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Abstract. We present an attack on one of the Hidden Pairing schemes
proposed by Dent and Galbraith. We drastically reduce the number of
variables necessary to perform a multivariate attack and in some cases
we can completely recover the private key. Our attack relies only on
knowledge of the public system parameters.

1 Introduction

The use of pairings in cryptography has had a number of important implications.
In [4] the Weil pairing is used to reduce the Discrete Logarithm problem from the
group of points of an elliptic curve E(Fq) to the multiplicative group of invertible
elements of a finite field F∗

qn for a suitable n. In recent years, pairings for elliptic
curves have found more constructive applications (see [5] for a survey), which
simply stated depend on the fact that they provide some elliptic curves with a
gap Diffie-Hellman group structure: a group in which the decision Diffie-Hellman
problem is easy, and yet the computational Diffie-Hellman problem remains hard.

In [1], Dent and Galbraith take this construction one step further and explore
the idea of Trapdoor Decisional Diffie-Hellman groups: groups for which the
knowledge of certain trapdoor information is sufficient to efficiently solve the
DDH, whereas solving the DDH without the trapdoor information is believed
to be hard. In [1] the authors describe two such constructions, both based on
elliptic curves. The first one depends on elliptic curves over the ring Z/NZ where
N = pq is an RSA modulus (we refer the reader to the original paper for further
details). The second construction is based on an idea of Frey [2] that consists of
“disguising” elliptic curves. In the next section we will give a detailed description
of this construction and then we will proceed to describe an attack on it.
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2 Disguising elliptic curves

This proposal consists of taking the Weil restriction of an elliptic curve with
respect to Fqn/Fq and then transforming the group operation equations using
a linear change of variables. We will first explain how to obtain multivariate
polynomials describing the group law and then we will describe the blinding
proccedure using an invertible linear transformation.

Let E be an elliptic curve defined over a finite field Fqn , and let Pi =
(xi, yi, zi) for i ∈ {1, 2} be two points on the curve, then the addition of P1

and P2 is given by P1 + P2 = (fx, fy, fz) where fx, fy, fz are homogeneous poly-
nomials in Fqn [x1, y1, z1, x2, y2, z2]. Analogously, the doubling formula is given
by polynomials in the coordinates of the point with coefficients in Fqn .

Every element x of Fqn can be described as an n-tuple (x0, x1, . . . , xn−1) ∈
Fn

q with respecto to an Fq-basis {αi}n
1 of Fqn . Furthermore, multiplication of

two n-tuples is given by n quadratic polynomials. We will use the notation x to
represent both the field element x ∈ Fqn and the n-tuple over Fq.

If we describe a point in E as a 3n-tuple of elements of Fq, then the addition
formula can be given by 3n polynomials of degree 8 in the 6n variables describing
the two points (respectively, point doubling is given by 3n polynomials of degree
7). To establish some notation let’s say that the addition is given by polynomials
fi, that is

(x1, y1, z2) + (x2, y2, z2) = (fi (x1, y1, z1, x2, y2, z2))
3n
i=1 .

We will also denote the doubling polynomials as gi(x, y, z).
In order to blind the elliptic curve we will choose some matrix U ∈ GL3n(Fq),

and define the blinded addition polynomials(
f̃i(x1, y1, z1, x2, y2, z2)

)3n

i=1
= U

(
fi

(
U−1(x1, y1, z1), U−1(x2, y2, z2)

)3n

i=1

)
.

We will construct the blinded doubling polynomials g̃i in a similar fashion and
to blind a point P = (x, y, z) we simply write its coordinates as n-tuples with
respect to our basis and act on the 3n-tuple thus obtained with U as P̃ = U ·P .
Throughout the article P̃ will denote the blinded image U · P of P .

The blinded description of the elliptic curve will consist of the polynomials
f̃i and g̃i, the image P̃0 under U of a point P0 on E and the order of the curve.

In [1] different variants of the scheme are discussed, for instance, it is sug-
gested to take U mapping the XZ-space onto itself, both for functionality and
implementation convenience. A further variant of the scheme has a more restric-
tive public key, consisting of a blinded point P̃ = U ·P and the blinded version of
the doubling and “translation by P” formulae, this has the disadvantage that it
is not possible to compute arbitrary multiples of a point (see the original paper
for the details). Our attack does not apply to this variant.

The goal of disguising an elliptic curve is to construct a trapdoor DDH group.
Thus, an attack on the scheme is any algorithm that allows someone in posses-
sion of the public key to compute a bilinear pairing on the curve. Under such



considerations, to break the scheme one does not need to recover the original
blinding matrix U , all that is needed is a matrix U ′ taking our blinded curve to
an Fqn -isomorphic curve. In particular, starting with a different Fq-basis of Fqn

corresponds to conjugating U by an invertible matrix, and is enough to break
the scheme.

