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Abstract. In this paper, we introduce the concept of structural identity-
based encryption (SIBE). Similar to hierarchical identity-based encryp-
tion (HIBE), entities in the system are organized into hierarchy. An entity
in SIBE can decrypt ciphertext for all its ancestors. It can be seen as an
opposite of HIBE, where an entity can decrypt the ciphertext for all its
descendants.

We formalize the notion and security requirements, propose an efficient
construction and show that our construction is secure under appropriate
assumptions in the random oracle model.
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1 Introduction

Imagine the following situation. There is an organization O, under which there
are several departments and for each department there are several teams. The
hierarchical structure of organization O is shown in Fig.1.

We use a vector to represent this hierarchical structure. For example, identity
ID of helper H1 shall be denoted as (O, D1, T2, M4, H1). From time to time
messages are encrypted and sent to an entity so that the entity and all its
descendants are able to decrypt it. For example, message may be encrypted
and sent to team (O, D1, T2) and in that case entity with identity (O,D1, T2)
(think of it as a gatekeeper for team T2 which inspect all incoming messages),
(O, D1, T2,M3), (O, D1, T2,M3,H1), (O,D1, T2, M3,H2) shall be able to decrypt
the ciphertext.

There is a trusted party, called Key Generation Centre (say, the IT depart-
ment of organization O), who is responsible for the generation of decryption key
kID for entity with identity ID. With kID, entity ID can decrypt all the messages
sent to himself and all its ancestors.
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Fig. 1. Structure of Organization O

Naive Approach. A naive solution can be built using identity-based encryption
scheme[9]. An entity with identity ID := (I1, I2, . . . , Ik) will be holding the de-
cryption key dID := {dI1 , . . . , dIk

} such that dIi is the decryption key for identity
I1|| . . . ||Ii in the identity-based encryption, where || denote string concatenation.
To send a message to ID := (I∗1 , . . . , I∗` ), encrypt the message m under the iden-
tity I∗1 || . . . ||I∗` of the underlying ID-based encryption.

An obvious problem is that the number of keys required is linear in the
depth of the hierarchy. Another problem is that as key (e.g. key for ID := (O))
is shared, entity is tempted to leak the key to outsiders without the fear of being
identified.

Properties and Requirements. We called a solution to the above problem as
structural identity-based encryption system (SIBE). In SIBE, each user is asso-
ciated with an identity (say ID := (I1, . . . , I`)). There exists a key generation
center (KGC) who is responsible for generating decyrption key for all users.
Everyone can encrypt a message m for a target identity ID∗ := (I∗1 , . . . , I∗k) as
ciphertext ctxt. All user with identity ID := (I1, . . . , I`) can decrypt ctxt with
his decryption key if I∗i = Ii for i = 1 to k. We would like to remark that, the
encrypter might not know how many entities are there under the target entity.
For instance, the encrypter does not need to know the structure of department
(O, D1) to send an encrypted message to (O,D1).

A secure SIBE should possess Ciphertext Confidentiality, Ciphertext Consis-
tency and Key Non-Transferabiilty. Ciphertext Confidentiality refers to the fact
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that given a ciphertext, no one can obtain any information about the plaintext.
This is similar to the notion of indistinguishability against chosen message and ID
attack for IBE. Ciphertext Consistency is a new notion regarding SIBE. Follow-
ing our example of organization O, entity (O,D1, T2) is acting as a gatekeeper for
team T2. An adversary may try to send harmful ciphertext to (O, D1, T2,M3)
such that it looks harmless if it is decrypted by the key of (O, D1, T2). More
formally, it is required that no adversary can produce a ciphertext such that
the decryption of it using different keys outputs different plaintext. Key Non-
Transferabiilty prevent a member of the organization from selling his key. More
formally, it should be impossible for entity of identity ID := (I1, . . . , Ik) to pro-
duce a key of identity ID∗ := (I1, . . . , I`) such that ` < k.3

Our Approach. Our construction is a modification of Boneh et al’s hierarchical
identity-based encryption (HIBE) [1]. We achieve choesen-ciphertext (CCA) se-
curity using the ideas in [4] which shows how a CCA secure encryption scheme
can be built from weakly-secure (selective-ID, chosen-plain-text-secure) ID-based
encryption scheme. The idea of our construction is similar from using a L + 1-
level CPA-secure HIBE to construct L-level CCA-secure HIBE. In fact, SIBE
shares a lot of similarities with HIBE, introduced in [8]. Entities of both SIBE
and HIBE are structured within an hierarchy.

In our construction, user key size is constant. However, ciphertext size is
linear to the depth of the hierarchy.

Related Results. SIBE is closely related to broadcast encryption (BE), intro-
duced in [7]. The primary difference being the encryptor knows the identity (or
public key) of all the recipients in BE while in SIBE, the encryptor might not
know the identities within the group of recipients. Nonetheless, the most efficient
BE, introduced in [3], achieves O(1) ciphertext size and usr key size. However,
public parameter size is of order O(n), where n is the total number of users4.
A more subtle difference between BE and SIBE is the requirement of Key Non-
Transferabiilty. Colluding users in BE might be able to produce new decryption
key for revoked users. This is demonstrated in an attack on [3] in [12]5.

