
Secure Cryptographic Workflow
in the Standard Model

M. Barbosa1 and P. Farshim2

1 Departamento de Informática, Universidade do Minho,
Campus de Gualtar, 4710-057 Braga, Portugal.

mbb@di.uminho.pt
2 Department of Computer Science, University of Bristol,

Merchant Venturers Building, Woodland Road,
Bristol BS8 1UB, United Kingdom.

farshim@cs.bris.ac.uk

Abstract. Following the work of Al-Riyami et al. we define the no-
tion of key encapsulation mechanism supporting cryptographic work-
flow (WF-KEM) and prove a KEM-DEM composition theorem which
extends the notion of hybrid encryption to cryptographic workflow. We
then generically construct a WF-KEM from an identity-based encryption
(IBE) scheme and a secret sharing scheme. Chosen ciphertext security
is achieved using one-time signatures. Adding a public-key encryption
scheme we are able to modify the construction to obtain escrow-freeness.
We prove all our constructions secure in the standard model.

Keywords. Cryptographic Workflow. Key Encapsulation. Secret Shar-
ing. Identity-Based Encryption.

1 Introduction

The term workflow is used to describe a system in which actions must be per-
formed in a particular order. In cryptographic workflow [23] this is achieved by
making decryption a privileged action which can only be executed by users which
possess an appropriate set of authorisation credentials, or simply credentials. Cre-
dentials are issued by a set of authorisation authorities, which can ensure that
some action has been performed, or that some event has occurred, before grant-
ing them to users. Restricting access to encrypted messages in this way, workflow
mechanisms can be implemented with cryptographic security guarantees.

An encryption scheme supporting cryptographic workflow should provide the
following functionality [1]. Alice specifies the credentials that Bob should have
in a policy that she decides before encrypting. Alice should be able to perform
this encryption without knowing what credentials Bob actually has. A particular
authorisation authority will validate that Bob is entitled to a given credential
before awarding it. Each credential acts as a (partial) decryption key. Alice may
also want to be sure that no colluding set of these authorisation authorities is
able to decrypt and recover the message that she intended for Bob. If this is the
case, the system should be escrow-free.



In this paper we introduce the notion of KEMs supporting cryptographic
workflow (WF-KEM) and their escrow-free counterparts (EFWF-KEM). We
adapt the security models proposed in [1] for encryption schemes accordingly.
We argue that the KEM-DEM paradigm introduced by Cramer and Shoup [14]
for public-key encryption schemes also applies when one moves to encryption
schemes supporting cryptographic workflow. In fact, we show that combining
a secure WF-KEM (EFWF-KEM) with a secure DEM, one obtains a secure
(escrow-free) encryption scheme supporting cryptographic workflow.

We present a generic construction that permits building WF-KEMs out of
simpler cryptographic primitives. This is a generalisation of the construction
presented in [1] based on the identity-based encryption (IBE) scheme of Boneh
and Franklin. We show how one can construct analogous schemes by replac-
ing its building blocks with other components providing the same functionality.
More specifically, we prove that our transformation permits constructing a secure
WF-KEM using secure IBE and Secret Sharing (SS) schemes. Finally, we extend
our generic construction to obtain an EFWF-KEM using a secure public-key en-
cryption scheme. Chosen ciphertext security is achieved via a one-time signature
scheme. Our constructions are all secure in the standard model.

The paper is structured as follows. We first review related work in Section 2
and present the cryptographic primitives we use as building blocks in Section 3.
Then in Section 4 we define precisely what we mean by secure WF-KEMs and
EFWF-KEMs. In Section 5 we propose generic constructions of these primitives
and prove them secure. Finally, in Section 6, we analyse the implications and
efficiency of our results for cryptographic workflow and related problems.

2 Related work

Identity-based cryptography was initially proposed by Shamir [26], who also
introduced the first identity-based signature scheme. The first practical identity-
based encryption (IBE) scheme is that proposed by Boneh and Franklin in [7],
whose operation relies on the use of bilinear maps over groups of points on an
elliptic curve. Sakai and Kasahara [24] later proposed another IBE scheme, also
based on bilinear maps, but adopting a different key construction. The security
of this scheme was established by Chen et al. in [11]. The latter scheme allows
for more efficient encryption operation. Both these schemes are secure in the
random oracle model (ROM). Recently, Waters [28], Kiltz [20] and Gentry [17]
have proposed practical IBE schemes which are secure in the standard model.

The KEM-DEM construction was formalised by Cramer and Shoup in [14]. It
captures the concept of hybrid encryption whereby one constructs a public-key
encryption scheme by combining a symmetric Data Encapsulation Mechanism
(DEM) with an asymmetric Key Encapsulation Mechanism (KEM). The security
of the hybrid construction depends, of course, on the security of the KEM and
DEM. In [14] it is shown that if the KEM and DEM constructions are individually
secure, the resulting public-key encryption scheme will be also secure. The rela-
tions between the security notions for KEMs and the conditions for the security

2



of KEM/DEM constructions are further discussed in [22, 18] respectively. Dent
[15] describes several constructions for secure KEMs. The KEM-DEM paradigm
has been extended to the identity-based setting in [6].

Cryptographic workflow follows from the original ideas by Chen et al. in
[12, 13]. There the authors explored the possibilities of using the Boneh and
Franklin IBE scheme in a setting where a user can extract different identity-based
private keys from multiple TAs. They proposed using credential descriptors as
public keys, in place of the usual identity strings, and showed that combining
the master public keys of the TAs in different ways, one may securely send a
message to a recipient and restrict her ability to decrypt it with a high degree
of flexibility. Smart [27] applied the same principle to access control. Paterson
[23] first employed the term workflow to describe this type of scheme.

Key escrow is an inherent property of identity-based cryptography, since it is
the TA that computes private keys. This may be a problem in some applications.
To solve this (and the issue of certificate management), Al-Riyami and Paterson
[2] propose certificateless public-key cryptography (CL-PKC). CL-PKC is a mod-
ification of identity-based techniques which requires each user to have a (possibly
unauthenticated) public key. Messages are encrypted using a combination of a
user’s public key and its identity.

Al-Riyami et al. [1] formalised the definitions of primitives and security mod-
els associated with cryptographic workflow and proposed an efficient escrow-free
encryption scheme supporting cryptographic workflow. The scheme is based on
the Boneh and Franklin IBE and it is proved secure under two security notions.
The first one, called receiver security, ensures that only users with an appropriate
set of credentials can decrypt the message. The second, called external security,
captures the escrow-freeness notion: it must be unfeasible for any colluding set
of TAs to decrypt the message. Unlike CL-PKC, however, escrow-freeness is
achieved using a classical public-key encryption layer which relies on public key
certification to achieve security.

Encryption schemes supporting cryptographic workflow are very close to
those associated with hidden credential systems [9, 19]. Both types of schemes
typically employ a secret sharing layer and an identity-based encryption layer,
although the goals in each case are different. In hidden credential systems one
seeks to keep the access control policy secret, whereas in workflow schemes this
is not the case. Secret sharing schemes are covered in [5, 21, 25].

A common feature of many schemes proposed for CL-PKC, cryptographic
workflow and hidden credentials is that they are based on the concept of multiple
encryption (or re-encryption). In multiple encryption, a ciphertext is created
by combining the results of several instances of an encryption algorithm with
different encryption keys. In the simplest case, where only two decryption keys
are involved, the objective is that even if the adversary is in possession of one
of those keys, she obtains no advantage. Recently, Dodis and Katz [16] have
addressed the chosen ciphertext security of multiple encryptions in the general
case, and have proposed generic constructions which are semantically secure.
Our constructions build on these results.

3



3 Building Blocks

3.1 Public-Key Encryption

A public-key encryption (PKE) scheme [14] is specified by three PT algorithms:

– GPKE(1κ): A PPT algorithm which takes as input 1κ and returns a secret key
SK and a public key PK as well as the descriptions of the message, randomness
and ciphertext spaces1.

– EPKE(m, PK): This is the PPT encryption algorithm, which on input of a mes-
sage m ∈MPKE(PK) and a public key PK, outputs a ciphertext c.

– DPKE(c, SK): This is the deterministic decryption algorithm. On input of a
ciphertext c and a private key SK this outputs a message m ∈MPKE(PK) or a
failure symbol ⊥.

Informally, the soundness of a PKE scheme requires that the decryption
algorithm recovers the correct plaintext with overwhelming probability, when
provided with a valid ciphertext and the correct decryption key.

The semantic security of a public-key scheme against adaptive chosen cipher-
text attacks is defined through the following indistinguishability game.

IND-CCA2
1. (SK, PK)← GPKE(1κ)
2. (s, m0, m1)← AO1

1 (PK)
3. b← {0, 1}
4. c∗ ← EPKE(mb, PK)
5. b′ ← AO2

2 (c∗, s)

AdvIND−CCA2
PKE (A) := |Pr[b′ = b]− 1/2|.

Here, O1 and O2 denote a decryption oracle with the restriction that, O2 cannot
be queried on c∗.

A PKE scheme is called IND-CCA2 secure if all PPT attackers have negligible
advantage as a function of the security parameter2.