3 The attack

In this section we describe our attack on the disguised curve scheme. The attack
is based on some simple observations coupled with standard linear algebra. For
some variants we are able to completely recover the disguising matrix U (with
respect to our Fq basis).

We first present a general attack that will work on any variant with basic
functionality; this attack alone does not recover U , but will greatly reduce the
search space. Building upon our first attack, we then show a second attack that
completely recovers U in some special cases. This second attack can be seen as
a warning against careless implementations.

Throughout this section we will fix an Fq-basis {αi}n
1 of Fqn and whenever

we speak of the matrix in GLn(Fq) associated with multiplication by λ ∈ Fqn ,
it will be with respect to this basis. If P = (x, y, z) is a point in F3

qn , then [λ]
will denote the matrix in GL3n(Fq) corresponding to multiplication by λ in each
coordinate.

For future reference, we present the standard addition formulae for curves
given by equations of the form y2 = x3 + Ax + B:

(x1, y1, z1) + (x2, y2, z2) = (fx, fy, fz)

where

fx = z1z2DN2 −D3(x1z2 + x2z1) (1)

fy = N(z1z2N
2 −D2x1z2 − 2D2x2z1) + D3x2z1 (2)

fz = D3z1z2 (3)
N = y1z2 − y2z1 and D = x1z2 − x2z1. (4)

Note that there is not a unique set of polynomials (fx, fy, fz) giving addition
formulae for the curve E. For example, one can multiply the polynomials by a
given homogeneous polynomial in the coordinates of one of the points and still
get addition formulae that work generically.

3.1 Attack 1

In this first attack we assume that we know the blinded image P̃0 = UP0 of a
point P0 in E(Fqn) and blinded doubling and adding formulae. We don’t assume
knowledge of the size of E(Fqn) or of the unblinded version of the curve addition



formulae. Notice that we can find random points on E simply by computing
random multiples of P0.

In our attack we will need the image under U of two different projective
representatives of the same point. We can find such a pair of points in several
ways, for example, taking two random points P̃ and Q̃, and performing the
operations

P̃1 = 2(P̃ + Q̃)

and
P̃2 = 2P̃ + Q̃ + Q̃.

It is reasonable to assume that the two representations P1 and P2 of the same
point differ by a random element of Fqn as the polynomials giving 2P + Q + Q
and 2(P + Q) have different degrees and one is not a multiple of the other.
There is therefore no reason to expect any constraint in the value by which
these two projective points differ when P and Q are taken at random, as the
proportionality constant by which P1 and P2 differ is the value of a non-constant
rational function evaluated in two random points P and Q on E.

Fix polynomials fx, fy and fz giving projective addition formulae for the
elliptic curve E. That is, given two points P1 and P2 on E, then a projective
point P3 such that P3 = P1 + P2 can be found as

P3 = (fx, fy, fz)(P1, P2).

If P1 and P2 are two different projective representatives of the same point, with
coordinates P1 = (x1, y1, z1) and P2 = (λx1, λy1, λz1), for every point Q the
projective coordinates of P1 + Q and P2 + Q will be related by

P1 + Q = (x3, y3, z3), P2 + Q = (λsx3, λ
sy3, λ

sz3),

for a fixed integer s. For any triple of polynomials (fx, fy, fz) giving generic addi-
tion formulae on the curve, the polynomials (fx, fy, fz) have to be homogeneous
in the coordinates of the first and second points. The degree of the formulae in
the variables corresponding to the first point will give us the value of s.

For the attack to succeed we need λs to generate Fqn . If λ is a random element
of Fqn , it is easy to prove that the probability that λs does not generate Fqn

over Fq is bounded above by s(q − 1)/(qn − 1), which is very small in practice.
If we are unlucky then the attack can be repeated for different pairs of points
(P̃1, P̃2) until we find λ such that λs generates Fqn . We will shortly describe how
to determine if this is the case.

The previous discussion still applies for blinded points and blinded addition
formulae. Notice that given the way the blinded addition formulae were obtained,
we have that

P̃ + Q̃ = ˜(P + Q).

Let P̃1 = U · P1 and P̃2 = U · P2 be the blinded version of the points P1 and P2

in the previous paragraphs. For a blinded point Q̃, the coordinates of ˜(P1 + Q)

and ˜(P2 + Q) will differ by the matrix M = U [λs]U−1.



