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ABSTRACT. I examine the use of automated theorem-proving for reduc-
tionist security arguments in cryptography and discuss three papers that
purport to show the potential of computer-assisted proof-writing and
proof-checking. I look at the proofs that the authors give to illustrate
the “game-hopping” technique — for Full-Domain Hash signatures, El-
Gamal encryption, and Cramer-Shoup encryption — and ask whether
there is evidence that automated theorem-proving can contribute any-
thing of value to the security analysis of cryptographic protocols.
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1. INTRODUCTION

The pre-program of Crypto '96 included an optional excursion to the
beautiful Channel Islands off the coast near Santa Barbara. The boat trip
featured close-up encounters with a myriad of sea creatures — several types
of whales, seals, and porpoises, and fish and invertebrates of every size and
description.

Unfortunately, the seas were rough. As the day wore on, most of the
participants got badly seasick. There were just three hardy souls among
the passengers — Josh Benaloh, Yvo Desmedt, and Ann Hibner Koblitz —
who were unaffected by the rhythmic rocking of the boat.! Standing at the
bow, they talked and laughed and enjoyed the cool spray as water splashed
over them onto the deck. They were the only ones who appreciated seeing
the varied sea creatures approaching the boat as more and more distressed
passengers leaned over the side to “feed the fishes.”

Just before the trip ended, the participants (those who were in a condition
to write) were given a feedback questionnaire. Ann and Josh were near the
crew when they read the responses. The crew doubled over in laughter as,
one after another, under “Needs Improvement” they read comments like
“seas need to be calmer,” “ocean was too rough,” “waves were too high.” It
sounded as if the passengers expected the boat operators to do something

T went on the excursion, but my memories of the day can be summarized by the
Beatles’ line
All the way the paper bag was on my knee,...
(Paul McCartney, “Back in the USSR,” The White Album, 1968).
1
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about that — as if there were some dial that needed to be adjusted or some
computer software that needed to be debugged. To the crew, these responses
fit in perfectly with their stereotype of the “technonerd” who believes that
every inconvenience or discomfort in life must have a technological fix.

In this paper I examine another situation in which cryptographers naively
hope that a suitably designed device — some cleverly written computer
code — will make unpleasant natural phenomena go away. In this case
the unpleasant phenomena are the tedium of writing out detailed proofs of
reductionist security theorems and the embarrassment when those proofs
are later found to have errors and gaps. The proposed technological fix is
automated theorem-proving.

2. HiSTORY

The story of attempts to automate theorem-proving goes back very far.
According to Stillwell ([29], p. 469), “Since the time of Leibniz, and perhaps
earlier, attempts have been made to mechanize mathematical reasoning.”
These efforts became more intense after the systematic development of sym-
bolic logic by Boole and Frege in the 19th century. In this early period
the culmination of the “formalist” program was the publication in 1910 of
Principia Mathematica by Bertrand Russell and Alfred North Whitehead.

The main motive for the first wave of mathematical formalism was not,
however, to make it possible for a machine to prove a theorem. Rather, the
idea was to provide a guarantee of rigor that could be checked in a purely
mechanistic way, without the need for intuition or experience. In fact, one
would need to know only the list of axioms and the principles of logical
deduction. In theory one would not have to know what objects, if any, were
supposed to have the properties in the axioms and theorems. As Russell
notoriously put it, “Mathematics is a science in which we never know what
we are talking about nor whether what we say is true.””

In 1931 Go6del’s proof of his Incompleteness Theorem took the wind out
of the sails of the formalist philosophy of mathematics. But it did not refute
the notion that a sufficiently detailed mathematical proof — such as the
ones in Principia Mathematica — looks more like the result of a mechanical
process than the product of high-level human thought.

In the computer age some people started to search for ways to mechanize
certain types of proofs in a much more literal sense. In pure mathematics
a watershed event was the announcement of the proof of the famous Four
Color Conjecture at the American Mathematical Society summer meeting
in 1976. For the first time in the proof of a major theorem, a computer was
used to run through a large number of cases. Mathematicians did not react
to this new application of computer technology with unbridled enthusiasm.
As D. J. Albers reported in The Two-Year College Mathematics Journal,

2In our day this sentiment is most likely to be expressed by American students, but
they don’t mean it in the same sense as Bertrand Russell.
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Mathematician after mathematician expressed uneasiness
with a proof in which a computer had played a major role.
They were bothered by the fact that more than 1000 hours of
computer time had been expended in checking some 100,000
cases and often suggested (hoped?) that there might be an
error buried in the hundreds of pages of computer print outs.
Beyond that concern was the hope that a much shorter proof
could be found. Yu. I. Manin’s observation [[23], p. 48] that
“a, proof only becomes a proof after the social act of ‘accept-
ing it as a proof’ fits the situation very well.

In the three decades since that time the role of computer-assisted proofs
in pure mathematics has been extremely modest, except in certain unusual
subspecialties that are far from the interests of most mathematicians. Ac-
cording to one promoter of automated theorem-proving [30], “The most
exciting recent success in mathematics has been the settling of the Robbins
problem by the ATP system EQP. In 1933 Herbert Robbins conjectured that
a particular group of axioms form a basis for Boolean algebra, but neither
he nor anyone else (until the solution by EQP) could prove this.”?

In contrast, in mainstream mathematical research computer-assisted
theorem-proving has been conspicuous by its absence, much to the surprise
of many non-mathematicians. After Andrew Wiles’ announcement of the
proof of Fermat’s Last Theorem, some reporters were disappointed to learn
that computers had played no role whatsoever in the proof.

(Note: Here I am not referring to attempts to formally verify proofs that
have already been written out in detail by mathematicians. For a recent
example of this see A formally verified proof of the prime number theorem
by Avigad, Donnelly, Gray, and Raff [1].)