Our Contributions. We formally introduce the concept of Structural Identity-
Based Encryption (SIBE). We define a formal security model to capture the
security requirements and provide a concrete construction. We prove that our
construction is secure under appropriate assumptions.

Paper Outline. We discuss related works and technical preliminary in the next
section. A security model is shown in Section 3. The construction is shown in
Section 4, accompanied by security analysis. Finally we conclude in Section 5.
3 This is in fact a weak requirement. A stronger requirement should be no one is able

to produce a decryption blackbox that is not linkable to an identity of the producer.
Details of this requirement is discussed in subsequent sections.

4 A generalized version presented in the same paper achieved a public parameter size
of O(

√
n) at a cost of O(

√
n) ciphertext size.

5 It should be noted that this is not an attack within the security model of BE.
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2 Preliminaries

2.1 Notations

We denote {0, 1}∗ the set of bitstrings of length n and {0, 1}∗ the set of bitstrings
of arbitrary length. A pattern P is a tuple (P1, . . . , P`) ∈ ({0, 1}∗)`. Let ID1 :=
(I1, . . . , Ik1), ID2 := (J1, . . . , Jk2) such that k1 ≥ k2 be some patterns. We write
ID1 3u ID2 if Ii = Ji for i = 1 to k2. We say ID1 is under ID2 if ID1 3u ID2.

2.2 Bilinear Maps

We review the concepts related to bilinear pairings ê : G1 ×G2 → GT .

– G1 and G2 are two cyclic multiplicative groups of prime order p.
– each element of G1, G2 and GT has unique binary representation.
– g0, h0 are generators of G1 and G2 respectively.
– ψ is a computable isomorphism from G2 to G1, with ψ(h0) = g0.
– (Bilinear) ∀x ∈ G1, y ∈ G2 and a, b ∈ Zp, ê(xa, yb) = ê(x, y)ab.
– (Non-degenerate)ê(g0, h0) 6= 1.

G1 and G2 can be the same or different groups. We say that two groups (G1,
G2) are a bilinear group pair if the group action in G1, G2, the isomorphism ψ
and the bilinear mapping ê are all efficiently computable.

2.3 Mathematical Assumptions

Definition 1 (`-Decisional Bilinear Diffie-Hellman Exponent(Decision
`-BDHE) Assumption). The `-Decisional Bilinear Diffie-Hellman Exponent
Assumption (`-BDHE) in bilinear group pair (G1, G2) is defined as follows:
Given g ∈ G2, h ∈ G2, gαi

for i = 1, 2, · · · , `−1, `+1, · · · , 2`, T ∈ GT , decide if
T = ê(ψ(g), h)α`

. We say that the decisional (`, t, ε)-BDHE assumption holds in
(G1, G2) if no t-time algorithm has advantage at least ε in solving the decisional
`-BDHE problem in (G1, G2).

The decisional `-BDHE assumption was introduced and shown to be hold in in
[1] in the generic group model[10].

Definition 2 (`-Computational Bilinear Diffie-Hellman Exponent (Com-
putational `-BDHE) Assumption). The `-Computational Bilinear Diffie-
Hellman Exponent problem is defined in a similar manner as the decisional `-
BDHE problem except the solver is now required to output ê(ψ(g), h)α`

(and is
not given T as input). We say that the computational (`, t, ε)-BDHE assumption
holds in (G1, G2) if no t-time algorithm has advantage at least ε in solving the
computational `-BDHE problem in (G1, G2).
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2.4 Useful Tools

Message Authentication. One of the building blocks of our system is Message
Authentication scheme. Following the notions in [4], a message authentication
code is a pair of PPT algorithms (Mac, Vrfy) such that Mac takes as input a
key sk and a message m to produce a tag. The algorithm Vrfy takes as input a
key sk, a message m and tag and output either accept or reject. It is required
that for all sk and tag, Vrfy(sk, m, Mac(sk, m)) = accept. Loosely speaking,
(Mac , Vrfy) is secure against one-time chosen-message attack if no adversary
can produce tag′, m′ such that the following holds:

– The adversary chooses a message m, and is given tag such that Vrfy(sk, m, tag)
= accept for a randomly selected key sk unknown to adversary.

– Vrfy(sk, m′, tag′) = accept.
– m 6= m′ or tag 6= tag′.

Encapsulation. Another building block of our system is an Encapsulation scheme,
introduced in [4]. Roughly speaking, it is a weak variant of commitment and is
defined by a triple of PPT algorithms (Init,S, R) as follow. On input security
parameter 1k, Init output pub. On input a 1k and pub, S output com, dec and
a string r ∈ {0, 1}k. On input pub, com, dec, R output r. It is required that
for all pub output by Init and for all (r, com, dec) output by S(1k, pub), we have
R(pub, com, dec) = r. In addition, an encapsulation scheme must satisfy binding
and hiding. Informally speaking, binding means that an honestly generated com
can be opened to a single value of r only while hiding means that even given pub
and com, the string r should be indistinguishable from random. Very efficient
construction (based only on hash function) is given in [4].