Now let {Q̃i} be a set of m > 3n random blinded points. The discussion
above tells us that for 1 ≤ i ≤ m we have

˜(P2 + Qi) = U [λs]U−1 ˜(P1 + Qi)

If our set of random points is large enough, then we can recover the matrix
M = U [λs]U−1 simply by computing the sets {P̃1 + Q̃i}i and {P̃2 + Q̃i}i, and
finding the matrix M transforming one into the other. In this case note that the
matrix M depends only upon P̃1 and P̃2.

The eigenvalues of M will be λs and its Galois conjugates. We choose one of
them 1 and work with it as λs.

Once we have identified λs, we can trivially compute the matrix [λs] for our
fixed Fq-basis of Fqn . We have thus found a restriction in the possible choices
for U , as U must satisfy

M = U [λs]U−1 (5)

and have coefficients in Fq. There is not a unique solution to equation (5),
so further work has to be done to recover U . Notice that not every matrix U
satisfying (5) can be used as secret key, as its action on points must also be
compatible with the point adding and doubling operations.

It would be natural to try to repeat the previous construction using different
pairs of points {P̃ ′

1, P̃
′
2} instead of {P̃1, P̃2} to further narrow down the possibil-

ities for U . However, this wouldn’t give us any extra information: suppose that
P ′

1 = (x1, y1, z1) and P ′
2 = (µx1, µy1, µz1) differ by µ, then we can find the cor-

responding matrix N transforming the set { ˜(P ′
1 + Qi)} into { ˜(P ′

2 + Qi)}, giving
us the following condition on U :

N = U [µs]U−1.

If µs =
∑

ai(λs)i (we use that λs generates Fqn) then N =
∑

aiM
i, and it

follows that for a given matrix U if U [λs]U−1 = M, then automatically

N = U [µs]U−1,

so every matrix U satisfying equation (5) for [λs] and M would work for [µs]
and N and we don’t get any extra infomation repeating the construction.

Finally notice that the condition M = U [λs]U−1 puts some serious restric-
tions on the possible Us. If we wanted to perform a multivariate attack against
the scheme representing the coefficients of U as variables in Fq, instead of hav-
ing 9m2 variables (5m2 when the Y -space is mapped separately) we reduce the
possibilities to 9m variables (resp. 5m) as we now describe. To find a basis for a
vector space in which the element of U must lie one rewrites equation (5) as

MU = U [λs]. (6)
1 Choosing the “wrong” λ amounts to twisting the original elliptic curve with some

element σ of the Galois group of Fqn over Fq, this doesn’t affect the attack as the
DDH would still be solvable. Equivalently this can be seen as choosing the Fq-basis
{ασ

j }.



This last equation gives us the relations that the entries of U must satisfy. To
see that the dimension of the vector space of matrices U satisfying equation (6)
is 9m one can argue as follows:

If we diagonalize M and [λs] over some extension Fqr of Fq as MD =
D−1

1 MD1 and MD = D−1
2 [λs]D2, it is easy to see that the set of U ’s satis-

fying (6) and the set of matrices V satisfying

MDV = V MD, (7)

are related by multiplication on the left by D1 and on the right by D2. In
particular they have the same dimension as Fqr -vector spaces. Since the matrix
[λs] has as eigenvalues all the Galois conjugates of λs, each with multiplicity 3,
the matrix MD has m different values in the diagonal, each repeated 3 times. It is
now easy to see that the vector space of matrices V satisfying (7) has dimension
9m as Fqr -vector space, since it is necessary and sufficient that V maps the
3-dimensional eigenspaces corresponding to a given eigenvalue onto themselves.

To prove that the space of matrices U satisfying (6) defined over Fp also has
dimension 9m, it suffices to see that the space of matrices U satisfying (6) over
Fqr has dimension 9m and mention that using the fact that the conditions for
U are defined over Fq, a standard argument (see for example [3] Proposition
A.2.2.10) proves that there is a basis for the Fqr -vector space with elements
defined over Fq. An analogous argument proves that if the XZ and Y -spaces
were mapped onto themselves then the dimension of the vector space of matrices
satisfying (6) is 5m.

3.2 Attack 2

As mentioned before, there are several variants of the disguised curve proposal
in [1]. We now show how to improve the previous attack for one of these vari-
ants. We will assume knowledge of at least one blinded point in the curve, we
also assume that the unblinded version of the addition formulae is given by the
polynomials we presented in equations (1)-(4) above (as we have mentioned,
one could give different addition formulae). We will also assume that the XZ
(resp. Y )-space is mapped onto itself under U (see [1]) and that char(Fq) > 2,
although the same techniques can be used for characteristic 2 curves. Since U
maps the XZ and Y -spaces separately, we will write U = UXZ⊕UY , where UXZ

denotes the action of U on the XZ-space and UY gives the action of U on the
Y -space.

In this attack we will first identify the image of the vectors of the form z = 0
under the scrambling matrix U .