Outside of mathematics, the main uses of automated theorem-proving,
according to [30], are in “software generation and verification, protocol ver-
ification, and hardware verification.” For example [30],

NASA uses ATP to certify safety properties of aerospace
software that has been automatically generated from high-
level specifications. Their code generator produces safety
obligations that are provable only if the code is safe. An ATP
system discharges these obligations, and the output proofs,
which can be verified by an independent proof checker, serve
as certificates.

What is meant here (see also [12]) is a method of partially automating
the verification that software will function as it’s supposed to; it is a bit of
a stretch to call that “theorem-proving.” As in other areas of the so-called

3Tt is hard to resist the temptation to say sarcastically, “Be still, my beating heart!”
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Artificial Intelligence field, extravagant terminology has outpaced actual ac-
complishments.*

* ok %

The formalistic approach to security analysis of the protocols of public-key
cryptography goes back almost as far as the notion of public-key cryptogra-
phy itself. The first version of such a formal calculus is usually attributed
to Dolev and Yao in 1983 [13].

The Dolev-Yao approach to analyzing public-key protocols is abstract
and schematic. It views cryptographic primitives as idealized black boxes
that must be assumed to have certain properties in an absolute sense. It is
based on an all-or-nothing view of security and so has limited applicability
in practical settings.

In recent years, especially since the publication of [3], researchers have
been trying to bring theory closer to practice by giving reductionist security
arguments that include precise inequalities involving probabilities and run-
ning times and that, in principle, can lead to concrete recommendations for
key lengths and parameter selection.

The process of interpreting a reductionist security argument from the
standpoint of cryptographic practice is fraught with difficulties and pitfalls,
as Menezes and I argued in [19, 20]. Some of these problems come from
fallacies or ambiguities in the security reductions themselves.

Among researchers in “provable security” the quality-control problem has
been widely acknowledged. According to Halevi [16],

The problem is that as a community, we generate more proofs
than we carefully verify (and as a consequence some of our
published proofs are incorrect).

Bellare and Rogaway [5] write:

In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a crisis
of rigor.

Opinions differ as to the causes of this crisis. In [26] Nowak says that

...proofs [are] error-prone and difficult to check... because
cryptographic schemes are based on non-trivial mathematics
such as number theory, group theory or probability theory.

This explanation does not seem credible. After all, if this were the reason,
then why is there no “crisis of rigor” in mathematics itself, a field that is
also “based on non-trivial mathematics”? More plausible explanations are
given by Bellare and Rogaway [5], who say that this crisis “has at its core a
significant cultural element,” and by Halevi [16], who acknowledges that

In 1979 DeMillo, Lipton, and Perlis [11] published a thoughtful analysis of both tech-
nical and social issues involved in automated verification of computer programs. Their
article is still relevant and interesting to read three decades later.
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Some of the reasons for this problem are social (e.g., we
mostly publish in conferences rather than journals).

I also comment on the cultural and social issues in [17] and [18].

Whatever the reasons for the crisis in theoretical cryptography, the hope
of authors of recent papers on automated theorem-proving is to take the
uncertainties, flaws, and human foibles out of the process of deriving re-
ductionist security arguments. These authors adopt a computational model
that enables them to keep track of probabilities and running times as they
go step-by-step from one “game” to another. The idea is to gradually trans-
form the realistic scenario into an idealized one where the adversary has
zero chance of succeeding. Often an error is introduced and recorded as one
goes from one “game” to the next one (“game-hopping,” as it is sometimes
called). The sum of these errors can then be interpreted as the probability
that the initial “game” differs from the last one — in other words, it is a
bound on the probability that the adversary succeeds. This approach, which
became popular after [5] and [27] appeared in 2004, is currently thought to
be the direction of research that is most likely to produce automated proofs
of security that have practical significance.

I shall examine three of these papers ([6], [26], and [16]) with particular
attention to the examples those authors give to show the potential of their
methods. One of these applications is to signatures, and the other two are
to encryption.

3. FuLL-DoMAIN HASH

The basic Full-Domain Hash (FDH) signature scheme [4] is one of the
simplest and most elegant constructions in cryptography. Let f : S — S
be a permutation of a finite set S. We assume f to be a trapdoor one-way
function. In other words, using the public information any randomized al-
gorithm has negligible probability (taken over the elements of S and the sets
of coin tosses in executing the algorithm) of finding f !(y) in a reasonable
amount of time. Using secret information, f can easily be inverted.

Let h be a hash function — a function from message strings of arbitrary
length to the set S — whose values range uniformly over the entire set
S. (This is what “full-domain” means.) In addition, we suppose that the
hash function is indistinguishable from a random function from message
strings to S. That is, the hash function can be modeled by an “oracle” that
returns random values in S whenever it is queried for a value h(M). The
only condition on the oracle is that if the same M is queried again, it must
return the same value h(M).

The basic signature scheme works as follows. The signer Alice possesses
a secret key that allows her to invert f. To sign a message M, she finds
h(M) and then s = f~'(h(M)), which is her signature. After receiving M
and s, Bob verifies the signature by checking that f(s) = h(M). That’s all
there is to it.
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Now suppose that an adversary that does not have Alice’s secret key wants
to forge a signature. Because the values h(M) are assumed to be random
and uniformly distributed over S, the adversary cannot do this with non-
negligible probability unless it can (with non-negligible probability) invert
f, and this is precisely what the one-wayness assumption rules out. Thus,
signatures are unforgeable in this sense if the assumptions (one-wayness of
f and randomness of h) hold.

What one wants, however, is a stronger notion of unforgeability. Namely,
we suppose that the adversary is allowed to ask for a bounded number (no
more than ¢,) of signatures of messages of its choice. It is considered to be a
successful adversary — an “existential forger under chosen-message attack”
— if it produces a valid signature of some message of its choice other than
the ones whose signatures it has been given.

