Implementing Cryptographic Pairings Over
Curves of Embedding Degrees 8 and 10

Christine Abegail Antonio, Satoru Tanaka, and Ken Nakamula

Department of Mathematics and Information Science
Tokyo Metropolitan University
Minami-Osawa, Hachioji-shi
Tokyo, Japan
abby@tnt.math.metro-u.ac.jp, satoru@tnt.math.metro-u.ac.jp,
nakamula@tnt.math.metro-u.ac. jp

Abstract. In this paper, we will describe efficient implementations of
the Tate and Ate pairings over ordinary elliptic curves of embedding de-
grees 8 and 10. We will discuss the possible curve-dependent optimiza-
tions that can be applied to evaluate the pairings. We pay particular
attention to the use of elliptic curve twists and the denominator elim-
ination method to make computations more efficient. Our main goal is
to draw together the best possible optimizations that can be used to
efficiently evaluate the Tate and the Ate pairings in both curves and
to give timings and appropriate interpretation on the rate of change on
the running time of our programs for both curves. To come up with an
adequate conclusion, we will compare the performance of the curves we
chose to an already experimented curve of embedding degree 12.

key words and phrases. bilinear pairings, cryptography, pairing-friendly curves

1 Introduction

The efficient implementation of bilinear pairings has been a significant topic of
research because they are being used in recently developed cryptographic proto-
cols. The standard method of computing these pairings is based on the algorithm
presented by Miller in [9]. A lot of pairing researches are based on improving this
standard method. One optimization that can be done is to improve the Miller
loop such as the denominator elimination method which is discussed in [1]. An-
other improvement is to use pairing-friendly curves with parameters which are
appropriate to use in pairing-based cryptography. Supersingular and ordinary el-
liptic curves are both suitable curves for this kind of cryptography. Many papers
have been published on the construction of these kinds of curves and a survey
on this was written by Freeman, Scott and Teske [5]. In [7], they suggested that
bilinear pairing computations can be improved by choosing suitable fields where
the field arithmetic can be made relatively faster.

In [3], J. Devegili, M.Scott and R. Dahab described an efficient implemen-
tation of both the Tate and the Ate pairings using curves of embedding degree
12, which are pairing-friendly elliptic curves of embedding degree 12 with prime
order. In this paper, we will do a similar experiment using the family of curves
generated by Freeman[4] and the family of curves generated by Tanaka [13], both
of which are pairing friendly elliptic curves with embedding degrees 10 and 8,
respectively. To adequately compare the efficiency of the optimizations we ap-
plied, we will include in our implementations the curve of embedding degree 12
used in [3]. We chose these curves because, as we write this paper, there are still
no published researches on the efficient implementation of bilinear pairings using
curves with those embedding degrees. Furthermore, explicit methods on how to
generate such curves are discussed in their papers and good numerical examples
are already provided which make them suitable to use in our implementations.

Unlike supersingular elliptic curves, ordinary curves do not have distortion
maps that can make computations much faster. However, for ordinary curves of
even embedding degree, we can use the twist of an elliptic curve to efficiently
evaluate bilinear pairings. Since curves of embedding degrees 8 and 12 fall under
this category, we will use this idea in our experiment and we will show that,
indeed, the use of twists make the pairing evaluations much faster. We will also
use the denominator elimination method proposed in [1]. These are the two main
optimizations that we will use in this experiment and we will show that they
reduce the running time of the algorithms to compute the pairings.

For comparison, we will use the same curve they used in [3]. Preliminary ideas
on the turnout of the experiment can be expected and they will be discusssed
in Section 4.5. Our main interest is to compare the rate of the speed up of the
algorithms using the two main optimizations discussed above and how they per-
form on the three curves that we will use. The denominator elimination method
reduced the running time about 20 percent, in all the cases. On the other hand,
the effect of the use of twist varied between the three curves, depending on the
parameters.

