we get
f(r,0) =7+ Hp, - Rep(r)T . (2)
Now, for s’ = (128,0,...,0) we have
Rep(s’) = 10000000 00000000 ... 0000000
and so

f(r,s') = (ro®128,71,...,rm_1) + Hr - Rep(r)” + Hg[-,0] . (3)

where Hpg|[-, 0] denotes the first column of the matrix Hp. Let us compute
the difference between (2) and (3):

f(r,s") = f(r,0) = (ro 128,71, ..., rm_1)" + Hy, - Rep(r)” +
Hg[-,0] —r— Hp, - Rep('r)T
= Hg[-,0] + ((ro ® 128) — 1,0,0,...,0)"
= Hpg[-,0] + (128,0,...,0)T.

Regardless of the value of the secret parameter r, the output difference
is a fixed vector equal to Hg[-,0] + (128,0,...,0)T. Thus, using only two
queries we can distinguish with probability 1 — 278" the LASH compres-
sion function with secret IV from a randomly chosen function.

The same principle can be used to distinguish LASH even if most of
the bytes of s are secret as well. In fact, it is enough for us to control only
one byte of the input to be able to use this method and distinguish with
probability 1 — 278,

3.2 Absorbing the Feed-Forward Mode

According to [3], the feed-forward operation is motivated by Miyaguchi-
Preneel hashing mode and is introduced to thwart some possible attacks
on the plain matrix-multiplication construction. In this section we show
two conditions under which the feed-forward operation can be described
in terms of matrix operations and consequently absorbed into the LASH
matrix multiplication step to get a simplified description of the compres-
sion function. The first condition requires one of the compression function
inputs to be known, and the second requires a special subset of input mes-
sages.

First Condition: Partially Known Input. Suppose the r portion of
the (r,s) input pair to the compression function is known and we wish

to express the output g(s) def f(r,s) in terms of the unknown input s.
We observe that each (8 + j)th bit of the feedforward term r @& s (for
i=0,...,m—1and j =0,...,7) can be written as

Rep(r @ s)sit; = Rep(r)sitj + (—1)%P)5+5 . Rep(s)si .

Hence the value of the ith byte of r @ s is given by

7
(RGP(T)&‘H + (—1)Rep(sits . ReP(S)SiJrj) 277 =
i=0
7 7
> Rep(r)sitj - 277 | + | D _(~1)RPIsits . Rep(s)sip; - 27
Jj=0 Jj=0

The first integer in parentheses after the equal sign is just the ith byte
of r, whereas the second integer in parentheses is linear in the bits of s
with known coefficients, and can be absorbed by appropriate additions to
elements of the matrix Hp. Hence we have an ‘affine’ representation for
g(s):

g(s) = (D' + Hg) - Rep(s)? +r + Hy, - Rep(r)T | (4)

m X 1 vector

where Hp is the submatrix of H indexed by the bits of s (i.e. the last 8m
columns of H), and

[Jo0g... 0g Og
Og Jp... Og Og

D’ oo : :
03 08 ... Jp—a Og
08 08 PN 08 Jm—l

where, for i = 0,...,m—1, we define the 1x8 vectors 0 = [0, 0,0, 0,0, 0,0, 0]
and

Jy = [(~)RR 8. (L 1)RePI ol (—q)Reprlsive, 0. (1 Rep(rsisr]

Second Condition: Special Input Subset. In addition to the above
we also observe that when bytes of one of the input sequences (say, r) are
restricted to values {0,128} only (i.e. only the most significant bit in each
byte can be set), the XOR operation behaves like the byte-wise addition
modulo 256. In other words, if 7* = 128 - ' where 1’ € {0,1}" then

fr*,s) =1+ s+ H - [Rep(r*)||Rep(s)]"
= (Dy + H) - [Rep(r")||Rep(s)]" . (5)

The matrix Dj recreates values of r* and s from their representations
and is the following block matrix of dimensions m x (16m),

[J 03 0g ... 030g J 0g Og ... Og 0g]
Og J Og... 030808 J Og... 0g0g
0g0g J ... 03080808 J ... 0308

O O Og ... J 0g 0g 05 0g ... J Og
| 05 0505 ... Og J Og 0g O ... Og J |

where J = [27,26,25 24 23 22 2! 20] and 05 = [0,0,0,0,0,0,0,0].

Since all the bits apart from the most significant one are always set to
zero in r* we can safely remove the corresponding columns of the matrix
Dy + H (i.e. columns with indices 8 + 1,...,8i + 7 for ¢ = 0,...,39).
Let us denote the resulting matrix by H’. Then the whole compression
function can be represented as

f(r',s) = H'- [r'||Rep(s)]"

that compresses m + 8m bits to 8m bits using only matrix multiplication
without any feed-forward mode.

4 Attacks Exploiting Zero IV

Collision Attack. In the original LASH paper, the authors describe a
“hybrid attack” against LASH without the appended message length and
final transform. Their idea is to do a Pollard or parallel collision search
in such a way that each iteration forces some output bits to a fixed value
(such as zero). Thus, the number of possible outputs is reduced from
the standard attack. If the total number of possible outputs is .5, then a
collision is expected after about /S iterations. Using a combination of
table lookup and linear algebra, they are able to achieve S = 23" in
their paper. Thus, ghe attack is not effective since a collision is expected
in about 23™ = 277 iterations, which is more than the 2%/2 iterations
one gets from the standard birthday attack on the full LASH function
(with the final output transform).

Here, exploiting the zero IV, we describe a similar but simpler at-
tack on the full function which uses table lookup only. Our messages will
consist of a number of all-zero blocks followed by one “random” block.
Regardless of the number of zero blocks at the beginning, the output
of the compression function immediately prior to the length block being

processed is determined entirely by the one “random” block. Thus, we
will be using table lookup to determine a message length that results in a
hash output value which has several bits in certain locations set to some
predetermined value(s).

Refer to the visual diagram of the LASH-160 compression function in
Fig. 1. Consider the case of the last compression, where the value of r is
the output from the previous iteration and the value of s is the message
length being fed in. The resulting hash value will consist of the most-
significant half-bytes of the bytes of t. Our goal is to quickly determine a
value of s so that the most significant half-bytes from the bottom part of
t are all approximately zero.

Our messages will be long but not extremely long. Let o be the max-
imum number of bytes necessary to represent (in binary) any s that we
will use. So the bottom 40 — « bytes of s are all 0 bytes, and the bottom
320 — 8a bits of Rep(s) are all 0 bits. As before, we divide the matrix
H into two halves, Hy, and Hp. Without specifying the entire s, we can
compute the bottom 40 — « bytes of (r & s)+ Hp, -Rep(r). Thus, if we pre-
computed all possibilities for Hp -Rep(s), then we can use table lookup to
determine a value of s that hopefully causes h (to be chosen later) most-
significant half-bytes from the bottom part of ¢ to be 0. See the diagram
in Fig. 2. The only restriction in doing this is a4+ h < 40.