3 Model

3.1 Syntax

An SIBE system consists of four algorithms, namely, Setup, KenGen, Encrypt and
Decrypt. To represent the hierarchical structure, we follow the notions of hier-
archical identity-based encryption system in which each identity ID is a vector
and a vector of dimension k represents an identity at depth k.

– Setup(1λ): On input an unary string 1λ, where λ is a security parameter,
the algorithm outputs a master secret key s and public parameter param. In
SIBE, the TTP who is responsible for generating keys runs this algorithm,
retains s and publishes param.

– Keygen(param, s, ID): The algorithm takes as input ID and outputs the
private key dID for identity ID.

– Encrypt(param, ID, m): For a message m together with the target identity
ID, the algorithm outputs the ciphertext ct which is the encryption of m for
identity ID.
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– Decrypt(param, ct, dID∗): Given the ciphertext ct for identity ID, the private
key dID∗ such that ID∗ is under ID, the algorithm outputs plaintext m.

These algorithms must satisfy the trivial constraint of correctness. That is,
suppose (s, param)←Setup(1λ), ct ← Encrypt(param, ID, m) for any ID and mes-
sage m, we require m ← Decrypt(param, ct, dID∗) for all ID∗ such that ID∗ is
under ID and dID∗ ← KeyGen(param, s, ID∗).

Validation of decryption key. Due to a subtlety of defining a security require-
ment, an SIBE should possess an extra algorithm called keyValidation. 0/1 ←
KeyValidation(param, ID, dID) is run by an entity with identity ID after he re-
ceives decryption key dID from KGC. 0 indicates that the key dID is valid and 1
indicate that the key is invalid (maybe due to transmission error). It is required
that if 0 ← KeyValidation(param, ID, dID), m ← Decrypt(param, ct, dID) for all ct
and ID∗ such that ID is under ID∗ and ct ← Encrypt(param, ID∗,m).

3.2 Security

We use a game-based approach to formally the security requirements of an SIBE.
The adversary’s capabilities are modeled by arbitrary and adaptive queries to
oracles. The oracles are defined as follows.

– Key query (ID): The oracle responds with dID such that dID is the decryption
key of identity ID.

– Decryption query (ID, ct): The oracle responds with plaintext m.
– Hash query s ∈ {0, 1}∗: The oracle return h which is the hash value of s.

Ciphertext Confidentiality. Ciphertext confidentiality is similar to the standard
notion of a secure identity-based encryption system, indistinguishability against
adaptive chosen-ciphertext-and-identity attack (IND-ID-CCA)[2]. Precisely, the
following game an adversary A and a challenger C defines ciphertext confiden-
tiality of an SIBE system.

Definition 3 (Game IND-ID-CCA).

– (Setup.) C chooses a sufficiently large security parameter λ and runs Setup.
C retains s and gives param to A.

– (Phase 1.) A can perform a polynomially bounded number of queries to the
oracles in an adaptive manner.

– (Challenge.) A output an identity ID∗, two messages m0, m1 on which it
wishes to be challenged. The only restriction is that A did not previously
issue a key query on ID∗ or any key query on ID′ such that ID′ is under ID∗.
C randomly chooses a bit b ∈ {0, 1}, computes ct∗ = Encrypt(param, ID∗,mb)
and sends ct∗ to A.

– (Phase 2.) A can perform a polynomially bounded number of queries to the
oracles in an adaptive manner except key query on any ID′ such that ID′ is
under or ID∗. A is also not allowed to issue decryption query on (ct∗, ID′)
for any identity ID′ such that ID′ is under ID∗.
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– (Guess.) A outputs a guess bit b′ = {0, 1}. A wins the game if b = b′.

The advantage of A in Game IND-ID-CCA is defined as the probability that A
wins the game minus 1

2 .

A weaker notion of security regarding identity-based system called selective-
ID security, in which the adversary commits ahead of time to the public key
it will attack, was introduced in [5, 6]. The game is the same as game IND-ID-
CCA except that A gives C ID∗ before the Setup phase and restrictions on key
query in phase 2 applies to phase 1 as well. Similarly, we can define Selective-ID
Ciphertext Confidentiality with Game IND-sID-CCA such that A is required to
give C ID∗ before the setup phase.

An SIBE system possesses Ciphertext Confidentiality (resp. Selective-ID Ci-
phertext Confidentiality) if no polynomial time adversary has non-negligible ad-
vantage in Game IND-ID-CCA (resp. Game IND-sID-CCA).