This paper is organized as follows. Section 2 gives the notations that we will
use in this paper, a brief mathematical background of bilinear pairings, in par-
ticular, the Tate and Ate pairings, and algorithms to compute these pairings. In
Section 3 we will introduce some optimizations to make the algorithms efficient.
Section 4 will give details on the curves that we will use in this experiment and
how to implement the Tate and the Ate pairings on these curves. In Section 5
we will give our numerical results. Finally, we will discuss the conclusions that
we will draw from our implementations in Section 6.

2 Notations and Algorithms

Let E be an elliptic curve over a finite field F,. A divisor D is defined as D =
> pegmp(P), mp € Z and mp = 0 for almost all points P. These divisors form
an additive group D(E). We say that a divisor D is principal if there exists a

rational function f such that mp gives the order of vanishing of f at P. These
principal divisors are of degree 0 and form a subgroup of the group D°(E) of
degree zero divisors. The support of a divisor D =). pnp(P), denoted by
supp(D), is the set of points P with np # 0. See [6] for a detailed discussion on
divisors.

Now, let r be the largest prime dividing |E(FF,)| such that r is relatively
prime to the characteristic of the field F,. We denote by k the embedding degree,
namely, the smallest positive integer such that r|¢* — 1. A pairing is a function
which maps bilinearly, a pair of elliptic curve points P, @ to an element in the
finite multiplicative group F,«*. The most commonly used bilinear pairing is
called the Tate pairing.

We denote by E(F,x)[r] the group of r-torsion points of E. For a pair of
elliptic curve points P € E(F)[r] and Q € E(Fx), we let the divisor (fp) =
7(P) — r(Ps) where P, denotes the point at infinity on E. This divisor is
principal since P is an r-torsion point. Choose another divisor Dg = (Q) — (Px)
with support disjoint from the support of (fp). The Tate pairing is defined as

e(*, *)T : E(]Fqk)[’l“] X E(Fqk)/TE(Fqk) — Fqk*/Fqk*T

by e(P, Q)» = fr(Dq). This pairing is well-defined, bilinear and non-degenerate.
Note that the Tate pairing evaluates as an element of one of the cosets of
F+*/Fu*". To produce a unique value, we raise the output to the power (¢* —

1)/r. This process is called the final exponentiation.

In our algorithms to compute the Tate pairing, we will use the functions {4 p
and v+ p. These are just the lines computed when evaluating the elliptic curve
point addition A + B = C. The values for these functions are solved using the
formulas

14,8(Q) = (yg —ya) — AMzg —x.4)

and

ve(Q) = (zq — z0)

where A=(z4,y4), C=(zc,yc), @=(2g,yq), and A is the slope of the line
through A and B. Furthermore, let

r= (LT_log2 =15 TO)Q

be the binary expansion of r. Given below is a standard algorithm to compute
the Tate pairing.

Algorithm 1. Standard Algorithm for Computing Tate Pairing.
INPUT: P € E(F,)[r], P # P, Q € E(F).
k
OUTPUT: e(P,Q) ~V/".
1. T — P, f«1.
2: for ¢ « [logy(r)] — 1 down to 0 do

33 =1 1rr(Q)
4. T =2T

5 g=g¢"vr(Q)

6: if r; =1 then

7: f=f1lrp(@Q
8: T=T+P

9: g=g-vr(Q)
10: end if

11: end for

12: w — (f/g)(@" /"
13: Return w.

Another kind of pairing that we will use in our implementations is a variant
of the Tate pairing called Ate pairing introduced in [8]. If we denote by t the
trace of Frobenius of the curve E, then the Ate pairing is defined as

a(*, *),« : E(]Fqk)[’l“] X E(Fqk)/'rE(]Fqk) — Fqk*/Fqk*T

by a(Q, P)i—1 = fo(Dp). This pairing is well-defined, bilinear and non-degenerate.
Similar to the Tate pairing, a final exponentiation is needed to obtain a unique
value. The only difference is that we interchange the fields from which we take
the points P, @ and instead of using r to control the Miller loop, we use s = t—1.
For simplicity, we assume ¢ > 1 and we will compute on such curves. Below is a
standard algorithm to compute the Ate pairing. Note that

S = (1, SL10g2 s =15+ 50)2.

