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Abstract
We prove that a random map drawn from any class C of polynomial maps from (Fq)n to

(Fq)n+r that is (i) totally random in the a�ne terms, and (ii) has a negligible chance of being not
strongly one-way, provides a secure PRNG (hence a secure stream cipher) for any q. Plausible
choices for C are semi-sparse (i.e., the a�ne terms are truly random) systems and other systems
that are easy to evaluate from a small (compared to a generic map) number of parameters.

To our knowledge, there are no other positive results for provable security of specialized
polynomial systems, in particular sparse ones (which are natural candidates to investigate for
speed). We can build a family of provably secure stream ciphers a rough implementation of
which at the same security level can be more than twice faster than an optimized QUAD (and any
other provably secure stream ciphers proposed so far), and uses much less storage. This may
also help build faster provably secure hashes.

We also examine the e�ects of recent results on specialization on security, e.g., Aumasson-
Meier (ICISC 2007), which precludes Merkle-Damgård compression using polynomials systems
uniformly very sparse in every degree from being universally collision-free. We conclude that our
ideas are consistent with and complements these new results. We think that we can build secure
primitives based on specialized (versus generic) polynomial maps which are more e�cient.
Keywords: sparse multivariate polynomial map, PRNG, hash function, provable security

1 Introduction
Cryptographers have used multivariate polynomial maps for primitives since Matsumoto-Imai [22]
but there is a dearth of results proving security based on plausible hardness assumptions.

Berbain-Gilbert-Patarin presented a seminal result at Eurocrypt 2006 [6] that if an overde-
termined generic random multivariate quadratic map over F2 is probabilistically one-way, then it
provides a provablely secure pseudo-random number generator (PRNG). However it is not very
e�cient for practical applications, and it was shown that tweaking the system for speed may lead
to a [nearly] brute-force attack as in [28].

In the following we investigate one way to ameliorate this problem, namely by considering non-
generic (e.g., sparse) polynomial systems of possibly higher degree, and over any Fq not just F2.
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1.1 Questions
Problem MQ(q, n, m): Solve P1(x) = P2(x) = · · · = Pm(x) = 0 where Pi's are quadratic in

x = (x1, . . . , xn). All coe�cients and variables are in Fq.
The �multivariate quadratic� problem, often claimed as basis for multivariate quadratic public-
key cryptosystems, is long known to be NP-hard [16]. We could take instead of quadratic Pi's
polynomials of degree d and have a �multivariate polynomial system problem� MP (q, d, n, m),
clearly also NP-hard. However, it is not easy to base a proof on worst-case hardness; the
premise used in [6] is the following average-case hardness assumption:

Conjecture MQ: No algorithm can solve (say in poly(n)-time or, practically, 280 operations) any
�xed ε > 0 proportion of MQ(q, n, m) instances with random coe�cients in Fq and n ∝ m.

If Conjecture MQ is true, then an iterative stream cipher with randomly chosen multivariate
quadratics in F2 as update and output �lter functions is secure [6]. However, a looseness factor
in the theorem means that despite being faster than other provably secure stream ciphers at
the same guaranteed cryptanalytic complexity, it is much, much slower than AES.

We can increase the di�culty of solving a system of nonlinear polynomial equations, by increasing
(a) the �eld size q, (b) the number of variables n, or (c) the degree d of the system (for analysis
see [3, 4, 26]). Alas, each costs time. Indeed cubic or higher-degree generic polynomials would be
inhibitively time-consuming. Also, �elds larger than F2 are not covered by the [6] security proof.

A logical next step is to consider specialized polynomial systems that are easier to evaluate, such
that we can compensate for the extra complexity incurred in strengthening the cipher. A natural
candidate is sparsity in the chosen polynomials. To our knowledge, however, there are no prior
positive results for provable security of specialized polynomial systems, and speci�cally sparse ones.

So the questions we are trying to answer are:

• Can we prove a similar result to [6] allowing for more e�ciently evaluated specialized systems?

• What do we know about how these specializations a�ect complexity of system-solving?

1.2 Our New Ideas and Main Results
We consider instead of MQ maps, a di�erent class C of multivariate polynomial maps from (Fq)n

to (Fq)n+r that is random in the a�ne terms (i.e., for any f ∈ C, f + L ∈ C for any a�ne L).
We further assume that an adversary has negligible chance to solve an inversion problem instance
randomly drawn from C within some resource constraint R. This is usually poly(n + r) [for theory
purposes] or 280 elementary operations [when discussing a practical instance]. We will call such a
class POWFRAT (�probabilistically one-way functions, random a�ne terms�) in Fq.

We will show in Secs. 2�3 that a random map from a POWFRAT class C has a high probability
to provide a secure PRNG (and hence a probably secure stream cipher), for any q. The key to
the extension from F2 to general Fq involves a reconstruction over linear polynomials, which is a
generalization of the Goldreich-Levin hard core bit by Goldreich-Rubinfeld-Sudan [18].

The following two classes of inversion problems are hard to solve to the best of our knowledge,
and we conjecture that these represent POWFRAT classes:
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Problem SMP(q, d, n, m, (η2, . . . , ηd)): Solve P1(x) = P2(x) = · · · = Pm(x) = 0, where each Pi

is a randomly chosen degree-d equation, such that ηi = ηi(n) nonzero degree-i terms for each
i ≥ 2 are present. The a�ne terms (coe�cients) are totally randomly chosen.

Problem SRQ(q, n, m, h): The Pi are quadratics formed from sequence of rotations. Start with
P0 = x1x2 + x3x4 + · · · + xn−1xn (where n is even), and obtain successive Pj by performing
sparse a�ne maps on x. I.e., x(0) := x, x(i) := M (i)x(i−1) + b(i), yi := Pi(x) := P0(x(i)) +
ci, ∀i. Matrices M (i) are randomly chosen, invertible and sparse with h entries per row.