As Menezes and I argued in [19], from a common-sense standpoint it is still
clear that signatures are unforgeable in this strong sense provided that the
one-wayness assumption for f and the randomness assumption for A hold.
The reason is that the freedom that the adversary has to query signatures
of messages of its choice and then forge any message of its choice is illusory,
because it has no control over the hash values of those messages. The chosen-
message queries result in a set of f~!-values of random elements h; of S,
and then it is required to find f~! of some unrelated random element y € S.
This is no easier than finding f~!(y) without knowing f~! of those other
random values. To see this, simply note that both sets {h;} and {s;}, where
s; = f~Y(h;), are distributed uniformly at random in S. The set of pairs
(hi, si) could equally well have been generated starting with the set {s;},
that is, as (f(si),s;). The adversary could have done this without making
any queries. Thus, the chosen-message attack gives it nothing useful.

However, many people are not satisfied with an intuitive argument such
as this one; they want a reductionist security argument. That is, they want
to know that if an existential forger under chosen-message attack exists,
then that adversary can be used as a subroutine to construct an algorithm
that violates the underlying assumption that f is a one-way permutation.
This was proved by Bellare and Rogaway in [4].

Here is how the reduction in [4] works. Suppose that we are given Alice’s
public key and an arbitrary y € S, and we are asked to find z such that
y = f(z). We must show how we could find z (with high probability) if we
had a forger that can mount chosen-message attacks.

So suppose that we have such a forger. We give it Alice’s public key
and wait for its queries. It asks for the hash values of at most g, messages
and for signatures of at most gs; of these messages. In all cases but one, we
respond to the hash query for a message M; by randomly selecting z; € S
and setting the hash value h; equal to f(z;). For just one value M;, we
respond to the hash query by setting h;, = y. We choose iy at random and
hope that M;, happens to be the message whose signature will be forged by
our existential forger. Any time the adversary makes a signature query for
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a message M; with i # iy we send x; as its signature. Notice that this will
satisfy the forger, since f(z;) = h;. If the forger ends up outputting a valid
signature s;, for M;,, that means that we have the solution z = s;, to our
original equation y = f(z).

If we guessed wrong and M;, is not the message that the forger ends up
signing, then we won’t be able to give a valid response to a signature query
for M;, if the forger requests that signature. The forger either will fail or
will give us useless output, and we have to start over again. We also have to
start over again if the forger succeeds in forging a signature for a message M;
with 7 # i, since that just gives us information we already know, namely,
z; = f 1(h;). Recall that g is the bound on the number of queries of the
hash function. In any iteration of the procedure we have a probability of
success at least 1/gy. If we go through k iterations, the probability that
every single time we fail to solve y = f(z) for z is at most (1 — 1/¢4)*. For
large k — namely, for k greater than O(g,) — this approaches zero; so with
high probability we succeed. This completes the argument.

The original paper [4] dealt with RSA-FDH, where the one-way permu-
tation f is given by f(z) = z® mod N. In that case Coron [8] showed how
to reduce the number of iterations needed from O(gy) to O(gs), where g
is the bound on the number of signature queries in the chosen-message at-
tack. Here is his idea. Suppose that when the adversary makes its g5 hash
queries, we choose a greater number of values h; — not just the single value
hi, — in a way that will later enable us to find the e-th root of y mod N
if M; turns out to be the forged message. Namely, for some randomly cho-
sen subset Iy consisting of [gn/u] indices we choose a corresponding set of
random values z;, and then we respond to a hash query for M; with ¢ € I
by setting h; = z{y. For i ¢ Iy, as before we choose z; at random and set
h; = zf mod N. Note that if the adversary ends up forging a signature for
one of the [gn/u| messages M; with ¢ € Iy, then we need only divide the
signature s; by z; to get the e-th root of y mod V.

What should we choose u to be? We have to be careful not to make it too
small. Each time the adversary makes a signature query for a message M;,
there is approximately a 1/u chance that ¢ € Iy, in which case h; is one of the
[gn/u] hash values for which we do not know an e-th root modN. In that
case, we cannot answer the query, and we must restart the adversary. The
chance that we will not have to do this for any of the ¢, signature queries is
roughly (1 — %)qs ~ e %/%  This means that we should not choose u much
smaller than g;. Note that the probability of success of a single iteration
is %(1 — %)qs; if we choose u = g5, then each iteration has a probability of
success roughly equal to 1/¢,.

From a practical standpoint it makes a world of difference whether the
forger algorithm must be repeated gp times or g, times. Because signature
queries require a response from the target of the attack, one can realistically
suppose that their number is somewhat limited — say, ¢ ~ 2%°. In contrast,
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a hash query corresponds in practice to evaluating a publicly available func-
tion. There is no justification for assuming that an attacker’s queries to the
hash oracle are bounded by anything smaller than the running time. To be
safe one should take g, ~ 289, Thus, the Bellare-Rogaway result for RSA-
FDH implies that we are guaranteed 80 bits of security only if we choose
our parameters so that the RSA function f cannot be inverted in time less
than 2'%°. On the other hand, Coron’s result implies that we are guaranteed
that level of security provided that it is not possible in time less than 2190
to invert the RSA function. (Of course, if we don’t insist on reductionist
arguments and find the common-sense argument convincing, then we can
be confident that FDH has 80 bits of security provided that f cannot be
inverted in time less than 280.)

When ¢, is very small, Coron gives us a tight reduction; in other words,
he shows that in that case we get 80 bits of security for RSA-FDH if we
choose parameters so that e-th roots modN cannot be found in time less
than 280, In the special case of a passive attack — that is, g, = 0 — Coron’s
argument is particularly simple. We respond to all of the attacker’s hash
queries by choosing z; at random and setting h; = z{y mod N. No matter
what message M; it forges a signature for, we immediately get the e-th root
of y mod N by dividing the signature by z;.

The RSA problem — that is, finding e-th roots mod N — has a special
property that makes Coron’s argument possible: for fixed key (e, N) it is
self-reducible. This means that any instance y can be “randomized” — it
can be shifted to a random instance z®y such that a solution to the new
instance will immediately enable us to solve the original instance. This
property implies that all instances (except for a negligibly small subset) are
equally hard.

