
Robust Computational Secret Sharing and a
Unified Account of Classical Secret-Sharing Goals

Mihir Bellare∗ Phillip Rogaway†

August 14, 2007

The proceedings version of this paper appears in ACM CCS 2007 [7]. This is the full version of that paper.

Abstract

We give a unified account of classical secret-sharing goals from a modern cryptographic vantage. Our
treatment encompasses perfect, statistical, and computational secret sharing; static and dynamic adversaries;
schemes with or without robustness; schemes where a participant recovers the secret and those where an ex-
ternal party does so. We then show that Krawczyk’s 1993 protocol for robust computational secret sharing
(RCSS) need not be secure, even in the random-oracle model and for threshold schemes, if the encryp-
tion primitive it uses satisfies only one-query indistinguishability (ind1), the only notion Krawczyk defines.
Nonetheless, we show that the protocol is secure (in the random-oracle model, for threshold schemes) if the
encryption scheme also satisfies one-query key-unrecoverability (key1). Since practical encryption schemes
are ind1+key1 secure, our result effectively shows that Krawczyk’s RCSS protocol is sound (in the random-
oracle model, for threshold schemes). Finally, we prove the security for a variant of Krawczyk’s protocol, in
the standard model and for arbitrary access structures, assuming ind1 encryption and a statistically-hiding,
weakly-binding commitment scheme.

Key words: Computational secret sharing, cryptographic protocols, provable security, robust computational
secret sharing, secret sharing, survivable storage.

∗ Department of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California
92093 USA. E-mail: mihir@cs.ucsd.edu WWW: www.cse.ucsd.edu/users/mihir/

† Department of Computer Science, University of California at Davis, Davis, California, 95616, USA; and Department of Com-
puter Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail: rogaway@cs.ucdavis.edu WWW:
www.cs.ucdavis.edu/∼rogaway/

Contents

1 Introduction 1

2 Preliminaries 3

3 The Definitional Framework 4

4 The HK1 Protocol (Krawczyk’s RCSS Scheme) 8
4.1 Krawczyk’s construction . 8
4.2 An attack . 9
4.3 Privacy (in the RO model) . 10
4.4 Recoverability (in the RO model) . 12

5 The HK2 Protocol (Refining Krawczyk’s Scheme) 12
5.1 The construction . 12
5.2 Privacy (in the standard model) . 14
5.3 Recoverability (in the standard model) . 16

Acknowledgments 16

References 16

A A Sufficient Condition for key1-Security 19

B Prior Secret-Sharing Definitions 20

C Secret-Sharing Lemmas 22
C.1 Share-prediction lemmas . 22
C.2 A recoverability lemma . 25

D Proof of Privacy of HK1 (Theorem 1) 25

E Proof of Recoverability of HK1 (Theorem 3) 30

F Proof of Recoverability of HK2 (Theorem 5) 31

G Proof of Theorem 2 33

1 Introduction

Work on classical secret-sharing tends to follow the traditions and sensibilities of information theory, combi-
natorics, or coding theory, not those of modern provable-security cryptography. Consider, for example, that
the word adversary does not appear in the most widely cited survey of secret sharing [48]—but the word
information appears some 50 times. Or consider that it was nearly 15 years after the invention of secret sharing
by Blakley and Shamir [9, 43] until somebody, Krawczyk [31], made more than passing mention of the fact that
there is a natural and useful complexity-theoretic setting for this problem. Even then, most subsequent work
has ignored this “computational” setting.

In this paper we will recast classical secret-sharing in the tradition of provable-security cryptography. We
will then use the freshened foundations to carry out a provable-security analysis of a well-known, useful, and
formerly unanalyzed secret-sharing scheme. Before describing these contributions, we give some needed back-
ground.

BACKGROUND. In a robust computational secret sharing (RCSS) protocol, a dealer, assumed to be honest,
breaks a secret X into shares X1, . . . , Xn and distributes them to n players in such a way that an unauthorized
set of players learns nothing about X from their shares, yet an authorized set of players will reconstruct X , de-
spite some players providing bogus shares, if and only if X was shared. Both guarantees are computational, not
information-theoretic. So RCSS relaxes the perfect secret-sharing goal of Shamir [43] in one dimension (com-
putational privacy instead of information-theoretic privacy) and strengthens it in another (reconstructability in
the face of incorrect shares, not just missing ones).