SMP and SRQ mean respectively �Sparse Multivariate Polynomials� and �Sparse-Rotated Quadrat-
ics�, whose instances we tested to be hard to solve via generic solvers (Sec. 4). We try to analyze
their use for symmetric primitives (stream ciphers and hash functions). In preliminary implementa-
tions, we are able to achieve 5541 and 11744 cycles per byte for a SMP-based secure stream cipher
over F16 (quartic, 108 variables) and F2 (cubic, 208 variables) respectively. The former is at least
twice as fast as any other stream ciphers provably secure at the same parameters (cf. Sec. 5.2).

1.3 Previous Work
There had been known �provably secure� PRNGs. Those based on discrete log [17], or on RSA (as
in Blum, Blum, and Shub [8]) or a modi�cation thereof [25], or MQ [6]. However, some security
proofs for cryptosystems require impractically high parameters for �provable security�, which limit
their utility. For example:

• The BBS stream generator at commonly used parameters is not provably secure [19, Sec. 6.1].

• With [25], the speci�ed security level was 270, today's cryptographers usually aim for 280.

• Similarly with QUAD there is a gap between the �recommended� instances and the provably
secure instances (i.e., the tested instances were unprovable or unproven [28]).

Our work is the �rst positive result on using specialized polynomial systems which apparently
achieves a faster provably-secure PRNG/stream cipher than anything previously known.

The generic types of methods for solving polynomial systems � Faugère's F4-F5 and XL-
derivatives � are not a�ected drastically by sparsity. In the former, sparsity is quickly lost and
tests show that there is little di�erence in timing when solving SMP or SRQ instances. Recent
versions of XL [28] speeds up proportionally to sparsity. We therefore surveyed the literature for
recent results on solving or attacking specialized systems in crypto, listed below.

• Aumasson-Meier (ICISC 2007) [1] shows that in some cases sparsity in primarily underde�ned
systems leads to improved attacks. Results do not apply to overdetermined systems in general.

• Bard-Courtois-Je�erson [2] tests SAT solvers on uniformly sparse F2 equations; give numbers.

• Raddum-Samaev [23, 24] attacks �clumped� systems (even though the title says �sparse�).
Similarly the Courtois-Pieprzyk XSL attack [11] requires a lot of structure (i.e., �clumping�).

Our results are consistent with the above results and complements them.
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1.4 Future Work
We think that this represents only a �rst step in using specialized polynomials for secure primitives.
There are many obvious directions for future work in this area: Can we tighten our theorem to get a
smaller �looseness factor�? Can we get an upper and lower bound on the order of ε that is required?
Can we quantify exactly how small would our η have to be before specialized attacks mentioned
below becomes a serious problem? Much remains to be done.

2 PRNG Based on Specialized Polynomial Map in F2

This section both provide a recap of past results and extend them to specialized maps over F2. We
will start with de�nitions and models, then give the key results on the provable security level.

Computational Distinguishability: Probability distributions D1 and D2 over a �nite set Ω are
computationally distinguishable with computing resources R and advantage ε if there exist
a probabilistic algorithm A which on any input x ∈ Ω outputs answer 1 (accept) or 0 (reject)
using computing resources at most R and satis�es |Prx∈D1 (A(x) = 1)− Prx∈D2 (A(x) = 1)| >
ε. The above probabilities are not only taken over x values distributed according to D1 or
D2, but also over the random choices that are used by algorithm A. Algorithm A is called a
distinguisher with advantage ε.
If no such algorithm exists, then we say that D1 and D2 are computationally indistinguishable
with advantage better than ε. If R is not speci�ed, we implicitly mean feasible computing
resources (e.g., < 280 simple operations, and reasonable limits in sampling from D1 and D2).

PRNG: Let n < L be two integers and K = Fq be a �nite �eld. The map G : Kn → KL is
said to be a Pseudorandom Number Generator (PRNG) if the probability distribution of the
random variable G(x), where the vector x is uniformly random in Kn, is computationally
indistinguishable from a uniformly random vector in KL. Usually q = 2 but it is not required.

Given any PRNG, there is a standard way to stretch it into a secure iterative stream cipher.
Thus, to build a PRNG from any POWFRAT family of map C from Fn

2 → Fm
2 , we need to

1. show that if a random instance S drawn from C is not a PRNG, then we can predict, with the
help of information from the image S(x), any linear function R(x) with strictly larger than
1/2 probability; then

2. use the Goldreich-Levin theorem, which states that any linear function R is a hardcore bit of
any Fn

2 → Fm
2 one-way function S. I.e., being able to guess with strictly larger than 1/2 proba-

bility R(x) from S(x) means that we can compute x from S(x) with non-negligible probability.

2.1 From Distinguisher to Predictor
The following two results are valid for any K = Fq. First, a standard result:

Proposition 1. Take an old-fashioned iterated stream cipher with Q : Kn → Kn and P : Kn → Kr

as the update and output �lter functions and random initial state x0, that is, starting from the initial
state x0, at each step we update with xi+1 = Q(xi) and output yi = P(xi).
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x0 //

²²

x1 = Q(x0) //

²²

x2 = Q(x1) //

²²

x3 = Q(x2) //

²²

· · · (state)

y0 = P(x0) y1 = P(x1) y2 = P(x2) y3 = P(x3) · · · (output)

If we can distinguish between its �rst λ blocks of output (y0,y1, . . . ,yλ−1) with advantage ε in
time T , then we can distinguish between the output of a true random vector in Kn+r and the output
of S = (P, Q) in time T + λTS with advantage ε/λ. [We put a proof in the appendix.]