The self-reducibility (for fixed key) of RSA-FDH is a nice property to
have because it allows us to rule out the possibility that there is a small
but non-negligible proportion € of the set S on which the trapdoor one-way
permutation f: S — § is relatively easy to invert and that this subset of
S is easily identifiable. To see what the danger would be in the case of an
f that is not self-reducible, let us suppose that for a proportion e = 2740
of values y € S it is possible to compute f~!(y) in 240 steps. We are also
supposing that the “easy” values of y can be quickly recognized. Then a
passive attacker can run through roughly 2 messages M, any one of which
it would be happy to forge a signature for, until it gets a hash value y = h(M)
that is easy to invert. It then forges a signature in time 240.

Thus, it is not surprising that the two most important FDH-type sig-
nature schemes — RSA-FDH and the Boneh-Lynn-Shacham scheme [7] —
both have the self-reducibility property for fixed key. It would be risky in-
deed to use an FDH scheme for which the difficulty of inverting f might be
dramatically different for different values of y € S.

Note also that in the situation described above a user Alice might easily
fool herself into thinking that she has 80 bits of security. Suppose, for
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instance, that the algorithm A to invert f takes a small amount of time T'
and that one iteration of A has probability p(y) of finding f~'(y), where
for fixed y the probability is taken over the sets of coin tosses in executing
A. TIf p(y) = 27%0 for a proportion € = 2740 of y € S and p(y) is negligible
for other y, then the probability of success of A taken over both instances y
and sets of coin tosses is 2780, So Alice might believe that she has 80 bits of
security, whereas in reality her signatures are existentially forgeable. From a
mathematical standpoint Alice’s fallacy is using multiplication rather than
addition — 240.240 = 280 pather than 240 +240 = 241 when she estimates
her adversary’s running time in the scenario described above. The best
way to protect Alice from such a calamity is to use a trapdoor one-way
permutation f that has the self-reducibility property.

X kX%

In the paper [6] the main example that Blanchet and Pointcheval use to
illustrate their approach to automated security proofs is the general Full-
Domain Hash signature scheme. To the casual reader the authors give the
impression that their automatic theorem-prover is essentially reconstructing
the reductionist security argument of Bellare and Rogaway [4]. Indeed, in
§1 they say that “the only way to ‘formally’ prove [security| is by showing
that an attacker against the cryptographic protocol can be used as a sub-
part in an algorithm (the reduction) that can break the basic computational
assumption”; and in §4.1 they describe the result of their theorem-prover
as “the usual upper-bound” that’s in [4]. However, a careful reader will
discover that what the automated theorem-prover does in [6] is in fact much
less than what Bellare and Rogaway did in [4].

In the first place, the automated theorem-prover in [6] does not give a
reduction at all. It does not describe how to use an adversary as a subroutine
in order to invert the one-way permutation. That is, the theorem-prover
gives no indication of how a simulator should respond to the adversary’s
hash and signature queries. Instead, the theorem-prover uses essentially the
same “common-sense” argument that I gave (see above) to justify the claim
that the g; signature queries couldn’t possibly help the attacker. Namely,
it notes that (in our notation) the sequences (h, f 1(h)) and (f(s),s) have
the same distribution, i.e., they are “observationally equivalent.” In other
words, without loss of generality one can take ¢; = 0. Once one is dealing
only with a passive adversary, the rest of the argument boils down to the
observation that, informally speaking, if p is the probability of inverting f in
one iteration of an algorithm with running time T, then a forger that tries
to find f~! of no more than g, random values has at most g,p probability
of success in time roughly 7%

5This bound qrp can be reached in a situation where the adversary can quickly deter-
mine whether a random value is one of the p|S| values for which f~! can be found in time
T; in that case “time roughly 7” means time of the form T + gpt with ¢ small.
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In the second place, even though the factor g, in the adversary’s success
probability is the same as in [4], it arises for a completely different reason.
In [4] gp is a “nontightness” factor coming from the reduction argument,
whereas in [6] there is no reduction argument, and the factor g, comes
because the adversary has a choice of g5 hash values of which it need only
find f~! of any one. If (for a fixed key) f is equally hard to invert for all
y € S (except for a negligibly small subset), then in time = 7" the adversary
has probability of success only p, not gpp, and it takes the same amount
of time to sign either a fixed message or any one of many messages. That
is, it makes no difference whether each new iteration uses a new message
or just a new set of coin tosses with the same message. If, on the other
hand, there’s a small but non-negligible subset of S on which f is relatively
easy to invert and if elements of this subset are easy to recognize, then the
adversary’s success probability may be as great as gnp. Thus, the appearance
of the annoying factor gy, in [6] is caused by a totally different consideration
than in [4], namely, the possibility of a poorly constructed f for which the
inversion problem is not uniformly difficult.

In the third place, the automated proof in [6] cannot readily be modified
to get a much better bound for RSA-FDH and other self-reducible versions
of FDH. This is in sharp contrast to the Bellare-Rogaway proof for RSA-
FDH, which can be modified in a natural way (see [8] and the discussion
above) so as to give much tighter bounds — including a completely tight
bound in the case of a passive attack.

In the fourth place, the security model in [6] uses a measure of probability
that must be interpreted with great caution. Namely, the success probability
of inverting f : S — S is assessed not only over the sets of coin tosses and
the instances y € S, but also over the keys that are generated from a random
seed by the key-generator algorithm.

Let me describe two scenarios that show the possible pitfalls that arise
from the use of this probability space. In both cases I suppose that we are
in the following hypothetical situation. I assume that the only reasonable
way to invert f : S — S is by recovering the private key, and that the
fastest way to recover the private key is to run many iterations of a certain
algorithm A. For reasonable parameter choices the algorithm A takes a
small amount of time 7', so that the running time to invert f is essentially
equal to the number of iterations of A, and this is equal to the reciprocal
of the probability that a single iteration of A will recover the private key.
I further suppose that the key-generation algorithm usually produces a key
pair that requires 7 iterations to break, but a certain small proportion € of
the time it produces a key pair that can be broken in only p < 7 iterations.
Finally, T suppose that it is relatively easy to determine from the public
key whether or not a key pair is one of the weak ones; that is, one has an
algorithm to do this directly, rather than having to simply try out A with
different keys.