The RCSS goal, as well as a candidate solution, was invented by Krawczyk [31]. But Krawczyk provides no
proofs or formal definitions for RCSS. Indeed his focus was not RCSS but CSS, computational secret-sharing,
where recovery is for correct-or-missing shares. The CSS goal had been earlier mentioned by Karnin, Greene,
and Hellman [30], who also consider the variant where cheating must be detected, not corrected. Robustness
(recoverability despite some wrong shares) had already been studied in the information-theoretic setting by
McEliece and Sarwate [35] and by Tompa and Woll [50].

Krawczyk’s reason to look at CSS and RCSS was to reduce the size of participant shares: his mecha-
nisms illustrate that, for threshold schemes, shares can be shorter than the secret, which is impossible in the
information-theoretic setting [15, 30]. Krawczyk provides a CSS scheme with short shares using Rabin’s idea
of an information-dispersal algorithm (IDA) [40]. Robustness is then added-on using a hash-function-based
technique that Krawczyk introduced in a separate paper [32]. Follow-on work to Krawczyk’s paper has mostly
focused on doing CSS for more general access structures [1, 14, 34, 51].

Protocols for CSS and RCSS are powerful tools or building secure and reliable distributed information-
storage systems. A user’s data (perhaps a file) is broken into pieces (shares) and stored on multiple servers
in such a way that protects the privacy of the user from nosy servers, yet permits recovery of the data even if
some of the servers provide invalid shares (either accidentally or intentionally). In recent years, and apparently
without much notice from cryptographers, such systems and architectures have emerged from places like CMU
and IBM [21, 28, 33, 39, 52]. Commercial product offerings and an open-source development community have
also taken root.1 An issue of Computer magazine explained these ideas [54]. Yet all of this has happened in
the absence of even a formal definition for RCSS. In short, storage systems based on RCSS protocols already
exist, but embody practice getting out in front of theory. As such, one cannot answer basic questions about
these systems and their protocols, questions like “what exactly does this protocol do?” or “does CBC/IV=0
encryption suffice within it?”

OUR CONTRIBUTIONS. Coming at secret-sharing from a modern, provable-security angle, we make two con-
tributions. One contribution is to revisit the basics of RCSS. We investigate the security of Krawczyk’s RCSS
protocol, which we call HK1. While Krawczyk made no formal definitions or claims in this regard, the only

1 Examples include Cleversafe Corporation and the Cleversafe open-source user community (see http://www.cleversafe.org and
http://www.cleversafe.com) and Security First Corporation (see http://securityfirstcorp.com).

1

protocol assume and access structure result

HK1 ind1 random-oracle model threshold insecure (Sec. 4.2)

HK1 ind1 + key1 random-oracle model threshold secure (Th. 1, Th. 3)

HK2 ind1 statistically-hiding, weakly-binding commitment arbitrary secure (Th. 4, Th. 5)

Figure 1: Summary of our results on Krawczyk’s RCSS protocol (HK1) and a variant of it (HK2). By ind1 and key1 we
mean one-query left-or-right indistinguishability and one-query key-unrecoverability.

encryption-scheme security property mentioned in his paper is the indistinguishability of EncryptK(X) and
EncryptK(X ′), which we call one-query indistinguishability (ind1). Intuitively, this is all that HK1 should
need, since, in the protocol, a key is used to encrypt just one message. Still, we show that HK1 is not secure
under the assumption that its encryption scheme is ind1-secure, even for threshold schemes2 and the random-
oracle (RO) model [6]. Despite this, we show that HK1 is secure, for threshold schemes and in the RO model,
if one assumes that the encryption scheme is ind1-secure and key1-secure, the latter being one-query key-
unrecoverability. We complement this by proving ind1 + key1 to be the minimal assumption under which HK1
can be proved secure; see Appendix G. The assumption follows from two-query indistinguishability (ind2);
see Proposition 6.Conventional encryption schemes are ind1- and key1-secure [3], so one may interpret our
results as saying that, in the end, HK1 is sound, at least in the case of threshold schemes. The proof of secu-
rity for HK2 is complex; intuitively, the complexity arises because one must sidestep the issues that cause an
ind1-based instantiation of HK1 to fail. We go on to show that making a small change to HK1—replacing its
hash-function by a noninteractive statistically-hiding, weakly-binding (SHWB) commitment-scheme—fixes all
identified issues: the modified protocol, HK2, becomes provably secure for an arbitrary access structure, in the
standard model, assuming just ind1-secure encryption. Our results are summarized in Figure 1.