The following extends [6, Theorem 2] to work for any Fq, linear (only) R and any POWFRAT class
C. Also from this proof we see why the restrictions on a POWFRAT class C exist.

Proposition 2. Let K = Fq and C be a POWFRAT class of polynomial functions. Suppose further
there is an algorithm A that given a randomly chosen known system S(: Kn → Km) ∈ C, and
distinguishes S(x), where x ∈ Kn is an unknown random input value, from a random element in
Km with advantage at least ε in time T . Then there is an algorithm B that, given a randomly
chosen system S : Kn → Km in C and, any Kn → K linear form R, and y = S(x) where x is a
random input value, predicts R(x) with success probability at least (1+ε/2)/q using at most T +2TS

operations.

Proof. Without loss of generality, we may suppose that A has probability at least ε higher to return
1 on an input (S,S(x)) than on a random (S,y). De�ne a recentered distinguisher

A′(S,w) :=
{

A(S,w), probability 1
2

1−A(S,u), u ∈ Km uniform random, probabilty 1
2

then A′ returns 1 with probability 1+ε
2 on input (S,S(x)) and with probability 1

2 on input (S,u)
for random u.

Now, given an input S and y ∈ Km, the algorithm B �rst guesses a value v ∈ K (representing a
guess for R(x)), then a random vector u ∈ Km, and form S′ := S + Ru : Kn → Km. This is equal
to S plus a random a�ne function, and is hence random and in C.

B(S,y, R) :=
{

v, if A′(S′,y + vu) = 1;
uniform random from K\{v}, if A′(S′,y + vu) = 0.

If v = R(x), y + vu = S′(x), else y + vu is equal to S′(x) plus a nonzero multiple of the random
vector u, hence is equivalent to being uniformly random. The probability that B = B(S,S(x), R)
is the correct guess is hence

Pr(B = R(x)) = Pr(B = v|v = R(x)) Pr(v = R(x)) + Pr(B = R(x)|v 6= R(x)) Pr(v 6= R(x))

=
1
q

(
1
2

+
ε

2

)
+

(
q − 1

q

)
1
2

(
1

q − 1

)
=

1
q

(
1 +

ε

2

)
.

We see that the reasoning can work this way if and only if S + Ru have the same distribution as S.
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2.2 Constructing a PRNG from POWFRAT maps (F2 Case)
Proposition 3 ([21]). Suppose there is an algorithm B that given a system S(: Fn

2 → Fm
2 ), a random

n-bit to one-bit linear form R and the image S(x) of a randomly chosen unknown x, predicts R(x)
with probability at least 1

2 + ε over all possible inputs (S,S(x), R) using time T , then there is an
algorithm C that given S and the m-bit image S(x) of a randomly chosen n-bit vector x produces a
preimage of S(x) with probability (over all x and S) at least ε/2 in time

T ′ =
8n2

ε2

(
T + log

(
8n

ε2

)
+

8n

ε2
TS

)

Note: This is really the Goldreich-Levin theorem of which we omit the proof here. This essentially
states that linear forms are hard-core bits of any one-way function. In fact, the tighter form [6,
Proof of Theorem 3] (using a fast Walsh transform) can be simply followed word-for-word.

This above result (which only holds for F2) with Prop. 2 shows that any POWFRAT family of
maps induces PRNGs over F2. To get a useful stream cipher, we can combine Props. 1�3:

Proposition 4. If S = (P, Q) is an instance drawn from a POWFRAT class C, where P : Fn
2 → Fr

2,
Q : Fn

2 → Fn
2 are the output �lter and update functions of a stream cipher as in Prop. 1, then if

we can distinguish between λ output blocks of the stream cipher in T time, we can �nd x from S(x)
with probability at least ε

8λ in time

T ′ =
27n2λ2

ε2

(
T + (λ + 2)TS + log

(
27nλ2

ε2

)
+ 2

)
+

27nλ2

ε2
TS (1)

Note: Roughly this means that if we let r = n, want to establish a safety level of 280 multiplications,
want L = λr = 240 bits between key refreshes, and can accept ε = 10−2, then T ′ . 2230/n. All we
need now is to �nd a map from Fn

2 → F2n
2 which takes this amount of time to invert.

As we see below, unless equation-solving improves greatly for sparse systems, this implies that
a handful of cubic terms added to a QUAD system with n = r = 208, q = 2 can be deemed secure to
280. There is no sense in going any lower than that, because solving a system with n bit-variables
can never take much more e�ort than 2n× whatever time it takes to evaluate one equation.

3 PRNG Based on Specialized Polynomial Map in Fq

In this section, we show a way to extend the main results of the last section to Fq, by using an
extension of the Goldreich-Levin hard-core bit theorem.

Proposition 5. Let K = Fq. Suppose there is an algorithm B that given a system S(: Kn → Km),
a random Kn → K linear form R and the image S(x) of a randomly chosen unknown x, predicts
R(x) with probability at least 1

q +ε over all possible inputs (S,S(x), R) using time T , then there is an
algorithm C that given S and the m-bit image S(x) of a randomly chosen vector x ∈ Kn produces
a preimage of S(x) with probability (over all x and S) at least ε/2 in time

T ′ ≤ 210
(nq

ε5

)
log2

(n

ε

)
T +

(
1− 1

q

)2

ε−2 TS

6



If we know that one out of two exclusive possibilities takes place with probability strictly larger
than 50%, then the other one must happen strictly less often 50%. If we know that one of q
possibilities takes place with probability strictly greater than 1/q, we cannot be sure that another
possibility does not occur with even higher possibility. Therefore, we can only treat this as a case
of learning a linear functional with queries to a highly noisy oracle. Due to this di�erence, the
order of ε in T ′/T is as high as ε−5 in Prop. 5, but only ε−2 in Prop. 3.