Rep(r[|s)
T s H ’—_,% t
0 | .
@b 0 + HL | HR — = .
0 | ¢ 0.
0 | 0 0].
0

Fig. 2. Visualizing the final block of the attack on the LASH-160 compression function.
Diagram is not to scale. Table lookup is done to determine the values at the positions
marked with ¢. Places marked with 0 are set to be zero by the attacker (in the ¢ vector,
this is accomplished with the table lookup). Places marked with ‘.” are outside of the
attacker’s control.

We additionally require dealing with the padding byte. To do so, we
restrict our messages to lengths congruent to 312 mod 320. Then our “ran-
dom” block can have anything for the first 39 bytes followed by 0x80 for

the 40th byte which is the padding. We then assure that only those lengths
occur in our table lookup by only precomputing Hp - Rep(s) for values
of s of the form 320i + 312. Thus, we have a = [k’g?’%} assuming we
take all values of ¢ less than 2. We will aim for h = ¢/4, i.e. setting the
bottom ¢/4 half-bytes of ¢ equal to zero. The condition a+h < 40 is then
satisfied as long as ¢ < 104, which will not be a problem.

Complexity. Pseudocode for the precomputation and table lookup
are given in Table 1. With probability 1 — % ~ 0.632, we expect to find a
match in our table lookup. Assume that is the case. Due to rounding error,
each of the bottom ¢/4 most significant half-bytes of ¢ will either be 0 or
—1 (0xf in hexadecimal). Thus there are 2¢/4 possibilities for the bottom
¢/4 half-bytes, and the remaining m — ¢/4 = x/4 — ¢/4 half-bytes (z — ¢
bits) can be anything. So the size of the output space is S = gu—ete/d —
27=3¢/4 We expect a collision after we have about 2%/2-3¢/8 outputs of this
form. Note that with a Pollard or parallel collision search, we will not have
outputs of this form a fraction of about 1/e of the time. This only means
that we have to apply our iteration a fraction of 1/(1 — %) ~ 1.582 times
longer, which has negligible impact on the effectiveness of the attack.
Therefore, we ignore such constants. Balancing the Pollard search time
with the precomputation time, we get an optimal value with ¢ = (4/11)z,
i.e. a running time of order 2(#/1)? LASH-z operations. The lengths of
our colliding messages will be order < 2671082 hitg,

For instance, in LASH-160 the optimal value is ¢ = 58, yielding a pre-
computation time of about 2°%, a Pollard rho time of about 2%, storage
of about 2%, and colliding messages of lengths about 2% bytes. A more
realistic number to choose in practice is ¢ = 40, which gives precompu-
tation time of 2%, Pollard rho time of 2%, storage of 20, and colliding
messages of 2%° bytes.

Ezperimental Results. We used this method to find collisions in a
truncated version of LASH-160. Table 3 lists the nonzero blocks of two
long messages that collide on the last 12 bytes of the hash. Note that
padding byte needs to be added on to the end of the messages. We used
¢ = 28 and two weeks of cpu time on a 2.4GHz PC to find these.

Preimage Attack. The same lookup technique can be used for preimage
attacks. One simply chooses random inputs and hashes them such that
the looked up length sets some of the output hash bits to the target. This
involves 2¢ precomputation, 2¢ storage, and 27-3¢/4 expected computation
time, which balances to time/memory 204/ yging the optimal parameter
setting ¢ = (4/7)x.

5 Short Message Preimage Attack on LASH with
Arbitrary IV

The attacks in the previous section crucially exploit a particular parame-
ter choice made by the LASH designers, namely the use of an all zero Ini-
tial Value (IV) in the Merkle-Damgard construction. Hence, it is tempting
to try to ‘repair’ the LASH design by using a non-zero (or even random)
value for the IV. In this section, we show that for any choice of IV, LASH-
x is vulnerable to a preimage attack faster than the desired security level
of O(2%). Our preimage attack takes time/memory 0(2%’”), and produces
preimages of short length (2z bits).

The Attack. Let f : Z3% — Z5is denote the internal LASH com-
pression function and fu,; : Z3% — Z7% denote the final compression
function, i.e. the composition of f with the final transform applied to the
output of f. Given a target value t,,; whose LASH preimage is desired,
the inversion algorithm finds a single block message s;, € Zi}; hashing

Table 1. The two main procedures for the long message attack on LASH-160. Only
the bottom ¢/4 bytes of ¢ need to be computed in Lookup(). Similarly, only the bottom
¢/4 bytes of v need to be computed in Precomp().

Precomp(int ¢)

{
fori:=0to2°—1do
Compute v := Hg - Rep(320: + 312).
Round off bottom ¢/4 most significant half-bytes of v.
Store rounded half-bytes and 320 4+ 312 in a file.
}

Lookup(uchar r[40], uchar s[40], int ¢)

Expand r to a 320-bit vector, v.
Compute t := (uchar *)(—r — Hr, - v).
Round off bottom ¢/4 most significant half-bytes of ¢.
Look for a match of these half-bytes in a file.
if match exists then
Read in corresponding length.
Encode length into s vector.
else
Choose the “closest” data entry from file.
Read in corresponding length.
Encode length into s vector.

| First Message || Second Message |

[= 3380367992 [= 1380208632
first nonzero block: first nonzero block:
fc 66 8 79 ef 7e 97 9c e0 fI||3f 8a b2 44 3f b3 3d 9d e0 ff
ff 0f 00 00 00 00 00 00 00 00{|00 02 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00|{00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
hash: hash:
a4 6a df fc 34 27 ¢4 99 c1 85|[71 07 4f 54 7f f1 bd 5c cl1 85
7a d8 07 51 97 84 {0 0Of 00 I ||7a d8 07 51 97 84 {0 0f 00 fI

Fig. 3. Two long messages that match on the last 12 bytes of the hash.

to tout, 1.€. satisfying

fout(routa Sout) = tout and f("”ina Sm) = Tout,

where s,y is equal the 8m-bit binary representation of the integer 8m
(the bit length of a single message block), and 74, = IV is an arbitrary
known value. The inversion algorithm proceeds as follows (see Fig. 4):

Step 1: Using the precomputation-based preimage attack on the final
compression function f,,; described in the previous section (with
straightforward modifications to produce the preimage using bits of
Tout Tather than sy, and precomputation parameter ¢y = (20/7)m),
compute a list L of 2" preimage values of 7yt satisfying fout(Tout, Sout) =
tout-

Step 2: Let ¢ = 3.5m be a parameter (later we show that choosing ¢ =
3.5m is optimal). Split the 8m-bit input s;,, to be determined into two
disjoint parts s;,(1) (of length 6m —c bit) and s;,,(2) (of length 2m+c
bit), i.e. Sin = Sin(1)|]Sin(2). For each of the 2 values of 4, from the
list L produced by the first step above, and each of the 26™¢ possible
values for s;,,(1), run the internal compression function ‘hybrid’ partial
inversion algorithm described below to compute a matching ‘partial
preimage’ value for s;,(2), where by ‘partial preimage’ we mean that
the compression function output f(r,, sin) matches target rq,; on a
fixed set of m+-c = 4.5m bits (out of the 8m bits of r4,;). For each such
computed partial preimage s, = sin(1)|]$in(2) and corresponding 7oyt
value, check whether s;, is a full preimage, i.e. whether f(r,, Sin) =
Tout holds, and if so, output desired preimage s;,.