To make the above results possible, we need a definition for RCSS. Not wanting to formalize yet another
one-off secret-sharing notion, we show how to cast a large set of secret-sharing goals into a common framework.
We give concrete-security, adversary-at-the-center definitions that encompass the perfect secret-sharing (PSS)
goal of Shamir [43]; the less-than-perfect-privacy variant by Blakley [9]; the strengthening of PSS to robust
schemes as envisioned by McEliece and Sarwate [35]; the alternative version of robustness described by Tompa
and Woll [50]; and the relaxation of all this to the computational setting, as considered by Krawczyk [31]. Our
definitions handle dynamic adversaries, apparently for the first time, and unify the information-theoretic and
complexity-theoretic views. Look ahead to Figure 4 for a preview of some of the secret-sharing notions we
encompass.

MORE ON DEFINITIONS. See Appendix B for a summary of existing PSS and CSS definitions [9, 31, 35, 43,
50], with and without robustness. The definitions frequently assume an a priori distribution on secrets, assume
it to be the uniform over a large set, elide the syntax of a secret-sharing scheme, omit mention of any adversary,
and make the implicit adversary static, with no simple way to make it dynamic.3 The classical PSS definitions
are so tailored to the perfect, information-theoretic case that there is no simple way to relax things to make a
complexity-theoretic analog. Each definition is separate from each other, cut from its own cloth. No formal
definition of the RCSS goal has ever appeared.

We aim to give a unified account of classical secret-sharing. To do this we define the privacy-advantage
of an adversary A attacking secret-sharing scheme Π, denoted Advpriv

Π (A), and we define the recoverability-
advantage of an adversary B attacking a secret-sharing scheme Π, denoted Advrec

Π (B), and we use these to
define all notions of interest. For example, a secret-sharing scheme Π is a PSS scheme if Advpriv

Π (A) =

2 An m-out-of-n threshold scheme is a secret-sharing scheme for which any m uncorrupted players can recover the secret but
smaller sets of players cannot. The set of sets of players authorized to recover the secret is the access structure for the scheme.

3 A static adversary controls a certain set of players from the beginning, while a dynamic adversary chooses whom to corrupt as it
corrupts players and learns their shares.

2

Advrec
Π (B) = 0 for all “permissible” A and B. There turn out to be four natural constraints on Advpriv

Π (A)
and nine natural constraints on Advrec

Π (B). Each classical secret-sharing notion shows up as one of the 36
combinations.

Our approach injects some order into the current definitional jungle of secret-sharing variants. In the pro-
cess, we clarify that there have coexisted in the literature two fundamentally different notions of robustness.
In the first, an uncorrupted player recovers the secret [50]; in the second, an external party has that job [35].
What is achievable in the two settings is vastly different (eg., external-party reconstructability can accommo-
date fewer corrupted players). It would seem that the two forms of robustness have coexisted in the literature
for some 20 years without it even having being commented on that there are two kinds of robustness. Such a
gap is probably attributable to the prior absence of a unifying viewpoint.

We comment that while our definitional framework is broad, it does not encompass verifiable secret-sharing
(VSS) [17]. In a VSS scheme the dealer may be dishonest; for the goals in scope in this paper, the dealer is
honest. Nor do we encompass proactive secret sharing [25], which, like VSS, has always been treated in
the provable-security tradition. Our framework fails to encompass cheater detection or identification [12, 35],
where the adversary is capable of obstructing recovery but incapable of forcing the recovery of a bogus secret.
In this last case, however, our framework could certainly be extended to include these notions.

AFTERWARDS. After seeing a version of our paper, Yuval Ishai suggested a new RCSS protocol that combines
a CSS protocol and a digital signature scheme [26]. Our intent in this paper was not to develop or analyze any
fundamentally new protocol, but to analyze an existing protocol, HK1, that is already implemented, influential,
and well-known. We also look at HK2 since it is a simple extension to HK1 that helps to shed light on it.