Proposition 6. If S = (P, Q) is an instance drawn from a POWFRAT class C, where P : Fn
q → Fr

q,
Q : Fn

q → Fn
q are the output �lter and update functions of a stream cipher as in Prop. 1, then if

we can distinguish between λ output blocks of the stream cipher in T time, we can �nd x from S(x)
with probability at least ε

4qλ in time

T ′ = 215 nq6λ5

ε5
log2

(
2qnλ

ε

)
(T + (λ + 2)TS) +

(
1− 1

q

)2 4q2λ2

ε2
TS (2)

This is a straightforward combination of Props. 1, 2, and 5. In the remainder of this section,
we give a proof to Prop. 5 by a variation of the procedure used by Goldreich-Rubinfeld-Sudan [18,
Secs. 2 and 4], to give it concrete values that we can derive security proofs from.

3.1 Hardcore Predicate and Learning Polynomials
Let x = (x1, x2, . . . , xn), b = (b1, b2, . . . , bn), and xi, bi are elements in a �nite �eld K = Fq. Given
an arbitrary strong one way function h(x), then F (x,b) = (h(x),b) is also a one way function.
Claim x · b is the hard-core bit of F (x,b), where x · b means their inner product.

Supposed we have a predictor P which predicts its hardcore x ·b given (h(x),b) with probability
more than 1

q + ε, then we can write in the math form:

Pr
b,x

[P (h(x),b) = x · b] >
1
q

+ ε.

ByMarkov inequality, we know there must be more than ε/2 fraction of x such that Prb[P (h(x),b) =
x ·b] > 1

q + ε
2 . For this fraction of x, we are trying to �nd the inverse of h(x) (F (x) as well) through

the predictor. Also x · b can be written as
∑

bixi, then

Pr
b

[
P (h(x),b) =

∑
bixi

]
>

1
q

+
ε

2
.

What this means in English is that, if we can �nd a polynomial which almost matches an arbitrary
function P , a predictor function, then we can eventually invert x from F (x) a non-negligible portion
of the time. Now we try to reconstruct such linear polynomials through the access of the predictor,
largely following the footsteps of [18].

3.2 Intuition of Reconstructing Linear Polynomials
Now we are given some oracle accesses to a function f : Kn → K, where K is a �nite �eld and
|K| = q. We need to �nd all linear polynomials which match f with at least 1

q + ε fraction of inputs
x. Let p(x1, x2, . . . , xn) =

∑n
1 pixi, and i-th pre�x of p is

∑i
1 pjxj . The algorithm runs n rounds,

and in the i-th round, it extends all possible candidates from the (i−1)-th round with all elements in
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K and screens them, �ltering out most bad pre�xes. The pseudocode of the algorithm is presented
in Algorithm 2. Since we want the algorithm to be e�cient, we must e�ciently screen possible
pre�xes from all extensions. We now introduce a screening algorithm to be called TestPre�x.

Algorithm 1 TestPre�x(f ,ε,n,(c1, c2 . . . , ci))
Repeat poly1(n

ε ) times:
Pick ~s = si+1, . . . , sn ∈R GF(q)
Let t = poly2 (n

ε )
for k = 1 to t do

Pick ~r = r1, r2 . . . , ri ∈R GF(q)
σ(k) = f(~r,~s)−∑i

j=1 cjrj

end for
If there is σ(k) = σ for at least 1

q + ε
3 fraction of the k's then ouput accept and halt

endRepeat
If all iterations were completed without accepting, then reject

Algorithm 2 Find All Polynomials(f, ε )
set a candidate queue Q[i] which stores all the candidates (c1, c2, c3, . . . , ci) in the i-th round
for i = 1 to n do

Pick all elements in Q[i]
TestPre�x(f ,ε,n,(c1, c2 . . . , ci, α)) for all α ∈ F
If TestPre�x accepts, then push (c1, c2 . . . , ci, α) into Q[i + 1] i.e. it is a candidate in the
(i + 1)-th round

end for

Supposed we are testing the i-th pre�x (c1, c2, . . . , ci), we are going to evaluate the quantity of:

P~s(σ) := Pr
r1,r2...,ri∈K


f(~r,~s) =

i∑

j=1

cjrj + σ




where ~r = (r1, r2, . . . , ri). The value of σ can be thought as a guess of
∑n

i+1 pjsj . For every ~s, we
can estimate the probability by a sample of several ~r's, and the error rate can be controlled by the
times of sampling. If such ~s makes the probability signi�cantly larger than 1/q, then we accept. If
no such ~s exists, we reject. The detailed algorithm is stated in the Algorithm 1: TestPre�x.

