
Efficient Provably-Secure

Hierarchical Key Assignment Schemes

Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci

Dipartimento di Informatica ed Applicazioni, Università di Salerno, 84084 Fisciano (SA), Italy

{ads, ferrara, masucci}@dia.unisa.it

Abstract

A hierarchical key assignment scheme is a method to assign some private information and
encryption keys to a set of classes in a partially ordered hierarchy, in such a way that the
private information of a higher class can be used to derive the keys of all classes lower down
in the hierarchy.

In this paper we design and analyze hierarchical key assignment schemes which are provably-
secure and support dynamic updates to the hierarchy with local changes to the public infor-
mation and without requiring any private information to be re-distributed.

• We first consider the problem of constructing a hierarchical key assignment scheme by
using as a building block a symmetric encryption scheme. We propose a new construc-
tion which is provably secure with respect to key indistinguishability, requires a single
computational assumption, and improves on previous proposals.

• Then, we show how to reduce key derivation time at the expense of an increment of the
amount of public information, by improving a previous result.

• Finally, we show how to construct a hierarchical key assignment scheme by using as
a building block a public-key broadcast encryption scheme. In particular, one of our
constructions provides constant private information and public information linear in the
number of classes in the hierarchy.

Keywords: Access control, key assignment, provable security, efficient key derivation.

1 Introduction

The hierarchical access control problem is defined in a scenario where the users of a computer
system are organized in a hierarchy formed by a certain number of disjoint classes, called security
classes. A hierarchy arises from the fact that some users have more access rights than others. For
example, there are several situations where supervisors have all the privileges to control the tasks
of their subordinates, while the subordinates have no privileges at all to access the supervisors’
tasks. Similar situations abound in other areas, particularly in the government and military.
A hierarchical key assignment scheme is a method to assign an encryption key and some

private information to each class in the system. The encryption key will be used by each class to
protect its data by means of a symmetric cryptosystem, whereas, the private information will be
used by each class to compute the keys assigned to all classes lower down in the hierarchy. This
assignment is carried out by a Trusted Authority (TA), which is active only at the distribution
phase. Akl and Taylor [2] first proposed an elegant hierarchical key assignment scheme in which
each class is assigned a key that can be used, along with some public information generated by

1

the TA, to compute the key assigned to any class lower down in the hierarchy. Subsequently,
many researchers have proposed different schemes that either have better performances or allow
insertions and deletions of classes in the hierarchy (e.g., [4, 21, 23, 27, 28, 29, 31]). A detailed
classification of many schemes in the literature has been recently provided by Crampton et al.
[13], according to several parameters, such as the memory requirements for public and private
information, the complexity of key derivation, the complexity of handling dynamic updates to the
hierarchy, and the resistance to collusive attacks. Atallah et al. [4] first addressed the problem of
formalizing security requirements for hierarchical key assignment schemes. They proposed a first
construction based on pseudorandom functions and a second one requiring the use of a symmetric
encryption scheme secure against chosen-ciphertext attacks. Their constructions also manage
with dynamic changes to the hierarchy, such as insertion and deletion of classes.
In this paper we design and analyze hierarchical key assignment schemes which are provably-

secure and efficient. We consider security with respect to key indistinguishability, which corre-
sponds to the requirement that an adversary is not able to learn any information about a key
that it should not have access to, i.e., it is not able to distinguish it from a random string having
the same length. We propose two constructions for hierarchical key assignment schemes. Both
constructions support updates to the access hierarchy with local changes to the public information
and without requiring any private information to be re-distributed. The first construction, which
is based on symmetric encryption schemes, is simpler than the one proposed by Atallah et al. [4],
requires a single computational assumption, and offers more efficient procedures for key deriva-
tion and key updates. We also focus on improving efficiency of key derivation in hierarchical key
assignment schemes. Such a problem has been recently considered by Atallah et al. [4, 5], who
proposed two different techniques requiring an increment of public information. We show how to
further reduce key derivation time by improving one of their techniques. Finally, we show how
to construct a hierarchical key assignment scheme by using only a public-key broadcast encryp-
tion scheme. In particular, by plugging in the scheme proposed by Boneh et al. [9] we obtain a
hierarchical key assignment scheme offering constant private information and public information
linear in the number of classes.
The paper is organized as follows: in Section 2 we review the definition of hierarchical key

assignment schemes. In Section 3 we show how to construct a hierarchical key assignment scheme
using as a building block a symmetric encryption scheme, whereas, in Section 4 we consider
the problem of reducing the number of steps required to perform key derivation in hierarchical
key assignment schemes. In Section 5 we show a construction based on public-key broadcast
encryption schemes. In Section 6 we conclude the paper by showing a comparison between our
constructions and previous work.

2 Hierarchical Key Assignment Schemes

Consider a set of users divided into a number of disjoint classes, called security classes. A security
class can represent a person, a department, or a user group in an organization. A binary relation
¹ that partially orders the set of classes V is defined in accordance with authority, position, or
power of each class in V . The poset (V,¹) is called a partially ordered hierarchy. For any two
classes u and v, the notation u ¹ v is used to indicate that the users in v can access u’s data.
Clearly, since v can access its own data, it holds that v ¹ v, for any v ∈ V . We denote by Av the
set {u ∈ V : u ¹ v}, for any v ∈ V . The partially ordered hierarchy (V,¹) can be represented by
the directed graph G∗ = (V,E∗), where each class corresponds to a vertex in the graph and there
is an edge from class v to class u if and only if u ¹ v. We denote by G = (V,E) the minimal

2

representation of the graph G∗, that is, the directed acyclic graph corresponding to the transitive
and reflexive reduction of the graph G∗ = (V,E∗). Such a graph G has the same transitive and
reflexive closure of G∗, i.e., there is a path (of length greater than or equal to zero) from v to
u in G if and only if there is the edge (v, u) in E∗. Aho et al. [1] showed that every directed
graph has a transitive reduction which can be computed in polynomial time and that such a
reduction is unique for directed acyclic graphs. In the following we denote by Γ a family of graphs
corresponding to partially ordered hierarchies. In the following we denote by Γ a family of graphs
corresponding to partially ordered hierarchies. For example, Γ could be the family of the rooted
trees, the family of the d-dimensional hierarchies [31, 5], etc.
A hierarchical key assignment scheme for a family Γ of graphs, corresponding to partially ordered
hierarchies, is defined as follows.

Definition 2.1 A hierarchical key assignment scheme for Γ is a pair (Gen,Der) of algorithms
satisfying the following conditions:

1. The information generation algorithm Gen is probabilistic polynomial-time. It takes as
inputs the security parameter 1τ and a graph G = (V,E) in Γ, and produces as outputs

(a) a private information su, for any class u ∈ V ;

(b) a key ku, for any class u ∈ V ;

(c) a public information pub.

We denote by (s, k, pub) the output of the algorithm Gen on inputs 1τ and G, where s and
k denote the sequences of private information and of keys, respectively.

2. The key derivation algorithm Der is deterministic polynomial-time. It takes as inputs the
security parameter 1τ , a graph G = (V,E) in Γ, two classes u ∈ V and v ∈ Au, the private
information su assigned to class u and the public information pub, and produces as output
the key kv assigned to class v.

We require that for each class u ∈ V , each class v ∈ Au, each private information su, each
key kv, each public information pub which can be computed by Gen on inputs 1τ and G, it
holds that

Der(1τ , G, u, v, su, pub) = kv.

A hierarchical key assignment scheme is evaluated according to several parameters, such as
the amount of secret data that needs to be distributed to and stored by users, the amount of
public data, the complexity of key derivation, the complexity of key updates due to dynamic
changes to the hierarchy, the resistance to collusive attacks. As regards as the complexity of key
derivation, we are interested both in the number and in the type of operations needed to derive
a key. Moreover, notice that in Definition 2.1 we have not specified the structure of the public
information pub and of the graph G. In order to improve the efficiency of key derivation, pub and
G could be structured in such a way that, whenever class u performs key derivation to compute
the key of a class v ∈ Au, it does not need to input the algorithm Der with the whole pub and G,
but only with those parts of them involved in the computation. As regards as the complexity of
key updates, due to dynamic changes to the hierarchy, we would like to allow the insertion and
deletion of classes or edges in the hierarchy, without requiring the TA to re-distribute any private
information.
However, the most fundamental feature that a good scheme should have is the resistance to

collusive attacks. More precisely, for each class u ∈ V , the key ku should be protected against

3

a coalition of all users in the set Fu = {v ∈ V : u 6∈ Av}, corresponding to all users which are
not allowed to compute the key ku. We consider security with respect to key indistinguishability.
Such a requirement, first introduced by Atallah et al. [4], formalizes the fact that the adversarial
coalition is not able to distinguish a key, that should not be accessible by any user of the coalition,
from a random string of the same length. We consider a static adversary STATu which wants to
attack a class u ∈ V and which is able to corrupt all users in Fu. We define an algorithm Corruptu
which, on input the private information s generated by the algorithm Gen, extracts the secret
values sv associated to all classes v ∈ Fu.We denote by corr the sequence output by Corruptu(s).
Two experiments are considered. In the first one, the adversary is given the key ku, whereas, in
the second one, it is given a random string ρ having the same length as ku. It is the adversary’s
job to determine whether the received challenge corresponds to ku or to a random string. We
require that the adversary will succeed with probability only negligibly different from 1/2.
If A(·, ·, . . .) is any probabilistic algorithm then a ← A(x, y, . . .) denotes the experiment of

running A on inputs x, y, . . . and letting a be the outcome, the probability being over the coins of
A. Similarly, if X is a set then x← X denotes the experiment of selecting an element uniformly
from X and assigning x this value. If w is neither an algorithm nor a set then x← w is a simple
assignment statement. A function ε : N → R is negligible if for every constant c > 0 there exists
an integer nc such that ε(n) < n−c for all n ≥ nc.

Definition 2.2 [IND-ST] Let Γ be a family of graphs corresponding to partially ordered hierar-
chies, let G = (V,E) be a graph in Γ, let (Gen,Der) be a hierarchical key assignment scheme
for Γ and let STATu be a static adversary which attacks a class u. Consider the following two
experiments:

Experiment ExpIND−1

STATu
(1τ , G) Experiment ExpIND−0

STATu
(1τ , G)

(s, k, pub)← Gen(1τ , G) (s, k, pub)← Gen(1τ , G)
corr ← Corruptu(s) corr ← Corruptu(s)
d← STATu(1

τ , G, pub, corr, ku) ρ← {0, 1}length(ku)

return d d← STATv(1
τ , G, pub, corr, ρ)

return d

The advantage of STATu is defined as

AdvIND
STATu

(1τ , G) = |Pr[ExpIND−1

STATu
(1τ , G) = 1]− Pr[ExpIND−0

STATu
(1τ , G) = 1]|.