Ciphertext Consistency. For a given SIBE system, it is required Decrypt(param,
ct, dID1) = Decrypt(param, ct, dID2) if the target identity of ct is ID and both
ID1 and ID2 are under ID. We require that no adversary, includes adversary
who has stolen the master secret from the KGC, can generate a ciphertext that
behalf differently under different decryption keys6. The following game between
a challenger C and an adversary A formally defines Ciphertext Consistency.

Definition 4 (Game Cipher-Consis).

– (Setup.) C chooses a sufficiently large security parameter λ and runs Setup.
C gives s and param to A.

– (Phase 1.) A can perform a polynomially bounded number of queries to the
oracles in an adaptive manner.

– (End Game.) A outputs a ciphertext ct∗, ID∗, two identities ID1 and ID2

under ID∗. If A never issue key query on ID1 or ID2, C runs the key query
and obtains dID1 and dID2 . A wins the game if Decrypt(param, ct∗, dID1)
6= Decrypt(param, ct∗, dID2).

The advantage of A in Game Cipher-Consis is defined as the probability that A
wins the game.

An SIBE system possesses Ciphertext Consistency if no polynomial time
adversary has non-negligible advantage in Game Cipher-Consis.

Key Non-Transferabiilty. In SIBE, an entity U with identity ID and key dID has
the ability to decrypt ciphertext for identity ID∗ if ID is under ID∗. There is
no way to prevent U from lending his key to others. However, what we wish to
model is that U cannot generate decryption key dID∗ of identity ID∗ such that
ID 3u ID∗ and ID 6= ID∗7. In that case, U is at a risk of being identified if he is to
6 Similarly to IBE, KGC is a trusted party in an SIBE system.
7 If U can generate dID∗ such that ID is not under ID∗, he breaks ciphertext confiden-

tiality. If U can generate another dID, people can identify U as the producing since
KGC is trusted and others cannot generate decryption key for ID.
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share his decryption power with others. We would like to remark that, however,
this requirement is weak as U might be able to construct another decryption
algorithm (which might decrypt only some of all possible ciphertext) and output
the whole thing as a decryption blackbox. However, it is hard tof formalize
the security requirement in that sense and we leave it as an open problem.
Nonetheless, the following game defines the notion Key Non-Transferability for
an SIBE.

Definition 5 (Game Key-No-Trans).

– (Setup.) C chooses a sufficiently large security parameter λ and runs Setup.
C retains s and gives param to A.

– (Phase 1.) A can perform a polynomially bounded number of queries to the
oracles in an adaptive manner.

– (End Game.) A output an identity ID∗ and a decryption key dID∗ . A wins
the game if it never issue key query on ID∗ and 0 ← KeyValidation(param,
ID∗, dID∗).

The advantage of A in Game Key-No-Trans is defined as the probability that A
wins the game.

An SIBE system possesses Key Non-Transferability if no polynomial time
adversary has non-negligible advantage in Game Key-No-Trans.

Definition 6. An SIBE is secure if it possesses Ciphertext Confidentiality, Ci-
phertext Consistency and Key Non-Transferability.

4 Our Construction

In this section, we describe our cryptographic construction in detail and assess
its security.

4.1 System Construction

Let G be a bilinear group of prime order p and ê : G × G → GT be a bilinear
map. Let H : {0, 1}∗ → Zp be a collision resistant hash function. Following
the terminology of hierarchical IBE, each entity in the hierarchy is of the form
ID = (I1, · · · , I`). The k-th component of the vector ID corresponds to the
identity at level k. Let L be the maximum depth of the hierarchy8.

Setup. Select g ∈ G, α ∈ Zp and set g1 = gα. Pick random elements g2, g3, h,
h1, . . ., hL ∈ G and set g4 = g2

α.
Pick a secure message authentication code (Mac, Vrfy). Construction of [11]

could be used.
Pick a secure encapsulation scheme (Init,S,R). Run Init(1λ) where λ is the bit

length of p and obtain pub. Construction of [4] could be used.
Public parameter is (g1, g2, g3, h, h1, . . ., hL, pub) and master private key is

g4.
8 This could be increased dynamically later.
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KeyGen. For an entity with identity IDA := (I1, . . . , Ik), the secret key is
(d0, d1, d2) :=(g4(hI1

1 · · ·hIk

k g3)rA , grA , hrA) for some random rA ∈ Zp.

KeyValidation. On input ID := (I1, . . . , Ik) and (d0, d1, d2), output 0 if

ê(d0, g) ?=ê(g2, g1)ê(hI1
1 · · ·hIk

k g3, d1) and

ê(d1, h) ?=ê(g, d2).

Output 1 otherwise.

Encrypt. To encrypt a message m for entity with identity ID := (I1, . . . , Ik),
run S(pub) to obtain (r, com, dec) and set M = m||dec. Assume there exists
a representation of M in GT

9. Compute C1 = ê(g1, g2)sM , C2 = gs, C3 =
(hI1

1 · · ·hIk

k hcomg3)s, Tk+1 = hs
k+1, . . ., TL = hs

L. Let C = (C1, C2, C3, Tk+1, · · · , TL).
Compute tag = Mac(r, C). The ciphertext CT = (C, com, tag, ID).

Decrypt. Entity with identity ID′ := (I ′1, · · · , I ′`)) with decryption key dID′ :=
(d0, d1, d2) such that ID′ is under ID := (I1, . . . , Ik) decrypts as follow.