2 Preliminaries

ALGORITHMS AND ADVERSARIES. When we speak of an algorithm we mean an always-halting deterministic
or probabilistic algorithm, possibly with access to one or more named oracles. A probabilistic algorithm can
uniformly choose a random number between 1 and i for an arbitrary positive integer i by executing a statement
a

$← [i]. If A is an algorithm then x
$←A(· · ·) means to choose x according to the distribution induced by

algorithm A, run on the elided arguments. If A is deterministic we write x ← A(· · ·) instead. If A is a finite

set then x
$←A means to sample uniformly from it. If A is a probabilistic algorithm then x ∈ A(·) means that x

occurs as an output with nonzero probability. We denote by X1 · · · Xn or X1 · · ·Xn a reasonable encoding
of (X1, . . . , Xn) from which the constituents are uniquely recoverable. If the lengths of each Xi is known then
concatenation serves this purpose.

GAMES. We employ code-based game-playing in our proofs, as explored in [4]. In brief, a game is an always-
halting program, written in code or pseudocode, that runs with an adversary. It specifies procedures Initialize,
Finalize, and additional procedures (like Deal, Corrupt, and so forth), which are called oracles. In the code of
a game, sets are initialized to empty and Booleans to false. The output of a game is the output of its Finalize
procedure, or the output of the adversary itself if no Finalize is specified. We write Pr[GA] for the probability
that Finalize of game G outputs true after the interaction with A.

ENCRYPTION SCHEMES. Adapting the formalization of [3], a symmetric encryption scheme is a pair of algo-
rithms ΠEnc = (Encrypt , Decrypt) where Encrypt is a possibly probabilistic algorithm from {0, 1}k × {0, 1}∗
to {0, 1}∗ ∪ {⊥} and Decrypt is a deterministic algorithm from {0, 1}k × {0, 1}∗ to {0, 1}∗ ∪ {⊥}. We call k
the key length. We write EncryptK(X) and DecryptK(Y) for Encrypt(K, X) and Decrypt(K, Y). We assume
that whether or not EncryptK(X) ∈ {0, 1}∗ (for K ∈ {0, 1}k) depends only on |X| and we call the set of all X

such that EncryptK(X) ∈ {0, 1}∗ the domain of Π. We require that if Y
$← EncryptK(X) and Y �= ⊥ then

DecryptK(Y) = X .
We define two notions of security for an encryption scheme Π = (Encrypt , Decrypt): indistinguishability

(formalized in the left-or-right manner) and key-recoverability. For consistent syntax with the rest of this paper,

3

PROCEDURE Initialize PROCEDURE LeftOrRight(X0,X1) Game Ind

K
$←{0, 1}k IF |X0| �= |X1| THEN RETURN ⊥

b
$←{0, 1} C

$← EncryptK(Xb)
RETURN C

PROCEDURE Finalize (d)
RETURN b = d

PROCEDURE Initialize PROCEDURE Enc(X) Game Key

K
$←{0, 1}k C

$← EncryptK(X)
RETURN C

PROCEDURE Finalize (K ′)
RETURN K = K ′

Figure 2: Games used to define the privacy of an encryption scheme Π = (Encrypt , Decrypt).

we describe both notions using games. See Figure 2 for the definitions of these games, named Ind and Key.
Based on them, define the indistinguishability advantage by Advind

Π (A) = 2 Pr[IndA] − 1. The notion is the
same as in [3]. We let Advkey

Π (A) = Pr[KeyA] be the probability that A recovers the encryption key.

3 The Definitional Framework

In this section we unify and extend definitions in the literature for perfect secret-sharing and computational
secret-sharing, both with and without robustness. We break with tradition by handling information-theoretic
secret-sharing neither in terms of entropy nor equality of distributions, but in a way that directly models and
measures the adversary’s aims. Also breaking with tradition, we directly handle dynamic adversaries. For ease
of comparison, some traditional secret-sharing definitions are recalled in Appendix B. We warn that, to achieve
our desired level of generality, this section is more dense and atypical than it would be if were we just trying to
define Krawczyk-style RCSS (entry CSS-CR2 in Figure 4).