The scheme is said to be secure in the sense of IND-ST if, for each graph G = (V,E) in Γ and
each u ∈ V , the function AdvIND

STATu
(1τ , G) is negligible, for each static adversary STATu whose

time complexity is polynomial in τ .

In Definition 2.2 we have considered a static adversary attacking a class. A different kind
of adversary, the adaptive one, could also be considered. Such an adversary is first allowed to
access all public information as well as all private information of a number of classes of its choice;
afterwards, it chooses the class u it wants to attack. In [6] it has been proven that security against
adaptive adversaries is (polynomially) equivalent to security against static adversaries. Hence, in
this paper we will only consider static adversaries.

3 A Construction based on Symmetric Encryption Schemes

In this section we consider the problem of constructing a hierarchical key assignment scheme by
using as a building block a symmetric encryption scheme. A simple way to realize an encryption

4

based scheme would be to assign a key ku to each class u ∈ V and a public information p(u,v), for
each edge (u, v) ∈ E, corresponding to the encryption of kv with the key ku. This would allow
any user in a class u to compute the key kv held by any class v lower down in the hierarchy,
by performing distG(u, v) decryptions, where distG(u, v) denotes the length of the shortest path
between u and v in G. Such a scheme belongs to the family of iterative key encrypting key
assignment schemes (IKEKAS), defined by Crampton et al. [13], where each user is required to
store a single secret value, corresponding to its key, and |E| values are made public. As regards
as the security of the schemes, it depends on the security properties of the underlying encryption
scheme. It is not difficult to show that, by using an encryption scheme which is secure with
respect to a non-adaptive chosen plaintext attack, we obtain a key assignment scheme which
guarantees security against key recovery. Such a security requirement corresponds to the fact
that an adversary is not able to compute a key that it should not have access to (see [6] for a
formal definition).
Unfortunately, the simple solution described above is not secure with respect to key indistin-

guishability. Indeed, consider an adversary attacking a class u and corrupting a class v such that
(u, v) ∈ E. The adversary, on input a challenge ρ, corresponding either to the key ku or to a
random value, is able to tell if ρ corresponds to the encryption key ku simply by checking whether
the decryption of the public value p(u,v) with key ρ corresponds to the key kv held by class v. In
the following we show how to construct a hierarchical key assignment scheme which is provably-
secure with respect to key indistinguishability and allows dynamic updates to the hierarchy with
local changes to the public information only.
The idea behind our construction, referred in the following as the Encryption Based Con-

struction (EBC), is to avoid the attack described above by never using the key assigned to a
class to encrypt the keys assigned to other classes. In particular, in the EBC each class u ∈ V is
assigned a private information su, an encryption key ku, and a public information π(u,u), which is
the encryption of the key ku with the private information su; moreover, for each edge (u, v) ∈ E,
there is a public value p(u,v), which allows class u to compute the private information sv held by
class v. Indeed, p(u,v), consists of the encryption of the private information sv with the private
information su. This allows any user in a class u to compute the key kv held by any class v lower
down in the hierarchy, by performing distG(u, v)+1 decryptions. We will show that an adversary
attacking a class u is not able to distinguish the key ku from a random string of the same length
unless it is able to break the underlying encryption scheme. Before describing our construction,
we first recall the definition of a symmetric encryption scheme.

Definition 3.1 A symmetric encryption scheme is a triple Π = (K, E ,D) of algorithms satisfying
the following conditions:

1. The key-generation algorithm K is probabilistic polynomial-time. It takes as input the secu-
rity parameter 1τ and produces as output a string key.

2. The encryption algorithm E is probabilistic polynomial-time. It takes as inputs 1τ , a string
key produced by K(1τ), and a message m ∈ {0, 1}∗, and produces as output the ciphertext
y.

3. The decryption algorithm D is deterministic polynomial-time. It takes as inputs 1τ , a string
key produced by K(1τ), and a ciphertext y, and produces as output a message m. We require
that for any string key which can be output by K(1τ), for any message m ∈ {0, 1}∗, and for
all y that can be output by E(1τ , key,m), we have that D(1τ , key, y) = m.

5

Let Γ be a family of graphs corresponding to partially ordered hierarchies. Let G = (V,E) ∈ Γ and
let Π = (K, E ,D) be a symmetric encryption scheme.

Algorithm Gen(1τ , G)

1. For any class u ∈ V , let su ← K(1τ) and ku ← {0, 1}τ ;
2. Let s and k be the sequences of private information and keys, respectively, computed in the

previous step;

3. For any two classes u, v ∈ V such that (u, v) ∈ E, compute the public information p(u,v) =
Esu

(sv);

4. For any class u in V , compute the public information π(u,u) = Esu
(ku);

5. Let pub be the sequence of public information computed in the previous two steps;

6. Output (s, k, pub).

Algorithm Der(1τ , G, u, v, su, pub)

1. Consider a path (w0, w1), . . . , (wm−1, wm) ∈ E, from u = w0 to v = wm.

For any i = 1, . . . ,m, extract the public value p(wi−1,wi) from pub and compute the private
information swi

= Dswi−1
(p(wi−1,wi));

2. Extract the public value π(v,v) from pub and output the key kv = Dsv
(π(v,v)).

Figure 1: The Encryption Based Construction (EBC).

The Encryption Based Construction is described in Figure 1.
The EBC associates a public value p(u,v) to each edge (u, v) ∈ E, as well as a public value

π(u,u) to each class u ∈ V . In order to simplify the analysis of the scheme, in the following we
consider the public value π(u,u) as it were associated to an additional edge connecting the class u
to a dummy class u′. This will enable us to consider all public information as values associated to
the edges of a hierarchy. Figure 2 illustrates a partially ordered hierarchy along with the public
information associated by the EBC to the edges of the hierarchy, as well as those associated to
additional edges, which are represented by dashed lines.

3.1 Analysis of the Scheme

In this section we first show that the security property of the EBC depends on the security
property of the underlying encryption scheme. Afterwards, we evaluate the performances of
the EBC with respect to several parameters, such as space requirements for public and private
information storage and computational requirements for key derivation and key updates.
Before analyzing the security of the EBC we first need to define what we mean by a secure

symmetric encryption scheme. We formalize security with respect to plaintext indistinguishability,
which is an adaption of the notion of polynomial security as given in [20]. We consider an adversary
A = (A1, A2) running in two stages. In advance of the adversary’s execution, a random key key
is chosen and kept hidden from the adversary. During the first stage, the adversary A1 outputs a
triple (x0, x1, state), where x0 and x1 are two messages of the same length, and state is some state
information which could be useful later. One message between x0 and x1 is chosen at random and
encrypted to give the challenge ciphertext y. In the second stage, the adversary A2 is given y and

6

a a′
Esa

(ka)

Esa
(sc)

b b′
Esb

(kb)

Esb
(sd)

c c′
Esc

(kc)

d d′
Esd

(kd)

Esa
(sb)

Esc
(sd)

Figure 2: A partially ordered hierarchy along with the public information associated by the EBC.

state and has to determine whether y is the encryption of x0 or x1. Informally, the encryption
scheme is said to be secure with respect to a non-adaptive chosen plaintext attack, denoted by
IND-P1-C0 in [25], if every polynomial-time adversary A, which has access to the encryption oracle
only during the first stage of the attack and has never access to the decryption oracle, succeeds
in determining whether y is the encryption of x0 or x1 with probability only negligibly different
from 1/2.

Definition 3.2 [IND-P1-C0] Let Π = (K, E ,D) be a symmetric encryption scheme and let τ be
a security parameter. Let A = (A1, A2) be an adversary that has access to the encryption oracle
only during the first stage of the attack and has never access to the decryption oracle. Consider
the following two experiments:

Experiment ExpIND−P1−C0−1

Π,A (1τ) Experiment ExpIND−P1−C0−0

Π,A (1τ)

key ← K(1τ) key ← K(1τ)
(x0, x1, state)←A

Ekey(·)
1 (1τ) (x0, x1, state)←A

Ekey(·)
1 (1τ)

y←Ekey(x1) y←Ekey(x0)
d← A2(1

τ , y, state) d← A2(1
τ , y, state)

return d return d

The advantage of A is defined as

AdvIND−P1−C0

Π,A (1τ) = |Pr[ExpIND−P1−C0−1

Π,A (1τ) = 1]− Pr[ExpIND−P1−C0−0

Π,A (1τ) = 1]|.

The scheme is said to be secure in the sense of IND-P1-C0 if the advantage functionAdvIND−P1−C0

Π,A (1τ)
is negligible, for any adversary A whose time complexity is polynomial in τ .

Theorem 3.3 If the encryption scheme Π = (K,D, E) is secure in the sense of IND-P1-C0, then
the EBC is secure in the sense of IND-ST.

Proof. Let G = (V,E) be a graph in Γ, let u ∈ V and let Gu = (Iu, Eu) be the subgraph of
G induced by the set of vertices Iu = {v ∈ V : there is a path from v to u in G}. W.l.o.g., let
(u1, . . . , um), where um ≡ u, be any topological ordering of the vertices in Iu and let (e1, . . . , eh−1)
be the sequence of edges in Eu such that ei = (uα, uβ) precedes ej = (uγ , uδ) if and only if either
α < γ or α = γ and β < δ. Moreover, let eh = (u, u

′) (see Figure 3).

7

u1

u3

u2

u u′
e5

e2

e1

e4
e3

Figure 3: A topological sorting of the classes in Iu and corresponding sequence of edges.