For integer parameter c, the internal compression function ‘hybrid’
partial inversion algorithm is given a 8m-bit target value ¢;,, an 8m-bit

Tin (ﬁXGd IV) Tout

i

; 1
Q ! :
g |
y R f tln - i f 3 tout
sin(1) (100 b) ! !
Poanen [| foe |
sin(2,2)
sin(2) (220 b)
N sin(2,3)
Sin Sout (fixed length block)

Fig. 4. Illustration of the preimage attack applied to LASH-160.

input 74, and the (6m — ¢)-bit value s;,(1), and computes a (2m + ¢)-bit
value for s;,,(2) such that f(rip, sin) matches ¢;, on the top ¢/7 bytes as
well as on the LS bit of all remaining bytes (a total of m + ¢ matching
bits). The algorithm works as follows:

Feedforward Absorption: We use the observation from Section 3.2
that for known r;,, the Miyaguchi-Preneel feedforward term (7, ® s,)
can be absorbed into the matrix by appropriate modifications to the
matrix and target vector, i.e. the inversion equation

(rin @ Sin) + H - [Rep(rm)HRep(sm)]T = t;, mod 256, (6)

where H is the LASH matrix, can be reduced to an equivalent linear
equation
H' - [Rep(sin)]” = t,, mod 256, (7)

for appropriate matrix H’' and vector ¢ easily computed from the
known H, t, and 7;,.

Search for Collisions: To find s;,(2) such that the left and right hand
sides of (7) match on the desired m + ¢ bits, we use the hybrid method
based on [3], which works as follows:

— Initialization: Split s;,(2) into 3 parts s(2,1) (length m bits),
5(2,2) (length ¢ bits) and s(2,3) (length m bits). For i = 1,2,3 let
H'(2,4) denote the submatrix of matrix H' from (7) consisting of

the columns indexed by the bits in s(2,7) (e.g. H'(2,1) consists of
the m columns of H' indexed by the m bits of s(2,1)). Similarly,
let H'(1) denote the submatrix of H’ consisting of the columns of
H' indexed by the m bits of s;,(1).

— Target Independent Precomputation: For each of 2¢ possible values
of s(2,2), find by linear algebra over GF'(2), a matching value for
s(2,3) such that

[H'(2,2) H'(2,3)] - [Rep(s(2, 2)|[Rep(s(2,3))]" = [0"]" mod 2,

(8)

i.e. vector y = [H'(2,2) H'(2,3)]-[Rep(s(2,2))||Rep(s(2,3))]’ mod

256 has zeros on the LS bits of all m bytes. Store entry

5(2,2)|]s(2,3) in a hash table, indexed by the string of ¢ bits ob-

tained by concatanating 7 MS bits of each of the top ¢/7 bytes of

vector y.

— Solving Linear Equations: Compute s(2,1) such that

H'(2,1) - [Rep(s(2,)| = th,, — H'(1) - [Rep(sin(1))]” mod 2. (9)

Note that adding (8) and (9) implies that H’

[Rep(sin(1))||Rep(sin(2))]T = ¢, mod2 with s;(2) =
s(2,1)[]s(2,2)||s(2,3) for any entry s(2,2)|/s(2,3) from the
hash table.

— Lookup Hash Table: Find the s(2,2)||s(2,3) entry indexed by the
c-bit string obtained by concatanating the 7 MS bits of each of
the top ¢/7 bytes of the vector ¢, — H'(2,1) - [Rep(s(2,1))] —
H'(1) - [Rep(sin(1))]T mod 256. This implies that vector H' -
[Rep(sin(1))||Rep(sin(2))]T matches t, on all top ¢/7 bytes, as
well as on the LS bits of all bytes, as required.

Correctness of Attack. For each of 2™ target values 1o, from list L,
and each of the 22°™ possible values for s;,(1), the partial preimage
inversion algorithm returns s;,(2) such that f(7,, sin) matches 74, on
a fixed set of m + ¢ bits. Heuristically modelling the remaining bits of
f(Tin, $in) as uniformly random and independent of r,,;, we conclude that
f(Tin, Sin) matches 7, on all 8m bits with probability 1/287m—(m+e) —
1/2™m=¢ = 1/235™ (using ¢ = 3.5m) for each of the 22°™ x 2m = 23.5m
runs of the partial inversion algorithm. Assuming (heuristically) that each
of these runs are independent, the expected number of runs which produce
a full preimage is 23 x 1/23°™ = 1, and hence we expect the algorithm
to succeed and return a full preimage.

Complezity. The cost of the attack is dominated by the second step,
where we balance the precomputation time/memory O(2¢) of the hybrid
partial preimage inversion algorithm with the expected number 27m—¢
of runs to get a full preimage. This leads (with the optimum parameter
choice ¢ = 3.5m) to time/memory cost O(23°™) = O(Q%I), assuming each
table lookup takes constant time. To see that second step dominates the
cost, we recall that the first step with precomputation parameter c,,; uses
a precomputation taking time/memory O(2%), and produces a preim-
age after an expected 0(24’"_300“/ 4) time using cous + (4m — 3cout/4) =
4m + coyt/4 bits of r4,,. Hence, repeating this attack 2™ times using m
additional bits of r,,; to produce 2™ distinct preimages is expected to
take O(max(26out, 25 3¢0ut/4)) time/memory using 5m + oyt /4 bits of
Tout- Lhe optimal choice for coys is cour = (20/7)m =~ 2.89m, and with
this choice the first step takes O(220/7™) = ¢(235™) time/memory and
uses (40/7)m < 8m bits of 74+ (the remaining bits of r,,; are set to zero).