Algorithm 2. Standard Algorithm for Computing Ate Pairing.

INPUT: Q € E(F,)[r], P # P, P € E(Fy)[r].
k

OUTPUT: a(P,Q)* ~ Y/,

1. T — P, f«1.

2: for ¢ « [log,(s)] — 1 down to 0 do

33 f=flrr(Q)
4. T =2T

5 g=g¢"vr(Q)

6: if r; =1 then

T f="FflrpQ
8: T=T+P

9: g=g-vr(Q)
10: end if

11: end for

12: w o (f/g)@ D/
13: Return w.

3 OPTIMIZATIONS

The standard algorithm used to compute bilinear pairings is based on Miller’s
algorithm introduced in [9]. Many researches discuss the optimizations that can
be applied to the standard algorithm, see for example [11] about a survey on the
efficient implementation of bilinear pairings. In this section, we will discuss the
optimizations we used to efficiently evaluate the pairings.

1. Since we are using curves of even embedding degrees in our experiment, then

k = 2k, so we may assume that the extension field F is built as a quadratic
extension over F .. Using this fact, we can use the denominator elimination
method, namely, there is no need to compute for the vertical line v4 p(Q)
in Algorithms 1 and 2. See [11] and [1] for details on this optimization.

. We say that E admits a twist of degree d if there exists an E’ defined over

[F, and an isomorphism 1 : £/ — E defined over F /. The use of the twist
of ordinary curves appear to speed up pairing evaluations because for the
case of the Tate pairing, instead of taking Q@ € E(F,), we can choose it
to come from E'(F/a). Similarly for the case of the Ate pairing, we can
take P from E'(F /a). These choices in our input reduce the running time
of the algorithms because we can avoid full E(FF) arithmetic to compute
la,p. Therefore, in our experiment, we will compare its performance with
and without using twists. Details on the appropriate twist to use on both
curves of embedding degrees 8 and 10 will be discussed in Section 4.

Below are the optimized algorithms to compute the Tate and Ate pairings.

Algorithm 3. Optimized Algorithm for Computing Tate Pairing.
INPUT: P € E(F,)[r], P# P, Q € E'(Fr/a).
k
OUTPUT: (P, Q) ~1/
1. T—P, f—1.
2: for i < |log,(r)] — 1 down to 0 do

3 f=rlrr(Q)
4: T =2T

5 ifr; =1 then

6 f=flrpQ
7 T=T+P

8: end if

9: end for

10: w (f)(qkfl)/’"
11: Return w.

Algorithm 4. Optimized Algorithm for Computing Ate Pairing.
INPUT: Q € E(F,)[r], P # Puo, P € E'(F jx/a)[r].
k
OUTPUT: (P,Q)\ ~1/
1. T—P, f«1.
2: for i < [logy(s)] — 1 down to 0 do

3 f=1 (@)
4: T =2T

5: if s; = 1 then

6 f=flrpQ
7: T=T+P

8: end if

9: end for

10: w — ()@ =D/
11: Return w.

4 Pairing-Friendly Curves

In this section, we will discuss the pairing-friendly curves that we will use in
our implementations. After giving details on these curve, we will provide a table
which contains the difference in the parameters of the sample curves that we
used in this experiment.

4.1 Curves with Embedding Degree 10

Freeman, in [5] proposed a way to generate a whole family of pairing-friendly
ordinary elliptic curves of the form E; : Y2 = X34+aX+b, b # 0 of embedding de-
gree 10 with prime orders. This is an addition to the work of Miyaji, Nakabayashi
and Takano[10] who gave a complete characterization of ordinary elliptic curves
with embedding degrees 3, 4 and 6 of prime order, and Baretto—Naehrig[2] who
provided a method to produce curves of prime order with embedding degree 12.