Let STATu be a static adversary attacking class u. In order to prove the theorem, we need to
show that the adversary’s views in experiments ExpIND−1

STATu
and ExpIND−0

STATu
are indistinguishable. In

particular, we prove that such views are both indistinguishable from the adversary’s view in the
experiment Exp∗

u, defined as follows:

Experiment Exp∗

u(1
τ , G)

(s, k, pub∗)← Gen∗(1τ , G)
corr ← Corruptu(s)
d← STATu(1

τ , G, pub∗, corr, ku)
return d

The algorithm Gen∗ differs from Gen for the way part of the public information pub∗ is computed.
Indeed, the public value π(u,u) associated to class u is computed as the encryption Esu(ρ), where ρ
is randomly chosen in {0, 1}τ , whereas, the public value associated to each edge ei = (uα, uβ) ∈ Eu

is computed as the encryption Esuα (ri), where r1, . . . , rh are randomly and independently chosen
values in {0, 1}τ .
We will first show that the adversary’s views in experiments ExpIND−1

STATu
and Exp∗u are indistin-

guishable. We construct a sequence of h + 1 experiments Exp11u, . . . ,Exp1
h+1
u , all defined over

the same probability space, where the first and the last experiments of the sequence correspond
to ExpIND−1

STATu
and Exp∗u. In each experiment we modify how the view input to STATu is com-

puted, while maintaining the view’s distributions indistinguishable among any two consecutive
experiments. For any q = 2, . . . , h, experiment Exp1q

u is defined as follows:

Experiment Exp1q
u(1

τ , G)
(s, k, pubq)← Genq(1τ , G)
corr ← Corruptu(s)
d← STATu(1

τ , G, pubq, corr, ku)
return d

The algorithm Genq used in Exp1qu differs from Gen for the way part of the public information
pubq is computed. Indeed, for any i = 1, . . . , q − 1, the public values associated to the edge
ei = (uα, uβ) is computed as the encryption Esuα (ri), where r1, . . . , rq−1 are randomly and in-
dependently chosen values in {0, 1}τ . Figure 4 illustrates two consecutive experiments on the
hierarchy of Figure 3.

8

u1 u′1

Esu1
(ku1

)

Esu1
(r1)

Esu1
(r2)

u3 u′3

Esu3
(ku3

)

Esu3
(su)

u2 u′2
Esu2

(ku2
)

u u′
Esu

(ku)

Esu2
(su)

u1 u′1

Esu1
(ku1

)

Esu1
(r1)

Esu1
(r2)

u3 u′3

Esu3
(ku3

)

Esu3
(su)

u2 u′2
Esu2

(ku2
)

u u′
Esu

(ku)

Esu2
(r3)

Figure 4: The left hand side illustrates Exp13u while the right hand side illustrates Exp14u.

In the following we show that, for any q = 1, . . . , h, the adversary’s view in the q-th experiment
is indistinguishable from the adversary’s view in the (q + 1)-th one.
Assume by contradiction that there exists a polynomial-time distinguisher Bq which is able

to distinguish between the adversary STATu’s views in experiments Exp1
q
u and Exp1

q+1
u with

non-negligible advantage. Notice that such views differ only for the way the public information
associated to the edge eq = (a, b) is computed. We show how to construct a polynomial-time
adversaryA = (A1, A2) which usesBq to break the security of the encryption scheme Π = (K, E ,D)
in the sense of IND-P1-C0. In particular, the algorithm A1, on input 1

τ , randomly chooses two
messages x0, x1 ∈ {0, 1}τ and associates x1 either to the key ku, if (a, b) = (u, u′), or to the
private information sb, otherwise. All other keys and private information are chosen at random.
Moreover, A1 constructs all public values associated to the outgoing edges of class a, with the
exception of the edge (a, b), making queries to the encryption oracle Esa(·). The sequences s, k,
and pub′ of all private information, keys, and public values constructed by A1, along with the
values x0 and x1 are saved in the state information state. Formally, the algorithm A1 is defined
as follows:

Algorithm A
Esa (·)
1 (1τ)

x0, x1, ka ← {0, 1}τ
for each class v ∈ V \ {a}
sv ← K(1τ), kv ← {0, 1}τ

if (a, b) = (u, u′) then ku ← x1
else sb ← x1

for each edge (a, v) 6= (a, b)
p(a,v) ← Esa

(sv)
pub′ ← public values constructed above
state← (s, k, pub′, x0, x1)
return (x0, x1, state)

Let y be the challenge for the algorithm A, corresponding to the encryption of either x0 or
x1 with the unknown key sa. The algorithm A2, on input 1

τ , y, and state, constructs the view
for the distinguisher Bq as follows: it first extracts from s the private information corr held by
corrupted users, by using the algorithm Corruptu(s). Then, it computes the public values not
included in pub′, in order to obtain the sequence pub. In particular, the public value associated
to the edge eq = (a, b) is set equal to the challenge y. Finally, A2 outputs the same output as
Bq(1

τ , G, pub, corr, x1). More formally,

9

Algorithm A2(1
τ , y, state)

let state = (s, k, pub′, x0, x1)
corr ← Corruptu(s)
//construction of missing public values
if (a, b) = (u, u′) then π(u,u) ← y

else p(a,b) ← y
for each edge (v, z) 6∈ {e1, . . . , eq}
p(v,z) ← Esv

(sz)
for i = 1, . . . , q − 1
ri ← {0, 1}τ
let ei = (v, z)
p(v,z) ← Esv

(ri)
for each edge (v, v′) 6= (a, b)
π(v,v) ← Esv

(kv)
d← Bq(1

τ , G, pub, corr, x1)
return d

Notice that if y corresponds to the encryption of x1, then the random variable associated to
the adversary’s view is exactly the same as the one associated to the adversary view in experiment
Exp1qu, whereas, if y corresponds to the encryption of x0, it has the same distribution as the one
associated to the adversary’s view in experiment Exp1q+1

u . Therefore, if the algorithm Bq is able
to distinguish between such views with non negligible advantage, it follows that algorithm A is
able to break the security of the encryption scheme Π = (K, E ,D) in the sense of IND-P1-C0.
Contradiction.
By using similar arguments we can also show that the adversary’s views in experiments

ExpIND−0

STATu
and Exp∗u are indistinguishable. In particular, we construct a sequence of h exper-

iments Exp01u, . . . , Exp0
h
u, all defined over the same probability space, where the first and the

last experiments of the sequence correspond to ExpIND−0

STATu
and Exp∗u. In each experiment we

modify the way the view of STATu is computed, while maintaining the view’s distributions in-
distinguishable among any two consecutive experiments. For any q = 2, . . . , h − 1, experiment
Exp0qu is defined as follows:

Experiment Exp0q
u(1

τ , G)
(s, k, pubq)← Genq(1τ , G)
corr ← Corruptu(s)
ρ← {0, 1}τ
d← STATu(1

τ , G, pubq, corr, ρ)
return d

Notice that, for any q = 2, . . . , h, in experiment Exp1q
u, the last input of STATu coincides

with the value ku used by Genq to compute the public information π(u, u) = Esu(ku), whereas,
in experiment Exp0qu, the last input of STATu corresponds to value ρ randomly chosen in {0, 1}τ ,
which is different from the decryption of π(u, u) with the private information su.
The proof that the existence of a polynomial-time distinguisher which is able to distinguish be-

tween the adversary’s views in two consecutive experiments implies the existence of a polynomial-
time adversary which breaks the security of the encryption scheme Π = (K, E ,D) in the sense of
IND-P1-C0 is the same as the one shown before. This concludes the proof.

The EBC requires |E|+ |V | public values; on the other hand, each class has to store a single
secret value, corresponding to its private information. As for key derivation, a class u ∈ V which

10

wants to compute the key held by a class v ∈ Au is required to perform distG(u, v)+1 decryption
operations.
Notice that the number of decryption operations needed for key derivation could be reduced

at the expense of an increment of the amount of public information. The idea behind the new
construction, referred in the following as the modified EBC, is to add the value π(z,v) = Esz(kv)
to the public information pub, for any edge (z, v) ∈ E. This allows any user in a class u ∈ V
to compute the key held by a class v ∈ Au by performing distG(u, v) decryption operations.
Indeed, consider the shortest path from u to v and let z be the direct predecessor of v on such a
path; it follows that distG(u, z) = distG(u, v)− 1 decryptions are needed to compute the private
information held by z, whereas, one decryption is needed to obtain kv from the public value π(z,v).
However, the modified EBC requires 2|E| + |V | public values. Regarding as the security of the
scheme, it is easy to see that the same technique used in Theorem 3.3 can be used to prove that
the modified EBC is secure in the sense of IND-ST.

Finally, we notice that the technique we have used to turn the simple encryption based scheme
described at the beginning of Section 3 into the EBC could be used as well to turn some other
schemes offering security against key recovery in schemes which guarantee security in the sense
of IND-ST. For example, one could use such a technique starting from the pseudorandom based
construction proposed by Atallah et al. [4].

3.2 Handling Dynamic Changes

In the following we show how to manage changes to the hierarchy, such as additions and deletions
of classes and edges, in the EBC. Unfortunately, the EBC supports insertions, but not deletions, of
classes and edges in the hierarchy without re-distributing private information to the classes affected
by such changes. Indeed, whenever an edge (u, v) is removed from E, the private information held
by any class lower down u needs to be changed, since users in class u already knows it. However,
it is possible to extend the EBC in order to allow additions and deletions of classes and edges,
with local changes to the public information only.
The idea behind the extended construction, referred in the following as the Dynamic Encryp-

tion Based Construction (DEBC), is to avoid the re-distribution of private information, whenever
deletions of classes or edges occur, by never allowing a class to compute the private information
of another class lower down in the hierarchy. This can be done by assigning each class u an ad-
ditional value ηu, which plays the role of an intermediate key. Such a value is encrypted with the
private information su and the resulting encryption, denoted by ω(u,u) is made public and allows
any user in class u to compute its key ku, as well as the intermediate key ηv associated to any class
v lower down in the hierarchy. The scheme requires |V | additional public values and allows any
user in a class u to compute the key kv held by any class v ∈ Au, by performing distG(u, v) + 2
decryptions. The Dynamic Encryption Based Construction is described in Figure 5.
The additional public value ω(u,u) associated by the DEBC to each class u ∈ V could be

considered as it were associated to an additional edge connecting a dummy node u′′ to the class u.
Figure 6 illustrates a partially ordered hierarchy along with the public information associated to
the edges of the hierarchy, as well as those associated to additional edges, which are represented
by dashed lines.
Regarding as the security of the scheme, it is easy to see that the same technique used in

Theorem 3.3 can be used to prove that the DEBC is secure in the sense of IND-ST.
In the following we show how to manage changes to the hierarchy in the DEBC, in such a

way that no private information held by users need to be re-computed by the TA. Indeed, such
updates can be handled by local changes to the public information.

11

Let Γ be a family of graphs corresponding to partially ordered hierarchies. Let G = (V,E) ∈ Γ and
let Π = (K, E ,D) be a symmetric encryption scheme.

Algorithm Gen(1τ , G)

1. For any class u ∈ V , let su ← K(1τ) and ku ← {0, 1}τ ;
2. Let s and k be the sequences of private information and keys, respectively, computed in the

previous step;

3. For any class u ∈ V , let ηu ← K(1τ);
4. For any two classes u, v ∈ V such that (u, v) ∈ E, compute the public information p(u,v) =
Eηu

(ηv);

5. For any class u in V , compute the public information ω(u,u) = Esu
(ηu) and π(u,u) = Eηu

(ku);

6. Let pub be the sequence of public information computed in the previous two steps;

7. Output (s, k, pub).

Algorithm Der(1τ , G, u, v, su, pub)

1. Extract the public information ω(u,u) from pub and compute the intermediate key ηu =
Dsu

(ω(u,u)).