6 Attacks on the Final Compression Function

This section presents collision attacks on the final compression function
fout (including the output transform). For a given r € Z3k;, the attacks
produce s,s’ € Z5t, with s # s such that fou(r,s) = four(r,s’). To
motivate these attacks, we note that they can be converted into a ‘very
long message’ collision attack on the full LASH function, similar to the
attack in Sect. 4. The two colliding messages will have the same final
non-zero message block, and all preceding message blocks will be zero. To
generate such a message pair, the attacker chooses a random (8m — 8)-bit
final message block (common to both messages), pads with a 0x80 byte,
and applies the internal compression function f (with zero chaining value)
to get a value r € Z3ts. Then using the collision attack on f,,; the attacker
finds two distinct length fields s, s € Z5Ls such that fou(r, s) = fout(r,).
Moreover, s, s’ must be congruent to 8m—8 (mod 8m) due to the padding
scheme. For LASH-160, we can force s,s’ to be congruent to 8m — 8
(mod 64) by choosing the six LS bits of the length, so this leaves a 1/52
chance that both inputs will be valid.

The lengths s, s’ produced by the attacks in this section are very long
(longer than 2%/2). However, we hope the ideas here can be used for future
improved attacks.

6.1 Generalized Birthday Attack on the Final Compression

The authors of [3] describe an application of Wagner’s generalized birth-
day attack [13] to compute a collision for the internal compression func-
tion f using O(2%*/3) time and memory. Although this ‘cubic root’ com-
plexity is lower than the generic ‘square-root’ complexity of the birthday
attack on the full compression function, it is still higher than the O(2%/?)
birthday attack complexity on the full function, due to the final trans-
formation outputting only half the bytes. Here we describe a variant of
Wagner’s attack for finding a collision in the final compression including
the final transform (so the output bit length is x bits). The asymptotic

complexity of our attack is O <x22(1+%)> time and memory — slightly

better than a ‘fourth-root’ attack. For simplicity, we can call the running
time O(x2%/4).

The basic idea of our attack is to use the linear representation of f,,;
from Sect. 3.2 and apply a variant of Wagner’s attack [13], modified to
carefully deal with additive carries in the final transform. As in Wagner’s
original attack, we build a binary tree of lists with 8 leaves. At the ith
level of the tree, we merge pairs of lists by looking for pairs of entries (one
from each list) such that their sums have 7 — i zero MS bits in selected
output bytes, for ¢ = 0,1,2. This ensures that the list at the root level
has 4 zero MS bits on the selected bytes (these 4 MS bits are the output
bits), accounting for the effect of carries during the merging process. More
precise details are given below.

The attack. The attack uses inputs 7, s for which the internal com-
pression function f has a linear representation absorbing the Miyaguchi-
Preneel feedforward (see Section 3.2). For such inputs, which may be of
length up to 9m bit (recall: m = x/4), the final compression function
f': 730 — 77 has the form

f(r) = MSy(H' - [Rep(r)]"), (10)

where MSy : Z5g — Z7g keeps only the 4 MS bits of each byte of its
input, concatanating the resulting 4 bit strings (note that we use r here
to represent the whole input of the linearised compression function f’
defined in Section 3.2). Let Rep(r) = (r[0],7[2],...,r[9m — 1]) € ZJ%
with r[i] € {0,1} for i = 0,...,9m — 1. Let £ ~ LM%J (notice
that 8¢ < 9m). We refer to each component r[i] of r as an input bit.
We choose a subset of 8¢ input bits from r and partition the subset into

8 substrings 1’ € Zg% (i = 1,...,8) each containing ¢ input bits, i.e.

r = (rl,r% ... r®). The linearity of (10) gives

f(r)y = MSy(H] - [P']" + -+ Hg - [r®]"),

where, for i = 1,...,8, H/ denotes the m x ¢ submatrix of H’' consisting of
the £ columns indexed (i —1)-¢,(i—1)-£+1,...,i-£—1 in H'. Following
Wagner [13], we build 8 lists Ly, ..., Lg, where the ith list L; contains
all 2¢ possible candidates for the pair (r?,%?), where ¢ aof H! - [rT (note
that y’ can be easily computed when needed from r* and need not be
stored). We then use a binary tree algorithm described below to gradually
merge these 8 lists into a single list L3 containing 2¢ entries of the form
(r,y = H'-[r]T), where the 4 MS bits in each of the first a bytes of y are
zero, for some «, to be defined below. Finally, we search the list L3 for
a pair of entries which match on the values of the 4 MS bits of the last
m — « bytes of the y portion of the entries, giving a collision for f’ with
the output being « zero half-bytes followed by m — o random half-bytes.

The list merging algorithm operates as follows. The algorithm is given
the 8 lists L1, ..., Lg. Consider a binary tree with ¢ = 8 leaf nodes at level
0. For : = 1,...,8, we label the ith leaf node with the list L;. Then, for
each jth internal node nz of the tree at level i € {1,2,3}, we construct

a list L; labelling node ng, which is obtained by merging the lists Lf4_1,
ngl at level ¢ — 1 associated with the two parent nodes of n; The list

L; is constructed so that for ¢ € {1,...,3}, the entries (1, y’) of all lists
at level ¢ have the following properties:

— (") = ("4lIr's, ¥4 + v5), where (r'y,y/s) is an entry from the left
parent list Ly ' and (rfy,y}) is an entry from the right parent list
Lzt

— If i > 1, the [£/7] bytes of y at positions 0,...,[¢/7] — 1 each have
their (7 —4) MS bits all equal to zero.

— If i > 2, the [¢/6] bytes of ¢ at positions [£/7],...,[¢/T]| +[(/6] —1
each have their (7 —4) MS bits all equal to zero.

— If i = 3, the [¢/5] bytes of ¢ at positions [¢/7] + [¢/6],...,[¢/T] +
[¢/6]+ [£/5] — 1 each have their (7—1i) = 4 MS bits all equal to zero.

The above properties guarantee that all entries in the single list at
level 3 are of the form (r,y = H' - [Rep(r)]T), where the first a = [£/7] +
[¢/6] 4 [¢/5] bytes of y all have 7-3=4 MS bits equal to zero, as required.

To satisfy the above properties, we use a hash table lookup procedure,
which aims, when merging two lists at level ¢, to fix the 7 — ¢ MS bits of
some of the sum bytes to zero. This procedure runs as follows, given two

lists Li‘_l, Lgl from level i — 1 to be merged into a single list L’ at level
i

— Store the first component 7/, of all entries (r'y,4/4) of L'y ' in a hash
table T4, indexed by the hash of:

o If i = 1, the 7 MS bits of bytes 0,...,[¢/7] —1 of ¥/, i.e. string
(MS1(/3[0]) .., MSe(y/y[[£/7] — 1])).

e If i = 2, the 6 MS bits of bytes [¢/7],...,[¢/T]+[£/6] —1 of ¥4,
ie. string (MSs(4l[¢/T1]).. .-, MSs(yy[[€/T] + [¢/6] — 1)).

e If i =3, the 5 MS bits of bytes [¢/7] 4+ [(/6],...,a—1of /4, i.e.
string (MS5(y/3[[¢/7] + [€/6]]),. .-, MSs (/[— 1])).