We can generate a ‘pairing-friendly’ elliptic curve of embedding degree 10
with prime order by using the following parameters.

t(zr) = 102% + 5z + 3
r(x) = 252% + 2523 + 1522 + 5 + 1
q(x) = 25x* + 2523 + 2522 + 102 + 3

where t(z) is the trace of Frobenius of the curve, r(x) is the large prime which
divides the order of the group, and at the same time, the number of points of
the elliptic curve E; , and ¢(x) is the characteristic of the finite field. Since this
curve is of embedding degree 10, we are computing pairings over points in the
field Fg10. To make pairing implementations more efficient, we will use the twist
of these curves. Let ¢ € Fs such that Z2 — ¢ is irreducible over Fs[Z] whenever
g = 1 (mod 2). Then there exists a curve Ey/F,s : Y2 = X3 + &X'+ C%
which is a quadratic twist of E1/Fg10. So for curves of embedding degree 10, we
can compress some of the points from E;(F,i0) to points in the quadratic twist
Ey(Fgs).
Let V € Fgi0 be a root of Z? — (. The we can construct a homomorphism

’(/J : EQ(FqE:) — E1 (qu)
(X, V") — (V2X,V3Y)

which maps points on the quadratic twist Ey(Fgs) to the points of the original
curve Ey(F10). This map will make pairing evaluations faster which we will show
later in our results.

In our implementations, we will use a 234-bit curve (published example [5])

E:Y?=X34+AX+B

with the following parameters.

r = 18211650803969472064493264347375950045934254696657090420726

230043203803

g = 1821165080396947206449326434737595004593425469665709042072
6230043203803

A=-3

B = 1574866809491340118477796447352285908690083127492294897332
0684995903275

Below is the table for the construction of the extension fields that we used
for this curve.
4.2 Curves with Embedding Degree 8

In [13,14], Tanaka developed an algorithm to generate pairing-friendly elliptic
curves of the form E3 : Y2 = X3 + ¢X, with embedding degree 8 over finite

Table 1. Extension Field Construction, k=10

Extension Construction Representation
Fis |Fo[X]/(X°—X—Dfa=ao+aX +a X" +azX’ +as X"
Fqlo Fqs [Y}/(YQ — Oz) a=ao+ a1y

prime fields by improving the method of Brezing and Weng (see [4] and [14] for
further details). The curve can be generated using the following parameters.

t(x) = —8x? —108z2 — 54z — 8

r(x) = 82x* + 10823 + 542 4 122 + 1

g(x) = 37990625 + 7990082 + 053462 + 3336140° + 8894527
+12636x + 745

n(z) = q(z) +1—t(z),

where the notations are the same as the ones we used for curves of embedding
degree 10, except that r(z) is the large prime divisor of n(x) which is the number
of points of the elliptic curve E.

As in the case of curves of embedding degree 10, we can use twists to make
implementations more efficient. These curves are of embedding degree 8, so we
are evaluating pairings over points in E3(Fgs). Whenever ¢ = 1 (mod 4), let
p € F 2 such that W* — p is irreducible over F,2[W]. Then there exists Ey/F g :
Y2 =X"3+ £X’ that is a quartic twist of E3/F,. Therefore, for the case of the
curves of embedding degree 8, we can compress some of the points from FE3(IF s)
to points in the quartic twist E4(F2).

Similarly, we can constuct a homomorphism which maps points on the quartic
twist E4(F,2) to the points of the original curve E3(Fys). Let U € F s be a root
of W2 — u. Then the following is the homomorphism map for the case of the
curves of embedding degree 8.

w : E4(Fq2) — Eg(Fqs)
(X",Y') — (U2X,U%Y)

This map will make pairing evaluations more efficient which will be shown
later in our results.

For our implementation, we will use the elliptic curve with the following pa-
rameters. Note that the large prime divisor r of the group order is 224 bits. It is
easy to verify that this curve is pairing-friendly once the parameters are given
numerically as follows.

E:Y?=X34+aX (modgq) (a#0)

For x = —72057594037930756 (log,(—z) ~ 56.0), we generated the curve with
the following parameters.

g = 5318077912637504134292767901251647400395578540
3827730100050941212371435046023372666628598916
049952969199369

r = 2210715626706698491377041180063927762099958931
722603805474805907424817

t = 3067984237085391549834039420816298507616442947
7994640

n = 5318077912637504134292767901251647400395578540
3827730069371098841517519547682978458465613839
885523491204730

a=1/3.