3.2 Data Encapsulation Mechanism

A data encapsulation mechanism (DEM) is a one-time secret-key encryption
(SKE) scheme, where the symmetric key is used to encrypt a single message.
More formally a DEM/SKE is specified by three PT algorithms:

– GDEM(1κ): This is the probabilistic key generation algorithm which on input
of a security parameter 1κ outputs a key k ∈ KDEM(1κ).

1 These are denoted by MPKE(PK), RPKE(PK) and CPKE(PK) respectively. From now on we
assume that the (master) public key of various primitives in this paper includes these
as well as the security parameter.

2 This will be the general definition of security in the rest of this paper, once advantage
is defined.

4



– EDEM(m, k): This is the probabilistic encapsulation algorithm which on input
of a message m ∈ {0, 1}∗ and a key k ∈ KDEM(1κ), outputs a ciphertext c.

– DDEM(c, k): This is the deterministic decryption algorithm which on input of
a ciphertext c and a key k ∈ KDEM(1κ) outputs a message m ∈ {0, 1}∗ or a
failure symbol ⊥.

Such a scheme is called sound if DDEM(EDEM(m, k), k) = m. The Find-then-Guess
security of a DEM is defined through a game similar to the IND-CCA2 game for
a PKE scheme, with the difference that only a second stage attack is permitted:

FG-CCA
1. (s, m0, m1)← A1(1κ)
2. k← GDEM(1κ)
3. b← {0, 1}
4. c∗ ← EDEM(mb, k)
5. b′ ← AOD

2 (c∗, s)

AdvFG−CCA
DEM (A) := |Pr[b′ = b]− 1/2|.

In the above we require that m0 and m1 are of the same length. The oracle
OD denotes a decapsulation oracle subject to the rule that it cannot be queried
on c∗. We only need this weak definition of CCA security as the key used to
encrypt is randomly chosen after the message.

A secure DEM can be constructed using a one-time pad, where the key is
expanded using a pseudo-random generator and a one-time MAC is used to
provide message authenticity [14].

3.3 Identity-Based Encryption

An identity-based encryption (IBE) scheme [7] is specified by four polynomial
time algorithms:

– GIBE(1κ): A PPT algorithm which takes as input 1κ and returns the TA’s
master secret key Msk and a matching master public key Mpk. This algorithm
also outputs descriptions of the message, ciphertext and randomness spaces
of an IBE scheme, denoted by MIBE(Mpk), CIBE(Mpk) and RIBE(Mpk) respec-
tively. These are parameterised by the master public key Mpk and implicitly
by the security parameter κ.

– XIBE(ID, Msk): The PPT private key extraction algorithm which takes as
input Msk and ID ∈ {0, 1}∗, an identifier string for a user, and returns the
associated private key SID.

– EIBE(m, ID, Mpk): This is the PPT encryption algorithm. On input of a mes-
sage m ∈ MIBE(Mpk), an identifier ID and the master public key Mpk, this
algorithm outputs c ∈ CIBE(Mpk).

– DIBE(c, SID): This is the deterministic decryption algorithm. On input of a
ciphertext c and a private key SID this outputs a message m ∈ MIBE(Mpk) or
a failure symbol ⊥.

5



An IBE scheme is called sound if for all messages and user identities in the
appropriate message and identity spaces we have:

Pr

 (Msk, Mpk)← GIBE(1κ)
m = DIBE(c, SID) c← EIBE(m, ID, Mpk)

SID ← XIBE(ID, Msk)

 = 1.

The indistinguishability game in an attack model atk for an IBE scheme is:

IND-atk
1. (Msk, Mpk)← GIBE(1κ)
2. (s, m0, m1, ID∗)← AO1

1 (Mpk)
3. b← {0, 1}
4. c∗ ← EIBE(mb, ID∗, Mpk)
5. b′ ← AO2

2 (c∗, s)

AdvIND−atk
IBE (A) := |Pr[b′ = b]− 1/2|.

Here atk ∈ {CPA,CCA1,CCA2} denotes the attack model. These are defined as
usual by allowing the adversary to have access to various oracles in each stage: (1)
in CPA model: O1 = O2 = OX ; (2) in CCA1 model: O1 = {OX ,OD},O2 = OX ;
(3) in CCA2 model: O1 = O2 = {OX ,OD}. Here OX and OD denote extraction
and decryption oracles, subject to the rule that they cannot be queried on ID∗

and (c∗, ID∗) respectively.

3.4 Secret Sharing

We follow the approach in [5] for secret sharing over general access structures.

Definition 1. A collection P of subsets of a set P = {X1, . . . , Xn} is called a
monotone access structure on P if:

∀A ∈ P and ∀B ⊆ P,A ⊆ B ⇒ B ∈ P.

A set Q ⊆ P is called a qualifying subset of P if Q ∈ P.

The access structures considered in this paper are all monotone and non-
trivial i.e. P 6=Ø. Note that non-triviality implies P ∈ P.

A secret sharing scheme is defined as a pair of algorithms as follows:

– S(1κ, s,P): This is the probabilistic secret sharing algorithm which on input
of the security parameter 1κ, a string s and a (monotone) access structure
P, outputs a list of shares shr = (shr1, . . . , shrn) one for each element in
P = {X1, . . . , Xn} as well as some auxiliary information aux.

– S−1(shr, aux): This is the deterministic secret reconstruction algorithm. On
input of a list of shares shr and some auxiliary information aux, outputs a
secret s or a failure symbol ⊥.

6



A secret sharing scheme is sound if for all access structures P and strings
s ∈ {0, 1}∗ of polynomial length in κ, we have:

Pr


(shr, aux)← S(1κ, s,P)

s = S−1(shr′, aux) Q← P
Parse (Xi1 , . . . , Xik

)← Q
[shr′]j ← [shr]ij

, 1 ≤ j ≤ k

 = 1.

The level of security provided by the secret sharing scheme will influence the
overall security of our constructions. We consider both perfect and computational
(non-perfect) secret sharing schemes [21].

For perfect secret sharing we will not require a game-based security defini-
tion. When necessary, we use an information theoretical argument based on the
following definition of security.

Definition 2. (Perfect Secret Sharing) A secret sharing scheme provides perfect
secrecy if every non-qualifying subset of shares does not contain any information
about the secret (in the information-theoretic sense). Formally, for any non-
empty and non-qualifying set {i1, . . . , in} of an access structure P, and for every
two secrets sec0 and sec1, let (auxb, shrb)← S(secb,P), for b ∈ {0, 1}. Then, for
every possible share value shrij

, 1 ≤ j ≤ n and for every possible aux value

Pr[shrij = [shr0]ij ]=Pr[shrij = [shr1]ij ] and Pr[aux = aux0]=Pr[aux = aux1].

Note that, for perfect secret sharing schemes we do not have an asymptotic
definition of security, and therefore we drop the security parameter in the prim-
itive definition.

In perfect secret sharing schemes, the secret size constitutes a lower bound
on the individual size of shares. To reduce this lower bound, one must relax
the security definition and settle for polynomial-time indistinguishability. For
computational secret sharing, we shall use the following definitions of semantic
security: secret indistinguishability against selective share attacks (IND-SSA),
and against adaptive share attacks (IND-CSA).

IND-SSA
1. (s, s0, s1,P∗, i1, . . . , ik)← A1(1κ)
2. b← {0, 1}
3. (shr∗, aux∗)← S(1κ, sb,P∗)
4. b′ ← A2(aux∗, ([shr∗]ij

)k
j=1, s)

IND-CSA
1. (s, s0, s1,P∗)← A1(1κ)
2. b← {0, 1}
3. (shr∗, aux∗)← S(1κ, sb,P∗)
4. b′ ← AO

2 (aux∗, s)

AdvIND−atk
SS (A) := |Pr[b′ = b]− 1/2|.

Here atk ∈ {SSA, CSA}. In the SSA model, k ≤ n, and {i1, . . . , ik} must not
include a qualifying set of shares in P∗. In the CSA model,O is a share extraction
oracle subject to the condition that the adversary cannot extract a set of shares
corresponding to a qualifying set in P∗.

7



3.5 One-Time Signature

In our constructions we achieve chosen ciphertext security using an adaptation of
the technique by Canetti et al. [10] which is based on a one-time signature (OTS)
scheme. An OTS is a weak form of signature in which the signing/verification key
pair can only be used once. More specifically, an OTS is defined by a three-tuple
of PPT algorithms:

– GOTS(1κ): This is the key generation algorithm which, on input of the security
parameter, outputs a key pair (vk, sk).

– Sig(m, sk): This is the signature algorithm, which takes a message m and a
secret key sk, and returns a signature σ.

– Ver(m, σ, vk): This is the deterministic verification algorithm which, given a
message, a signature σ and a verification key returns either 0 (reject) or 1
(accept).

The strong unforgeability security of an OTS is defined through the following
game in which any PPT adversary must have negligible advantage.

UF
1. (vk, sk)← GOTS(1κ)
2. (m, s)← A1(vk)
3. σ ← Sig(sk, m)
4. (m′, σ′)← A2(s, σ)

AdvUFOTS(A) := Pr[(σ′, m′) 6= (m, σ) ∧ Ver(m′, σ′, vk) = 1].