ANOTHER LOOK AT AUTOMATED THEOREM-PROVING 11

For our first scenario suppose that 7 = 280, ¢ = 2740 and p is small.
Then the probability of inverting f in time pT is of order 274, so we might
conclude that we have only 40 bits of security, which is worthless. However,
if there are, say, about 22° users, then an attacker would be over 99.99%
certain not to be able to find a user with a weak key, in which case the
implementation would in practice have 80 bits of security.

In contrast, for our second scenario suppose that 7 = 28!, ¢ = 272% and
p = 2°0. In this case the probability of inverting f in time T is about 2787,
so we might be confident that we have 80 bits of security. However, since the
weak keys can be readily identified, if there are over 22° users an attacker
has a good chance of finding a user with a weak key pair, after which it can
obtain that user’s secret key in 256 operations.

Of course, since I am assuming that weak keys can be recognized directly,
the key-generation algorithm could be modified so as to identify and not
assign weak keys. However, in practice protocol designers who believe that
they have a proof of security sometimes decide to increase efficiency by
dispensing with key validation procedures that are not required in their
proof. This was one of the central issues in the controversy over HMQV (see
[21, 24, 25]). Moreover, an attacker might be willing to invest more resources
in weak-key spotting than the designers of the system would want to put into
the key-generation algorithm, since the latter would be under competitive
pressure to reduce implementation time while an adversary would be much
less limited. So there could be keys that are not weak enough to be spotted
by the key-generation algorithm but are identified by the adversary as being
much weaker than an average key.

In [20] Menezes and I commented that whether or not one is bothered by
the possible existence of a small proportion of weak keys depends on one’s
point of view — for example, whether one is an individual user or a system
administrator:

...let’s suppose that in a certain cryptosystem a small pro-
portion — say, 107 — of the randomly assigned private
keys are vulnerable to a certain attack. From the standpoint
of an individual user, the system is secure: she is 99.999%
sure that her secret is safe. However, from the standpoint
of the system administrator, who is answerable to a million
users, the system is insecure because an attacker is almost
certain...to eventually obtain the private key of one or more
of the users, who will then sue the administrator.

Thus, in certain circumstances the probability of a forger’s success as de-
fined in [6] can be a misleading measure of the true security of the signature
scheme. It might either lead Alice to doubt the security of a protocol that in
practice is secure or, even worse, lead her to have confidence in the security
of a protocol that is actually vulnerable to attack.
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Finally, it is amusing to note that the theorem-prover used in [6] required
14800 lines of Ocaml code, and the summary by Blanchet and Pointcheval
of what the theorem-prover did in the case of Full Domain Hash (Appendix
C in their paper) occupies five single-spaced pages! The result of all this
effort is a weak tautological statement that raises more questions than it
answers.

What lessons can be learned from the above analysis of the security proof
for FDH by the automated theorem-prover in [6]? The Blanchet-Pointcheval
paper was accepted for presentation at Crypto, which is the most prestigious
of the annual cryptography conferences, with an acceptance rate of only
about 15%. The Program Committee apparently felt that this work repre-
sented one of the most impressive advances so far in the area of automated
theorem-proving. Yet we have seen that the human-made reductionist se-
curity proof of Bellare and Rogaway, even though it is a rather crude early
result, is much more satisfying from both practical and theoretical stand-
points than the pale imitation that the automated theorem-prover in [6]
was able to come up with. In the metaphorical race between human and
machine, it seems that we human theorem-provers needn’t worry about the
automated ones snapping at our heels any time soon.

4. ELGAMAL ENCRYPTION

In [26], Nowak describes “a framework in which proofs are precise enough
to be mechanically checked, and readable enough to be humanly checked.”
He illustrates his approach to “game-based security proofs” by proving se-
mantic security of ElGamal encryption under the Decision Diffie-Hellman
assumption (DDH). Nowak explains the benefits of computer-assisted
theorem-proving and proof-checking as follows:

The main advantages of using a proof assistant are that rea-
soning errors are not possible and that all the assumptions
must be stated. On the other hand all tedious details of
the proof must be dealt with: you cannot simply claim that
something is obvious.

In this section I discuss Nowak’s proof of semantic security of El1Gamal en-
cryption (for brevity I will look only at the non-hashed variant) and examine
both the significance of what is proved and the extent to which his objectives
— human checkability and machine checkability — have been achieved.
The ElGamal encryption scheme, as described in [26], is as follows. Let
G be a finite cyclic group of order ¢, let g € G' be a generator, and let Z,
denote the integers modulo ¢q. The scheme consists in three probabilistic
algorithms: key generation, which chooses z randomly from Z; and sets the
public and secret keys (kp, ks) equal to (g%, z); encryption, which, given kp
and a message m € G, chooses y randomly from Z,; and sets the ciphertext



ANOTHER LOOK AT AUTOMATED THEOREM-PROVING 13

¢ equal to the pair (¢¥, kpYm); and decryption, which, given ks and a ci-
phertext ¢, computes 7o (c)(71(c)*¥*) ™! (where 7; and 7, are the projections
of the ciphertext onto its first and second components).