For this curve, we have lgr ~ 230.4 and lg g ~ 354.5. It is easy to verify that this
curve is pairing-friendly once the parameters are given numerically as above.

Below is the table for the construction of the extension fields that we used
for this curve.

Table 2. Extension Field Construction, k=8

Extension| Construction |Representation
F 2 F,[X]/(X? —a)|a=ao+ a1 X
Fpa o [FelY]/(Y?=B)| a=a0+aY
Fis |FalZ]/(Z° =) a=ao+ a1 Z

4.3 Curves with Embedding Degree 12

In [3], they used Barreto-Naehrig curves in their implementations. These are
pairing-friendly curves of embedding degree 12 with prime order. The equation
of the curve is given by y? = 23 + b, b # 0. The parameters of the curve are as
follows, where the notations are the same as that of curves of embedding degree
10.

t(xr) = 622 +1
r(z) = 36z* — 362 + 1822 — 62 + 1
q(x) = 362t — 3623 + 2422 — 62 + 1

Similar to both curves discussed above, we can use twists to make implemen-
tations more efficient. Since these curves are of embedding degree 12 we are evalu-
ating pairings over points in Es5(F;12). Whenever ¢ = 1 (mod 6), let A € F 2 such
that W°— X is irreducible over F,2 [W]. Then there exists Eg/Fg2 : Y2 = X342

that is a sextic twist of Es/IF,. Therefore, for the case of BN curves, we can com-
press some of the points from E5(Fg12) to points in the quadratic twist Eg(F2).
Similarly, we can constuct a homomorphism which maps points on the sextic
twist Eg(Fz2) to the points of the original curve E5(Fg12). Let A € Fp2 be a
root of A® — \. Then the following is the homomorphism map for BN curves.

w : E6(Fq2) — E5(Fq12)
(X',Y") — (A2X, A3Y)

In our experiment, we will use the same curve they used in [3] and it is given
numerically as follows.
E:Y*=X’+B

q = 824340166543006797212173535031900388365717818113862289211

673224128190

r = 8243401665430067972121735350319003883628466856429668643011
45100525564

t = 287113247089542491052812360262628119415

B=3

Table 3. Extension Field Construction, k=12

Extension| Construction Representation
Feo |FX]/(X?—a)] a=ao+aX
qu]qu [Y}/(Y3 — B) a=aog+ a1Y+a2Y2
Fa: |Fe[Z]/(Z° —7)| a=ao+aZ

4.4 The Tate and Ate Pairings

The Tate pairing e(P, Q) takes points P € E(F,)[r] and Q € E(Fx). For curves
of embedding degree 10, since it has a quadratic twist, we can take @ € E5(Fs)
which will reduce the computing time to evaluate the Tate pairing. Similarly
for curves of embedding degree 8, since it has a quartic twist, we can choose
Q € E4(F,2) which significantly reduces the time needed to evaluate the Tate
pairing. For both curves, these input choices will assure us that arithmetic in Fgx
can be much more decreased when computing 4 5(Q). For an explicit formula
to compute [4 p(Q) using projective coordinates, see [3].

The Ate pairing a(P, Q) is similar to the Tate pairing but we swap the
fields from where we take the points P and @, i.e., we choose @ € E(F,) and
P ¢ E(Fy). As in the Tate pairing, we can choose Q) € E3(Fgs) for curves of
embedding degree 10 and Q € Ey(F,2) for the case of curves of embedding degree
8. Furthermore, instead of using r to control Miller’s loop, the Ate pairing uses
s =t — 1. For an explicit formula to compute l4 p(Q) using affine coordinates,
see [3]

4.5 Expected Reductions

Below is the table containing a detailed comparison of the parameters of the
sample curves that we will use. Note that the p-value pertains to the ratio of the
order of the elliptic curve and the largest prime factor dividing the order.