Output invalid ciphertext(⊥) if any of the following does not hold.

ê(hI1
1 · · ·hIk

k hcomg3, C2)
?=ê(C3, g),

ê(C3, hk+1)
?=ê(hIk

k hcomg3, Tk+1),

ê(Tk+1, hk+2)
?=ê(hk+1, Tk+2),
· · ·

ê(TL−1, hL) ?=ê(hL−1, TL).

Compute d = d0d
com
2 . Compute C ′ = C3T

I′k+1
k+1 · · ·T I′`

` . Compute M = C1ê(d1,C′)
ê(C2,d)

and obtain m and dec. Compute r = R(pub, com, dec). If Vrfy(r, C, tag) =
accept, then the plaintext is m, else output invalid ciphertext (⊥).

4.2 Security Analysis

Regarding the security of our construction, we have the following theorem.

Theorem 1. Our proposed construction is secure under the Decisional BDHE
assumption in the random oracle model.

9 In practical scenario, a random element Q in GT could be chosen and H(Q) is used
as a session key which is used to encrypt m||dec.
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Ciphertext Confidentiality. We first proof the following lemma which states
that our scheme possesses Selective-ID Ciphertext Confidentiality. Next we out-
line how our scheme possesses Ciphertext Confidentiality in the random oracle
model.

Lemma 1. Our construction possesses Selective-ID Ciphertext Confidentiality
under the Decisional BDHE assumption in the standard model.

Proof. Suppose there exists a PPT adversary A with non-negligible advantage
in Game IND-sID-CCA. Suppose the adversary chooses target identity ID∗ =
(I∗1 , . . . , I∗k), we construct a simulator S that solves the decisional (k +2)-BDHE
problem.

Setup. S receives a problem instance (g, g0, g
α1

, . . . , gαk+1
, gαk+3

, . . . , gα2k+4
, T ).

S’s goal is to decide if T = ê(g, g0)αk+2
. S generates the system parameter

of the SIBE scheme by selecting a random γ ∈ Zp and computes g1 = gα

and g2 = gγ+(αk+1). S then randomly picks γ1, . . . , γL, γh ∈R Zp and sets
hi = gγi−α(k+1−i)

for i = 1 to k and hi = gγi when i = k + 1, . . . , L and
h = gγh−αk+1

.

S chooses a secure encapsulation scheme (Init,S,R), runs Init to obtain pub
and then runs S(pub) to obtain (r∗, com∗, dec∗). S chooses a secure message
authentication scheme (Mac, Vrfy).

S randomly selects δ ∈R Zp and sets g3 = gδ+
∑k

i=1(I
∗
i αk+1−i)+com∗αk+1

. Note
that g4 = gα

2 = gγαgαk+2
is unknown to S.

S gives A the system parameters (g, g1, g2,g3, h, h1, . . ., hL), the encapsu-
lation scheme and message authentication scheme.

Phase 1 & 2. During phase 1 and 2, A may consults S for oracle queries in
an adaptive manner. Simulation is shown below and we first outline how to
construct the challenge ciphertext in the challenge phase.

Challenge Phase. When S receives m0, m1 from A, it randomly selects a
bit b and set M = mb||dec∗. It sets C1 = MTê(gα, hγ), C2 = g0, C3 =

g
δ+

∑k
i=1(I

∗
i γi)+com∗γh

0 , Tk+i = g
γk+i

0 (for i = 1 to L − k), C = (C1, C2, C3,
Tk+1, . . ., TL), tag = Mac(r, C). The ciphertext is CT ∗ = (C, com∗, tag, ID∗).
It is straight forward to show that CT ∗ is a valid ciphertext if T = ê(g, g0)αk+2

and CT ∗ is independent to b otherwise.

Key Queries. Key query on (I1, . . . , In) can be divided into 3 types:
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1. (n < k.) Let r = r̃ − αk+1

I∗k
for a randomly selected r̃ ∈R Zp.

d0 = g4

(
g3h1

I1 · · ·hn
In

)r

= g

(
γα+αk+2

)
gr

[
δ+

∑k
i=1(I

∗
i αk+1−i)+com∗(αk+1)+

∑n
i=1(Ii(γi−α(k+1−i)))

]

= g

(
γα+αk+2

)
gr

[
δ+αk+1com∗+

∑n
i=1 (Iiγi)+

∑n
i=1((I

∗
i −Ii)α

k+1−i)
]

gr
[∑k−1

i=n+1(I
∗
i αk+1−i)+I∗kα

]