— For each entry (1’5, 1) of L5, look in hash table T4 for matching
entry (r'y,y"y) of L'y such that:

o If i = 1, the 7 MS bits of corresponding bytes in positions
0,...,[¢/7]—1 add up to zero modulo 27 = 128, i.e. M S7(y/y[j]) =
—M S7(y/5[4]) mod 27 for j =0,...,[¢/7] — 1.

e If i = 2, the 6 MS bits of corresponding bytes in positions
[¢/71,...,1¢/71 + [£/6] — 1 add up to zero modulo 2° = 64, i.e.
MSs(yy[f]) = —MSs(ylslj]) mod 2° for § = [¢/7],..., [¢/T] +
[¢/6] — 1.

e If i = 3, the 5 MS bits of corresponding bytes in positions [£/7] +
[€/6],...,a—1add up to zero modulo 2° = 32, i.e. M S5(v/[j]) =
—M S5(y'z[]) mod 2° for j = [¢/7] + [£/6],...,a— 1.

— For each pair of matching entries (r'y,y/4) € Ly ' and (r'y, v) € L5,
add the entry (r'y |7z, ¥ + v’z) to list L.

Correctness. The correctness of the merging algorithm follows from
the following simple fact:

Fact If z,y € Zase, and the & MS bits of and y (each regarded as the

binary representation of an integer in {0, ...,2% —1}) add up to zero
modulo 2%, then the (k — 1) MS bits of the byte = + y (in Zasg) are
Z€ro.

Thus, if ¢ = 1, the merging lookup procedure ensures, by the Fact
above, that the 7 — 1 = 6 MS bits of bytes 0,...,[¢/7] — 1 of ¥/, + y5
are zero, whereas for ¢ > 2, we have as an induction hypothesis that the
7 — (i — 1) MS bits of bytes 0,...,[¢/7] — 1 of both ¢/, and y/; are zero,
so again by the Fact above, we conclude that the 7 — ¢ MS bits of bytes
0,...,[¢/7] —1 of y; + y5 are zero, which proves inductively the desired
property for bytes 0,...,[¢/7]—1 for all ¢ > 1. A similar argument proves
the desired property for all bytes in positions 0, ..., «a — 1. Consequently,

at the end of the merging process at level ¢ = 3, we have that all entries
(r,y) of list L? have the 7 — 3 = 4 MS bits of bytes 0,...,a — 1 being
zero, as required.

Asymptotic Complexity. The lists at level i = 0 have |L°| = 2¢ entries.
To estimate the expected size |L'| of the lists at level i = 1, we model the
entries (1Y, y°) of level 0 lists as having uniformly random and independent
y? components. Hence for any pair of entries (r%,4%) € LY and (r%,y%) €
LOB from lists L% LOB to be merged, the probability that the 7 MS bits of
bytes 0,...,[¢/7] —1 of 9 and y% are negatives of each other modulo 27
is W Thus, the total expected number of matching pairs (and hence
entries in the merged list L!) is

LY = LAl < 1Ll _ 2 eroq),
o[/TIXT oTe/TIx7
Similarly, for level i = 2, we model bytes [¢/7],...,[¢/T] + [¢/6] — 1 as
uniformly random and independent bytes, and with the expected sizes
|L'| = 2¢F9W) of the lists from level 1, we estimate the expected size |L?|
of the level 2 lists as:

12| = Lyl < |Lp| 9t+0(1)
T ofe/6]lx6)

and a similar argument gives also |L3| = 279 for the expected size of
the final list. The entries (r,y) of L? have zeros in the 4 MS bits of bytes
0,...,a—1, and random values in the remaining m — « bytes. The final
stage of the attack searches |L3| for two entries with a identical values for
the 4 MS bits of each of these remaining m — « bytes. Modelling those
bytes as uniformly random and independent we have by a birthday para-
dox argument that a collision will be found with high constant probability
as long as the condition |L3| > v/24(m=a) holds. Using |L?| = 279 and
recalling that a = [£/7] + [£/6] + [¢/5] = (1/7T+1/6 +1/5)(+ O(1) =

%E + O(1), we obtain the attack success requirement

4m

0> —————
~2(1+ 108)

+mnz§+om.
105

Hence, asymptotically, using ¢ = Lmj, the asymptotic mem-

ory complexity of our attack is O(z220+155)) ~ O(22%/4) bit, and the

total running time is also O(x22+19)) ~ O(x2%/*) bit operations. So
asymptotically, we have a ‘fourth-root’ collision finding attack on the fi-
nal compression function.

Concrete Example. For LASH-160, we expect a complexity in the or-
der of 249, In practice, the O(1) terms increase this a little. Table 2 sum-
marises the requirements at each level of the merging tree for the attack
with £ = 42 (note that at level 2 we keep only 24! of the 22 number of
expected list entries to reduce memory storage relative to the algorithm
described above). It is not difficult to see that the merging tree algo-
rithm can be implemented such that at most 4 lists are kept in memory
at any one time. Hence, we may approximate the total attack memory
requirement by 4 times the size of the largest list constructed in the
attack, i.e. 2484 bytes of memory. The total attack time complexity is
approximated by Z?:o |Li| ~ 2433 evaluations of the linearised LASH
compression function f’, plus E?:o 2371 L!| ~ 26 hash table lookups.
The resulting attack success probability (of finding a collision on the 72
random output bits among the 237 entries of list L3) is estimated to be
about 1 — e~0-52°7(27=1)/21%7% 9 86 The total number of input bits
used to form the collision is 8 = 336 bit, which is less than the num-
ber 9m = 360 bit available with the linear representation for the LASH
compression function.

Table 2. Concrete Parameters of an attack on final compression function of LASH-
160. For each level 4, |L*| denotes the expected number of entries in the lists at level 4,
"Forced Bytes’ is the number of bytes whose 7—14 MS bits are forced to zero by the hash
table lookup process at this level, ‘Zero bits’ is four times the total number of output
bytes whose 4 MS bits are guaranteed to be zero in list entries at this level, ‘Mem /Ttem’
is the memory requirement (in bit) per list item at this level, ‘log(Mem)/List’ is the
base 2 logarithm of the total memory requirement (in bytes) for each list at this level
(assuming that our hash table address space is twice the expected number of list items).

Level (7)|log(|L’|)|Forced Bytes|Zero bits|Mem /Item, bit|log(Mem)/List, Byte
0 42 6 0 42 45.4
1 42 7 24 84 46.4
2 41 9 52 168 46.4
3 37 88 336 43.4

6.2 Heuristic Lattice-Based Attacks on the Final Compression

We investigated the performance of two heuristic lattice-based methods
for finding collisions in truncated versions of the final compression func-
tion of LASH. The first reduces finding collisions to a lattice Shortest
Vector Problem (SVP). The second uses the SVP as a preprocessing stage

and applies a cycling attack with a lattice Closest Vector Problem (CVP)
solved at each iteration.