OVERVIEW. Secret-sharing schemes have two basic requirements: privacy and recoverability (the latter is also
called reconstructability). Privacy entails that an unauthorized coalition of players can’t learn anything about
the secret that’s been shared. It can be complexity-theoretic or information-theoretic. Information-theoretic
schemes maintain privacy no matter how much computing power the adversary has; complexity-theoretic
ones protect the privacy of the shared secret from adversaries with “reasonable” computing resources. In the
information-theoretic setting, security can be perfect (absolutely no information is revealed about the secret) or
possibly less than perfect, which is called statistical privacy. The adversary that is attacking a scheme’s privacy
can be static (it decides which players to corrupt at the beginning of its attack) or dynamic (it chooses which
players to attack one-by-one, as it learns shares). Our definition of the privacy advantage that an adversary A
gets in attacking a secret-sharing scheme Π, denoted Advpriv

Π (A), encompass and measures all of the above
possibilities.

Recoverability entails that authorized coalitions of players can reconstruct the secret. It can be guaranteed
in the erasure model or the substitution model. In the erasure model, the adversary marks shares of corrupted
players as missing but cannot otherwise modify a player’s share.4 Secret-sharing schemes secure in the sub-
stitution model, where the adversary may modify a corrupted player’s share, are called robust. Preserving a
distinction with us since [35, 50], we distinguish two flavors of robustness: the shared secret can be recovered
by an uncorrupted player or by an external party. It is easier for an uncorrupted player to recover the secret than
for an external party to do so since an uncorrupted player knows one particular share—his own—that he can

4 One could distinguish two variants: the adversary must mark the shares of corrupted players as missing, or the adversary may
mark the shares of corrupted players as missing (or may leave them unchanged). We assume the former.

4

PROCEDURE Deal (S0, S1) PROCEDURE Corrupt(i) Game Priv

IF NOT S THEN b
$←{0, 1}, S

$← Share(Sb) T ← T ∪ {i}
RETURN RETURN S[i]

PROCEDURE Finalize (d)
RETURN b = d

PROCEDURE Deal (S) PROCEDURE Corrupt(i) Game Rec

IF NOT S THEN S
$← Share(S) T ← T ∪ {i}

RETURN RETURN S[i]

PROCEDURE Finalize (S′, j)
RETURN Recover(ST � S′

T , j) �= S

Figure 3: Games used to define privacy and recoverability of secret-sharing scheme Π = (Share, Recover).

assume to be right (remember that the types of secret sharing dealt with in this paper assume an honest dealer).
As before, a recoverability-attacking adversary may be static or dynamic. Our definition of the recoverability
advantage that an adversary A gets in attacking a secret-sharing scheme Π, denoted Advrec

Π (A), encompass
and measures all of the above possibilities. To accomplish this, we regard the erasure model as a special class of
adversaries, Rec♦, where any A ∈ Rec♦ replaces the shares of corrupted players with the distinguished value ♦
(missing). We likewise regard recovery-by-an-uncorrupted player as a special class of adversaries, Rec1, where
an A ∈ Rec1 is obliged to output the identity of some uncorrupted player j. Adversaries that may arbitrarily
substitute shares for corrupted players live live in the class Rec.

We will define notions in a way that permits consideration of an arbitrary access structure. Indeed we will be
more general still, defining privacy and recoverability in a way that depends on an arbitrary set of adversaries.

To simplify and strengthen definitions and theorem statements, we focus on concrete (as opposed to asymp-
totic) definitions. But we do explain how to lift the definitions to the asymptotic setting.

SYNTAX. An n-party secret-sharing scheme with message space S is a pair Π = (Share, Recover). Here Share

is a probabilistic algorithm that, on input S ∈ S returns the n-vector S
$← Share(S) where each S[i] ∈ {0, 1}∗

and Recover is a deterministic algorithm that on input S ∈ ({0, 1}∗ ∪ {♦})n
and j ∈ [0 .. n] returns a value