2. Let (w0, w1), . . . , (wm−1, wm), where w0 = u and wm = u, be a path from u to v.

For any i = 1, . . . ,m, extract the public value p(wi−1,wi) from pub and compute the intermediate
key ηwi

= Dηwi−1
(p(wi−1,wi));

3. Extract the public value π(v,v) from pub and output the key kv = Dηv
(π(v,v)).

Figure 5: The Dynamic Encryption Based Construction.

Insertion of an edge. Let (u, v) be an edge to be inserted in E. Such an update can be managed
by the TA by adding the public value p(u,v) = Eηu(ηv) to the public information pub.

Deletion of an edge. Let (u, v) be an edge to be deleted from E. In order to forbid users
belonging to class u from computing any key which can be computed by class v, for any
z ∈ Av, the TA has to choose a new key kz ∈ {0, 1}τ and a new intermediate key ηz ← K(1τ),
whereas, there is no need to change the private information sz. On the other hand, in
order to allow authorized users to compute such new values, the TA has to update the
public information pub, as follows: for any z ∈ Av, it first recomputes the public values
ω(z,z) = Esz(ηz) and π(z,z) = Eηz(kz); then, for any edge (w, z) ∈ E, it recomputes the public
value p(w,z) = Eηw(ηz).

Insertion of a class. Let u be a class to be inserted in V along with new incoming and outgoing
edges. First, the TA computes a private information su, a key ku and an intermediate key
ηu for class u. Afterwards, it computes ω(u,u) = Esu(ηu) and π(u,u) = Eηu(ku) and adds them
to the public information pub. Finally, the TA adds the edges by using the above procedure
for edge insertions.

Deletion of a class. Let u be a class to be deleted from V . For each edge outgoing from v, the
TA uses the above procedure for edge deletions. Afterwards, the TA deletes from pub the
public information associated with all incoming edges of u.

12

a

Eηa
(ηb) Eηa

(ηc)

a′
Eηa

(ka)
a′′
Esa

(ηa)

b b′b′′
Eηb

(kb)

Eηb
(ηd)

Esb
(ηb)

c c′c′′
Eηc

(kc)Esc
(ηc)

d d′d′′
Esd

(ηd) Eηd
(kd)

Eηc
(ηd)

Figure 6: A partially ordered hierarchy along with the public information associated by the DEBC.

The DEBC requires |E| + 2|V | public values; on the other hand, each class has to store a
single secret value, corresponding to its private information. As for key derivation, the number
of decryption operations required by a class u ∈ V to compute the key held by a class v ∈ Au is
distG(u, v) + 2.
Notice that the number of decryption operations needed for key derivation could be reduced

at the expense of an increment of the amount of public information. The idea behind the new
construction, referred in the following as the modified DEBC, is to add the values ω(u,w) = Esu(ηw)
and π(z,v) = Eηz(kv) to pub, for any (u,w) ∈ E and (z, v) ∈ E. This allows any user in a class
u ∈ V to compute the key held by a class v ∈ Au by performing distG(u, v) decryption operations.
However, the modified DEBC requires 3|E|+2|V | public values. Regarding as the security of the
scheme, it is easy to see that the same technique used in Theorem 3.3 can be used to prove that
the modified DEBC is secure in the sense of IND-ST.

In the following we compare the DEBC with the scheme proposed by Atallah et al. [4] with
respect to the number of operations needed to perform dynamic updates to the hierarchy. In
their scheme, the insertion of an edge requires the TA to perform one pseudorandom evaluation
and two encryption operations, whereas only one encryption operation is required in the DEBC.
Regarding as the deletion of an edge (u, v) ∈ E, the scheme in [4] requires the TA to choose a
new label and to perform 2 · |Av| pseudorandom function evaluations, as well |Xz| pseudorandom
function evaluations and 2 · |Xz| encryption operations, where Xz = {w ∈ V : (w, z) ∈ E}. On the
other hand, in the DEBC the TA has to choose two new values and to perform 2 · |Av| encryption
operations, as well as |Xz| encryption operations. For the insertion of a class u, along with its
incoming and outgoing edges, the scheme in [4] requires the TA to generate two random values
and to perform two pseudorandom function evaluations, whereas, in the DEBC the TA has to
choose three new values and to perform two encryption operations. Moreover, both schemes also
use the procedure for edge insertions, for each incoming and outgoing edge. Finally, in both
schemes the deletion of a class reduces to the execution of the procedure for the deletion of each
outgoing edge from the deleted class.
To summarize, the DEBC improves on the scheme proposed by Atallah et al. [4] because

its security is based on a single computational assumption and offers more efficient procedures
for key derivation and key updates, since such procedures involve essentially half the number of
operations required by the scheme in [4].

Finally, we notice that the technique we have used to turn the EBC into the DEBC could be

13

used as well to turn some other schemes, which do not allow dynamic updates to the hierarchy
without re-distributing any private information, in schemes which allow such updates with local
changes to the public information only. For example, one could use such a technique staring from
the pseudorandom based construction proposed by Atallah et al. [4].

4 Improving Key Derivation Time

In both schemes described in Section 3, as well as in those proposed by Atallah et al. [4], the
number of steps that a class u has to perform, in order to compute the key of another class
v lower down in the hierarchy, is proportional to the length of the shortest path from u to v.
Atallah et al. [4, 5] analyzed the problem of reducing key derivation time by modifying the graph
representing the hierarchy, in order to reduce its diameter. To this aim in [4] they proposed some
constructions to add additional edges, called shortcut edges, to the hierarchy. Such a technique,
referred to as the shortcutting technique, has already been used in frameworks quite different from
access control.
In Section 4.1 we translate to the access control framework existing results concerning the

shortcutting technique and outline the limits of such a technique. An immediate consequence
is that for a totally ordered hierarchy of n classes, the number of steps needed to perform key
derivation cannot be reduced to three with the addition of O(n) shortcut edges, as claimed in [5].
Indeed, the number of edges to be added in order to reach diameter three is Θ(n · log logn), as
we will show in Section 4.1.
In Section 4.2 we review a different technique proposed in [5] to reduce the diameter of a

hierarchy. Such a technique, referred in the following as the shortcutting and point-inserting
technique, makes use of the concept of dimension of a poset and consists of the addition of
dummy vertices, as well as new edges, to the hierarchy. The idea is to obtain a new hierarchy
such that there exists a path between two classes u and v in the old hierarchy if and only if
there exists a path between u and v in the new one. The addition of dummy vertices results in
a smaller number of new edges to be added to the hierarchy. However, dummy vertices are used
only for performance reasons and there are no real classes corresponding to them. The technique
is recursive and uses the one-dimensional case, corresponding to a totally ordered hierarchy, as the
basis of the recursion. We point out that the number of dummy classes and new edges added by
such a technique in a hierarchy with n classes and dimension d, in order to reduce key derivation
time to 2d+ 1, is O(n · d · (log n)d−1 · log log n) and not O(n · d · (log n)d−1) as claimed in [5].
Finally, in Section 4.3 we show how to further reduce key derivation time by improving the

shortcutting and point-inserting technique. Our technique performs a further shortcutting of the
graph obtained by the technique in [5] and allows key derivation time to be independent on d.

4.1 The Shortcutting Technique

The shortcutting of a directed graph G = (V,E) consists into inserting additional edges, called
shortcut edges, in E without changing the transitive closure of G. The goal is to obtain another
directed graph, called a shortcut graph, having a smaller diameter than G. Atallah et al. [4]
showed two constructions to add shortcut edges to tree hierarchies with n classes. The former
allows the diameter of the shortcut graphs to be reduced to O(log logn) by adding O(n) shortcut
edges, whereas, the latter allows the diameter to be reduced to three by adding O(n log log n)
shortcut edges.
The shortcutting technique is quite old, indeed it has been first considered in 1982 by Yao

[39]. In particular, he considered the problem in a quite different context, where the n elements

14

of V belong to a given semigroup (S, ◦) and one is interested in answering queries of the form
“what is the value of vi ◦ vi+1 ◦ · · · ◦ vj−1 ◦ vj?” for any 1 ≤ i ≤ j ≤ n. As noticed by Thorup [36],
the shortcutting technique has been later rediscovered by other authors [3, 7]. In the following
we translate to our scenario the main existing results concerning the shortcutting technique when
applied to particular kinds of graphs. We start discussing chains, then we analyze trees and finally
general graphs.

Chains. By using the techniques proposed by Yao [39] in 1982 we can add shortcut edges to a
chain (v1, . . . , vn) of n vertices. The techniques proposed by Alon and Schieber [3] in 1987 and
Bodlaender et al. [7] in 1994 are essentially the same as the ones proposed by Yao, but their
description is easier to illustrate and treats the case of constant diameter in a more detailed way.
Given a parameter ` ≥ 1, Alon and Schieber established both upper and lower bounds on the
minimum number of shortcut edges to be added to the chain in order to obtain a shortcut graph
with diameter at most `. Their construction, on input a chain (v1, . . . , vn), results in a shortcut
graph having diameter at most `, with the addition of C(`, n) shortcut edges to the chain. We
will see later that such a construction is the best possible when ` is a constant.

• Case ` = 1: For any i = 1, . . . , n− 1 and any j ≥ i, add the shortcut edge (vi, vj). Clearly,
C(1, n) = O(n2).

• Case ` = 2: The algorithm works as follows:

1. If n ≥ 4, then
(a) Partition the chain (v1, . . . , vn) in two consecutive subchains T1 = (v1, . . . , vdn/2e)

and T2 = (vdn/2e, . . . , vn) having one vertex in common;

(b) For j = 1, . . . , dn/2e − 1, add the shortcut edge (vj , vdn/2e);
(c) For h = dn/2e+ 1, . . . n, add the shortcut edge (vdn/2e, vj);
(d) Apply the construction recursively to the subchains T1 and T2.

The number of shortcut edges added by the algorithm is given by the recurrence

C(2, n) =

{

0 if n ≤ 3;
C(2, dn/2e) + C(2, bn/2c) +O(n) otherwise;

whose solution is C(2, n) = O(n · logn).