Before discussing Nowak’s proof, let’s recall in informal terms what se-
mantic security means (in the sense of [15]) and how one can be convinced
that ElGamal encryption is semantically secure assuming DDH. Semantic
security (in an equivalent formulation known as indistinguishability under
chosen plaintext attack, IND-CPA) assuming DDH means the following: if
an adversary chooses two messages mg and m; and sends them to the en-
crypt algorithm, which encrypts one of them m; chosen at random, then the
adversary will not be able to guess b with probability significantly greater
than % — that is, with an “advantage” greater than some specified € —
unless it is able to solve DDH with probability greater than % + epDH-

By definition, solving DDH in a group G with generator g means that,
given a triple (g%, g¥, g*), one must determine whether or not z = zy mod ¢,
that is, whether or not g*° = ¢*¥. The DDH assumption says, roughly
speaking, that there is no efficient algorithm that can do this with non-
negligible probability, where the probability is taken over all instances of
DDH and all random sequences of coin tosses used in the algorithm. In other
words, there is no such algorithm whose probability of returning “true” when
presented with input of the form (g%, g¥, ¢*¥) differs by more than eppy from
its probability of returning “true” when presented with input of the form
(¢%,9Y,9*) with z random. If one has a Diffie-Hellman triple and a non-
Diffie-Hellman triple and randomly chooses one of them as input to such
an algorithm, it will correctly determine whether or not the triple is of the
form (g%, ¢¥,¢"¥) with probability greater than % + eppH-

It’s intuitively clear that the adversary’s task in trying to violate semantic
security — namely, given G, g, g%, and ¢ = (¢¥, g*¥my) determine whether
the last component gives a Diffie-Hellman triple after it is divided by mg or
after it is divided by m; — is very similar to the problem of distinguishing
between a Diffie-Hellman triple and a random triple. If one wants a formal
argument, one can construct a reduction from DDH to breaking ElGamal
encryption in the sense of semantic security. Namely, suppose that one has
an adversary that violates semantic security with advantage > eppn. Given
a triple (¢%, ¢¥, ) where @ may or may not be equal to ¢*¥, one sends the
public key g* to the adversary, which selects two messages my and m1. One
then randomly chooses b € {0,1} and sends the adversary the ciphertext
(g¥, amy). If the adversary correctly determines b, then one outputs “true”
(i.e., one’s triple is a Diffie-Hellman triple); otherwise — that is, if it outputs
the wrong b or else fails to give meaningful output, as could happen if o # g*¥
and ¢ is not an encryption of either message — one outputs “false.” It is
easy to see that the probability of outputting “true” is < % when o # ¢
and > % + eppuy when a = g*¥.
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The “proof of security” in the last paragraph will probably strike the
reader as rather obvious. In fact, a reader who’s in an uncharitable mood
might even characterize it as a trivial tautology.

Now let’s look at Nowak’s proof. He starts out with “game-zero,” which
is the following formalized version of the definition of semantic security in
the IND-CPA formulation. Here A; denotes the algorithm that the adver-
sary uses to produce two messages mg, m1, and Ao denotes the adversary’s
algorithm that guesses which bit is the subscript of the encrypted message;
both A1 and A, are probabilistic, and so depend on a random string r taken
from some set R.

let (kp, ks) < keygen() in

letr g Rin

let (mg, m1)  A;(r,kp) in

Pr—true letb g {1’ 2} in — 5| < eppH
let ¢ <= encrypt(kp, mp) in

let b < Ay (r, kp,c) in

\ b =* 1)

The structure of the proof is a series of “hops” from one game to an
essentially equivalent one, until finally obtaining a game whose truth is an
immediately consequence of one of Nowak’s corollaries. (The earlier pages of
[26] contain a library of fourteen theorems, propositions, and corollaries later
to be used to effect the transition steps in the security proofs for E1Gamal
and hashed-ElGamal encryption.)

The transition from game-zero to game-one involves replacing keygen
and encrypt by their definitions:

letz <—pg Zgin
let (kp, ks) < (¢%,z) in
letr < Rin
let (mg, m1) < Ai(r, kp) in
Pr_irue let b <p {1, 2} in — —| < eppH
lety <r Zgin
let ¢ < (¢¥, kp¥Ymyp) in
let b + As(r, kp,c) in
b =" 0]

After three more games (which I will omit so as not to unduly tax the
readers’ time and try their patience), Nowak ends with a final game-five:

let z < g Zgin
lety <r Zgin
Pr_, letr < Rin :1
e letb«—p {1,2}in 2
let z < Zq in

[A2(r, g%, (9%, g*mo(A1(r, g7)))) = b]
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This concludes the proof, because game-five is true according to a corollary
that says that the probability of choosing a particular element a € A when
an element is randomly chosen from A is equal to 1/|A]|.

Let’s compare Nowak’s proof of several pages with the one-paragraph
one I gave before. His proof has the advantage of being machine-checkable
using the French “Coq” proof-assistant. Probably Nowak is also correct in
claiming that his proof is “humanly checkable,” although that might depend
on who the hapless human is who is assigned this tedious task.

However, in a deeper sense Nowak’s six-game proof is much less suitable
for human consumption than the one-paragraph proof that I wrote in plain
English. The danger to humans reading his proof is that they will not see
the forest for the trees. That is, they’ll get so bogged down in verifying each
“hop” from one game to another that they won’t see the big picture. In this
case the big picture is that what is being proved is little more than a trivial
tautology. In any event, there can be no doubt that the game-hopping proof
in [26] would have to be rated a 0 on a 0-to-10 scale if it is judged according
to the criterion given at the end of the discussion of proofs in Yu. I. Manin’s
book on mathematical logic ([23], p. 51): “a good proof is one which makes
us wiser.”

X kX%

Both my one-paragraph proof of the tautology and Nowak’s six-game
proof fail to make use of an important property of ElGamal encryption
that implies a much stronger result. Namely, the discrete-logarithm and
Diffie-Hellman problems in a fixed prime-order group have a self-reducibility
property that allows us to make a specific instance into a random instance.
As a result the reductionist argument can be strengthened to show that an
adversary that guesses b with probability > % + € can be used to construct a
DDH-solver that succeeds not just with probability > % + eppH, but in fact
with probability > 1 —e.