S ← Recover(S, j) where S ∈ S ∪ {♦}. We assume Share(S) returns ⊥ (“undefined”) if S �∈ S.
Let us explain the intent of the syntax. A secret-sharing scheme specifies two different algorithms. The

first, Share, is used by a dealer who wants to distribute some secret S ∈ S to a group of n players, numbered
1, . . . , n. The dealer applies Share to the secret S. The result is a vector S = (S[1], . . . ,S[n]) with each share
S[i] a string. The dealer gives S[i] to party i. As Share is probabilistic, different runs of Share(S) may return
different vectors. When, at some later point, an entity would like to recover the secret, it must first try to collect
up enough shares. It forms an n-element vector S = (S[1], . . . ,S[n]). The ith component of this vector, S[i],
is either a string S[i] ∈ {0, 1}∗ or the distinguished value ♦. In the first case the value S[i] is the purported
share of party i while in the second case the share S[i] = ♦ has been marked as missing. The party who wants
to recover the shared secret now applies the algorithm Recover to the vector S and a number j ∈ [0 .. n], the
number indicating the location of a share that is known to be valid. If no particular share is known valid, set
j = 0 and write Recover(S) for Recover(S, 0). To make sense, one must have S[j] �= ♦ if j ∈ [n] = [1 .. n].
The value that emerges from applying Recover will be either the recovered secret S ∈ S or the distinguished
value ♦. The latter indicates that the algorithm is unable to recover the underlying secret.

PRIVACY. Let Π = (Share, Recover) be an n-party secret-sharing scheme with message space S. Let A be
an adversary. We consider the privacy game Priv of Figure 3. To run A with Priv the following happens.
First, initialize T ← ∅. Now run A. It should first make an oracle call Deal(S0, S1) satisfying S0, S1 ∈ S

and |S0| = |S1|. The game then chooses a hidden bit b and samples S from Share(Sb). Nothing is returned
to A in response to its query. Next the adversary A makes oracle queries of the form Corrupt(i) where

5

fullname (nick-
name)

Advpriv
Π (A) when A is in Advrec

Π (A) when A is in reference

PSS-PR0 (PSS) 0 A ∩ Priv 0 A ∩ Rec♦ Shamir [43]

PSS-PR2 0 A ∩ Priv 0 A ∩ Rec McEliece & Sarwate [35]

PSS-SR1 0 A ∩ Priv small A ∩ Rec1 Tompa & Woll [50]

PSS-SR2 0 A ∩ Priv small A ∩ Rec Rabin & Ben-Or [41]

SSS-PR0 small A ∩ Priv 0 A ∩ Rec♦ Blakley [9]

CSS-PR0 (CSS) small A ∩ Priv ∩ Prac 0 A ∩ Rec♦ Krawczyk [31]

CSS-CR1 small A ∩ Priv ∩ Prac small A ∩ Rec1 ∩ Prac apparently new

CSS-CR2 (RCSS) small A ∩ Priv ∩ Prac small A ∩ Rec ∩ Prac Krawczyk[31]

NSS-PR0 (IDA) — — 0 A ∩ Rec♦ Rabin [40]

NSS-PR1 — — 0 A ∩ Rec1 Witsenhausen [53]

NSS-PR2 (ECC) — — 0 A ∩ Rec Shannon [44]

Figure 4: Selected ways of combining Advpriv
Π (A) and Advrec

Π (A) constraints to recover significant definitions. For
some notions it is conventional to also demand that Advrec

Π (A) = 0 for all A ∈ A ∩ Rec♦.

i ∈ [n]. The query is a request to corrupt the indicated player. In response to query Corrupt(i) the game
sets T ← T ∪ {i} and returns share S[i]. When A is done corrupting players it outputs a bit d and halts. It
is said to win if b = d. We measure its success as twice the probability of its winning minus one; formally,
Advpriv

Π (A) = 2 Pr[PrivA] − 1. Let Priv be the class of adversaries, the privacy adversaries, that behave as
we have just described, regardless of oracle responses.

RECOVERABILITY. Fix an n-party secret-sharing scheme Π = (Share, Recover) with message space S. Let A
be an adversary. We consider the recoverability game Rec of Figure 3. First, initialize T ← ∅. Now run
adversary A. It should first call Deal(S) for some S ∈ S. Note that Deal takes just one argument this time.
The game then selects an n-vector S from Share(S). Next the adversary corrupts players. Each time it calls
Corrupt(i) the game sets T ← T ∪ {i} and returns S[i]. When the adversary is done corrupting players
it outputs a pair (S′, j) where j ∈ [0 .. n] \ T and S′ ∈ ({0, 1}∗ ∪ {♦})n. Let ST � S′

T be the n-vector
whose ith component is S′[i] if i ∈ T and S[i] otherwise. The adversary is said to win if Recover(ST �
S′

T , j) �= S. We measure the adversary’s success by the real number Advrec
Π (A) = Pr[RecA]. Let Rec be the

class of adversaries, the recoverability adversaries, that behave as we have just described, regardless of oracle
responses.