• Case ` ≥ 3: Before describing the construction, we need to define two very rapidly growing
functions A(i, j) and B(i, j), related to the Ackermann’s function (see [33]):

A(0, j) = 2j, for j ≥ 1,
A(i, 0) = 1, for i ≥ 1,
A(i, j) = A(i− 1, A(i, j − 1)) for i, j ≥ 1,

and

B(0, j) = j2, for j ≥ 1,
B(i, 0) = 2, for i ≥ 1,
B(i, j) = B(i− 1, B(i, j − 1)) for i, j ≥ 1.

For i ≥ 0, let w(2i, n) = min{j : A(i, j) ≥ n} and w(2i+ 1, n) = min{j : B(i, j) ≥ n}. The
function w(·, n) is very slowly-growing; in particular, it grows even slower than the iterated

15

logarithmic function log∗ n, which, for all values of n less than 265,536, corresponding to much
more than the number of atoms in the universe, does not exceed 5. The iterated logarithm
function log∗ n is defined to be the number of times the logarithm function must be applied
in succession, starting with argument n, before the result is less than or equal to 1, i.e.,
log∗ n = min{i ≥ 0 : log(i) n ≤ 1}, where

log(i) n =











n if i = 0,

log(log(i−1) n) if i > 0 and log(i−1) n > 0,

undefined if i > 0 and log(i−1) n ≤ 0 or log(i−1) n is undefined.

The first five values of w(·, n) are the following: w(0, n) = dn/2e, w(1, n) = d√ne, w(2, n) =
dlog ne, w(3, n) = dlogdlog nee, and w(4, n) = log∗ n. Next values of w(·, n) can be computed
as follows: w(i, n) = min{j : w(j)(i− 2, n) ≤ 1}, where w(1)(i, n) = w(i, n) and w(j)(i, n) =
w(i, w(j−1)(i, n)), for j ≥ 2.
The construction for ` ≥ 3 works as follows:

1. If n ≥ `+ 2, then

(a) Let k = w(` − 2, n) and partition the chain (v1, . . . , vn) into f = dn/ke ≥ 2 sub-
chains T1, . . . , Tf of k vertices each, where any two consecutive subchains have one
vertex in common and the last subchain can contain less than k vertices. For i =
1, . . . , f − 1, let Ti = (v(i−1)k−i+2, . . . , vik−i+1) and let Tf = (v(f−1)k−f+2, . . . , vn);

(b) For any i = 1, . . . , f−1, and any j = (i−1)k−i+3, . . . , ik−1+i, add the shortcut
edges (v(i−1)k−i+2, vj) and (vj , vik−i+1). For any j = (f − 1)k − f + 3, . . . , n, add
the shortcut edges (v(f−1)k−f+2, vj) and (vj , vn);

(c) Apply the construction recursively to the subchains T1, . . . , Tf .

(d) Let EP be the set containing the endpoints of each subchain. Apply the construc-
tion for `− 2 to the chain whose vertices are the elements of EP .

The number of shortcut edges added by the algorithm is given by the recurrence

C(`, n) =

{

0 if n ≤ `+ 1;
dn/ke · C(`, k) + C(`− 2, dn/ke) +O(n) otherwise;

whose solution is C(`, n) = O(n · ` · w(`, n)). For example, C(3, n) = O(n · log log n) and
C(4, n) = O(n · log∗ n).

For constant ` ≥ 2, the above construction is optimal. Indeed, Alon and Schieber [3] showed
that the minimum number of shortcut edges to be added to a chain of n vertices in order to obtain
a shortcut graph with diameter at most ` is

Cmin(`, n) = Ω(n · w(`, n)). (1)

Moreover, they showed that, by adding O(n) shortcut edges, the diameter of the resulting
shortcut graph is Ω(log∗ n). The parameters of known constructions for a chain of n vertices
are summarized in Figure 7, where log∗ n, log∗∗ n, etc., correspond to the so called milky way
functions in [7].

Trees. In 1987 Chazelle [10], as well as Alon and Schieber [3], considered free trees, i.e.,
indirected connected acyclic graphs, and showed that the minimum diameter ` which can be

16

achieved with the addition of m ≥ n shortcut edges is Θ(α(m,n) + n
m−n+1), where α denotes

the inverse of the Ackermann’s function defined by Tarjan [33]. An equivalent result that lends
itself well to parallelization and allows an algorithmically simpler proof has been achieved by
Thorup [36]. The idea behind Chazelle’s construction for a free tree T is the following: Choose
an integer 1 ≤ k ≤ n and partition the tree into p subtrees T1, . . . , Tp, such that each Ti contains
a number ni of nodes, where k/3 < ni ≤ k. Such a partition can be easily computed by using
a well known result also appearing in [26]. Then, the subtrees T1, . . . , Tp are considered as the
super nodes of a free tree. This allows the classification of any path in T as either falling entirely
within a super node or stretching over several super nodes. The algorithm is recursively called
on each super node; moreover, the super nodes become connected with the addition of shortcuts.
Chazelle’s result was also shown to hold for directed trees [35]. Given a forest with n vertices and
height h, Thorup [36] showed how to obtain a shortcut graph having diameter three by adding
O(n · log log h) shortcut edges. The problem of adding shortcut edges to chains and trees was also
considered in [7], where a detailed treatment of the case of constant diameter was given. The
parameters of known constructions are summarized in Figure 7.

Diameter Minimal number
` of shortcut edges

1 Θ(n2)
2 Θ(n · log n)
3 Θ(n · log log n)
4 Θ(n · log∗ n)
5 Θ(n · log∗ n)
6 Θ(n · log∗∗ n)
7 Θ(n · log∗∗ n)
8 Θ(n · log∗∗∗ n)

etc. etc.
O(log∗ n) Θ(n)

Figure 7: Minimal number of shortcut edges to be added to chains and trees with n vertices in order to
obtain a shortcut graph with diameter `.

General Graphs. Thorup [34] conjectured that for any directed graph G = (V,E) one can
obtain a shortcut graph with diameter polylogarithmic in |V |, i.e., (log |V |)O(1), by adding at
most |E| shortcut edges. He also showed his conjecture to be true for planar directed graphs [35].
However, Hesse [22] gave a counterexample to Thorup’s conjecture. He showed how to construct a
direct graph requiring the addition of Ω(|E| · |V |1/17) shortcut edges to reduce its diameter below
Θ(|V |1/17). By extending his construction to higher dimensions, it is possible to obtain graphs
with |V |1+ε edges that require the addition of Ω(|V |2−ε) shortcut edges to reduce their diameter.
All constructions described in this section can be used to reduce key derivation time in hierar-

chical key assignment schemes. However, the result by Hesse [22] implies that key derivation time
cannot be reduced essentially below Ω(|V |2) for some kinds of graphs by adding only shortcut
edges.

4.2 The Shortcutting and Point-Inserting Technique

Atallah et al.[5] also proposed a different technique to reduce the diameter of an access hierarchy.
Such a technique makes use of the concept of dimension of a poset. The dimension of a poset
(V,¹), originally defined by Dushnik and Miller [19], is the minimum number of total orders on

17

V whose intersection is (V,¹). It can also be seen as the smallest nonnegative integer d for which
each u ∈ V can be represented by a d-vector (xu,1, . . . , xu,d) of integers such that u ¹ v if and
only if xu,i ≤ xv,i, for any i = 1, . . . , d, and any u, v ∈ V . There are efficient algorithms to test
if a poset has dimension 1 or 2, but the problem of determining if a poset has dimension 3 is
NP-complete [38]. A poset has dimension one if and only if it is a total order.
Given a poset (V,¹) with dimension d and n vertices, Atallah et al. [5] proposed an algorithm

to add new edges, as well as dummy vertices, to the corresponding hierarchy. Their construction
is recursive and for the base case d = 1, corresponding to a totally ordered set, i.e., a chain of
n vertices, uses the following algorithm: Partition the vertices of the chain into d√ne regions,
where each region contains d√ne vertices, with the exception of the last region, which can contain
less vertices; let S be the set consisting of each d√ne-th vertex of the chain, including the last
one. Any two vertices vi, vj ∈ S such that i < j are connected by a shortcut edge. Moreover,
a shortcut edge between any two vertices vi 6∈ S and vj ∈ S (vi ∈ S and vj 6∈ S, respectively),
whose distance is shorter than d√ne, is added. Atallah et al. [5] claimed their algorithm results
in a shortcut graph having diameter equal to three with the addition of at most O(n) shortcut
edges. However, since no shortcut edge is added between any two vertices vi, vj 6∈ S inside the
same region, the diameter of the resulting graph is not three, but essentially d√ne. If we want
the diameter of the shortcut graph to be equal to three, we may recursively call the algorithm on
each region, as done by the algorithm for ` = 3 described in Section 4.1; the recursion bottoms up
when each region contains at most four vertices, since in this case the diameter is already equal
to three and no more shortcut edges need to be added. It is easy to see that the above algorithm
results in the addition of Θ(n · log log n) shortcut edges. Moreover, if we want the diameter of
the shortcut graph to be at most three, we need to add at least Ω(n · log logn) shortcut edges,
because of (1).
For the case d ≥ 2, the input consists of a set of n points in the d-dimensional space. Such

points correspond to the d-vectors associated to the vertices of the poset (V,¹) and are not con-
nected by edges. LetM be a (d−1)-dimensional hyperplane perpendicular to the d-th dimension;
M partitions the set of vertices V into two sets V1 and V2, where V1 is the set of points that are
on the smaller side of the hyperplane, according to the d-th coordinate. Let V ′

1 and V ′
2 be the

projections of the points in V1 and V2 on M . A new edge from every point of V ′
1 (resp., V2) to

its corresponding point of V1 (resp., V
′
2) is added. Then the algorithm is recursively executed on

the two sets of points V1 and V2. Finally, the (d − 1)-dimensional problem on the set of points
V ′
1 ∪ V ′

2 is solved by using the algorithm for dimension d− 1. According to Atallah et al. [5], the
above construction results in a graph having diameter equal to 2d + 1, with the addition of at
most O(n · d · (log n)d−1) new edges and dummy vertices. However, their computations take in
account the number of shortcut edges added to a chain of n vertices, which, as noticed before, is
not O(n), but Θ(n · log log n). According to the correct result for the chain, the number of new
edges and dummy vertices added by their algorithm is thus O(n · d · (log n)d−1 · log log n). In the
following we show how to further reduce key derivation time. Our technique performs a further
shortcutting of the graph obtained by Atallah et al.’s technique and allows key derivation time to
be independent on d.