Note that this unforgeability definition implies that it must be unfeasible
to create a new valid signature for a previously signed message. OTS schemes
meeting this security definition can be constructed from any one-way function.

4 KEM Primitives for Cryptographic Workflow

4.1 Access Structures, Policies and Credentials

We first explain how we treat access structures in our constructions. We follow
an approach similar to that in [1], but we briefly clarify this point stating our
assumptions on their meaning in real life.

Suppose that we would like to encrypt a message such that only British
nationals can read. To achieve this, we need a TA who issues credentials only
to those who possess British nationality. For example, the Home Office would
be the obvious TA to issue British Nationality certificates. However, it could be
the case that two or more TAs are able to issue such a credential. For instance,
the user’s employer could, after checking the appropriate documentation, grant
her a similar credential. We therefore need to specify precisely which authority
we are trusting. The need for this is even more apparent when the policy is
more complex. Consider the policy English ∧ English ∧ Adult, where the first

8



two terms refer to nationality and language with credentials issued by the Home
Office and the British Council, respectively. It could also be the case that the
same authority issues credentials on age and nationality: it is up to the authority
to interpret the semantics.

For this reason, we view a policy term as a pair (ID, Mpk) where ID ∈ {0, 1}∗
is an identifier for the policy term and Mpk is the public key of the authority
issuing the credential described in ID. We denote by m the number of distinct
TAs present in the system, by n the number of distinct policy terms in an access
structure and by k the number of distinct policy terms in a qualifying set.

4.2 KEMs Supporting Cryptographic Workflow

A key encapsulation mechanism supporting cryptographic workflow (WF-KEM)
is defined as a four-tuple of polynomial time (PT) algorithms as follows:

– GWF−KEM(1κ,m): This is the probabilistic authority key generation algorithm
which on input of a security parameter 1κ outputs m authority secret/public
key pairs ((Mski, Mpki))

m
i=1, as well as the descriptions of the key, randomness

and ciphertext spaces. These are denoted by KWF−KEM, RWF−KEM and CWF−KEM,
respectively.

– XWF−KEM(X, Msk): This is the probabilistic credential extraction algorithm
which on input of a policy term X, consisting of a policy identifier/authority
public key pair (ID, Mpk), and the secret key Msk corresponding to Mpk, out-
puts a pair (crd, X) which we call a credential.

– EWF−KEM(P): This is the probabilistic key encapsulation algorithm which on
input of an access structure P on n policy terms P = {X1, . . . , Xn} outputs
a pair (k, c) where k ∈ KWF−KEM and c is an encapsulation of k.

– DWF−KEM(c, crd): This is the deterministic decapsulation algorithm which on
input of an encapsulation c and a list of k credentials crd, outputs a key or
a failure symbol ⊥.

A WF-KEM scheme is called sound if for every policy P on n terms with
m,n ∈ N we have:

Pr


((Mski, Mpki))

m
i=1 ← GWF−KEM(1κ,m)

(k, c)← EWF−KEM(P)
k = DWF−KEM(c, crd) Q← P

Parse (Xi1 , . . . , Xik
)← Q

[crd]j ← XWF−KEM(Xij
, Mskij

), 1 ≤ j ≤ k

=1.

The indistinguishability games against chosen credential and ciphertext at-
tacks for a WF-KEM are defined as follows. As in [1] we call this notion recipient
security.

9



(m,n)-IND-atk
1. ((Mski, Mpki))

m
i=1 ← GWF−KEM(1κ,m)

2. (s,P∗)← AO1
1 (Mpk1, . . . , Mpkm)

3. k0 ← KWF−KEM

4. (k1, c∗)← EWF−KEM(P∗)
5. b← {0, 1}
6. b′ ← AO2

2 (kb, c∗, s)

Adv(m,n)−IND−atk
WF−KEM (A) := |Pr[b′ = b]− 1/2|.

Here P∗ must be on n terms; O1 and O2 contain credential extraction and
decapsulation oracles subject to the following restrictions:

– The set of queries that the adversary makes to the credential extraction
oracle must not form a qualifying set of P∗.

– The adversary cannot query the decapsulation oracle on c∗.

We distinguish adaptive (atk = CCCA) and non-adaptive (atk = CCCA−)
attacks. The difference is that in non-adaptive attacks, the adversary is not
allowed to query the extraction oracle on any X = (ID, Mpk) with X ∈ P ∗ in the
second stage of the game.

A WF-KEM scheme is called IND-CCCA (IND-CCCA−) secure if all PPT
attackers have negligible advantage in the above game as a function of the secu-
rity parameter.

Note that WF-KEMs are intrinsically multi-user, as anyone who is able to
obtain a qualifying set of credentials will be capable of decapsulating. However,
in most practical cases this probably will not be the case, as the credential policy
term semantics will include the intended recipient’s identity. This is related to
another important characteristic of WF-KEMs. Any colluding set of TAs who can
produce a qualifying set of credentials are also able to invert the encapsulation,
and this means that a WF-KEM is not escrow-free.

4.3 KEMs Supporting Escrow-Free Cryptographic Workflow

The notion of a KEM supporting escrow-free cryptographic workflow (EFWF-
KEM) implies modifying the previous primitive to remove recipient ambiguity.
We follow an approach similar to [1] and [2] whereby the primitive is extended
to include a recipient public and private key pair.

EFWF-KEMs are defined through five PT algorithms. Four of these algo-
rithms are analogous to those defined for WF-KEMs. In addition to these we
add an extra user key generation algorithm:

– GEFWF−KEM(1κ,m): This is the probabilistic authority key generation algorithm
which on input of a security parameter 1κ outputs m authority secret/public
key pairs ((Mski, Mpki))

m
i=1, as well as the descriptions of the key, random-

ness and ciphertext spaces. These are denoted by KEFWF−KEM, REFWF−KEM and
CEFWF−KEM, respectively.

10



– GU
EFWF−KEM(1

κ): This is the probabilistic user key generation algorithm which
on input of the security parameter 1κ outputs a private/public key pair
(SK, PK).

– XEFWF−KEM(X, Msk): This is the probabilistic credential extraction algorithm
which on input of a policy term X, consisting of a policy identifier/authority
public key pair (ID, Mpk), and the secret key Msk corresponding to Mpk, out-
puts a pair (crd, X) which we call a credential.

– EEFWF−KEM(P, PK): This is the probabilistic key encapsulation algorithm which
on input of an access structure P on n policy terms P = {X1, . . . , Xn} and
a public key PK, outputs a pair (k, c) where k ∈ KEFWF−KEM and c is an
encapsulation of k.

– DEFWF−KEM(c, crd, SK): The deterministic decapsulation algorithm which on
input of an encapsulation c, a list of k credentials crd, and a secret key SK
outputs a key or a failure symbol ⊥.

An EFWF-KEM scheme is called sound if for every policy P on n terms with
m,n ∈ N we have:

Pr


((Mski, Mpki))

m
i=1 ← GEFWF−KEM(1κ,m)

(SK, PK)← GU
EFWF−KEM(1

κ)
k = DEFWF−KEM(c, crd, SK) (k, c)← EEFWF−KEM(P, PK)

Q← P; Parse (Xi1 , . . . , Xik
)← Q

[crd]j ← XEFWF−KEM(Xij
, Mskij

), 1 ≤ j ≤ k

=1.

Recipient security for an EFWF-KEM is defined through a game very similar
to that presented for a WF-KEM. The only difference is that here the adversary
is provided with a user key pair which is generated at the beginning of the
game. This captures the notion that even the user who knows the private key
must possess a qualifying set of credentials to decapsulate. The game is specified
below on the left. Again, P∗ must be on at most n terms; the O1 and O2 oracles
are exactly as in the previous game for adaptive (atk = CCCA) and non-adaptive
chosen credential attacks (atk = CCCA−).

(m,n)-IND-atk
1. ((Mski, Mpki))

m
i=1 ← GEFWF−KEM(1κ)

2. (SK, PK)← GU
EFWF−KEM(1

κ)
3. (s,P∗)← AO1

1 ((Mpki)
m
i=1, SK, PK)

4. k0 ← KEFWF−KEM

5. (k1, c∗)← EEFWF−KEM(P∗, PK)
6. b← {0, 1}
7. b′ ← AO2

2 (kb, c∗, s)

(m,n)-IND-CCA2
1. ((Mski, Mpki))

m
i=1 ← GEFWF−KEM(1κ)

2. (SK, PK)← GU
EFWF−KEM(1

κ)
3. (s,P∗)← AO1

1 ((Mski, Mpki)
m
i=1, PK)

4. k0 ← KEFWF−KEM

5. (k1, c∗)← EEFWF−KEM(P∗, PK)
6. b← {0, 1}
7. b′ ← AO2

2 (kb, c∗, s)

To capture escrow-freeness, we follow the approach in [1] and define external
security through the indistinguishability game shown above on the right. Note
that the adversary controls everything except the user secret key. Here P∗ must
be on n terms; O1 and O2 denote a decapsulation oracle subject to the restriction

11



that the adversary cannot query it on c∗. An EFWF-KEM scheme is called
IND-CCCA (IND-CCCA−) and IND-CCA2 secure if all PPT attackers have
negligible advantage in the above games as a function of the security parameter,
where advantages are defined as

Adv(m,n)−IND−atk
EFWF−KEM (A) := |Pr[b′ = b]− 1/2|,

Adv(m,n)−IND−CCA2
EFWF−KEM (A) := |Pr[b′ = b]− 1/2|.