Take two random 3n-tuples Ã1 and Ã2, corresponding to the blinded rep-
resentation of the vectors 2 A1 = (x1, y1, z1) and A2 = (x2, y2, z2) in F3

qn . If
we apply the blinded addition formulae to Ã1 and Ã2 we will get a 3n-tuple

2 It doesn’t matter that the points might not be on the elliptic curve, as our interest
is only in evaluating the polynomials corresponding to the addition formulae.



Ã3 = UA3 for some vector A3 = (x3, y3, z3). It is clear that A3 is the result of
applying the unblinded addition formulae to the points A1 and A2.

If we now consider the 3n-tuple Ã′
1 obtained from Ã1 by multiplying the co-

ordinates corresponding to the XZ-space by 2 (and which would thus correspond
to the vector A′

1 = (2x1, y, 2z1)) and “add” it to Ã2 to obtain the 3n-tuple Ã′
3

(corresponding to A′
3 = (x′3, y

′
3, z

′
3)), a simple analysis of the addition formulae

shows that 8z3 = z′3 and 8x3 6= x′3.
We now have that

8Ã3 − Ã′
3 = U(8A3 −A3) = U(8x3 − x′3, 8y3 − y′3, 0)

It is now clear that the 3n-tuple 8Ã3 − Ã′
3 is the image under U of a point

of the form (x, y, 0). If we repeat this experiment sufficiently many times we can
find a basis for the vector space U{(x, y, 0)|x, y ∈ Fqn}. Since the XZ-space and
the Y -space are scrambled onto themselves this is equivalent to finding a basis
for the vector space U{(x, 0, 0)|x ∈ Fqn}.

We will now find the matrix U using only linear algebra. Consider a 3n-tuple
Ã1 corresponding to a point A1 = (x1, y1, 0) (we can identify this point using
the previous construction). If we “add” it to another 3n-tuple Ã2 (corresponding
to A2 = (x2, y2, z2)) and analyze the addition formulae (1)-(4), we see that
the Y -coordinate of the addition of A1 and A2 is x3

1z
4
2y1, that is, the n-tuple

corresponding to the Y -coordinate of the addition of

Ã1 + Ã2 = ˜(A1 + A2)

of Ã1 and Ã2 is given by UY (x3
1z

4
2y1). Notice that this is a linear function in the

n-tuple corresponding to the coefficients of the Y -coordinate given by the matrix
L = UY [x3

1z
4
2 ]U−1

Y . If we use vectors A1 and A2 where the values of x1, x2, y2, z2

are fixed (albeit unknown) elements of Fqn but y1 is represented as a formal
n-tuple (ie. by variables), we can recover the matrix L.

Remember that from step 1 we have a matrix M = U [λ]U−1; since λ gener-
ates Fqn over Fq, then there exist ai ∈ Fq such that

x3
1z

4
2 =

n−1∑
i=0

aiλ
i,

but this implies that

L =
n−1∑
i=0

aiM
i,

turning the process around, using linear algebra we can recover the ai’s since we
know M and L. We can now find the value of x3

1z
4
2 which is given by

∑n−1
i=0 aiλ

i.
If we repeat this computation using Ã′

1 and Ã′′
1 with corresponding X-

coordinates x′1 and x1+x′1 we can find the values of x′31 z4
2 and (x1+x′1)

3z4
2 . Know-

ing x3
1z

4
2 , x′31 z4

2 and (x1 +x′1)
3z4

2 , taking cube roots we can calculate x1/(x1 +x′1)
and x′1/(x1+x′1), from which we can recover x1,x′1 and z4

2 . Notice that we started



with a point Ã1 = U(x1, y1, 0) for which we have now found the value of x1, this
will give us information on U , as we can read UXZ(x1, 0), directly from Ã1. Since
we also find the value of x′1, an analogous condition is satisfied for the point Ã′

1

We can now recover U . Knowing how some points with z = 0 are transformed
gives us information about U as follows: if we write vectors v corresponding to
the XZ-space as 2m-tuples v = (x, z), then writing U = UXZ⊕UY we know how
UXZ · (x, 0) behaves for at least two values of x, which is equivalent to knowing
a vector space of codimension at least 4m on which UXZ lies. Coupling this
with the first attack we described, which finds a 4m-dimensional vector space in
which UXZ lies, gives generically a unique possibility for UXZ .

4 Conclusions

We have cryptanalysed the hidden pairing scheme of [1] based on disguising an
elliptic curve. Our attacks show that to obtain a secure system one would have to
massively increase the memory requirements of the public keys in the proposal
of [1]. Our results do not apply to the proposal of Frey since [2] does not specify
a method to compute the group law on an elliptic curve.
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