4.3 Reducing the Diameter in the Shortcutting and Point-Inserting Technique

In this section we consider the problem of reducing the diameter of the graph obtained by the
shortcutting and point-inserting technique, on input a poset (V,¹) with dimension d. Our con-
struction, which we refer in the following as the Improved Shortcutting and Point-Inserting Tech-
nique (ISPIT) is recursive, and for the base case d = 1 reduces to the construction proposed by

18

Yao [39] and described in Section 4.1. The construction for the case d ≥ 2 is described in Figure
8. The input is a set of n d-dimensional points corresponding to the vertices in V ; for each vertex

v ∈ V , let P
(d)
v be the corresponding point and let V (d) = {P (d)v : v ∈ V }.

Let (V,¹) be a poset with dimension d ≥ 2, let V (d) be the set of points in the vectorial representation
of the Hasse diagram associated to (V,¹) and based on its d total orders, and let ` ≥ 1.

1. If |V (d)| = 1, then output V (d).

2. If |V (d)| ≥ 2, compute a (d−1)-dimensional hyperplane M perpendicular to the d-th dimension

that partitions the set of points in V (d) into two sets V
(d)
1 and V

(d)
2 of bn/2c and dn/2e points,

respectively, where V
(d)
1 is the set on the smaller side of the hyperplane (according to the d-th

coordinate). Such points are projected on M . Denote by P
(d−1)
v the projection of P

(d)
v on M .

Let V
(d−1)
1 and V

(d−1)
2 be the projections of V

(d)
1 and V

(d)
2 .

3. If d = 2, use the construction of Section 4.1 on the chain whose vertices are the points in the
set V (1), in order to obtain a shortcut graph G(1) = (V (1), E(1)), having diameter at most `.
The set of dummy points added by the algorithm is D(1) = ∅ (no dummy points are added).

4. If d ≥ 3, recursively call the algorithm on the set of points in V (d−1) = V
(d−1)
1 ∪ V

(d−1)
2 ,

corresponding to a (d − 1)-dimensional hyperplane; let G(d−1) = (V (d−1) ∪D(d−1), E(d−1)) be
the corresponding output.

5. Let D(d) = V (d−1) ∪D(d−1).
6. Let E(d) = E(d−1).

7. Add edges between points in V (d) and corresponding projections:

(a) For each point P
(d)
v ∈ V

(d)
1 , add an edge (P

(d−1)
v , P

(d)
v) to E(d).

(b) For each point P
(d)
v ∈ V

(d)
2 , add an edge (P

(d)
v , P

(d−1)
v) to E(d).

8. Add shortcut edges between points in V (d) and dummy points:

(a) For each edge (P
(d−1)
u , P

(j)
v) ∈ E(d−1), add an edge (P

(d)
u , P

(j)
v) to E(d).

(b) For each edge (P
(j)
u , P

(d−1)
v) ∈ E(d−1), add an edge (P

(j)
u , P

(d)
v) to E(d).

9. Recursively call the algorithm on the two sets of points in V
(d)
1 and V

(d)
2 .

10. Output the graph G(d) = (V (d) ∪D(d), E(d)).

Figure 8: The Improved Shortcutting and Point-Inserting Technique.

The number DP (n, d) of dummy points added by the ISPIT is DP (n, d) = 2 ·DP (dn/2e, d)+
DP (n, d− 1) + Θ(n), where DP (n, 1) = 0 and DP (1, d) = 0. Indeed, in order to construct G(d),
the algorithm adds n dummy points, corresponding to the projections of the points in V (d) on
the (d − 1)-dimensional hyperplane M , plus DP (n, d − 1) dummy points for the construction of
G(d−1), and then is recursively called on the two sets V

(d)
1 and V

(d)
2 . The solution of the above

recurrence is DP (n) = Θ(n · d · (log n)d−1). On the other hand, the number T (n) of new edges
added by the ISPIT is T (n, d) ≤ 2 · T (dn/2e, d) + 3 · T (n, d − 1) + Θ(n), where T (n, 1) denotes
the number of shortcut edges added by the construction of Section 4.1 for the case d = 1 in order
to obtain a shortcut graph having a certain diameter, whereas, T (1, d) = 0. Indeed, at most
3 · |E(d−1)| + n new edges are added in steps 7. and 8. and then the algorithm is recursively

19

called on the two sets V
(d)
1 and V

(d)
2 . Clearly, the solution of T (n, d), as well as the diameter of

the graph G(d), depends on the the number T (n, 1) of shortcut edges added by the construction
of Section 4.1. If T (n, 1) = Θ(n), then T (n, d) = O(n · d · (3 log n)d−1). On the other hand, if
T (n, 1) = Θ(n · log logn), then T (n, d) = O(n · d · (3 log n)d−1 · log log n) and the diameter of
the graph G(d) is three, i.e., it is independent on d. It is easy to see that, for any two vertices

u, v ∈ V such that u ¹ v, there exists a path from P
(d)
v to P

(d)
u in G(d) which has length at most

the diameter of the graph G(1) obtained by solving the 1-dimensional problem on V (1).
Compared to the technique in [5], the ISPIT allows a further reduction of the diameter,

but in each recursive call, it adds at most three times the number of new edges added by that
algorithm. In the following we show a trade-off between the number of edges added by the ISPIT
and the diameter of the resulting graph. The idea behind the construction is the following:
Assume the 1-dimensional problem is solved by adding Θ(n log logn) shortcut edges. For each
j = 2, . . . , d, the j-dimensional problem could be solved either with the technique in [5] or with
ours. Let 1 ≤ t ≤ d and assume, for example, that for j = 2, . . . , t, the technique in [5] is used
to solve the j-dimensional problem, whereas, our technique is used to solve the problems with
dimensions from t + 1 to d. It is easy to see that the graph resulting by the above construction
has diameter 2t + 1. Moreover, the number of new edges added by the modified algorithm is
O(3d−t · n · t · (log n)d−1 · log log n).

An Example of the New Technique. For the reader’s convenience, in the following we
illustrate how the ISPIT works for the case d = 2. Consider the hierarchy represented on the left
hand side of Figure 9. The vectorial representation of the hierarchy is represented on the right
hand side of Figure 9.

a

c b

g f de

h

P
(2)
a

P
(2)
c

P
(2)
g

P
(2)
h

P
(2)
f

P
(2)
b

P
(2)
e

P
(2)
d

Figure 9: A hierarchy with dimension d = 2 and its vectorial representation.

Notice that if a point P
(2)
v = (xv, yv) dominates another point P

(2)
u = (xu, yu) in the vectorial

representation, i.e., if xu < xv and yu < yv, then there is a path from vertex v to vertex u in the
hierarchy. The left hand side of Figure 10 shows the dummy points, represented by open circles,
corresponding to the projections of the 2-dimensional points on the median line. The right hand
side of Figure 10 shows the shortcut graph obtained by the construction of Section 4.1, for ` = 2,

20

on the chain of dummy points.

P
(1)
a P

(2)
a

P
(1)
cP

(2)
c

P
(1)
gP

(2)
g

P
(1)
h

P
(2)
h

P
(1)
f

P
(2)
f

P
(1)
b P

(2)
b

P
(1)
e P

(2)
e

P
(1)
d P

(2)
d

P
(1)
a P

(2)
a

P
(1)
cP

(2)
c

P
(1)
gP

(2)
g

P
(1)
h

P
(2)
h

P
(1)
f

P
(2)
f

P
(1)
b P

(2)
b

P
(1)
e P

(2)
e

P
(1)
d P

(2)
d

Figure 10: Dummy points corresponding to the projections of two-dimensional points and shortcut graph
obtained by the construction of Section 4.1, for ` = 2, on the chain of dummy points.

The left hand side of Figure 11 shows the new edges, represented by dashed lines, added by
the ISPIT in step 7. Finally, the right hand side of Figure 11 shows the shortcut edges added
by the ISPIT in step 8. New edges and points added in recursive calls of the algorithm are not
represented.

P
(1)
a P

(2)
a

P
(1)
cP

(2)
c

P
(1)
gP

(2)
g

P
(1)
h

P
(2)
h

P
(1)
f

P
(2)
f

P
(1)
b P

(2)
b

P
(1)
e P

(2)
e

P
(1)
d P

(2)
d

P
(1)
a P

(2)
a

P
(1)
cP

(2)
c

P
(1)
gP

(2)
g

P
(1)
h

P
(2)
h

P
(1)
f

P
(2)
f

P
(1)
b P

(2)
b

P
(1)
e P

(2)
e

P
(1)
d P

(2)
d

Figure 11: New edges added by our algorithm in steps 7. and 8.

21

5 A Construction based on Broadcast Encryption Schemes

In this section we show how to construct a hierarchical key assignment scheme using as a building
block a broadcast encryption scheme. A broadcast encryption scheme allows a sender to broadcast
an encrypted message to a set of users in such a way that only legitimate users can decrypt it.
Broadcast encryption schemes can be either public key or symmetric key based. In the symmetric
key setting, only a trusted authority can broadcast data to the receivers. In contrast, in the public
key setting a public key published by a trusted authority allows anybody to broadcast a message.
We first recall the definition of a public-key broadcast encryption scheme [9].

Definition 5.1 A public-key broadcast encryption scheme for a set U of users is a triple of
algorithms (Set, Enc,Dec) satisfying the following conditions:

1. The setup algorithm Set is probabilistic polynomial-time. It takes as input a security pa-
rameter 1τ and the set of users U and produces as output a private key sku, for each user
u ∈ U , and a public key pk.

2. The encryption algorithm Enc is probabilistic polynomial-time. It takes as inputs 1τ , a
subset X ⊆ U , and the public key pk, and produces as output the a pair (Hdr, k), where
Hdr is called the broadcast header and k is a encryption key. Let m be a message to be
broadcast in such a way that only users in X are allowed to obtain m and let y be the
encryption of m under the symmetric key k. The broadcast message consists of (X,Hdr, y),
where the pair (X,Hdr) is called the full broadcast header and y is called the broadcast body.

3. The decryption algorithm Dec is deterministic polynomial-time. It takes as inputs 1τ , a
subset X ⊆ U , a user u ∈ X and its private key sku, a broadcast header Hdr, and the public
key pk, and produces as output the key k. Such a key can be used to decrypt the broadcast
body y in order to obtain m.

We require that for all subsets X ⊆ U , all users u ∈ X, all public keys and private keys which can
be output by Set(1τ ,U), all pairs (Hdr, k), which can be output by Enc(1τ , X, pk), we have that
Dec(1τ , X, u, sku, Hdr, pk) = k.

In the following we show how to construct a hierarchical key assignment scheme using as
a building block a public-key broadcast encryption scheme. The idea behind our construction,
referred in the following as the Broadcast Encryption Based Construction (BEBC), is to compute
the private and public information by using the broadcast encryption scheme; more precisely, the
public information will contain a broadcast header Hdru, which corresponds to an encryption of
the key ku, for each class u ∈ V . Such a broadcast header can be decrypted by all classes in the
set Iu = {v ∈ V : there is a path from v to u in G}, allowing them to compute the key ku. The
Broadcast Encryption Based Construction is described in Figure 12.