If a candidate (c1, c2, . . . , ci) passes through the Algorithm 1 for at least one su�x ~s, there is
a σ such that the estimate of Ps(σ) is greater than 1

q + ε
3 . For a correct candidate (c1, c2, . . . , ci),

i.e. (c1, c2, . . . , ci) is the pre�x of p = (p1, p2, . . . , pn) which matches f for at least 1
q + ε, and an

arbitrary σ =
∑n

i+1 pjsj , it satis�es that Es[Ps(σ)] ≥ 1
q + ε. By Markov's inequality, for at least

ε/2 fraction of ~s and some corresponding σ, it holds that Ps(σ) ≥ 1
q + ε

2 . In Algorithm 1, we set
1
q + ε

3 as the passing criteria; thus the correct candidate will pass though the Algorithm 1 with great
probability. However, [18, Sec. 4] shows that the total passing number of candidates in each round
is limited. In fact, only a small number of candidates will pass the test. This maximum (also given
by [18, Sec. 4]) number of pre�xes that pass the test is ≤ (1− 1

q )2ε−2.
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3.3 Giving Concrete Values to �Order of Polynomially Many�
Since there are ε/2 fraction of su�x ~s such that Ps(σ) ≥ 1

q + ε
2 , we can randomly choose the su�x

polynomially many times (k1 times) to ensure that we would select such ~s with high probability.
Also, for such ~s, if we choose polynomially many times (k2 times) of ~r, there would be high proba-
bility that we would �nd some α for at least 1

q + ε
3 fraction. We are estimating how the polynomially

many should be as the following:

Pr [ TestPre�x fails ] ≤

Pr[no such ~s is chosen ] + Pr
[
no single element exists more than 1

q
+

ε

3
fraction

]

Pr [ no such ~s is chosen] ≤ (1− ε/2)k1 ≤ e−
k1ε
2 ≤ 1

2
ε(

1− 1
q

)2
ε−2 nq

So, we take k1 as O(1
ε log(n

ε )) ≈ 31
ε log(n

ε ). On the other hand, we want to estimate the probability
of there are no σ's with fraction at least 1

q + ε
3 . For a correct su�x ~s, we know for uniform ~r, we

get that σ with probability more than 1
q + ε

2 . Let Xi be the random variable with value 1 if the
i-th trial of ~r gets the correct σ, 0 otherwise. Then we have Pr[Xi = 1] ≥ 1

q + ε
2 . Suppose we do k2

trials:

Pr
[
no single element exists more than 1

q
+

ε

3
fraction

]
≤ Pr

[
k2∑

1

Xi < (
1
q

+
ε

3
)k2

]

≤ Pr

[∣∣∣∣∣
∑k2

i=1 Xi

k2
−

(
1
q

+
ε

2

)∣∣∣∣∣ ≥
ε

6

]
,

since these Xi's are independent, then by Cherno�'s bound we have

Pr

[∣∣∣∣∣
∑k2

i=1 Xi

t
− (

1
q

+
ε

2
)

∣∣∣∣∣ ≥
ε

6

]
≤ 2e−

k2ε2

2×36 ≤ 1
2

ε(
1− 1

q

)2
ε−2 nq

,

k2 = O( log(n/ε)
ε2

) ≈ 216 log(n/ε)
ε2

is su�cient to make the inequality hold. Thus, we have

Pr [ TestPre�x fails ] ≤ ε(
1− 1

q

)2
ε−2 nq

.

Also,

Pr [ Algorithm 2 fails ] ≤ Pr [ one TestPre�x fails ] ≤
∑

all TestPre�x run
Pr [ TestPre�x fails ]

≤
((

1− 1
q

)2

ε−2 nq

) 
 ε(

1− 1
q

)2
ε−2 nq


 = ε

Therefore, the algorithm will work with high probability. The worst case running time of algo-
rithm 2 should be: k1k2(1− 1

q )2 1
ε2

nq = O( n
ε5

log2(n
ε )) . 210

(nq
ε5

)
log2(n

ε ).

Note:
(
1− 1

q

)2
ε−2 is the maximum number of candidates which pass in each round.
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4 On SMP and SRQ under Generic Solvers
To verify that SMP and SRQ represent POWFRAT classes we need to show that

1. generic system-solvers do not run substantially faster on them; and

2. there are no specialized solvers that can take advantage of the sparsity.
In this section we look at generic solvers.

In general, there are two generic types of methods for solving polynomial systems, both related
to the original Buchberger's algorithm. One is Faugère's F4-F5 and the other is XL-derivatives.
In the former, sparsity is quickly lost and tests show that there are little di�erence in timing when
solving POWFRAT (e.g., SMP or SRQ) instances. With recent versions of XL [28], the sparsity
results in a proportional decrease in complexity. The e�ect of sparsity on such generic methods
should be predictable and not very drastic, as shown by some testing (cf. Sec. 4.3).

4.1 Why SRQ can be a POWFRAT Class
The idea behind SRQ is that any quadratic map can be written as f ◦ L, where f is a standard
form and L is an invertible linear map. Now we will choose L to be sparse. A standard form for
characteristic 2 �elds is the �rank form� which for full-rank quadratics is

P0(x) = x1x2 + x3x4 + · · ·xn−1xn.

Clearly, by taking a random c and b, we can give P0(x + c) + b any random a�ne part. Since
each x(i) is related to x = x(0) by an invertible a�ne map, this holds for every component Pi. This
means that results pertaining to sparsity of the linear terms such as [1] (cf. Sec. 4.5) never apply.

4.2 XL and F4-F5 Families for System-Solving
The XL and F4-F5 families of algorithms are spiritual descendants of Lazard's idea [20]: run
an elimination on an extended Macaulay matrix (i.e., extending the resultant concept to many
variables) as an improvement to Buchberger's algorithm for computing Gröbner bases [9].

Since we cannot discuss these methods in detail, we try to describe them brie�y along with their
projected complexities. Again, suppose we have the system P1(x) = P2(x) = · · · = Pm(x) = 0,
where Pi is a degree-di polynomial in x = (x1, . . . , xn), coe�cients and variables in K = Fq.
Method XL [10]: Fix a degree D(≥ maxPi). The set of degree-D-or-lower monomials is denoted
T = T (D). |T (D)| is the number of degree ≤ D monomials and will be denoted T = T (D). We now
take each equation Pi = 0 and multiply it by every monomial up to D−di to get an equation that is
at most degree D. Collect all such equations in the setR = R(D) :=

⋃m
i=1{(uPi = 0) : u ∈ T (D−di)}.