=
(

gα

)γ[(
gδ

)(
gαk+1)com∗( n∏

i=1

gIiγi
)( n∏

i=1

(gαk+1−i

)I∗i −Ii
)]r̃

[( k−1∏

i=n+1

(gαk+1−i

)I∗i
)(

gα
)I∗k

]r̃[(
gαk+1)δ(

gα2k+2)com∗
]−1

I∗
k

[( n∏

i=1

(gαk+1
)Iiγi

)( n∏

i=1

(gα2k+2−i

)I∗i −Ii
)( k−1∏

i=n+1

(gα2k+2−i

)I∗i
)]−1

I∗
k

Note that d0 does not involve the term gαk+2
and is thus computable by

S. Compute d1 = gr̃(gαk+1
)
−1
I∗
k and d2 = hr̃ [(gαk+1

)γh(g−α2k+2
)]

1
I∗
k . S

returns (d0, d1, d2) to A.
2. (n = k.) Let m be biggest index such that Im 6= I∗m. Such m always exists

because A is not allowed to query the target identity. Let r = r̃+ αm+1

Im−I∗m
for a randomly selected r̃ ∈R Zp.

d0 = g4

(
g3h1

I1 · · ·hk
Ik

)r

= g

(
γα+αk+2

)
gr

[
δ+

∑k
i=1(I

∗
i αk+1−i)+com∗(αk+1)+

∑k
i=1(Ii(γi−α(k+1−i)))

]

= g

(
γα+αk+2

)
gr

[
δ+αk+1com∗+

∑k
i=1 (Iiγi)

]

gr
[∑k

i=1,i 6=m((I∗i −Ii)α
k+1−i)+(I∗m−Im)αk+1−m

]

=
(

gα

)γ[(
gδ

)(
gαk+1)com∗( n∏

i=1

gIiγi
)]r̃

[( n∏

i=1,i 6=m

(gαk+1−i

)I∗i −Ii
)(

gαk+1−m)I∗m−Im

]r̃

[(
gαm+1)δ(

gαk+m+2)com∗( n∏

i=1

(gαm+1
)Iiγi

)] 1
Im−I∗m

[( n∏

i=1,i 6=m

(gαk+m+2−i

)I∗i −Ii
)] 1

Im−I∗m

Again, d0 does not involve the term gαk+2
. Compute d1 = gr̃(gαm+1

)
1

Im−I∗m

and d2 = hr̃[(gαm+1
)γh(g−αk+m+2

)]
1

Im−I∗m . S returns (d0, d1, d2) to A.
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3. (n > k.) Since A is not allowed to query (I∗1 , . . . , I∗k) or any identity
under ID∗, S can obtain the secret key of (I1, · · · , Ik) using the methods
above and let the resulting secret key be (d0, d1, d2). Then S returns
(d0d

γk+1Ik+1
1 · · · dγnIn

1 , d1, d2) to A.
Decryption Queries. S can simulate decryption queries not related to the tar-

get identity perfectly since it possesses decryption keys of those identities. We
show how S simulate decryption query of ciphertext CT = (C, com, tag, ID)
for the identity ID = ID∗ or any identities under ID∗ (ID := (I∗1 , . . . , I∗k , Ik+1, . . . , In)).

If com = com∗, return invalid ciphertext. Probability of rejecting valid
ciphertext is negligible by the following arguments. Before the chal-
lenge phase, since com∗ is unknown to A, probability that A submit
com = com∗ is negligible. After A receives the challenge ciphertext,
probability that A could generate a valid ciphertext not equal to the
challenge ciphertext with com = com∗ is negligible if the encapsulation
scheme and the message authentication scheme are secure.

Compute d = g4

(
g3h1

I∗1 · · ·hk
I∗k hcomh

Ik+1
k+1 · · ·hIn

n

)r, where r = r̃+ α
com−com∗

for a randomly selected r̃ ∈R Zp, as follow.

d = g4

(
g3h1

I∗1 · · ·hk
I∗k hcomh

Ik+1
k+1 · · ·hIn

n

)r

= g

(
γα+αk+2

)
gr

[
δ+

∑k
i=1(I

∗
i αk+1−i)+com∗(αk+1)

]

gr
[
+

∑k
i=1(I

∗
i (γi−α(k+1−i)))+com(γh−αk+1)+

∑n
i=k+1(Iiγi)

]

= g

(
γα+αk+2

)
gr

[
δ+αk+1(com∗−com)+

∑k
i=1 (I∗i γi)+comγh+

∑n
i=k+1(Iiγi)

]

=
(

gα

)γ[(
gδ

)(
gαk+1)(com∗−com)( k∏

i=1

gI∗i γi
)( n∏

i=k+1

gIiγi
)]r̃

[(
gα

)δ( k∏

i=1

(gα)Ii∗γi
)( n∏

i=k+1

(gα)Iiγi
)] 1

com−com∗

Compute d1 = gr̃(gα)
1

com−com∗ . S then computes M by C1ê(d1,C3)
ê(C2,d) . Parse

M and obtain m and dec. Then compute r = R(pub, com, dec) and if
Vrfy(r, CT, tag) = accept, return m, else return invalid ciphertext.