4.4 Hybrid Encryption Supporting Cryptographic Workflow

The concept and security model of an encryption scheme supporting escrow-
free cryptographic workflow (EFWF-ENC), as proposed in [1], are defined in a
very similar manner to an EFWF-KEM. We refer the reader to Appendix A for
the details. Using an EFWF-KEM and a standard DEM with compatible key
spaces, one can construct a hybrid encryption scheme supporting escrow-free
cryptographic workflow in the usual way:

EEFWF−ENC(m,P, PK)
– (k, c̄)← EEFWF−KEM(P, PK)
– c← EDEM(m, k)
– c← (c̄, c)
– Return c

DEFWF−ENC(c, crd, SK)
– (c̄, c)← c
– k← DEFWF−KEM(c̄, crd, SK)
– If k =⊥ then return ⊥
– m← DDEM(c, k)
– Return m

In Appendix B we also prove the following theorem relating the security of
this hybrid encryption scheme to that of its EFWF-KEM and DEM components.
We use a technique similar to that in [14]. A similar result holds for non-escrow
free primitives.

Theorem 1. The hybrid EFWF-ENC scheme as constructed above is secure in
the recipient and external security models if the underlying EFWF-KEM and
DEM are secure. More precisely, for atk ∈ {CCCA, CCCA−} we have:

Adv(m,n)−IND−atk
EFWF−ENC (A) ≤ 2 ·Adv(m,n)−IND−atk

EFWF−KEM (B1) + AdvFG−CCA
DEM (B2),

Adv(m,n)−IND−CCA2
EFWF−ENC (A) ≤ 2 ·Adv(m,n)−IND−CCA2

EFWF−KEM (B1) + AdvFG−CCA
DEM (B2).

5 Generic Constructions

5.1 A WF-KEM Construction

We first present a construction of a WF-KEM using an IBE, a secret sharing
scheme and a one-time signature scheme.

The authority key generation and credential extraction algorithms of the
resulting WF-KEM are direct adaptations of the master key generation and
secret key extraction algorithms of the underlying IBE:

12



– GWF−KEM(1κ,m): Runs the GIBE(1κ) algorithm m times obtaining (Mpk, Msk).
The key space is KWF−KEM = {0, 1}κ.

– XWF−KEM(X, Msk): Parses X to get (ID, Mpk), extracts crd = XIBE(ID, Msk) and
returns (crd, X).

The encapsulation and decapsulation algorithms are as follows.

EWF−KEM(P)
– (vk, sk)← GOTS(1κ)
– k← KWF−KEM

– (shr, aux)← S(1κ, k,P)
– For j = 1, . . . , n do

(ID, Mpk)← Xj

cj ← EIBE([shr]j ||vk, ID, Mpk)
– c← (c1, . . . , cn, vk, aux,P)
– σ ← Sig(c, sk)
– Return (k, c||σ)

DWF−KEM(c||σ, crd)
– (c1, . . . , cn, vk, aux,P)← c
– If Ver(c, σ, vk) 6= 1 return ⊥
– For j = 1, . . . , k do

(crd, X)← [crd]j
Find ci corresponding to X
([shr]j ||vkj)← DIBE(ci, crd)
If ([shr]j ||vkj) =⊥ return ⊥
If vkj 6= vk return ⊥

– k← S−1(shr, aux)
– If k =⊥ return ⊥
– Return k

Note that, similarly to what is done in [16] for multiple encryption in the
public-key setting, one could use an IBE primitive modified to include non-
malleable public labels to bind vk to each individual cj . We chose not to do
this so that we could base our construction on the more standard IBE primitive
and security model. The security of the above construction is captured via the
following theorem which is proved in Appendix C.

Theorem 2. The above construction is (m,n)-IND-CCCA secure if the under-
lying IBE is IND-CCA2 secure, the OTS is UF secure, and the secret sharing
scheme is information theoretically secure. More precisely we have:

AdvIND−CCCA
WF−KEM (A) ≤ AdvUFOTS(B1) + 2mn2 ·AdvIND−CCA2

IBE (B2).

The best result we obtain in the standard model for computational secret
sharing schemes is the following. In Section 6 we explain why this is the case.

Theorem 3. The above construction is (m,n)-IND-CCCA− secure if the un-
derlying IBE is IND-CCA2 secure, the OTS is UF secure, and the secret sharing
scheme is IND-SSA secure. More precisely we have:

AdvIND−CCCA−

WF−KEM (A) ≤ AdvUFOTS(B1) + 2mn2 ·AdvIND−CCA2
IBE (B2) + AdvIND−SSA

SS (B3).

Proof. (Sketch) The proof is very similar to the one included in Appendix C
for Theorem 2. However, in this case, we know exactly which credentials the
adversary has extracted during the first stage, and it is unable to extract cre-
dentials related to the challenge in stage two. This makes it possible to show
that, if the IBE scheme is IND-CCA2 secure, the adversary’s advantage changes
negligibly if we change the ciphertext components to which the adversary has

13



no access by encrypting random bit strings of appropriate length. Once in this
game environment, the adversary’s advantage can then be used to directly win
the IND-SSA game against the secret sharing scheme. The simulator selects the
shares that the adversary will be recovering from the external IND-SSA game
when it is about to construct the challenge. Since all the other ciphertext com-
ponents contain random data, any advantage the adversary obtains must come
from attacking the secret sharing scheme. �

5.2 An EFWF-KEM Construction

We now extend the previous generic construction to achieve escrow-freeness.
We build an EFWF-KEM using an additional component: a PKE scheme. The
authority key generation and credential extraction algorithms are as in the WF-
KEM construction. The user key generation algorithm is that of the underlying
PKE. Finally, the encapsulation and decapsulation algorithms are:

EEFWF−KEM(P, PK)
– (vk, sk)← GOTS(1κ)
– k1, k2 ← KEFWF−KEM

– (shr, aux)← S(1κ, k1,P)
– c̄← EPKE(k2||vk, PK)
– For j = 1, . . . , n do

(ID, Mpk)← Xj

cj ← EIBE([shr]j ||vk, ID, Mpk)
– c← (c̄, c1, . . . , cn, vk, aux,P)
– σ ← Sig(c, sk)
– Return (k1 ⊕ k2, c||σ)

DEFWF−KEM(c||σ, crd, SK)
– (c̄, c1, . . . , cn, vk, aux,P)← c
– If Ver(c, σ, vk) 6= 1 return ⊥
– For j = 1, . . . , k do

(crd, X)← [crd]j
Find ci corresponding to X
([shr]j ||vkj)← DIBE(ci, crd)
If ([shr]j ||vkj) =⊥ return ⊥
If vkj 6= vk return ⊥

– k1 ← S−1(shr, aux)
– k2 ← DPKE(c̄, SK)
– If k1 =⊥ or k2 =⊥ return ⊥
– Return k1 ⊕ k2

Again we have two security results which depend on the security provided
by the underlying secret sharing scheme. The following theorem is proved in
Appendix D.

Theorem 4. The above EFWF-KEM construction is (m,n)-IND-CCCA and
(m,n)-IND-CCA2 secure if the underlying PKE and IBE are IND-CCA2 secure,
the OTS is UF secure, and the secret sharing scheme is information-theoretically
secure. More precisely we have:

AdvIND−CCCA
EFWF−KEM(A) ≤ AdvUFOTS(B1) + 2mn2 ·AdvIND−CCA2

IBE (B2),

AdvIND−CCA2
EFWF−KEM(A) ≤ AdvUFOTS(B1) + 2AdvIND−CCA2

PKE (B2).

Theorem 5. The above EFWF-KEM construction is (m,n)-IND-CCCA− and
(m,n)-IND-CCA2 secure if the underlying PKE is IND-CCA2 secure, the un-
derlying IBE is IND-CCA2 secure, the OTS is UF secure, and the secret sharing
scheme is IND-SSA secure. More precisely we have:

AdvIND−CCCA−

EFWF−KEM (A) ≤ AdvUFOTS(B1) + 2mn2 ·AdvIND−CCA2
IBE (B2) + AdvIND−SSA

SS (B3),

14



AdvIND−CCA2
EFWF−KEM(A) ≤ AdvUFOTS(B1) + 2AdvIND−CCA2

PKE (B2).

Proof. (Sketch) The only difference introduced by allowing for a computational
secret sharing scheme resides on the credential security result, as recipient secu-
rity is guaranteed by the OTS and PKE schemes. The same argument presented
for the WF-KEM construction in Theorem 3 applies here. �

6 Discussion

The main contribution in this work is the fact that, through the generic con-
structions that we propose, and using underlying components which achieve the
required levels of security in the standard model, we obtain the first WF-KEM
and EFWF-KEM schemes provably secure in the standard model.