We treat every monomial in T as independent and try to solve R as a linear system of equations.
The critical parameter is the di�erence between I = dim(spanR), the rank of the space of

equations R, and T . If T − I = 0, the original system cannot be satis�ed; if T − I = 1, then
we should �nd a unique solution (with very high probability). Also, if T − I < min(D, q − 1), we
can reduce to a univariate equation [10]. We would like to predict D0, the smallest D enabling
resolution.
Note: For any pair of indices i, j ≤ m, among linear combinations of the multiples of Pj = 0 will
be PiPj = 0, and among linear combinations of the multiples of Pi = 0 will be PiPj = 0 � i.e., one
dependency in spanR. In Fq, (Pi)q = Pi which generates a similar type of dependency.
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Proposition 7 ([27]). Denote by [u]s the coe�cient of the monomial u in the expansion of s, then:

1. T = [tD]
(1− tq)n

(1− t)n+1
which reduces to

(
n+D

D

)
when q > D, and

∑D
j=0

(
n
j

)
when q = 2.

2. If the system is regular up to degree D, i.e., if the relations R(D) has no other depen-
dencies than the obvious ones generated by PiPj = PjPi and P q

i = Pi, then

T − I = [tD] G(t), where G(t) := G(t; n; d1, d2, . . . , dm) =
(1− tq)n

(1− t)n+1

m∏

j=1

(
1− tdj

1− tq dj

)
. (3)

3. For overde�ned systems, Eq. 3 cannot hold when D > DXL = min{D : [tD]G(t) ≤ 0}. If Eq. 3
holds up for every D < DXL and resolves at DXL, we say that the system is q-semiregular.
It is generally believed [3, 12] that for random systems it is overwhelmingly likely that
D0 = DXL, and indeed the system is not q-semiregular with very small probability.

4. When it resolves, XL takes CXL . (c0 + c1 lg T ) τ T 2 multiplications in Fq, using a sparse
solver like Wiedemann [26]. Here τ is the average number of terms per equation.

We cannot describe methods F4-F5 [14, 15], which are just too sophisticated and complex to
present here. Instead, we simply sketch a result that yields their complexities:

Proposition 8. [3] For q-semiregular systems, F4 or F5 operates at the degree

D = Dreg := min



D : [tD]


(1− tq)n

(1− t)n

m∏

j=1

(
1− tdj

1− tq dj

)
 < 0



 ,

and take . (c′0 + c′1 lg T̄ ) T̄ω multiplications, where T̄ = [tDreg ] ((1− tq)n(1− t)−n) counts the
monomials of degree exactly Dreg, and 2 < ω ≤ 3 is the order of matrix multiplication used.

We do not know what works best under various resource limitations. We take the position of
[28], e.g., XL with a sparse solver represents the best way to solve large and more or less random
overdetermined systems when the size of main memory space is the critical restraint.

4.3 Testing the One-Wayness with Generic Solvers
We conducted numerous tests on SMP maps at various degrees and sparsity over the �elds F2, F16,
and F256. For example, Table 1 lists our tests in solving random MQ(256, n, m) instances where
each polynomial only has n quadratic terms [we call these instances SMQ(256, n,m, n)] with F4

over GF(256). It takes almost the same time as solving an MQ instance of the same size.

m− n DXL Dreg n = 9 n = 10 n = 11 n = 12 n = 13
0 2m m 6.03 46.69 350.38 3322.21 sigmem
1 m dm+1

2 e 1.19 8.91 53.64 413.34 2535.32
2 dm+1

2 e dm+2−√m+2
2 e 0.31 2.20 12.40 88.09 436.10

Table 1: SMQ(256, n,m, n) timing (sec): MAGMA 2.12, 2GB RAM, Athlon64x2 2.2GHz
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n 7 8 9 10 11 12 13
D 5 6 6 7 7 8 8

SMQ(256, n, n + 2, n) 9.34 · 10−2 1.17 · 100 4.04 · 100 6.02 · 101 1.51 · 102 2.34 · 103 5.97 · 103

MQ(256, n, n + 2) 2.06 · 10−1 2.92 · 100 1.10 · 10 1.81 · 102 4.94 · 102 8.20 · 103 2, 22 · 104

ratio 2.20 2.49 2.73 3.00 3.27 3.50 3.72

Table 2: XL/Wiedemann timing (sec) on Core2Quad 2.4GHz, icc, 4-thread OpenMP, 8GB RAM

For XL variants that use sparse solvers as the last step [28] test results (one of which is shown
in Table 2) con�rms the natural guess: For SMP instances where the number of non-linear terms
is not overly small, the solution degree of XL is unchanged, and the speed naturally goes down as
the number of terms, nearly in direct proportion (in Tab. 2, should be close to n/4).

For F2, there are many special optimizations made for F4 in MAGMA, so we ran tests at various
densities of quadratic terms in version 2.12-20. Typical results in Fig. 1 (Appendix). SRQ samples
are labelled �sparse non-random�. Most of the time the data points are close to each other. In some
tests they overlap each other so closely that no di�erence in the timing is seen in a diagram.

4.4 A Brief Discussion on Specialization and Security
Since generic system-solvers show no unexpected improvement on our specializations, it remains for
us to check that there are no other big improvements in solving specialized systems for. We list
below what we know of recent new attempts on solving or attacking specialized systems in crypto,
and show that our results are consistent with these new results and somewhat complements them.