5.1 Analysis of the Scheme

In this section we first show that the security property of the BEBC depends on the security prop-
erty of the underlying broadcast encryption scheme. Afterwards, we evaluate the performances of
the BEBC with respect to several parameters, such as space requirements for public and private
information storage and computational requirements for key derivation and key updates.
Before analyzing the security of the BEBC we first need to define what we mean by a secure

public-key broadcast encryption scheme. The security of a public-key broadcast encryption scheme

22

Let Γ be a family of graphs corresponding to partially ordered hierarchies. Let G = (V,E) ∈ Γ and
let (Set, Enc,Dec) be a public-key broadcast encryption scheme for users in V .

Algorithm Gen(1τ , G,)

1. Run Set(1τ , V) to generate a public key pk and a secret key sku for any u ∈ V ;

2. For each class u ∈ V , let su = sku;

3. For each class u ∈ V , run Enc(1τ , Iu, pk) to obtain the pair (Hdru, ku);

4. Let s and k be the sequences of private information and keys computed in the previous two
steps;

5. Let pub be the sequence constituted by the public key pk along with the header Hdru, for any
u ∈ V ;

6. Output (s, k, pub).

Algorithm Der(1τ , G, u, v, su, pub)

1. Extract the public key pk and the header Hdrv from pub.

2. Output kv = Dec(1τ , Iv, u, su, Hdrv, pk).

Figure 12: The Broadcast Encryption Based Construction.

is defined through a game between an adversary A and a challenger. According to the capabilities
of the adversary and the security goal, several types of security notions for public-key broadcast
can be defined. We consider the definition of semantic security given by Boneh et al. [9], where
the adversary is not allowed to issue decryption queries to the challenger. Different notions of
security, such as chosen ciphertext security can be found in [18, 9, 24]. We consider the following
game:

• Initialization. Algorithm A outputs a set X ⊆ U of receivers that it wants to attack.

• Setup. The challenger first runs Set(1τ ,U) to obtain a private key sku for each user u ∈ U
and a public key pk. Afterwards, it gives the public key pk and all private keys skv for
which v 6∈ X to A.

• Challenge. The challenger runs Enc(1τ , X, pk) to obtain (Hdr, k). Then, it picks a random
bit b ∈ {0, 1}, sets kb = k and chooses k1−b as a random key. The challenge (Hdr, k0, k1) is
given to A.

• Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

The advantage of the adversary A is defined as

AdvA,U (1
τ) = |Pr[b′ = b]− 1/2|.

Definition 5.2 Let (Set, Enc,Dec) be a public-key broadcast encryption scheme for a set U of
users. The scheme is said to be semantically secure if the function AdvA,U (1

τ) is negligible, for
any adversary A whose time complexity is polynomial in τ .

Now we are ready to show that if the public-key broadcast encryption scheme (Set, Enc,Dec)
is semantically secure, then the BEBC is secure in the sense of IND-ST.

23

Theorem 5.3 If the public-key broadcast encryption scheme (Set, Enc,Dec) is semantically se-
cure, then the BEBC is secure in the sense of IND-ST.

Proof. Assume by contradiction that the BEBC is not secure in the sense of IND-ST. Thus,
there exists a graph G = (V,E) in Γ and a class u ∈ V for which there exists a polynomial time
adversary STATu whose advantage Adv

IND

STATu
(1τ , G) is non negligible. We show how to construct

a polynomial time adversary A which, by using STATu, is able to break the semantic security of
the broadcast encryption scheme used as a building block of the BEBC.
The adversary A first chooses Iu ⊆ V as the set of receivers it wants to attack. Then, it

interacts with the challenger, obtaining the public key pk and the secret keys for all users in
V \ Iu. Afterwards, it gets the challenge (Hdr, k0, k1) computed by the challenger. Then, A
constructs the inputs for STATu as follows:

• For each class v ∈ V \ {u}, A runs Enc(1τ , Iv, pk) to obtain the pair (Hdrv, kv);

• The public information pub consists of the public key pk along with the header Hdrv, for
any v ∈ V , with Hdru set equal to the challenge Hdr;

• The private information corr held by corrupted users consists of the secret keys for all users
in V \ Iu;

• The last input for STATu consists of the key k1 contained in the challenge (Hdr, k0, k1).

Notice that if the last input for STATu is equal to the key k hidden into the header Hdr, then the
random variable associated to STATu’s view is exactly the same as in experiment Exp

IND−1

STATu
(1τ , G),

whereas, if it is a random string, such a variable has the same distribution as the one associated
to STATu’s view in experiment Exp

IND−0

STATu
(1τ , G).

Finally, A outputs the same output as STATu(1
τ , G, pub, corr, k1). It is easy to see that

AdvA,V (1
τ) = AdvIND

STATu
(1τ , G).

Since AdvIND
STATu

(1τ , G) is non negligible, it follows that adversary A is able to break the semantic
security of the public-key broadcast encryption scheme. Contradiction.

Regarding space requirements, the public information pub in the BEBC consists of the public
key pk, as well as of a public header Hdru for each class u ∈ V . Hence, the size of the public
information depends on the size of the public key and of the header in the underlying public-key
broadcast encryption scheme. On the other hand, each class has to store a single secret value,
corresponding to the secret key in the underlying scheme. Moreover, users are required to perform
a single decryption in order to derive a key.

5.2 An Efficient Construction using Bilinear Maps

In this section we show how to obtain a broadcast encryption based hierarchical key assignment
scheme where the amount of public information is linear in the number of classes and the private
information assigned to each class has constant size. The idea is to use the BEBC by plugging
in the public-key broadcast encryption scheme proposed by Boneh et al. [9], which is based on
a bilinear map between two groups. A function e : G1 × Ĝ1 → G2 is said to be a bilinear map
if: 1) G1 and Ĝ1 are two groups of the same prime order q; 2) For each α, β ∈ Zq, each g ∈ G1,
and each h ∈ Ĝ1, the value e(gα, hβ) = e(g, h)αβ is efficiently computable; and 3) The map is
non-degenerate (i.e., if g generates G1 and h generates Ĝ1, then e(g, h) generates G2). In the
following, for simplicity, we focus on symmetric bilinear maps (i.e., such that G1 = Ĝ1).

24

The m-Bilinear Decisional Diffie-Hellman Exponent Problem (m-BDDHE) in < G1, G2, e >,
formally introduced in [8], is as follows: given a tuple (g, h, g1, . . . , gm, gm+2, . . . , g2m, x) ∈ G2m+22 ,

where gi = g(α
i) for i = 1, . . . ,m − 1,m + 1, . . . , 2m, for a randomly chosen generator g of G1,

randomly chosen α ∈ Z∗
q , h ∈ G1, and x ∈ G2, decide whether x = e(gα

m+1

, h). The m-Bilinear
Decisional Diffie-Hellman Exponent Assumption is the assumption that the m-BDDHE problem
is computationally hard. Such an assumption holds in generic bilinear groups [8].
Boneh et al. [9] showed how to construct a semantically secure broadcast encryption scheme

for a set U of n users, assuming the intractability of the n-BDDHE problem. In their scheme
the private key held by each user consists of a single group element, the public key contains
2n + 1 group elements, whereas, each broadcast header consists of two group elements. For a
subset X ⊆ U of receivers, one decryption operation requires at most |X| − 2 group operations.
However, if a receiver in X has already decrypted a broadcast message for a set of receivers X ′

which is similar to X, then only |X| − |X ′| group operations are needed. It follows that if we
use such a public-key broadcast encryption scheme in the BEBC, we obtain a hierarchical key
assignment scheme where the public information consists of 4|V | + 1 group elements, whereas,
the private information has constant size. Finally, key derivation requires a single (complex)
decryption operation (as already discussed before, such a decryption can require at most |V | − 2
group operations).

5.2.1 Handling Dynamic Changes

In this section we show how to manage changes to the hierarchy, such as addition and deletion of
nodes and edges, in such a way that no private information held by users need to be redistributed
by the TA. Indeed, such updates can be handled by local changes to the public information.
Before describing how the updates can be managed by the TA, we notice that the scheme

proposed by Boneh et al. [9] also handles the incremental addition of new users, without restricting
a-priori the total number of users which can be managed. However, this involves the distribution
of one more private value to each user. Moreover, the scheme also supports the incremental
sharing operation, i.e., the broadcaster may enable new users to decrypt the broadcast message.
Such an addition requires the broadcaster to compute a new header and to remember a secret
value associated to such a header. Now we are ready to discuss how the TA can manage any
change to the hierarchy in our construction.

Insertion of an edge. Let (u, v) be an edge to be inserted in E. Such an update, involving
the insertion of the class u in the set Iv, can be managed by the TA by performing the
incremental sharing operation offered by the scheme in [9].

Deletion of an edge. Let (u, v) be an edge to be deleted from E. The TA first updates Iv
to be the set Iv \ {u} and then substitutes the old header Hdrv, contained in the public
information pub, with a new one corresponding to a new key kv. Such a substitution is
necessary to forbid users belonging to class u from computing the key of class v. The new
pair (Hdrv, kv) is obtained by running Enc(1τ , Iv, pk).

Insertion of a class. Let u be a class to be inserted in V along with new incoming and outgoing
edges. Such an update can be managed by the TA by first performing the incremental
addition of a new user offered by the scheme in [9], and then by adding the edges using the
above procedure for edge insertions.

25

Deletion of a class. Let u be a class to be deleted from V . For each edge outgoing from u,
the TA uses the above procedure for edge deletions. Afterwards, the TA deletes the header
Hdru from pub.

6 Summary of the Results

In this paper we have designed and analyzed hierarchical key assignment schemes which are
provably-secure and efficient. We have proposed a first construction based on symmetric encryp-
tion schemes and a second one using as a building block a public-key broadcast encryption scheme.
Both constructions are provably secure with respect to key indistinguishability, require a single
computational assumption and improve on previous proposals. In particular, one of our construc-
tions provides constant private information and public information linear in the number of the
classes. Moreover, both schemes support dynamic updates to the hierarchy with local changes to
the public information and without requiring any private information to be re-distributed.
Figure 13 shows a comparison between our constructions and the one proposed by Atallah et

al. [4] for a partially ordered hierarchy G = (V,E). The comparison takes into account several
parameters, such as the public and private information, the number and the type of operations
required by a class u ∈ V to compute the key of a class v lower down in the hierarchy, and the
computational assumption.