Table 4. Parameter Comparison of the Curves Used in This Experiment

Embedding Degree Type p-value|Degree of Twist
8 y? =2+ az 1.54 4
10 Vv=ad4ax+b 1 2
12 Y =x3+b 1 6

Since the main operation that we use is multipication, we count the number
of multiplications in Fx and F x/a in the loops of the algorithms carefully. By
using the twist of the curves mentioned above, the bitsize of the values in the
algorithms will be reduced, and the running time of the algorithms is expected
to be 1/2 — 3/4(1/d?) faster. The algorithms will perform 45 percent faster for
the curves of embedding degree 8, 31 percent faster for the curves of embedding
degree 10 and 48 percent faster for the curves of embedding degree 12. The
use of the denominator elimination method is expected to make the optimized
algorithms 20 percent faster than the standard ones. Also, the p-value of the
curve plays a big role in the pairing computations. Since the curves of embedding
degrees 10 and 12 have p-value 1, namely, the bitsizes of and ¢ are equal, the
computation time will not change. However, for curves of embedding degree 8,
we expect the running time of the algorithm to be slower because the p-value
of this family of curves is 1.5. We also expect the Ate pairing evaluation to be
faster than the Tate pairing because the binary length of ¢ is less compared to
the binary length of r.

Of course these are just theoretical assumptions. One factor that truly af-
fects the performance of the algorithms is the choice of extension fields. We will
compare these expectations to the turnout of our experiment and we will discuss
in detail the reasons why some of these expectations are not met.

5 Results

We implemented six algorithms, the standard Tate and Ate pairings, the Tate
and Ate pairings with denominator elimination (d.e.) and the optimized Tate
and Ate pairings using twists and denominator elimination. Their efficiency are
measured over curves of embedding degrees 8 and 10. We generated 10 pairs
of points for each curve as inputs in our programs. Our programs are written
in MAGMA and ran on an AMD Opteron, 2GHZ dual core machine with 4GB
of memory. Below are the tables for the average timings of the algorithms in
seconds.

Table 5. Timings for the Tate/Ate Pairings

k=8 |k=10 | k=12
Tate Pairing 0.0794]0.1173]0.1090

Tate Pairing (w/ twist) 0.0660(0.1169|0.0708
Tate Pairing (w/twist and d.e.)|0.0535|0.0797|0.0574
Ate Pairing 0.1624|0.1658|0.1557

Ate Pairing (w/ twist) 0.0687|0.1666|0.0443

Ate Pairing (w/twist and d.e.) |0.0587|0.1420(0.0375

6 Observations

We have demonstrated the first efficient implementation of the Tate/Ate pairings
on ordinary curves of embedding degrees 8 and 10. For comparison, we also
implemented both pairings on the curve used in [3]. Below is a table comparing
the parameters r and ¢ which contol the Miller loop of the Tate and Ate pairings,
respectively.

Table 6. Parameter Comparison

k (lgr|lgt|w =logr/logt|d|k/d| result

81230(175 1.31 4] 2 lw< k/d
10|234(118 1.98 2| 5 lw<k/d
12(256(128 2 6| 2 lw>k/d

As expected, Tate pairing computations require more time than the Ate
pairing for the curve of embedding degree 12. This is because the Hamming
weight of the parameter ¢, which is what we use to control the Miller loop of
the Ate pairing algorithm, is much less than the parameter r, which on the
other hand, is used in the Tate pairing algorithm. For both curves of embedding
degrees 8 and 10, the binary length of the parameter r is almost twice as much
compared to the parameter ¢ so we expected the Ate pairing to perform better
than the Tate pairing. However, in our experiment, the Tate pairing computation
is faster than the Ate pairing even when the twist of the curves are used and the
Hamming weight of the parameter r is much larger compared to the parameter ¢.
In fact, for the curve of embedding degree 10, the use of twist for the Ate pairing
does not improve the running time of the algorithm. From the table above, if
the value of w < k/d, the Tate pairing will perform better. On the other hand,
if the value of w > k/d, the evaluation of the Ate pairing will be much faster
compared to the Tate pairing. Therefore, the performance of both pairings not
only depend on the binary length of the controlling parameters. The bitsize of
the parameters and the degree of the twist also affect the computation time of
both pairings.