• Aumasson-Meier [1] presented several ideas to attack primitives built on sparse polynomials
systems, which we sketch separately in Sec. 4.5 below.

• Raddum-Samaev [23, 24] attacks what they term �sparse� systems, where each equation de-
pend on a small number of variables. Essentially, the authors state that for systems of equa-
tions in n bit variables such that each equation depends on only k variables, we can solve
the system in time roughly proportional to 2(1− 1

k
)n using a relatively small memory footprint.

Since XL for cubics and higher degrees over F2 is more time-consuming than brute-force, this
is fairly impressive. However, the �sparsity� de�ned by the authors is closer to �input locality�
and very di�erent from what people usually denote with this term. The attack is hence not
applicable to SMP-based stream ciphers.
In a similar vein is the purported XSL attack on AES [11]. While the S was supposed to stand
for Sparse, it really requires Structure � i.e., each equation depending on very few variables.
So, whether that attack actually works or not, it does not apply to SMP-based systems.

• Bard-Courtois-Je�erson [2] use SAT solvers on uniformly sparse F2 equations and give experi-
mental numbers. According to the authors, the methods takes up much less memory than F4

or derivatives, but is slower than these traditional methods when they have enough memory.
Some numbers for very overde�ned and very sparse systems shows that converting to a con-
junctive normal form and then running a SAT solver can have good results. This seems to
be a very intriguing approach, but so far there are no theoretical analysis especially for when
the number of equations is a few times the number of variables, which is the case for SMP
or SRQ constructions.
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4.5 Solutions and Collisions in Sparse Polynomial Systems
Aumasson-Meier recent published [1]) some quite interesting ideas on �nding solutions or collisions
for primitives using sparse polynomial systems (e.g., hashes proposed in [13]).

They showed that which implies that using sparse polynomials systems of uniform density (in
every degree) for Merkle-Damgård compression will not be universally collision-free. Some under-
de�ned systems that are sparse in the higher degrees can be solved with lower complexity. Their
results do not apply to overdetermined systems in general. We summarize relevant results below.

• Overdetermined higher-degree maps that are sparse of uniform density, or at least sparse in
the linear terms, is shown to have high probability of trivial collisions and near-collisions.
It seems that everyone agrees, that linear terms should be totally random when constructing
sparse polynomial systems for symmetric primitives.

• Suppose we have an underdetermined higher-degree map sparse in the non-a�ne part, i.e.,

P : Fn+r
2 → Fn

2 , P(x) = b + Mx + Q(x)

where Q has only quadratic or higher terms and is sparse. Aumasson-Meier suggests that
we can �nd P−1(y) as follows: �nd a basis for the kernel space of the augmented matrix
[M ;b + y]. Collect these basis vectors in a (n + r + 1)× (r + 1) matrix M ′ as a linear code.
For an arbitrary w ∈ Fr+1

2 , the codeword x̄ = M ′w will represent a solution to y = Mx + b
if its last component is 1. Use known methods to �nd relatively low-weight codewords for the
code M ′ and substitute into Q(x), expecting it to vanish with non-negligible probability.
Aumasson-Meier proposes to apply this method to construct collisions in Merkle-Damgård
hashes with cubic compressor functions. It does not work for �elds other than F2 or overde-
termined systems. Its exact complexity is unknown and requires some further work. Finally,
we point out that for something like our SRQ construction, even if h = 3 (the rotation ma-
trices M (i) have only three entries per row), the number of cross-terms in each equations still
quickly increases to have as many terms as totally random ones.

• Conversely, it has been suggested if we have an overdetermined higher-degree map

P : Fn
2 → Fn+r

2 , P(x) = b + Mx + Q(x)

where Q has only quadratic or higher terms and is extremely sparse, we can consider P(x) = y
as Mx = (y + b)+ perturbation, and use known methods for decoding attacks, i.e., solving
overdetermined linear equations with perturbation. However, since a quadratic over F2 of
rank 2k has bias 2−k−1, the SRQ form acts exactly like a random quadratic under this kind of
attack, and even SMP maps with a moderate number of quadratic terms will be intractible.

5 Summary of Uses for Specialized Polynomial Systems
The conclusion is that we always use totally random linear terms, no matter what else we do. With
that taken into account, specialized systems drawn from a POWFRAT class represent improvements
over generic systems in terms of storage and (very likely) speed.
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5.1 Secure Stream Ciphers
We build a stream cipher called SPONGE(q, d, n, r, (η2, . . . , ηd)), which has form as given in Prop. 1.
We specify a prime power q (usually a power of 2), positive integers n and r, a degree d. We have
�update function� Q = (Q1, Q2, . . . , Qn) : Fn

q → Fn
q and �output �lter� P = (P1, P2, . . . , Pr) : Fn

q →
Fr

q. We still do yn = P(xn) [output]; xn+1 = Q(xn) [transition].
This time, every polynomial is of degree d. a�ne (constant and linear) term or coe�cient are

still uniformly random. But terms of each degree are selected according to di�erent densities of
terms, such that but the degree-i terms are sparse to the point of having only ηi terms.

The di�erence between Eq. 1 and Eq. 2, which governs the maximum provable security levels we
can get, a�ects our parameter choices quite a bit, as seen below.

By Eq. 2, if L = λn lg q is the desired keystream length, the looseness factor T ′/T is roughly

215q6(L/ε)5

n4 lg5 q
lg2

(
2qL

ε lg q

)

If we let q = 16, r = n, want a safety level of T = 280 multiplications, L = 240 bits between key
refreshes, and can accept ε = 10−2, then T ′ . 2354/n4. We propose the following instances:

• SPONGE using q = 2, n = r = 208, d = 3 (cubics), with 20 cubic terms each equation.
Preliminary tests achieve 11744 cycles/byte. The expected complexity for solving 208 variables
and 416 equations is ∼ 2224 (by brute-force trials, which is much faster than XL here), which
translates to a 282 proven security level.