First Method: SVP-Based Attack We assume that the r input to
the final compression function is known and use the ‘affine’ representation
(4) in Sect. 3.2 of the internal compression function, i.e. g(s) = f(r,s) =
H'- s+ b, with m x n matrix H" and m x 1 vector b. To find collisions
in the final compression function truncated to m’ < m half-bytes using
a subset of n’ < n input bits, we choose a m’ x n/ submatrix H of H’
(we let b’ denote the corresponding m’ x 1 subvector of b) and set up a
lattice £ 5 spanned by the rows of the following (n'+m’) x (n’ +m’) basis

matrix: .
M= B,-I, H '
0 2561,

Here, B; € Z is a parameter with a typical value between 12 and 16, and
I, I, denote identity matrices of size n’ and m’, respectively. We now
run an SVP approximation algorithm (such as LLL or its variants) on M
to find a short vector

v = ('U(),. <oy Un/—1,Un/y ... ,’Un/+m/,1)

in lattice Lg. Notice that by construction of Lg, for any lattice vector
v € L7 we have the relation

n'—1
> (vi/B1) i = (0nt .., Vprgm—1)” (mod 256) (11)
=0

where h; € Z3%s denotes the ith column of H for i =0,...,n/ — 1.

We hope that v is ‘good’, i.e. has the following properties:

1 v;/By € {-1,0,1} foralli=0,...,n — 1.
2 Jvj| <16 foralli=n',....n +m' —1.

We choose n’ to guarantee that such ‘good’ lattice vectors exist.
Namely, suppose that we model the last m’ coordinates of a lattice vector
v as an independent uniformly random vector in Zggﬁ, for each choice of
the first n’ coordinates of v € {—B1,0,B;}. Then we expect that one
of the resulting 3" lattice vector has |[v[i]] < 16 for i = n’,...,n’ +
m’ — 1 as long as 3" (31/256)™ > 1, which leads to the condition n’ >
(log(256/31)/10og(3)) - m’ =~ 1.92m’ (we remark that a rigorous argument
using Minkowski’s Theorem shows that a ‘good’ lattice vector is guaran-
teed to exist if 8 < By < 16 and n’ > m//(1 — log(By)/4)).

If v is ‘good’, then rearranging (11) yields the following relation in

Zm’ .
256
S e S A ot
:0;>0 1:v; <0
Let t1 = >, 00hi € Z8 + bty = 3. ohi € Z8% + ¥, and
e= (Uny..., UVpgmr—1)! € {—15,...,—1—15}”‘,. To obtain a collision for

the final compression function, we need that the 4 MS bits of the bytes
in t; match the 4 MS bits in the corresponding bytes of to, i.e. we need
that the addition of the error vector e to t5 doesn’t affect the 4 MS bits
of the bytes of t5. This happens if and only if for each (jth) byte to[j] of
to, we have

{lelj]l;- .., 15} if e[]]

Here LS4(t2[j]) denotes the 4 LS bits of byte t2[j]. Hence, for each j, there
are (16 — |e[j]|) ‘good’ values for LS4(t2[j]) which lead to a collision on
the 4 MS bits of that output byte. Modelling the bytes of t5 as uniformly
random and independent, we thus expect that all m’ bytes of 5 are good
(and hence we get an m/-byte collision for the final compression function)
with probability pgoeq = H?ial %g[j“.

Rather than running the costly SVP algorithm about k def /Pgood
times using different subsets of n’ input bits, we suggest a much faster
alternative. We run the SVP algorithm just once to get a single (¢1,%2)
pair with additive difference vector e = t; — to, and then generate about
k additional pairs #},#, with the same additive difference vector e, by
adding k& common shift vectors 6 to both ¢; and to, i.e. t’i =t +6°, té =
to+6° fori = 1,..., k. The common shift vectors 6’ are generated as all 0-1
linear combinations of about log(k) unused columns of H’ (i.e. columns of
H indexed by input bits which are not in the subset of n’ bits used in the
submatrix H). Modelling these k shift vectors 6’ as independent uniformly
random vectors, we expect to obtain a good th = t3 + &' among those
candidates, investing at most log(k) vector additions per trial (or even one
vector addition/subtraction per trial if we use a Gray code sequence of
0-1 combinations for the input bits used for generating the shift vectors).

Ezxperimental Results. The largest partial collision we obtained for the
final compression function with this attack was with n’ = 85, m/ = 30
(120 colliding bits out of 160) using reduction time 9639 sec plus a post
computation time of 22611 sec on a 1.6GHz PC (a good shift vector was
found after about 235 trials, close to the expected number k ~ 236-3).

LSa(talj]) € {{0,...,15—e[j]} if e[j] ig (12)

This is much lower than the 260 hash computations needed to do this via
a birthday paradox approach. The partial collision is shown in Fig. 5.

First Input

Second Input

r||s (first 20 bytes):

r||s (first 20 bytes):

30 22 44 €2 0 04 21 74 30 00
c2 de 57 el 73 80 00 00 00 00

80 00 2a 08 02 00 80 09 05 20
02 de 57 el 73 80 00 00 00 00

hash:

hash:

4f 04 45 2f 29 a5 95 ab ec 52
a0 17 8e 62 80 85 62 9f b3 64

4f 04 45 2f 29 a5 95 ab ec 52
a0 17 8e 62 80 e0 44 7 50 89

Fig. 5. Two final compression function inputs that match on the top 4 MS bits of 30
bytes of the output (all input bits which are not shown are zero).

This attack generates long colliding inputs of bit length n’ + log(k).
However, with better lattice reduction the value of n’ might be shortened
(heuristically n’ > 1.92m’ should suffice, hence even n’ =~ 58 for m’ =
30 may work). Furthermore, we can reduce the number log(1/pgooq) of
additional input bits for generating the ‘postprocessing’ shift vectors by
instead flipping the values of input bits which have the same values among
the n’ bits used in the lattice reduction.

Second Approach: CVP-Based Attack Like the attack in Section 4,
the idea of this approach is to run a Pollard rho cycle attack on the final
compression function, and force some of the output bytes to zero in each
iteration to reduce the size S of the output space. The attack in Section 4
used a table lookup approach to force ¢ output bits to zero at the expense
of 2¢ table storage and computation. Here, we aim to force ¢ bits to zero at
each iteration using lattice techniques without the expense of 2¢ storage,
thus achieving similar run-time but without the necessity of large storage.

The Attack. As in the previous attack, we assume that the r input
is known and use the ‘affine’ representation (4) of the final compression
function output in terms of s, i.e. g(s) = f(r,s) = H' - s+ b, with m x n
matrix H and m x 1 vector b. Fix attack parameters h < m (the number

of output half-bytes we attempt to force to zero at each Pollard iteration)
and o > h/2.

We define a Pollard iteration map g : ZSss — Z35¢ with o
as follows.