There are, however, other interesting aspects to the results presented in the
previous sections, which we now discuss.

Relation with the original construction in [1] : The concrete EFWF-KEM
scheme in [1] is originally defined as a full encryption scheme, although internally
it is structured as a KEM-DEM construction. The basic building block in the
KEM part is a weak version of the IBE scheme by Boneh and Franklin [7].
Chosen ciphertext security is achieved globally through a transformation akin
to that used in the KEM constructions in [15], which is valid in the random
oracle model. We require fully chosen ciphertext secure individual components,
and the way we achieve global CCA2 security in the standard model comes from
the IBE to PKE transformation in [10], adapted to multiple encryption in [16].

Our constructions do inherit the combination of a secret sharing scheme, an
IBE scheme and a PKE scheme. However, if we allow for computational secret
sharing, then we can only achieve IND-CCCA− security. This is true even if the
underlying secret sharing scheme tolerates adaptive chosen share attacks. This
is the main difference between the security of our construction and that in [1].
Intuitively this can be explained as follows. Using the RO heuristic one can per-
form a late binding between challenge share values and the challenge ciphertext.
This makes it possible to construct the challenge without explicitly knowing the
shares, and directly map the adversary’s credential extraction queries to external
calls to a share extraction oracle.

The standard model does not allow the same proof strategy, so we cannot
prove the security of our constructions against adaptive credential extracting
attackers unless we adopt perfect secret sharing. This will only be an issue in
terms of the overall efficiency of the constructions, which we discuss below.

Finally, it is interesting to note the very effective application of the random-
ness reuse paradigm [4] in [1] to achieve impressive computational and ciphertext
length savings.

Relation with multiple encryption : This work builds on the general results
by Dodis and Katz [16] for chosen ciphertext security of multiple encryption.

15



However our constructions require that we extend these results in three differ-
ent aspects: (1) to consider adaptive user corruption attacks, (2) to consider
generalised access structures and (3) we require a mix of identity-based and
public-key encryption techniques. Our results imply that equivalent extensions
can be derived in the context of generic multiple encryption.

Relation with certificateless encryption : We will not explore this con-
nection in detail due to space constraints. However, we do note the similarity
between the security models of a CL-KEM scheme [6] and the EFWF-KEM se-
curity models introduced. This similarity implies that a simplified version of our
construction considering only one credential and a single authority can be seen
as a CL-KEM scheme which can be proved IND-CCA2 secure against Type I-
and Type II adversaries [6].

Efficiency considerations : We analyse the efficiency of our constructions by
looking at the computational load and ciphertext length that they produce. A
high level analysis shows that the computational weight associated with encap-
sulation and decapsulation is that of sharing the secret key, encrypting the n
shares using the IBE scheme, possibly encrypting another secret key with the
PKE scheme, and generating a one-time signature. The corresponding cipher-
texts include the public sharing information, n IBE ciphertexts, possibly one
PKE ciphertext, the OTS verification key and a signature string.

An obvious way to optimise the end-result is to choose underlying compo-
nents which are themselves efficient. For example, adopting the IBE scheme of
Sakai and Kasahara [11] one obtains a solution which is computationally more
efficient than the original construction in [1]. However, there are three techniques
which can further improve the efficiency of our constructions.

The enhanced IBE to PKE transformation proposed in [8], which replaces
the OTS component by a MAC and a weak form of commitment has also been
adapted to achieve chosen ciphertext security in [16] for a weak form of multiple
encryption. It turns out that this weak form of multiple encryption is sufficient
to allow an extension to WF-KEMs similar to what we achieved with the OTS-
based technique. We chose not to include these results in this paper as they lead
to more involved proofs and they are less intuitive.

The randomness reuse paradigm [4] can also be applied in this context, al-
though to the best of our knowledge there is currently no IBE scheme which is
IND-CCA2 secure in the standard model, and which allows reuse of random-
ness. This, in itself, is an interesting open problem. However, if we settle for the
fully secure version of the Boneh and Franklin IBE scheme, then we can obtain
bandwidth and computational (point multiplication) savings by re-using the first
component in all IBE ciphertexts. Further improvements may be attainable by
re-using the same randomness in the PKE component as in [1].

Our constructions can be easily adapted to work with IBE and PKE schemes
extended to take labels as additional parameters, and bind them non-malleably
to the ciphertext. This adaptation reduces to using the OTS verification key as
the label parameter. Potential benefits of this would arise from labelled IBE or

16



PKE schemes which achieve this functionality more efficiently than the direct
non-malleable labelling that we adopted in our constructions.

As a final note on efficiency, we look at the potential benefits of using a com-
putational secret sharing scheme rather than a perfect secret sharing scheme. The
main advantage in this is to obtain share sizes which are smaller than the shared
secret, which is important when the secret is large. For example, the scheme in
[21] uses a perfect secret sharing scheme as an underlying component to split an
auxiliary secret key. This key is then used to encrypt the results of partitioning
the (large) secret using an information dispersal algorithm. This provides share
sizes which asymptotically approach the optimal |S|/n by detaching the size of
the (large) secret from the input to the perfect secret sharing scheme. In our
case this is an invalid argument, as the secrets we share are themselves secret
keys.

7 Acknowledgements

The authors would like to thank Nigel Smart for his helpful comments. Part of
this work was carried out when the second author visited University of Minho
in Portugal, funded by the European Commission through the IST Programme
under Contract IST-2002-507932 ECRYPT.

References

1. S.S. Al-Riyami, J. Malone-Lee and N.P. Smart. Escrow-Free Encryption Sup-
porting Cryptographic Workflow. International Journal of Information Security,
Volume 5, Number 4 / October, 2006

2. S.S. Al-Riyami and K.G. Paterson. Certificateless Public-Key Cryptography. Ad-
vances in Cryptology - ASIACRYPT 2003, LNCS 2894:452–473. Springer-Verlag,
2003.

3. M. Bellare, A. Boldyreva and S. Micali. Public-Key Encryption in a Multi-User Set-
ting: Security Proofs and Improvements. Advances in Cryptology - EUROCRYPT
2000, LNCS 1807:259–274. Springer-Verlag, 2000.

4. M. Bellare, A. Boldyreva and J. Staddon. Randomness Re-Use in Multi-Recipient
Encryption Schemeas. Public Key Cryptography - PKC 2003, LNCS 2567:85–99.
Springer-Verlag, 2003.

5. J. Benaloh and J. Leichter. Generalized Secret Sharing and Monotone Functions.
Advances in Cryptology - CRYPTO ’88, LNCS 403:27–35. Springer-Verlag, 1990.

6. K. Bentahar, P. Farshim, J. Malone-Lee and N.P. Smart. Generic Constructions
of Identity-Based and Certificateless KEMs. Cryptology ePrint Archive, Report
2005/058, 2005.

7. D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing.
SIAM Journal on Computing, 32:586–615. 2003.

8. D. Boneh and J. Katz. Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity-Based Encryption. Proceedings of RSA-CT ’05, LNCS 3376:87–103,
Springer-Verlag, 2005.

17



9. R.W. Bradshaw, J.E. Holt and K.E. Seamons. Concealing Complex Policies with
Hidden Credentials. 11th ACM Conference on Computer and Communications
Security, 2004.

10. R. Canetti, S. Halevi and J. Katz. Chosen-Ciphertext Security from Identity-Based
Encryption. Advances in Cryptology - EUROCRYPT ’04, LNCS 3027:207–222.
Springer-Verlag, 2004.

11. L. Chen and Z. Cheng. Security Proof of Sakai-Kasahara’s Identity-Based En-
cryption Scheme. Cryptography and Coding, LNCS 3796:442–459. Springer-Verlag,
2005.

12. L. Chen and K. Harrison. Multiple Trusted Authorities in Identifier Based Cryp-
tography from Pairings on Elliptic Curves. Technical Report, HPL-2003-48, HP
Laboratories, 2003.

13. L. Chen, K. Harrison, D. Soldera and N.P. Smart. Applications of Multiple Trusted
Authorities in Pairing Based Cryptosystems. Proceedings InfraSec 2002, LNCS
2437:260–275. Springer-Verlag, 2002.

14. R. Cramer and V. Shoup. A Practical Public-Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. Advances in Cryptology - CRYPTO
’98, LNCS 1462:13–25. Springer-Verlag, 1998.

15. A.W. Dent. A Designer’s Guide to KEMs. Cryptography and Coding, LNCS
2898:133–151. Springer-Verlag, 2003.

16. Y. Dodis and J. Katz. Chosen-Ciphertext Security of Multiple Encryption. Theory
of Cryptography - TCC 2005, LNCS 3378:188–209. Springer-Verlag, 2005.

17. C. Gentry. Practical identity-based encryption without random oracles. Advances
in Cryptology - EUROCRYPT 2006, LNCS 4004:445–464. Springer-Verlag, 2006.

18. J. Herranz and D. Hofheinz and E. Kiltz. KEM/DEM: Necessary and Sufficient
Conditions for Secure Hybrid Encryption. Cryptology ePrint Archive, Report
2006/265. 2006.

19. J.E. Holt, R.W. Bradshaw, K.E. Seamons and H. Orman. Hidden Credentials. 2nd
ACM Workshop on Privacy in the Electronic Society, pp. 1–8, 2003.