• SPONGE using q = 16, d = 3 (cubics), n = r = 160, 20 quadratic and 15 cubic terms per
equation. Projected XL degree is 54, storage requirement is 2184 bytes. T ′ is about 2346 mul-
tiplications, which guarantees & 288 multiplications security. This runs at 6875 cycles/byte.

• SPONGE using d = 4 (quartics), n = r = 108, 20 quadratic, 15 cubic, and 10 quartic terms
per equation. Projected XL degree is 65, storage requirement is 2174 bytes. T ′ is about 2339

multiplications guaranteeing & 281 multiplications security at a preliminary 5541 cycles/byte.

5.2 Comparisons: A Case for SPONGE

All modern-day microprocessor are capable of doing 64-bit arithmetic at least, and there is a natural
way to implement QUAD that runs very fast over F2, limited only by the ability to stream data.
However, as number of variables goes up, the storage needed for QUAD goes up cubically, and for
parameter choices that are secure, the dataset over�ows the caches of even an Intel Core 2. That
seems to be what slows down QUAD(2, 320, 320) � tests on a borrowed ia64 (6MB cache) server
shows that it is almost exactly the same speed as the SPONGE(2, 3, 208, 208, [480, 20]). Looking at
the numbers, it seems that the idea of specializd polynomials is a good complement to the approach
of using polynomial maps for symmetric primitives introduced by Berbain-Gilbert-Patarin.

We hasten to add that our programming is quite primitive, and may not match the more polished
implementations (e.g., [5]). We are still working to improve our programming and parameter choices.
Also, in hardware implementations, the power of sparsity should be even more pronounced.
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Stream Cipher Block Storage Cycles/Byte Security Level
SPONGE (2,3,208,208,[480,20]) 208b 0.43 MB 11744 282 Proven

SPONGE (16,4,108,108,[20,15,10]) 864b 48 kB 5541 280 Proven
QUAD (2,320,320) 320b 3.92 MB 13646 282 Proven
QUAD (2,160,160) 160b 0.98 MB 2081 2140 Best Attack

SPONGE (16,4,32,32,[10,8,5]) 128b 8.6 kB 1244 2152 Best Attack

Table 3: Point-by-Point, SPONGE vs. QUAD on a K8 or C2

5.3 For Possible Use in Hashes
In [7] Billet et al proposes to use two-staged constructions with a random 192-bit to 464-bit ex-
panding quadratic map followed by a 464-bit to 384-bit quadratic contraction. They show that in
general a PRNG followed by a one-way compression function is a one-way function.

In [13] the same construction is proposed but with SRQ quadratics and no proof. Now we see
that the abovementioned results from [7] and Prop. 6, which justify the design up to a point. This
is an area that still takes some study, and perhaps require extra ideas, such as having a hybrid
construction with a sparse polynomial expansion stage and a di�erent kind of contraction stage.
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A Proof of Prop. 1
Proof. We introduce hybrid probability distributions Di(S) over KL (L := λr):

For 0 ≤ i ≤ λ respectively associate with the random variables

ti(S,x) :=
(
w1, w2, . . . ,wi, P(x), P(Q(x)), . . . , P(Qλ−i−1(x))

)

where the wj and x are random independent uniformly distributed vectors in Kn and we use the
notational conventions that (w1, w2, . . . , wi) is the null string if i = 0, and that

(
P(x), P(Q(x)), . . . , P(Qλ−i−1(x))

)

is the null string if i = λ. Consequently D0(S) is the distribution of the L-unit keystream and
Dλ(S) is the uniform distribution over KL. We denote by pi(S) the probability that A accepts a
random L-long sequence distributed according to Di(S), and pi the mean value of pi(S) over the
space of sparse polynomial systems S. We have supposed that algorithm A distinguishes between
D0(S) and Dλ(S) with advantage , in other words that |p0 − pλ| ≥ ε.
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Algorithm B works thus: on input (x1,x2) ∈ Kn+r with x1 ∈ Kr, x2 ∈ Kn, it selects randomly
an i such that 0 ≤ i ≤ λ− 1 and constructs the L-long vector

t(S,x1,x2) := (w1, w2, . . . , wi,x1,P(x2), P(Q(x2)), . . . , P(Qλ−i−1(x2))).

If (x1,x2) is distributed accordingly to the output distribution of S, i.e. (x1,x2) = S(x) =
(P(x),Q(x)) for a uniformly distributed value of x, then

t(S,x1,x2) :=
(
w1, w2, . . . ,wi, P(x), P(Q(x)), . . . , P(Qλ−i−1(x))

)

is distributed according to Di(S). Now if (x1,x2) is distributed according to the uniform distribu-
tion, then

t(S,x1,x2) =
(
w1, w2, . . . ,wi, x1, P(x2), P(Q(x2)), . . . , P(Qλ−i−2(x2))

)

which is distributed according to Di+1(S). To distinguish between the output of S from uniform,
algorithm B calls A with inputs (S, t(S,x1,x2)) and returns that same return value. Hence

∣∣∣∣Pr
S,x

(B(S,S(x)) = 1− Pr
S,x

(B(S,S(x1,x2)) = 1
∣∣∣∣

=

∣∣∣∣∣
1
λ

λ−1∑

i=0

pi − 1
λ

λ−1∑

i=0

pi

∣∣∣∣∣ =
1
λ
|p0 − pλ| ≥ ε

λ
.
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