To see this, suppose that we are given a triple (¢%, ¢, @) and want to
determine whether or not a« = ¢g*¥. For randomly selected 7,7 we send the
adversary the public key ¢, and we encrypt the message m; (for a random
b€ {0,1}) as (g%, @ my;). Note that (g%, g%/, ') is a Diffie-Hellman triple
if and only if (¢%, g¥, a) is one. After a large number of different pairs (3, 5)
we look at the proportion of correct guesses of b by the adversary. If our
triple (g%, ¢Y, ) is a Diffie-Hellman triple, then it is almost certain that
the proportion of correct answers will be significantly greater than %; if not,
then it is almost certain that the adversary will either not give useful output
or else output the wrong guess close to 50% of the time. (I've omitted some
details.) We thus have a method to solve DDH with almost 100% chance of
success.

Unfortunately, this stronger and more interesting result does not seem to
be readily obtainable or checkable using Nowak’s techniques. The obstacle
appears to be that the argument requires some thought and is not just a
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sequence of trivial equivalences that can be looked up in a library of generic
tautologies.

Finally, the reader might have noticed that my definition of ElGamal
encryption at the beginning of this section — which I took directly from [26]
— is missing a crucial condition, namely that the group order ¢ is prime.
This condition does not, of course, affect Nowak’s proof of security, which
is formal and generic. However, it vitally affects the real-world security of
ElGamal. If g is smooth (that is, not divisible by a large prime number),
then discrete logs in G are easy to find. If ¢ has a large prime factor but
also a small factor — for example, if G is the multiplicative group F* of a
finite field IF of characteristic # 2 — then the DDH assumption can easily
be shown to be false, and ElGamal is not semantically secure.

It is quite common for authors of provable security papers to inadvertently
neglect some important condition and thereby imperil the real-world security
of the system. The presence of small subgroups in G or in a group that
naturally contains G (for example, F* or the full group of points on an
elliptic curve) can make a system vulnerable to attack. Just as Nowak in [26]
apparently forgot about the need to choose prime-order G, similarly it was
the omission of a public-key validation step that would have prevented small-
subgroup attacks that led to flaws in some of Krawczyk’s HMQV protocols
(see [24, 25]). And in like manner the Bangerter-Camenisch-Maurer [2] zero-
knowledge proof of possession of a discrete logarithm in a group of unknown
order was shown in [22] to be flawed because nothing would prevent a verifier
from using invalid parameters to break the protocol. These cases illustrate
the danger of putting so much energy into ever more formalistic security
proofs: while locking the front door tighter and tighter, people might easily
fail to notice that the back door has swung wide open.

5. CRAMER-SHOUP ENCRYPTION

In [16] Halevi illustrates the hoped-for benefits of computer-aided proofs
of security by giving a detailed outline of how that would work for the classic
reductionist security result of Cramer and Shoup [9, 10]. In this section I
compare a non-computer-aided version of the proof (following the exposition
in [19]) with Halevi’s treatment. For brevity I shall discuss not the entire
proof, but only one of the key steps in it.

We start by recalling the main result in [9, 10].

Reductionist security claim. If the Decision Diffie-Hellman Problem is
hard in the group G and if the hash function H is collision-resistant, then
the encryption scheme described below is indistinguishability-secure against
chosen-ciphertext attack.

Description of the Cramer-Shoup encryption scheme. Let x = (z1,2),
y = (y1,92), 2 = (21, 22) denote pairs of integers between 1 and ¢ — 1; let
g = (91,92) and u = (u1,us) denote pairs of elements of G; and let r denote
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a random integer between 1 and ¢ — 1. We use the notation ¢* = ¢7'g5?,

g = g™ g5"%, and so on.

The group G of prime order g in the field of p elements (where g|p—1) and
two random non-identity elements g1, g2 are publicly known. We suppose
that the collision-resistant hash function H takes triples of integers mod
p to integers between 0 and ¢ — 1 (that is, it takes bit-strings of length
3[logy p| to bit-strings of length [logy q]). Alice’s private key consists of
three randomly generated pairs z,y,z, and her public key consists of the
three group elements ¢ = ¢*, d = ¢¥, e = ¢°.

To send a message m € G, Bob chooses a random r, sets u1 = g7, ue = g,
and w = e¢"m, and computes the hash value h = H(u,uz,w) of the con-
catenation of these three mod p integers. He computes v = ¢"d™, and sends
Alice the ciphertext 4-tuple (ui,u9,w,v). In this ciphertext the element
v allows Alice to check that Bob enciphered the message properly; w con-
tains the message m “disguised” by the factor e"; and u; and wuy are the
information Alice needs to remove this factor using her private key.

More precisely, to decipher the 4-tuple (u1,us, w,v) Alice first computes
h = H(uy,uz,w) and uses her secret key to find u*+"¥ (this is shorthand for
ugfﬁhylugﬁh‘w), which should be equal to v (because u*th = gre+rvh —
c"d™). If it is not equal to v, Alice rejects the message. If the ciphertext
passes this test, she proceeds to decrypt by dividing w by u®. Since u? =
g% = €" and w = €"m, this gives her the plaintext m. This concludes the
description of the cryptosystem.

We say that a 4-tuple (u1,us,w,v) is invalid — not a possible cipher-
text — if log,, u1 # logy, ua. Another way to say this is that the 4-tuple
(u1,u9,w,v) is invalid if and only if the Decision Diffie-Hellman Problem
has a negative answer for the 4-tuple (g1, g2, u1,u2). (Here we are using a
different variant of DDH than in §4, where the generator was fixed and the
input was a variable triple; now we let the generator g; vary, and so the
input is a 4-tuple.)

One of the basic parts of the proof of the security claim is to show that
an invalid ciphertext will almost certainly be rejected by Alice. We first give
the argument of Cramer—Shoup [9, 10] in the form of a mathematical proof
using logic and natural language. After that I discuss Halevi’s approach
using computer code.