20. E. Kiltz. Chosen-Ciphertext Secure Identity-Based Encryption in the Standard
Model with short Ciphertexts. Cryptology ePrint Archive, Report 2006/122, 2006.

21. H. Krawczyk. Secret Sharing Made Short. Advances in Cryptology - CRYPTO ’93
, LNCS 0773:136–146. Springer-Verlag, 1994.

22. W. Nagao, Y. Manabe and T. Okamoto. On the Equivalence of Several Security
Notions of Key Encapsulation Mechanism. Cryptology ePrint Archive, Report
2006/268. 2006.

23. K.G. Paterson. Cryptography from Pairings: A Snapshot of Current Research.
Information Security Technical Report, 7:41–54, 2002.

24. R. Sakai and M. Kasahara. ID-Based Cryptosystems with Pairing on Elliptic
Curve. 2003 Symposium on Cryptography and Information Security – SCIS’2003.
2003.

25. A. Shamir. How to Share a Secret. Communications of the ACM, 22:612–613,
1979.

26. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. Proceedings of
CRYPTO ’84 on Advances in Cryptology, LNCS 196:47–53. Springer-Verlag, 1985.

27. N.P. Smart. Access Control Using Pairing Based Cryptography. Topics in Cryp-
tology - CT-RSA 2003, LNCS 2612:111–121. Springer-Verlag, 2003.

28. B.R. Waters. Efficient Identity-Based Encryption Without Random Oracles. Ad-
vances in Cryptology EUROCRYPT 2005, LNCS 3494:114–127. Springer-Verlag,
2005.

18



Appendix A – Encryption Schemes Supporting
Escrow-Free Cryptographic Workflow

Following [1], an encryption scheme supporting escrow-free cryptographic work-
flow (EFWF-ENC) is defined via five PT algorithms:

– GEFWF−ENC(1κ,m): This is the probabilistic authority key generation algorithm
which on input of a security parameter 1κ and an integer m outputs an m-
tuple ((Msk1, Mpk1), . . . , (Mskm, Mpkm)) of authority secret and public keys.

– GU
EFWF−ENC(1

κ): This is the probabilistic user key generation algorithm which
on input of a security parameter 1κ outputs a secret/public key pair (SK, PK).

– XEFWF−ENC(X, Msk): This is the probabilistic credential extraction algorithm
which on input of a policy term X, consisting of a policy identifier/authority
public key pair (ID, Mpk), and the secret key Msk corresponding to Mpk, out-
puts the pair (crd, X) which we call a credential.

– EEFWF−ENC(m,P, PK): This is the probabilistic encryption algorithm which on
input of a message m, an access structure P and a public key PK, outputs a
ciphertext c.

– DEFWF−ENC(c, crd, SK): The deterministic decryption algorithm which on input
of a ciphertext c, a list of credentials crd and a secret key SK, outputs a
message m or a failure symbol ⊥.

An EFWF-ENC scheme is sound if for every policy P on n terms with
m,n ∈ N and every message m we have:

Pr


((Mski, Mpki))

m
i=1 ← GEFWF−ENC(1κ,m)

(SK, PK)← GU
EFWF−ENC(1

κ)
m = DEFWF−ENC(c, crd, SK) c← EEFWF−ENC(m,P, PK)

Q← P; Parse (Xi1 , . . . , Xik
)← Q

[crd]j ← XEFWF−ENC(Xij , Mskij ), 1 ≤ j ≤ k

=1.

The recipient security model is defined below. Here, P∗ must be on n terms,
andO1 andO2 denote credential extraction and decryption oracles subject to the
following restrictions. In the CCCA model the set of queries that the adversary
makes to the credential extraction oracle should not form a qualifying subset of
P ∗. In the CCCA− model there is the additional restriction that the adversary
cannot call the extraction oracle on any X = (ID, Mpk) with X ∈ P ∗ in the second
stage of the game. Also, the adversary cannot query the decryption oracle on c∗.

(m,n)-IND-atk
1. ((Mski, Mpki))

m
i=1 ← GEFWF−ENC(1κ,m)

2. (SK, PK)← GU
EFWF−ENC(1

κ)
3. (s, m0, m1,P∗)← AO1

1 ((Mpki)
m
i=1, SK, PK)

4. b← {0, 1}
5. c∗ ← EEFWF−ENC(mb,P∗, PK)
6. b′ ← AO2

2 (c∗, s)

Adv(m,n)−IND−atk
EFWF−ENC (A) := |Pr[b′ = b]− 1/2|.

19



Escrow-freeness, or external security, is captured via the game below. Here,
P∗ must be on n terms, and O1 and O2 denote a decryption oracle subject to
the restriction that the adversary cannot query it on c∗.

(m,n)-IND-CCA2
1. ((Mski, Mpki))

m
i=1 ← GEFWF−ENC(1κ,m)

2. (SK, PK)← GU
EFWF−ENC(1

κ)
3. (s, m0, m1,P∗)←AO1

1 ((Mski, Mpki)
m
i=1, PK)

4. b← {0, 1}
5. c∗ ← EEFWF−ENC(mb,P∗, PK)
6. b′ ← AO2

2 (c∗, s)

Adv(m,n)−IND−CCA2
EFWF−ENC (A) := |Pr[b′ = b]− 1/2|.

Appendix B – Proof of Theorem 1

Proof. The proof is very similar to that in [6]. We give the details for com-
pleteness. It is done concurrently for the attack model atk, which is either
IND-CCCA2, IND-CCCA1 or IND-CCA2, through a sequence Game0, Game1 and
Game2 of modified attack games.

We fix some notation that we will use throughout. Let c∗ = (c̄∗, c∗) be
the challenge ciphertext presented to A by its challenge encryption oracle –
the oracle that encrypts either m0 or m1 according to a bit b. Let k∗ denote
the symmetric key used by the challenge encryption oracle in the generation
of the challenge ciphertext, or alternatively, the decapsulation of c̄∗ using the
credentials associated to P∗ – the policy chosen by the adversary on which it
wishes to be challenged – and the public key PK. For any i = 0, 1, 2, we let Si be
the event that b′ = b in game Gamei, where b is the bit chosen by A’s challenge
encryption oracle. This probability is taken over the random choices of A and
those of A’s oracles.

Let Game0 be the genuine attack game played by A. By definition we have

|Pr[S0]− 1/2| = AdvatkEFWF−ENC(A).

Game0 is now modified so that whenever (c̄∗, c) is presented to the decryption
oracle after the invocation of the challenge encryption oracle, then the decryption
oracle does not use the genuine decryption procedure for the hybrid scheme,
instead it uses the key k∗ to decapsulate c and returns the result to the adversary.

This modification to Game0 gives us the game Game1. Games Game0 and Game1

are identical – under the soundness condition – and so Pr[S1] = Pr[S0]3.
We now modify Game1 by replacing k∗ with a random key k′. With this

modification we have the game Game2. The result then follows from the following
two lemmas. �

3 We may weaken the soundness definition to allow a negligible failure in decryption,
which results in a negligible difference between Game0 and Game1.

20



Lemma 1. There is a PPT algorithm B1, whose running time is essentially the
same as that of A, such that

|Pr[S2]− Pr[S1]| = 2AdvatkEFWF−KEM(B1).

Proof. To prove this we demonstrate how to construct an adversary B1 of the
KEM to violate the assumed credential or external security. Adversary B1 is
constructed by running adversary A and responding to its queries as follows.

– When A calls any oracle, bar its decryption or challenge encryption ora-
cles, then B1 simply relays these queries to its own equivalent oracle in the
corresponding security game.

– To respond to A’s decryption oracle query on (c̄, c) before A has queried
its challenge encryption oracle, B1 proceeds as follows. It first obtains k by
calling its own decapsulation oracle with c̄. If k =⊥ then B1 replies to A
with ⊥. Otherwise it proceeds to use k to decrypt c and relays the result to
A.

– When A calls its challenge encryption oracle with policy P∗ and messages
(m0, m1), B1 first calls its own challenge encryption oracle with P∗ to obtain
(k†, c̄∗), where k† is either a random key or the proper key encapsulated
in c̄∗. It then chooses a bit d at random and computes c∗ ← EDEM(md, k†).
Finally, it responds to A with c∗ ← (c̄∗, c∗).

– To respond to A’s decryption oracle query on (c̄, c) after A has queried its
challenge encryption oracle, B1 proceeds as follows. It first obtains k by
calling its own decapsulation oracle with c̄. If k =⊥ then B1 replies to A
with ⊥. Otherwise it proceeds to use k to decrypt c and relays the result to
A.

– In the particular case where A’s query is of the form (c̄∗, c), B1 uses k†

to decrypt c and relays the result to A. Note that k† is the key used in
encryption.

At the end of the simulation, A outputs a bit d′. If d′ = d, B1 outputs 1, otherwise
it outputs 0.