Referring to Fig. 6, let Hy, = [HpoHp Hp denote the h x 8- (o’ +)
submatrix of H' consisting of the intersection of the A bottom rows and

[N
=

€

m _ 3
2 Sh

Fig. 6. Submatrices denoted as Hpyo, Hpy, Hgo are taken from the bottom left part of
the matrix Hg. They correspond to the first o/, a/2 and «/2 bytes of the vector s.

H/
I g Hpo Hpy © Hpy
8a/ 4o 4o

8- (o + «) leftmost columns of H'. Let ¢ denote the bottom h bytes of
the compression function output (before truncating 4 LS bits per byte),
and s’ = [shs)sp]T denote the top o/ 4 a bytes of s, where s}, € Z3ss and

sh, 80 € Z%g. From Fig. 2 we have (assuming o + o/ < m), that
t' = Hpy - Rep(sh) + Hp, - Rep(s)) + Hpy - Rep(sp). (13)

On input 5 € Z$ss, the Pollard function g sets s, = 5, and determin-
istically computes values for s} and s to attempt to set the 4 MS bits of
each byte of ¢’ to zero. Namely, if Isb(s}) = 0 (‘Case 0°), g sets s§ = 0 and
finds a value for Rep(sf)) € {—1,0,1}4*. Otherwise, if Isb(sh) = 1 (‘Case
1), g sets sj = 0 and finds a value for Rep(s}) € {—1,0,1}4®. Consider
first ‘Case 0'. Referring to (13), let y = —H/, - Rep(sh) € Z#-,. Then g
computes Rep(s)) € {—1,0, 1} such that H}, - Rep(s}) ~ y. To do so, g
sets up lattice £y spanned by the rows of the following (4a+h) x (4da+h)

basis matrix:
_ (By Lia [Hpg]"
M°_< 0 256-1)°

Note that this lattice is of the same form as the one used in Sec 6.2 (with
B; an integer value between 12 and 16). Now ¢ runs a Closest Vector
Problem (CVP) approximation algorithm (such as the Babai algorithm [1]
and its variants) on My to find a lattice vector

_ 4a+h
v = (V0,...,V4a—1,V4as- - -, Viat+h—1) € Z

which is ‘close’ to the target vector

y, = (07 s 70’y) € Z4a+h'

We set Rep(s()[i] = v[i]/By for i =0,...,4a — 1. Note that at this point
we hope that v is sufficiently close to y’ so that

Rep(sf) € {—1,0,1}* and |v[i] — ¢/[i]| < 16 for i = 4a,...,4a +h —1,
(14)
although it suffices if this happens for a noticeable fraction of inputs
to g (see analysis later). If (14) is satisfied then t' = Hp, - Rep(sh) +
Hfy - Rep(s)) = & (mod 256) for some § € {—15,...,15}", and hence
MS,(t'[i]) € {0,15} for i = 0,...,h — 1 (i.e. the 4 MS bits of the output
bytes are ‘approximately’ zero in the sense that there are only two possible
values for these 4 MS bits). In ‘Case 17, g performs a similar CVP compu-
tation finding Rep(s}) as the computation of Rep(sj) in ‘Case 0’, where
the submatrix Hp, above is replaced by the submatrix Hj,, yielding a
lattice basis matrix M;.
Finally, the Pollard iteration output g(5) € ZSss is defined as the
concatenation of two strings derived from ¢’ computed from (13):

— The h bit string d € {0,1}", where d[i] = 0 iff M.Sy(t'[i]) = 0.
— The 4 - (m — h) bit string consisting of the top m — h half bytes of

H' - [shsh shom—(ate’)],

Note that the byte length of ¢(5) is (h+4-(m—h))/8 = m/2—3/8h o,
as required. This completes the description of g.

Crucial Remark. The Babai CVP approximation algorithm can be sep-
arated into two steps. The first (more computationally intensive) ‘prepro-
cessing step’ does not depend on the target vector, and involves computing
a reduced basis for the lattice and the associated Gram-Schmidt orthogo-
nalization of the reduced basis. The second (faster) ‘online step’ involves
projecting the target vector on the Gram-Schmidt basis and rounding
the resulting projection coefficients to construct the close lattice vector.
In our Pollard iteration function g, we only have two fixed basis matri-
ces (Mp for ‘Case 0’ and an analogous basis M; for ‘Case 1’). Hence we
need only run the time consuming preprocessing step twice, and then
in each Pollard rho iteration g only runs the fast ‘online step’ using the
appropriate precomputed bases.

The attack iterates the Pollard rho iteration function g on a random
initial value 5 € Zg‘éﬁ. After a sufficient number of iterations (in the order
of 28¢'/ 2), we expect to find a collision in g, which gives us two compression
function ternary inputs s’ = [shs}sh]T and & = [355)5)]7 for which the
corresponding compression function outputs ¢, ¢ € Zjt, match on the 4
MS bits of all m bytes. Moreover, we hope that lsb(s}) # lsb(5}). Suppose,

without loss of generality, that lsb(s}) = 0 and Isb(s},) = 1. We therefore
have:

8a’—1 8a’+8a—1
t= Y Rep(sy)lil-hr+ > Rep(sp)li — (8’ +4a)] - hi,
=0 1=8a’+4a+1
and
8a/—1 8a’+4a—1
t= > Rep(sh)[i]-hr+ D Rep(s))[i —8a']- hi,
1=0 1=8a/’

where h% denotes the ith column of H’'. From the equality of the 4 MS
bits of all m bytes of ¢t and ¢ we have

t=t+e,

where e € {—15,...,4+15}". Therefore, rearranging this relation to have
only 0-1 linear combination coefficients on each side (by moving vectors
with —1 coefficients to the other side), we get a relation of the form:

8a/—1
Y Rep(8)[i] - hip + > RT > hy
=0 i:Rep(5))[i—8c/]=1 i:Rep(s()) [i—(8a’+4a)]=—1
8a’—1
= > Rep(sh)li] - hiz + > o+ > L te.
=0 i:Rep(5))[i—8a/]=—1 i:Rep(s())[i— (8¢’ +4a)]=1

Hence, we are now back to the situation encountered in the SVP-based
attack above, where we have two 0-1 inputs to the compression func-
tion, such that the corresponding output vectors differ by the vector
e € {—15,...,+15}™, and hence match on the 4 MS bits of all m bytes
with probability pgooq = H;’;Bl 1671‘66[2'”, and we apply the the same ‘post-
processing’ technique (adding about 1/pgeeq shift vectors generated by
all 0-1 combinations of log(1/pgeoq) unused input columns) until we get
a collision on the 4 MS bits of all m output bytes.

Heuristic Complexity Analysis. The memory complexity for this at-
tack is very small. The time complexity 7' is the sum of three compo-
nents: (1) The preprocessing time T, for the CVP algorithm, (2) The
time T}, for the Pollard rho attack to produce a collision with {—1,0,1}
coeflicients, and (3) The postprocessing time T}, for transforming the
{=1,0,1} coefficient collision into a {0,1} coefficient collision.