Answer If A can guess correctly the bit b, the S answer that T = ê(g, h)αk+2

and no otherwise. It is easy to verify that advantage of A in wining is the
advantage of S in solving the hard problem.

Ciphertext Confidentiality. Ciphertext Confidentiality can be achieved by stan-
dard argument in the random oracle model when each Ii is hashed first before
use. It introduces a 1

qL
H

term in the reduction, where qH is the total number of
hash queries.
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Ciphertext Consistency. It is straight-forward to show that our scheme pos-
sesses Ciphertext Consistency. Let (C1, C2, C3, Tk+1, . . . , TL) be a ciphertext for
identity ID := (I1, . . . , Ik). The checking during the decryption ensure the DL
of C2, C3, Tk+1, . . . , TL to their corresponding bases are the same. Likewise, let
ID′ := (I1, . . . , Ik, I ′k+1, . . . , I

′
n), ID∗ := (I1, . . . , Ik, I∗k+1, . . . , I

∗
m) be identities

under ID such that (d′0, d
′
1, d

′
2) and (d∗0, d

∗
1, d

∗
2) are the corresponding decryption

key. Due to the setting of the game, these two decryption key must be correctly
formed. Let d′ = d′0d

′
2
com and d∗ = d∗0d

∗
2
com and C ′ = C3T

I′k+1
k+1 · · ·T I′n

n and

C
′∗ := C3T

I∗k+1
k+1 · · ·T I∗m

m .

Values of ê(d′1,C′)
ê(C2,d′) and ê(d∗1 ,C

′∗)
ê(C2,d∗) are the same. Thus, it is impossible to compute

a ciphertext which breaks the ciphertext consistency.

Key Non-Transferability. Using similar argument of transforming SIBE with
Selective-ID Ciphertext Confidentiality into SIBE with Ciphertext Confidential-
ity, we assume S correctly guess the challenge identity in Game Key-No-Trans
in the random oracle model. Let L be the maximum depth of the hierarchy.
Assume ID∗ := (I∗1 , . . . , I∗k) be the identity output by the adversary. If an ad-
versary could win in Game Key-No-Trans with identity ID∗ without key queries
to any identity under it, it could win in Game IND-ID-CCA. Thus, we assume
1 ≤ k < L. Consequently, probability that S guess correctly guess ID, in the
random oracle model, is

(
1

qH

)L−1, where qH is the number of hash queries.

Proof. Suppose there exists a PPT adversary A with non-negligible advantage in
Game Key-No-Trans. Suppose A’s final output identity is ID∗ := (I∗1 , . . . , I∗k), we
construct a simulator S that solves the computational (L + 2)-BDHE problem.

Setup. S receives a problem instance (g, g0, g
α1

, . . . , gαL+1
, gαL+3

, . . . , gα2L+4
)

and is required to output T = ê(g, g0)αL+2
. S generates the system parameter

of the SIBE scheme by selecting a random γ ∈ Zp and sets g1 = gα and
g2 = gγ+(αL+1). S then randomly picks γ1, . . . , γL, γh ∈R Zp and sets hi =
gγi−α(L+1−i)

for i = 1 to L and h = gγh−αL+1
.

S chooses a secure encapsulation scheme (Init,S,R) and a secure message
authentication scheme (Mac, Vrfy).
S randomly selects δ ∈R Zp and sets g3 =

(
gδ

)(
h

I∗1
1 · · ·hI∗k

k

)−1. Note that
g3 = gδ+

∑k
i=1(I

∗
i αL+1−i−I∗i γi). Also, the master secret key g4 = gα

2 = gγαgαL+2

is unknown to S.
S gives A the system parameters (g, g1, g2,g3, h, h1, . . ., hL), the encapsu-
lation scheme and message authentication scheme.

Phase 1. During phase 1, A may consults S for oracle queries in an adaptive
manner. In particular, A can ask for all keys in the hierarchy except ID∗.
We show how S responds to key query first.

Key Queries. Similar to the case in Game IND-sID-CCA, key query on ID :=
(I1, . . ., In) can be divided into 3 types:
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1. (n < k.) Let r = r̃ − αk+1

I∗k
for a randomly selected r̃ ∈R Zp.

d0 = g4

(
g3h1

I1 · · ·hn
In

)r

= g

(
γα+αL+2

)
gr

[
δ+

∑k
i=1(I

∗
i αL+1−i−I∗i γi)+

∑n
i=1(Ii(γi−α(L+1−i)))

]

= g

(
γα+αL+2

)
gr

[
δ+

∑n
i=1 ((Ii−I∗i )γi)+

∑n
i=1((I

∗
i −Ii)α

L+1−i)
]

gr
[∑k−1

i=n+1(I
∗
i αL+1−i−I∗i γi)−I∗kγk+I∗kαL+1−k

]