In the sequel most discrete logarithms will be expressed to the base g;.
Define 8 = log,, go. Then the discrete logs to the base g1 of the elements c
and d of Alice’s public key are given by

(1) v =logy, c=1z1+ Bz mod g; 6 = log,, d = y1 + By2 mod q.

Let us regard the two pairs x, y as elements of a 4-dimensional vector space
V over the field of g elements. Alice’s public key constrains z,y to the 2-
dimensional affine subspace S defined by the above two equations. Note
that the values v and § are fixed once her public key is specified, although
these values are not necessarily known even to Alice. For given values of the
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public key and the public parameters, Alice’s private 4-tuple (z1, 2, y1,Y2)
is equally likely to be any point of S.

If log,, u1 = r and log, uz = rf3 mod g for some r, then the ciphertext is
valid. In that case the verification equation v = u®+" holds either every-
where on S (if v has the value for which log, v = r(y + hé) mod g), or else
nowhere on S (if v has any other value). On the other hand, suppose that
the ciphertext is invalid, that is, log,, u1 = r and log,, us = 7’3 mod ¢ with
r' = log,, ug # 7. Then the verification equation v = u® " holds if and
only if

(2) log,, v = r(y + hd) + B(r' — r)(z2 + hys).

Regardless of the value of v, this equation imposes another independent
linear condition on z,y, and so Alice accepts the 4-tuple (uy,us,w,v) only
if z,y lie on a particular line in S. The chance of that is 1/¢, which is
negligible. Thus, Alice will almost certainly reject an invalid ciphertext.

In Halevi’s version, the part about non-acceptance of invalid ciphertext
comes at the end of the proof after the code has been modified by applying
five different “games.” Among many other things, these games have intro-
duced the variables £, -y, and 6. He now modifies the code by introducing
a new variable X (denoted 7’ in [16]) for the right side of equation (2). He
then modifies the code by inserting lines that treat the new variable X,
along with the old variable y2, as independently chosen and that define the
variables 9, 1, y1 in terms of the other variables. For example, one line of
the new code reads as follows (in our notation);

009b 5 +— X 70D by, mod g

Halevi observes that v = g;¥ now depends not on the earlier variables, but
only on a newly-defined one, and this enables the definition of v to be moved
to the end of the code where a “bad-flag” (corresponding to the “bad” event
of accepting an invalid ciphertext) is located. After some more changes of
variables and moving of code, Halevi has the code defining the “bad” event
where he wants it.

In all this moving around of code and replacing one section of code by an-
other one with changed variables, it is easy to lose sight of what stands out
as the central point in the mathematical argument: There is negligible prob-
ability 1/q of accepting an invalid ciphertext because that’s a codimension-1
event; that is, it happens only if Alice’s secret key lies in a subspace of one
dimension lower than that of the full space of her possible secret keys.

What argument does the code-based game in [16] use to justify this crucial
probability step? None. Halevi simply decrees that “the tool can be endowed
with a rule that lets it assign a probability of 1/q for this test...”

Thus, in order to be convinced of the logical correctness of the proof by
computer game-playing, one has to already know the logic of the original

6T hese variables are denoted w, , y in [16]; in what follows I have changed the notation
to be consistent with [19].
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proof. One also needs to understand the original proof in order to get
the changes of variables right when writing the code. It is questionable
whether this kind of code-based argument really represents progress toward
automated theorem-proving or even proof-checking. The code could not
have been constructed if the theorem had not already been proven, and
correctness of the proof cannot be checked unless one already understands
a key mathematical step (the codimension-1 argument). It is not even clear
that the roughly ten pages of text and pseudocode in [16] can somehow
help readers convince themselves of the correctness of the mathematical
proof that was written in natural language. Rather, the reverse is much
more likely — that is, it is only after thoroughly understanding and being
convinced of the validity of the original proof that readers have any chance
of being able to make sense of Halevi’s code-based version.

Halevi’s pseudocode for the different games he uses to establish the
Cramer—Shoup result goes on for significantly more pages than the origi-
nal proof in [9] or the later version in [10]. It is hard to see what has been
achieved, other than to convert a moderately difficult proof into one that is
very difficult to follow.

6. CONCLUSION

I do not wish to discourage anyone from taking a code-based approach to
writing up reductionist security proofs or from conceptualizing such proofs
as a series of hops from one game to another. It would be arrogant in
the extreme for me to pass judgment on anyone’s preferred style of proving
things. That is a matter of personal taste. As Menezes and I commented
in [19], cryptography is as much an art as a science. As in the arts, people
must be free to experiment with new ways of expressing themselves. And in
cryptography just as in the arts, fashionable trends from time to time veer
toward the abstruse and arcane. The popularity of code-based proofs can
be seen as an example of this.

One of the great insights of post-modernism [28] is that there is no such
thing as scientific progress, and one should not speak of one approach being
better or worse than a different one. Science, like other areas of human
endeavor, is subjective and culturally determined, according to those who
view the history of science as a more or less arbitrary sequence of shifts
from one paradigm to another. Thus, if we want to adhere to the tenets
of post-modern cryptography (a term that Oded Goldreich [14] obligingly
introduced into common use), we should embrace all possible approaches to
“proving” security of cryptographic protocols and should resist the tempta-
tion to call game-hopping and automated theorem-proving a step backward.

* * %

The problem with such terms as “automated theorem-proving,”
“computer-aided theorem-proving,” and “automated proof-checking” is the
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same as the problem with the term “provable security” (see [19]). In both
cases they promise a lot more than they deliver.

Will we ever see a machine-checkable proof that would not have been eas-
ily checkable by humans if it had been written out clearly and carefully with
proper attention to lucid expository style? Will we ever see a reduction-
ist security argument devised by computer that was not obtained before by
hand or that could not have been more easily derived without the computer?
Until this happens, researchers in this area should expect to encounter a cer-
tain amount of healthy skepticism. So far the papers in this field leave the
reader asking, in the words of an often-quoted advertisement for Wendy’s
fast-food restaurants, “Where’s the beef?”
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