The preprocessing time 7). is dominated by the time to reduce the
lattice bases My and M;. Using the ‘block size’ and ‘pruning’ parameters

of the NTL BKZ lattice reduction routines [12] we can trade off quality
of the reduction (which reduces the expected run-time 7, of the Pollard
rho step (see Table 3 below) at the expense of an increased preprocessing
time Tppe.

The Pollard rho step run-time 7}, is of the form N, - T, where N,
is the expected number of Pollard rho iterations required to obtain a
‘good’ collision in the Pollard iteration function g, and T}, is the time per
iteration, which is dominated by the ‘online step’ of the CVP algorithm.

Let S = 2*m=3" denote the size of the space in which ¢ is iterated.
Let p, denote the probability (over a random target vector) that the CVP
algorithm returns a ‘good’ vector, i.e. vector v with v[i]/B; € {—1,0,1}
for i =0,...,4a — 1 and |v[i]| < 16 for i > 4a. Out of N, iterations, we
expect N, - py iterations to produce ‘good’ vectors. Hence by a birthday
argument we expect to get a collision with high constant probability if
N, -pg - % > /S, where the factor of % accounts also for the probability
that the collision is ‘good’ also in the sense that Isb(s)) # 1sb(8,). Using
S = 94m=3h _ 9dm—3c/4 ;o get

Np ~ 21+2m_3h/2/pg' (15)

The probability p, can be determined experimentally for a given reduced
basis. It seems to be difficult to estimate by theoretical arguments. How-
ever, we note that the parameter choice @ > h/2 is made to ensure
(heuristically) that a ‘good’ vector v above will exist. Namely, suppose
that we heuristically model the last h coordinates of a lattice vector
v € Ly as an independent uniformly random vector in Z&, for each
choice for the first 4o coordinates of v € {—By,0, By }. Then we expect
that one of the resulting 3% lattice vector has |v[i] — y'[i]] < 16 for
i = 4a,...,4a + h — 1 as long as 3%%(31/256)" > 1, which leads to the
condition o > (log(256/31)/(41log 3)) - h ~ h/2.

The postprocessing time T}, is estimated by 1/pge0q shift vector ad-
ditions, where pyooq = H?Z)l %;W is the probability that a random
shift vector yields a collision on all output half bytes. Modelling the error
vector elements e[i] as uniformly random in {—15,...,+15} and inde-
pendent, the expected value of ﬁi[iﬂ is 3.46, so the expected value of
1/pgood = [1175" ﬁim is 3.46™ ~ 204482 Hence Tposr = 204487 . T4,
where T,4q is the time to add/subtract an m-byte vector (assuming we
use a Gray code sequence for enumerating the input bit combinations pro-
ducing the tested shift vectors). We note that this may be a pessimistic
estimate for T),s since the error coordinates e[i] are likely to be biased

towards small absolute values, rather than being uniformly random in
{=15,...,+15}. To get a better estimate one can compute the average
value of 1/pgeeq for the outputs produced by the CVP algorithm.
Concrete Estimates for LASH-160. Table 3 summarises our experi-
mental results for estimating the complexity of this attack on LASH-160.

Table 3. Experimental results for CVP attack on LASH-160. Refer to text for expla-
nation of table headings.

h|4a| b | p |log(Tpre) |log(1/py) |log(Np)|log(Titr) |log(Th)| ni
20(70(55(12| 23.2 7.7 58.7 9.2 68.0 224

In Table 3, the unit of time used is one LASH-160 compression func-
tion evaluation, which is taken to be 392.83 x 40 ~ 15713 Pentium cycles,
as reported in implementation results in [3]. The two most important
parameters log(Tpre) (measured preprocessing step time) and log(7),) (es-
timated Pollard rho step time) are shown in bold. For all the tabulated
cases, the postprocessing step time Tpost is Tpost ~ 20.448x160 . .~ 264
compression function evaluations, using the estimate 7,44 ~ 80 cycles.

Additional remarks on Table 3. The parameters b and p denote
block size and prune parameters, respectively, used for the NTL BKZ
lattice reduction algorithm [12] in the preprocessing step. Time Ty, is the
measured time for the ‘online’ CVP step, approximating the time for one
evaluation of the Pollard iteration function g. The probability of a ‘good’
vector pgy was estimated by running the ‘online’ step of the CVP algorithm
1000 times, each time with a new and uniformly random target vector
y € Zh., counting the number n,,;, of runs for which v[i]/B; € {-1,0,1}
for i = 0,...,4a — 1, the number ny,, for which |v[i] — y'[i]| < 16 for
i =4a,...,4a+h—1, and estimating p, ~ gt x f22. The parameter n;,
shows the bit length of each of the colliding inputs to the final compression
functions produced by the attack.

From the results in the table, we therefore estimate that with the right
choice of parameters, this attack can find collisions in the final compres-
sion of LASH-160 using about 2% total run-time and very little memory.

References

1. L. Babai. On Lovasz’ lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1-13, 1986.

10.
11.
12.
13.

14.

M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In Advances in Cryptology — CRYPTO ’96, volume 1109 of LNCS,
pages 1-15. Springer, 1996.

K. Bentahar, D. Page, M.-J. O. Saarinen, J. H. Silverman, and N. Smart. LASH.
Second Cryptographic Hash Workshop, August, 24-25 2006.

. D. J. Bernstein. Circuits for integer factorization: A proposal. Web page,

http://cr.yp.to/papers/nfscircuit.pdf.

D. J. Bernstein. What output size resists collisions in a xor of independent expan-
sions? ECRYPT Hash Workshop, May 2007.

S. Contini, R. Steinfeld, J. Pieprzyk, and K. Matusiewicz. A critical look at cryp-
tographic hash function literature. ECRYPT Hash Workshop, May 2007.

O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice
problems. Electronic Colloqguium on Computational Complexity (ECCC), 3(042),
1996.

S. Lucks. Failure-friendly design principle for hash functions. In Advances in
Cryptology — ASIACRYPT 05, volume 3788 of LNCS, pages 474-494. Springer,
2005.

V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. Provably Secure FFT
Hashing (4+ comments on “probably secure” hash functions). Second Crypto-
graphic Hash Workshop, August, 24-25 2006.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

C. Peikert. Private Communication, August 2007.

V. Shoup. NTL: A library for doing number theory. http://www.shoup.net/ntl/.
D. Wagner. A generalized birthday problem. In Advances in Cryptology —
CRYPTO ’02, volume 2442 of LNCS, pages 288-303. Springer, 2002.

M. J. Wiener. The full cost of cryptanalytic attacks. J. Cryptol., 17(2):105-124,
2004.