=
(

gα

)γ[(
gδ

)( n∏

i=1

g(Ii−I∗i )γi
)( n∏

i=1

(gαL+1−i

)I∗i −Ii
)]r̃

[( k−1∏

i=n+1

(gαL+1−i−γi)I∗i
)(

gαL+1−k−γk
)I∗k

]r̃[(
gαk+1)−δ(

gαk+1γk
)] 1

I∗
k

[( n∏

i=1

(gαk+1
)(I

∗
i −Ii)γi

)( n∏

i=1

(gαL+k+2−i

)Ii−I∗i
)( k−1∏

i=n+1

(gαL+k+2−i

)−I∗i
)] 1

I∗
k

[( k−1∏

i=n+1

(gαk+1
)I∗i γi

)] 1
I∗
k

Note that d0 does not involve the term gαL+2
and is thus computable by

S. Compute d1 = gr̃(gαL+1
)
−1
I∗
k and d2 = hr̃ [(gαL+1

)γh(g−α2L+2
)]

1
I∗
k . S

returns (d0, d1, d2) to A.
2. (n = k.) Let m be biggest index such that Im 6= I∗m. Such m always

exists because A is not allowed to query ID∗. Let r = r̃ + αm+1

Im−I∗m
for a

randomly selected r̃ ∈R Zp.

d0 = g4

(
g3h1

I1 · · ·hk
Ik

)r

= g

(
γα+αL+2

)
gr

[
δ+

∑k
i=1(I

∗
i αL+1−i−I∗i γi)+

∑k
i=1(Ii(γi−α(L+1−i)))

]

= g

(
γα+αL+2

)
gr

[
δ+

∑k
i=1 ((Ii−I∗i )γi)

]

gr
[∑k

i=1,i 6=m((I∗i −Ii)α
L+1−i)+(I∗m−Im)αL+1−m

]

=
(

gα

)γ[(
gδ

)( k∏

i=1

g(Ii−I∗i )γi
)]r̃

[( k∏

i=1,i 6=m

(gαL+1−i

)I∗i −Ii
)(

gαL+1−m)I∗m−Im

]r̃

[(
gαm+1)δ( k∏

i=1

(gαm+1
)(Ii−I∗i )γi

)( k∏

i=1,i6=m

(gαL+m+2−i

)I∗i −Ii
)] 1

Im−I∗m

Again, d0 does not involve the term gαL+2
. Compute d1 = gr̃(gαm+1

)
1

Im−I∗m

and d2 = hr̃[(gαm+1
)γh(g−αL+m+2

)]
1

Im−I∗m . S returns (d0, d1, d2) to A.
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3. (n > k.) Let r = r̃ + αn+1

In
for a randomly selected r̃ ∈R Zp.

d0 = g4

(
g3h1

I1 · · ·hn
In

)r

= g

(
γα+αL+2

)
gr

[
δ+

∑k
i=1(I

∗
i αL+1−i−I∗i γi)+

∑n
i=1(Ii(γi−α(L+1−i)))

]

= g

(
γα+αL+2

)
gr

[
δ+

∑k
i=1 ((I∗i −Ii)α

L+1−i)
]

gr
[∑k

i=1((Ii−I∗i )γi)+
∑n

i=k+1(Iiγi)−
∑n

i=k+1(Iiα
L+1−i)

]

=
(

gα

)γ[(
gδ

)( k∏

i=1

g(Ii−I∗i )γi
)( k∏

i=1

(gαL+1−i

)I∗i −Ii
)]r̃

[( n∏

i=k+1

(gIiγi)
)( n∏

i=k+1

(gαL+1−i

)−Ii
)]r̃

[(
gαn+1)δ( k∏

i=1

(gαL+n+2−i

)(I
∗
i −Ii)

)( k∏

i=1

(gαn+1
)(Ii−I∗i )γi

)] 1
In

[( n∏

i=k+1

(gαn+1
)Iiγi

)( n−1∏

i=k+1

(gαL+n+2−i

)Ii
)] 1

In

Decryption Queries. S can simulate decryption queries for all identities per-
fectly except ID∗ since it possesses decryption keys of those identities. For
decryption queries related to ID∗, S make use of the decryption key of any
identities under ID∗. Due to Ciphertext Consistency of our scheme, the sim-
ulation is perfect.

Answer Finally, A output a decryption key (d∗0, d
∗
1, d

∗
2) of ID∗ such that

ê(d∗0, g) =ê(g2, g1)ê(h
I∗1
1 · · ·hI∗k

k g3, d
∗
1) and

ê(d∗1, h) =ê(g, d∗2).

From the first equation, ê(d∗0, g) = ê(g2, g1)ê(gδ, d∗1). Thus, ê(d∗0(d
∗
1)
−δ, g) =

ê(g2, g1). S returns ê(d∗0(d
∗
1)
−δg−αγ , g0) as the answer of the computational

(L + 2)-BDHE problem.

This completes the proof of Theorem 1. ut

5 Conclusion

We introduce a new notion called SIBE. We define security model and propose
an efficient construction. Our construction is secure under the BDHE assumption
in the random oracle model.
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