Let b be the internal bit of B1’s challenge oracle which B1 seeks to determine
and let b′ be the bit output by B1. By construction we see that when b = 1,
so k′ is the key encapsulated within c∗, A is run exactly as it would be run in
Game1. This means that

Pr[S1] = Pr[d′ = d|b = 1] = Pr[b′ = 1|b = 1]

where d is A’s challenge bit and d′ is A’s guess. Also, when b = 0, so a random
k′ is used in the generation of the challenge ciphertext, A is run exactly as it
would be in Game2. This means that

Pr[S2] = Pr[d′ = d|b = 0] = Pr[b′ = 1|b = 0].

The result follows from the above two equations and the definitions of security
for EFWF-KEMs when one observes that

AdvatkEFWF−KEM(B1) = |Pr[b′ = b]− 1
2
| = 1

2
|Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|.

21



�

Lemma 2. There is a PPT algorithm B2, whose running time is essentially the
same as that of A, such that

|Pr[S2]− 1/2| = AdvFG−CCA
DEM (B2).

Proof. To construct such a B2 we simply run A as it would be run in game
Game2. We run the EFWF-KEM’s key generation algorithms so we can respond
to A’s queries before it calls its challenge encryption oracle. When A calls its
challenge encryption oracle with identity P∗ and messages (m0, m1) we simply
relay (m0, m1) to the challenge encryption oracle of B2 to obtain c∗. We then run
the key encapsulation mechanism to obtain (k, c̄∗). We now set c∗ ← (c̄∗, c∗)
and return it to A. Note that k is irrelevant here, as the actual key used to create
c∗ is a random (unknown) key.

We continue to respond to A’s queries as before except if it a makes decryp-
tion query (c̄∗, c). In this instance we query B2’s decryption oracle with c and
relay the response to A. This is needed since we need to follow the rules of Game2.

At the end of simulation B2 outputs whatever A outputs. In this simulation
A is run by B2 in exactly the same manner as the former would be run in
game Game2. Moreover, Pr[S2] corresponds exactly to the probability that B2

correctly determines the hidden bit of its challenge encryption oracle since. The
result follows. �

Appendix C – Proof of Theorem 2

Proof. We prove the theorem using a sequence of five games Game0, . . . , Game4.
Let A be an adversary against the generic workflow construction. We denote by
Si the event that A guesses the challenge bit correctly in Gamei.

Let Game0 be the original IND-CCCA attack game. Hence

AdvIND−CCCA
WF−KEM (A) = |Pr[S0]− 1/2|.

To obtain Game1 we introduce a single change: all decapsulation queries where
the OTS verification key included in the challenge is reused by the adversary are
answered immediately with ⊥.

We claim that A’s probability of success changes negligibly. Let E denote
the event that the adversary submits for decapsulation a valid ciphertext (c||σ),
different from the challenge ciphertext (c∗||σ∗)4. Given that Game0 and Game1

are identical, unless E occurs, we have

|Pr[S0]− Pr[S1]| ≤ Pr[E]

4 Note that different in this case means a single bit and, in particular, allows the
attacker to reuse c∗ or σ∗.

22



To show that this difference is negligible, it suffices to demonstrate that Pr[E]
must be negligible. This follows easily from the observation that any adversary
that causes E to occur with non-negligible probability can be used to directly
construct an algorithm B1 which wins the UF game against the OTS scheme
with advantage Pr[E]. Therefore

|Pr[S0]− Pr[S1]| ≤ AdvUFOTS(B1).

Now we change Game1 so that decapsulation queries immediately return ⊥
for all ciphertexts which reuse one or more challenge components c∗i and corre-
sponding P∗ terms. We call this new game Game2 and we claim that

Pr[S1] = Pr[S2].

To prove this claim, we argue that ⊥ is the correct decapsulation result for
this type of ciphertext in Game1. To see this, note that all queries which reuse vk∗

are already returning ⊥, so we only need to consider the case where vk 6= vk∗.
However, by construction, all c∗i components will return vk∗ when decrypted,
causing the decapsulation consistency check to fail.

We obtain Game3 by changing the way in which the challenge encapsulation is
constructed: the cj challenge components are constructed using shares resulting
from a completely random key k2.

Once again, we claim that A’s probability of success changes only negligibly
when one moves to Game3. We prove this claim using a hybrid argument similar
to that in [3].

We show that if |Pr[S2]−Pr[S3]| is non-negligible, then it is possible to build
an algorithm B2 which runs A as a subroutine, interpolates between the two
games, and has non-negligible advantage in the IND-CCA2 game that defines
the security of the IBE scheme. B2 works as follows:

– B2 chooses a random value ` in the range 1, . . . , n, where n is the number of
policy terms.

– B2 generates the key pairs for m− 1 credential authorities and obtains the
m-th master public key from the external IBE attack game. B2 randomly
permutes these public keys and passes them on to A.

– On input of a challenge policy P∗, B2 constructs the challenge encapsulation
as follows:
• If the master public key from the external IBE game is not associated

with the `-th policy term (event F1), B2 terminates. Let X` be the first
component of the `-th policy term, and ID` the identifier inside it.

• B2 chooses three keys k0, k1 and k2 at random, passes k1 and k2 to-
gether with P∗ to the secret sharing algorithm to obtain (shr∗1, aux

∗
1)

and (shr∗2, aux
∗
2).

• B2 runs GOTS to obtain (vk∗, sk∗).
• For shares 1, . . . , `− 1, B2 constructs c∗j using [shr∗1]j ||vk∗.

23



• For the `-th share, B2 calls the external challenge oracle on ID` with
(m0, m1), where m0 = [shr∗1]`||vk∗ and m1 = [shr∗2]`||vk∗.

• For all remaining shares, B2 constructs c∗j using [shr∗2]j ||vk∗.
• B2 now generates a random bit b and provides kb to the adversary, along

with the challenge ciphertext.
– Credential extraction queries are handled as follows:
• The knowledge of the master secret keys on m−1 of the authorities allows

B2 to directly answer most extraction queries using the IBE extraction
algorithm.
• For credentials associated with the authority from the external security

game, B2 will call the secret key extraction oracle provided in that game.
• Algorithm B2 will terminate if A chooses to extract the secret key asso-

ciated with X` (event F2), as this would be an invalid query in the IBE
game.

– Decapsulation queries are answered as follows:
• The necessary credentials are obtained by running the credential extrac-

tion simulation algorithm above.
• The exception is X` in the challenge, for which B2 simply calls the ex-

ternal decryption oracle. Note that by the rules in Game2 the adversary
will not be able to force B2 to perform a decryption query which is dis-
allowed in the IBE security game. All queries associating c∗` with X` are
immediately answered with ⊥.

– When A returns a bit b′, B2 will return 1 if b = b′ and 0 otherwise.

First we look at the probability that B2 does not fail. We call the event that
B2 fails Fail. Since the events F1 and F2 are independent, we have:

Pr[¬Fail] = Pr[¬F1 ∧ ¬F2] = Pr[¬F1] · [¬F2] ≥
1

mn
.

The latter inequality follows from the following observations:

– There is a 1-in-m probability that A will output a policy in which the `-th
share must be extracted under the authority corresponding to the external
IBE game.

– For any non-trivial policy, there is at least one credential which A cannot
extract. Hence there is at least a 1-in-n chance that this is the `-th share.

Let b̂ be the bit returned by B2 and b̄ be the secret bit in the external IBE
security game. We have

2· Adv IND−CCA2
IBE (B2) = |Pr[b̂ = 1|b̄ = 1]− Pr[b̂ = 1|b̄ = 0]|

= Pr[¬Fail] · |Pr[b̂ = 1|b̄ = 1 ∧ ¬Fail]− Pr[b̂ = 1|b̄ = 0 ∧ ¬Fail]|.

Let us now focus on executions of B2 which do not abnormally terminate. It
is clear that algorithm B2 runs A in the environment of Game2 if ` = n and the
external encapsulation challenge uses the correct key. Conversely, B2 runs A in
the environment of Game3 if ` = 1 and the external encapsulation challenge uses

24



the incorrect key. This is true regardless of the fact that the adversary will be able
to open up some of the cj components in the challenge which may contain shares
associated with k2. This is guaranteed by the information-theoretical security of
the secret sharing algorithm and by the fact that the adversary is never allowed
to obtain a qualifying set of credentials.

Hence, we have

Pr[S2] = Pr[b̂ = 1|` = n ∧ b̄ = 1 ∧ ¬Fail]

and
Pr[S3] = Pr[b̂ = 1|` = 1 ∧ b̄ = 0 ∧ ¬Fail].

Because B2 generates ` uniformly at random at the beginning of its operation,
the following summations hold for any execution of B2:

Pr[b̂ = 1|b̄ = 1 ∧ ¬Fail] =
1
n

n∑
i=1

(Pr[b̂ = 1|` = i ∧ b̄ = 1 ∧ ¬Fail])

Pr[b̂ = 1|b̄ = 0 ∧ ¬Fail] =
1
n

n∑
i=1

(Pr[b̂ = 1|` = i ∧ b̄ = 0 ∧ ¬Fail]).

Now we observe that for 2 ≤ z ≤ n, by construction, B2 guarantees the
following

Pr[b̂ = 1|` = z ∧ b̄ = 0 ∧ ¬Fail] = Pr[b̂ = 1|` = (z − 1) ∧ b̄ = 1 ∧ ¬Fail].