Scheme Public Private Key Computational
information information derivation assumption

Atallah 2|E|+ |V | One 2 · distG(u, v) + 1 operations: CCA-secure
et al. [4] • distG(u, v) decryptions encryption + PRF

• distG(u, v) + 1 PRF eval.
EBC |E|+ |V | One distG(u, v) + 1 IND-P1-C0-secure

decryptions encryption
Modified 2|E|+ |V | One distG(u, v) IND-P1-C0-secure
EBC decryptions encryption
DEBC |E|+ 2|V | One distG(u, v) + 2 IND-P1-C0-secure

decryptions encryption
Modified 3|E|+ 2|V | One distG(u, v) IND-P1-C0-secure
DEBC decryptions encryption
BEBC 4|V |+ 1 One One (complex) |V |-BDDHE

decryption

Figure 13: Comparison between hierarchical key assignment schemes which are provably secure in the
sense of IND-ST.

Using the constructions proposed in this work, new constructions for hierarchical key assign-
ment schemes with temporal constraints have been recently proposed [17]. Such schemes exhibit
a tradeoff among the amount of secret data that needs to be distributed and stored by the users,
the amount of public data, the complexity of key derivation, and the computational assumption
on which the security of the scheme is based.

References

[1] A. V. Aho, M. R. Garey, and J. D. Ullman, The Transitive Reduction of a Directed Graph, SIAM
Journal on Computing, 1, 131–137, 1972.

26

[2] S. G. Akl and P. D. Taylor, Cryptographic Solution to a Problem of Access Control in a Hierarchy,
ACM Transactions on Computer Systems, 1(3), 239–248, 1983.

[3] N. Alon and B. Schieber, Optimal Preprocessing for Answering On-line Product Queries, Technical
Report TR 71/87, Institute of Computer Science, Tel-Aviv University, 1987.

[4] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, Dynamic and Efficient Key Management for
Access Hierarchies, CERIAS Technical Report TR 2006-09, Purdue University. Preliminary version in
Proc. of the 12th ACM Conference on Computer and Communications Security - CCS 2005, Alexandria,
Virginia, USA, November 2005, 190–201.

[5] M. J. Atallah, M. Blanton, and K. B. Frikken, Key Management for Non-Tree Access Hierarchies, in
Proc. of the 11th ACM Symposium on Access Control Models and Technologies - SACMAT 2006, Lake
Tahoe, California, USA, June 2006, 11–18.

[6] G. Ateniese, A. De Santis, A. L. Ferrara, and B. Masucci, Provably-Secure Time-Bound Hierarchical
Key Assignment Schemes, in Proc. of the 13th ACM Conference on Computer and Communications
Security - CCS 2006, Alexandria, Virginia, USA, November 2006, 288–297. Full version available as
Report 2006/225 at the IACR Cryptology ePrint Archive.

[7] H. L. Bodlaender, G. Tel, and N. Santoro, Trade-offs in Non-reversing Diameter, Nordic Journal on
Computing, 1, 111–134, 1994.

[8] D. Boneh, X. Boyen, and E. Goh, Hierarchical Identity-based Encryption with Constant Size Cipher-
texts, in Proc. of Advances in Cryptology - Eurocrypt 2005, Aarhus, Denmark, May 2005, Lecture
Notes in Computer Science, 3493, 440–456.

[9] D. Boneh, C. Gentry, and B. Waters, Collusion Resistant Broadcast Encryption with Short Ciphertexts
and Private Keys, in Proc. of Advances in Cryptology - Crypto 2005, Santa Barbara, California, USA,
August 2005, Lecture Notes in Computer Science, 3621, 258–275.

[10] B. Chazelle, Computing on a Free Tree via Complexity-Preserving Mappings, Algorithmica, 2, 337–361,
1987.

[11] T. Chen and Y. Chung, Hierarchical Access Control based on Chinese Remainder Theorem and Sym-
metric Algorithm, Computers & Security, 21(6), 565–570, 2002.

[12] H. Y. Chien, Efficient Time-Bound Hierarchical Key Assignment Scheme, IEEE Transactions on
Knowledge and Data Engineering, 16(10), 1301–1034, 2004.

[13] J. Crampton, K. Martin, and P. Wild, On Key Assignment for Hierarchical Access Control, in Proc.
of the 19th IEEE Computer Security Foundations Workshop - CSFW 2006, S. Servolo island, Venice,
Italy, July 2006, 98–111.

[14] A. De Santis, A. L. Ferrara, and B. Masucci, Cryptographic Key Assignment Schemes for any Access
Control Policy, Information Processing Letters, 92(4), 199–205, 2004.

[15] A. De Santis, A. L. Ferrara, and B. Masucci, Enforcing the Security of a Time-Bound Hierarchical
Key Assignment Scheme, Information Sciences, 176(12), 1684–1694, 2006.

[16] A. De Santis, A. L. Ferrara, and B. Masucci, Unconditionally Secure Key Assignment Schemes, Dis-
crete Applied Mathematics, 154(2) , 234–252, 2006.

[17] A. De Santis, A. L. Ferrara, and B. Masucci, New Constructions for Provably-Secure Time-Bound
Hierarchical Key Assignment Schemes, available as Report 2006/483 at the IACR Cryptology ePrint
Archive.

27

[18] Y. Dodis and N. Fazio, Public Key Broadcast Encryption Secure against Adaptive Chosen Ciphertext
Attacks, in Proc. of the 6th International Workshop on Theory and Practice in Public Key Cryptography
- PKC 2003, Miami, Florida, January 2003, Lecture Notes in Computer Science, 2567, 100–115.

[19] B. Dushnik and E. W. Miller, Partially Ordered Sets, American Journal of Mathematics, 63, 600–610,
1941.

[20] S. Goldwasser and S. Micali, Probabilistic Encryption, Journal of Computer and System Sciences, 28,
270–299, 1984.

[21] L. Harn and H. Y. Lin, A Cryptographic Key Generation Scheme for Multilevel Data Security, Com-
puters & Security, 9(6), 539–546, 1990.

[22] W. Hesse, Directed Graphs Requiring Large Number of Shortcuts, in Proc. of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms - SODA 2003, Baltimore, Maryland, USA, January
2003, 665–669.

[23] M. S. Hwang, A Cryptographic Key Assignment Scheme in a Hierarchy for Access Control, Mathe-
matical and Computational Modeling, 26(1), 27–31, 1997.

[24] J. Y. Hwang, D. H. Lee, and J. Lim, Generic Transformation for Scalable Broadcast Encryption
Schemes, in Proc. of Advances in Cryptology - Crypto 2005, Santa Barbara, California, USA, August
2005, Lecture Notes in Computer Science, 3621, 276–292.

[25] J. Katz and M. Yung, Characterization of Security Notions for Probabilistic Private-Key Encryption,
Journal of Cryptology, 19, 67–95, 2006.

[26] D. Knuth, The Art of Computer Programming,Vol. 1, Fundamental Algorithms, Addison-Wesley, 1973.

[27] H. T. Liaw, S. J. Wang, and C. L. Lei, A Dynamic Cryptographic Key Assignment Scheme in a Tree
Structure, Computers and Mathematics with Applications, 25(6), 109–114, 1993.

[28] C. H. Lin, Dynamic Key Management Schemes for Access Control in a Hierarchy, Computer Com-
munications, 20, 1381–1385, 1997.

[29] S. J. MacKinnon, P. D. Taylor, H. Meijer, and S. G. Akl, An Optimal Algorithm for Assigning
Cryptographic Keys to Control Access in a Hierarchy, IEEE Transactions on Computers, C-34(9),
797–802, 1985.

[30] J. A. La Poutré, New Techniques for the Union-Find Problem, Technical Report RUU-CS-89-19,
Department of Computer Science, Utrecht University, The Netherlans, 1989.

[31] R. S. Sandhu, Cryptographic Implementation of a Tree Hierarchy for Access Control, Information
Processing Letters, 27, 95–98, 1988.

[32] V. Shen and T. Chen, A Novel Key Management Scheme based on Discrete Logarithms and Polynomial
Interpolations, Computers & Security, 21(2), 164–171, 2002.

[33] R. E. Tarjan, Efficiency of a Good but not Linear Set Union Algorithm, Journal of the ACM, 22,
215–225, 1975.

[34] M. Thorup, On Shortcutting Digraphs, in Proc. of the 18th International Workshop on Graph-
Theoretic Concepts in Computer Science - WG ’92, Wiesbaden-Naurod, Germany, June 1992, Lecture
Notes in Computer Science, 657, 205–211.

[35] M. Thorup, Shortcutting Planar Digraphs, Combinatorics, Probability & Computing, 4, 287 – 315,
1995.

[36] M. Thorup, Parallel Shortcutting of Rooted Trees, Journal of Algorithms, 23, 139–159, 1997.

28

[37] W.-G. Tzeng, A Time-Bound Cryptographic Key Assignment Scheme for Access Control in a Hierar-
chy, IEEE Transactions on Knowledge and Data Engineering, 14(1), 182–188, 2002.

[38] M. Yannakakis, On the Complexity of Partial Order Dimension Problem, SIAM J. Alg. Discr. Methods,
3, 351–358, 1982.

[39] A. C. Yao, Space-Time Tradeoff for Answering Range Queries, in Proc. of the 14th annual ACM
Symposium on the Theory of Computing - STOC 1982, San Francisco, California, USA, May 1982,
128–136.

[40] J. Yeh, An RSA-Based Time-Bound Hierarchical Key Assignment Scheme for Electronic Article Sub-
scription, in Proc. of the ACM International Conference on Information and Knowledge Management
- CIKM 2005, Bremen, Germany, November 2005, 285–286.

[41] X. Yi, Security of Chien’s Efficient Time-Bound Hierarchical Key Assignment Scheme, IEEE Trans-
actions on Knowledge and Data Engineering, 17(9), 1298–1299, 2005.

[42] X. Yi and Y. Ye, Security of Tzeng’s Time-Bound Key Assignment Scheme for Access Control in a
Hierarchy, IEEE Transactions on Knowledge and Data Engineering, 15(4), 1054 –1055, 2003.

[43] S.-Y. Wang and C.-Laih, Merging: An Efficient Solution for a Time-Bound Hierarchical Key Assign-
ment Scheme, IEEE Transactions on Dependable and Secure Computing, 3(1), 2006.

[44] T. Wu and C. Chang, Cryptographic Key Assignment Scheme for Hierarchical Access Control, Inter-
national Journal of Computer Systems Science and Engineering, 1(1), 25–28, 2001.

29