Furthermore, the optimizations we applied indeed reduces the running time
of the programs. For the curves of embedding degrees 8 and 12, our expected
running time for the algorithms are not far from the outcome of our experiment,
especially for the Ate pairing. However, for the curve of embedding degree 10,
the use of twist does not seem to improve the algorithms for both pairings. On
the other hand, using the denominator elimination method on both the Tate
and Ate pairings for all three curves, the expected reduction is not far from we
expected which is 20 percent. The probable cause of the differences is our choice
of extension fields to which we evaluate the pairings and the parameters of the
curve that we chose.

References

1. P. Baretto, H. Kim, B. Lynn, M. Scott: Efficient Algorithms for Pairing Based
Cryptosystems. In: M. Yung (ed.) CRYPTO 2002, pp. 354-368, LNCS vol. 2442,
Springer-Verlag, 2002.

2. P. Baretto, M. Naehrig: Pairing-Friendly Elliptic Curves of Prime Order. In: B.
Preneel, S. Tavares (eds.), SAC 2005, LNCS vol. 3897, pp. 319-331, Springer-Verlag
2006.

3. A.J. Devegili, M.Scott, R. Dahab: Implementing Cryptographic Pairings over
Baretto-Naehrig Curves. In: T. Takagi, T. Okamoto, E. Okamoto, T. Okamoto
(Eds.) Pairing-Based Cryptography Pairing 2007. LNCS vol. 4575, pp. 197-207,
Springer-Verlag 2007.

4. D. Freeman: Constructing Pairing Friendly Elliptic Curves with Embedding Degree
10. In: F. Hess , S. Pauli, M. Pohst (eds.) Algorithmic Number Theory, LNCS vol.
4076, pp. 452—465, Springer Heidelberg, 2006.

5. D. Freeman, M. Scott, E. Teske: A Taxonomy of Pairing-
Friendly Elliptic Curves. Preprint, 2006. Available at
http://math.berkeley.edu/dfreeman /papers/taxonomy.pdf

6. S. Galbraith: Pairings. In: Advances in Elliptic Curve Cryptography, pp. 183213,
Cambridge University Press, 2005.

7. K. Harrison, D. Page, N.P. Smart: Software Implementation of Finite Fields of
Characteristic 3, for Use in Pairing Based Cryptosystem. In: LMS Journal of Com-
putation and Mathematics, London, vol.5(1), pp.181-193, London Mathematical
Society, London 2002.

8. Hess, F., Smart, N.P., Vercauteren, F., The Eta Pairing Revisited. IEEE Transac-
tions on Information Theory 52(10), 4595-4602, 2006.

9. V. Miller: Short Programs for Functions on Curves, unpublished manuscript, 1986.
Available at http://crypto.stanford.edu/miller /miller.pdf.

10. A. Miyaji, M. Nakabayashi, S. Takano: New Explicit Conditions of Elliptic Curve
Traces for FR-Reduction. IEICE Taransactions on Fundamentals, pp. 1234-1243,
E84-A(5)(2001).

11. M. Scott: Implementing Cryptographic Pairings. In: T. Takagi, T. Okamoto, E.
Okamoto, T. Okamoto (Eds.) Pairing-Based Cryptography Pairing 2007. LNCS vol.
4575, pp. 177-196, Springer-Verlag 2007.

12. M Scott, P. Baretto: Generating More MNT Elliptic Curves. Designs, Code and
Cryptography, Vol. 38, No.2, pp.209-217, 2006.

13. S. Tanaka: More Constructing Pairing-Friendly Elliptic Curves for Cryp-
tography. Masters Thesis, Tokyo Metropolitan Univerity (2007). Available
at www.tnt.math.metro-u.ac.jp/labo/master/2006/satoru/thesis2006rl.pdf (in
japanese).

14. S. Tanaka, K. Nakamula: More Constructing Pairing-Friendly Elliptic Curves for
Cryptography. To appear in Transactions of the Japan Society for Industrial and
Applied Mathematics (JSIAM), vol. 17, No. 4, 2007 (in japanese).