Cancelling out the summation terms, we obtain

Pr[b̂ = 1|b̄ = 1 ∧ ¬Fail]− Pr[b̂ = 1|b̄ = 0 ∧ ¬Fail] =

=
1
n

(Pr[b̂ = 1|` = n ∧ b̄ = 1 ∧ ¬Fail]−Pr[b̂ = 1|` = 1 ∧ b̄ = 0 ∧ ¬Fail]).

Putting these results together, we have

AdvIND−CCA2
IBE (B2) =

1
2n
· Pr[¬Fail] · |Pr[S2]− Pr[S3]|,

and finally
|Pr[S2]− Pr[S3]| ≤ 2mn2 ·AdvIND−CCA2

IBE (B2),

which demonstrates that the advantage of any adversary in Game3 must be neg-
ligibly different from that in Game2 if the underlying IBE is IND-CCA2 secure.

To complete the proof, we introduce a final game Game4 where the only dif-
ference to Game3 is the fact that we replace the aux∗1 component in the challenge
by aux∗2. Again, the information-theoretical security of the secret sharing scheme
guarantees that A’s view in the two games is identical:

Pr[S3] = Pr[S4].

25



Finally, we have that because no information regarding the secret bit chosen
by the challenger can be leaked by the challenge in Game4, the adversary can
have no advantage:

Pr[S4] = 1/2.

Putting together the previous results we obtain the expression in Theorem 2.

AdvIND−CCCA
WF−KEM (A) ≤ AdvUFOTS(B1) + 2mn2 ·AdvIND−CCA2

IBE (B2).

�

Appendix D – Proof of Theorem 4

We present the proof in two stages. First we address IND-CCA2 security, and
then IND-CCCA security.

Lemma 3. The construction is (m,n)-IND-CCA2 secure if the underlying PKE
is IND-CCA2 secure and the OTS is UF secure. More precisely we have:

AdvIND−CCA2
EFWF−KEM(A) ≤ AdvUFOTS(B1) + 2AdvIND−CCA2

PKE (B2).

Proof. We construct this proof using a sequence of four games Game0, . . . , Game3.
Let A be an adversary against the generic workflow construction. We denote by
Si the event that A guesses the challenge bit correctly in Gamei.

Let Game0 be the original IND-CCA2 attack game. Hence

AdvIND−CCA2
EFWF−KEM(A) = |Pr[S0]− 1/2|.

To obtain Game1 we introduce a single change: all decapsulation queries where
the OTS verification key included in the challenge is reused by the adversary are
answered immediately with ⊥.

We claim that A’s probability of success changes negligibly. Let E denote
the event that the adversary submits for decapsulation a valid ciphertext (c||σ),
different from the challenge ciphertext (c∗||σ∗).

Given that Game0 and Game1 are identical, unless E occurs, we have

|Pr[S0]− Pr[S1]| ≤ Pr[E].

To show that this difference is negligible, it suffices to demonstrate that Pr[E]
must be negligible. This follows easily from the observation that any adversary
that causes E to occur with non-negligible probability can be used to directly
construct an algorithm B1 which wins the UF game against the OTS scheme
with advantage Pr[E]. Therefore:

|Pr[S0]− Pr[S1]| ≤ AdvUFOTS(B1).

26



Now we change Game1 so that decapsulation queries immediately return ⊥
for all ciphertexts which reuse one or more challenge components c∗i and corre-
sponding P∗ terms. We call this new game Game2 and we claim that

Pr[S1] = Pr[S2].

To prove this claim, we argue that ⊥ is the correct decapsulation result for
this type of ciphertext in Game1. To see this, note that all queries which reuse vk∗

are already returning ⊥, so we only need to consider the case where vk 6= vk∗.
However, by construction, all c∗i components will return vk∗ when decrypted,
causing the decapsulation consistency check to fail.

Finally, we obtain Game3 by changing the way in which the challenge encap-
sulation is constructed: the PKE challenge component is constructed using a
completely random string of the correct size.

Once again, we claim that A’s probability of success changes only negligibly
when one moves to Game3. To prove this claim we show that if |Pr[S2]−Pr[S3]|
is non-negligible, then it is possible to build an algorithm B2 which runs A
as a subroutine, interpolates between the two games, and has non-negligible
advantage in the IND-CCA2 game that defines the security of the PKE scheme.
B2 works as follows:

– B2 generates all the IBE-related parameters itself and obtains the PKE
public key from the IND-CCA2 game. These are all handed over to the
adversary.

– Eventually the adversary outputs a challenge policy P∗ and B2 constructs
the challenge as follows:
• B2 generates the OTS key pair (vk∗, sk∗)
• B2 generates three secret keys k0, k1 and k2.
• B2 passes k2||vk∗ and a completely random bit string of the same size

to the external IND-CCA2 challenge oracle.
• B2 uses k1 to construct the part of the challenge ciphertext which relies

on the secret sharing scheme and the IBE scheme.
• B2 calculates the OTS and completes the challenge ciphertext.
• Now B2 flips a coin b. If b = 0 then B2 hands over k0 and the challenge

to the adversary. Otherwise, the adversary gets k1⊕k2 and the challenge
ciphertext.

– Eventually the adversary will output its guess b′, and B2 will return 1 if
b = b′ and 0 otherwise.

– Throughout its entire operation B2 is able to answer decapsulation queries
correctly according to the rules of Game2. It takes advantage of its knowledge
of all the IBE parameters and the external PKE decryption oracle to achieve
that. Again, A is not able to force B2 into placing an invalid query to this
oracle because by the rules of Game2 any query which includes the PKE
challenge ciphertext can be immediately answered with ⊥.

Let b̂ denote the secret bit in the PKE IND-CCA2 game, and b̄ denote B2’s
guess. It is clear that B2 will run A in an environment consistent with Game2 or

27



Game3, depending on whether the PKE challenge oracle encrypts k2||vk∗ (b̂ = 0)
or the random string (b̂ = 1). Hence we can write:

Pr[S2] = Pr[b = b′|b̂ = 0] = Pr[b̄ = 1|b̂ = 0],

Pr[S3] = Pr[b = b′|b̂ = 1] = Pr[b̄ = 1|b̂ = 1].

However, by definition, we have that

AdvIND−CCA2
PKE (B2) =

1
2
|Pr[b̄ = 1|b̂ = 0]− Pr[b̄ = 1|b̂ = 1]|

which leads to
|Pr[S2]− Pr[S3]| = 2AdvIND−CCA2

PKE (B2).

Finally we observe that in Game3 the adversary can have no advantage, since
no information about k2 is present in the challenge. Hence

Pr[S3] = 1/2.

The lemma follows from the combination of the game transition results.

AdvIND−CCA2
EFWF−KEM(A) ≤ AdvUFOTS(B1) + 2AdvIND−CCA2

PKE (B2).

�

Lemma 4. The construction is (m,n)-IND-CCCA secure if the underlying IBE
is IND-CCA2 secure, the OTS is UF secure, and the secret sharing scheme is
information-theoretically secure. More precisely we have:

AdvIND−CCCA
EFWF−KEM(A) ≤ AdvUFOTS(B1) + 2mn2 ·AdvIND−CCA2

IBE (B2).

Proof. (Sketch) This construction is very similar to the WF-KEM construction
that is proven secure in Appendix B. The only difference in the ciphertext is the
inclusion of an additional component which corresponds to the PKE encapsula-
tion of a random secret.

Furthermore, in the credential security model for an EFWF-KEM, the adver-
sary knows all the parameters for the underlying PKE, including the secret key,
so the additional component in the challenge ciphertext is adding no additional
security. We need only to show that the public key component also does not de-
grade the security of the construction. To do this we analyse how the adversary
could obtain additional advantage, and show that this is not feasible.

Global parameters The global parameters for the PKE component are
completely independent from the remaining global parameters, so the adversary
can obtain no additional advantage through them.

Challenge oracle The challenge ciphertext is constructed using an informa-
tion theoretically secure 2-out-of-2 splitting of the secret key. One of the shares
is handed over to the adversary, since it can open up the public-key component.

28



But this provides no information whatsoever about the encapsulated secret, un-
less the adversary can learn something about the other share.

Decapsulation Oracle Similarly to what happens in the WF-KEM con-
struction, the OTS scheme combined with the non-malleable embedding of vk∗

in the ciphertext components prevents the adversary from being able to reuse any
of the challenge ciphertext components to obtain advantage in a decapsulation
query. In a simulation scenario, this means that the strategy used in Appendix
C to handle decapsulation queries can also be used in this case.

Credential Extraction Oracle Any credential extraction oracle queries
that the adversary may perform will provide no more advantage than it would
obtain against the WF-KEM construction, as the IBE component is completely
independent of the PKE component.

To summarise, a complete proof of the IND-CCCA security of this EFWF-
KEM construction would be almost identical to the proof in Appendix C, the
only difference being the fact that the B1 and B2 algorithms would need to
include the PKE component in their interaction with the adversary. These al-
gorithms would generate the additional parameters themselves, provide them to
the adversary, and use them to answer any related decapsulation queries that
the adversary might make. �

29