We define a set Rec♦ ⊆ Rec, the erasure adversaries. Adversary A ∈ Rec is in Rec♦ if, whenever A
outputs (S′, j), we have S′[i] = ♦ for all i ∈ [n]: the adversary replaces the shares of corrupted players by ♦.
Similarly, we define a set Rec1 ⊆ Rec, the recoverability-1 adversaries. Adversary A ∈ Rec is in Rec1 if,
whenever A outputs (S′, j), we have j > 0 and j is uncorrupted. The adversary is obliged to point to an
uncorrupted player. As a mnemonic, the adversary must identify one good player.

SECRET-SHARING DEFINITIONS. Let Π = (Share, Recover) be secret-sharing scheme and let A be a class
of adversaries. We can demand Advpriv

Π (A) be: PSS: zero for any privacy adversaries in A; SSS: small
for any privacy adversary in A; CSS: small for any practical privacy adversary in A; or NSS: no privacy
demands at all. (Letters P, S, C, and N stand for perfect, statistical, computational, and none, while SS is
for secret sharing.) Similarly, we can demand Advrec

Π (A) be: PR0: zero for any erasure adversary in A;
PR1: zero for any recoverability-1 adversary in A; PR2: zero for any recoverability adversary in A; SR0:
small for for any erasure adversary in A; SR1: small for any recoverability-1 adversary in A; SR2: small
for any recoverability adversary in A; CR0: small for any practical erasure adversary in A; CR1: small for
any practical recoverability-1 adversary in A; or CR2: small for any practical recoverability adversary in A.

6

(Letters P, S, and C are as before, and R is for robustness.) All in all there are 4 · 9 = 36 notions obtained by
combining the named requirements on Advpriv

Π (A) and Advrec
Π (A). We single out some of them in Figure 4.

Several entries in the table are familiar, and some go by other names; these are credited, where appropriate,
to the party associated to the basic notion. Some notions are not conventionally regarded as secret-sharing yet
show up in the table: error-correcting codes and Rabin’s information dispersal algorithms [40].

(As we will be using IDAs and ECCs, let us pause and give a concrete instantiation. The simplest IDA
is based on replication: Share(X) = (X, . . . , X) and Recover((X1, . . . , Xn), j) = X if {X[i] : X[i] �=
♦} = {X} while Recover((X1, . . . , Xn), j) = ♦ otherwise. IDAs with shorter share lengths also exist [40]. A
simple ECC scheme again uses replication: Share(X) = (X, . . . , X) and Recover(X1, . . . , Xn) = X if there
is a string X that occurs more than n/2 times among X1, . . . , Xn, and Recover(X1, . . . , Xn) = ♦ otherwise.
When A ∩ Rec ⊆ Rec1 we can change this to Share(X) = (X, . . . , X) and Recover((X1, . . . , Xn), j) = Xj

if Xj �= ♦ and Recover((X1, . . . , Xn), j) = ♦ if Xj = ♦.)
Secret-sharing schemeΠ has perfect privacy over A if Advpriv

Π (A) = 0 for all A ∈ A, and it has perfect
recoverability over A if Advrec

Π (A) = 0 for all A ∈ A. Figure 4 serves to rigorously define PSS-PR0 (PSS),
PSS-PR2, NSS-PR0 (IDA), NSS-PR1, and NSS-PR2: for example, Π is a PSS with respect to A if Π has
perfect privacy over A ∩ Priv and perfect recoverability over A ∩ Rec♦.

The remaining seven rows of Figure 4 contain small or Prac, which we haven’t yet described. For the
statistical notions (small and no Prac) one can introduce a real number in place of small [50]. For example, an
ε-robust PSS-SR1 scheme Π over A has perfect privacy over A and Advrec

Π (A) ≤ ε for all A ∈ A ∩ Rec1.
For the computational goals there are two options. One is to leave the security notion formally undefined

but make concrete-security statements to bound Advpriv
Π (A) or Advrec

Π (A) in terms of other quantities. This
is the concrete-security approach, and we adopt it for Theorems 1–5.

A different option (which applies to any of the 36 notions) is to move to the asymptotic setting. For this one
adds in a security parameter k and interprets small in Figure 4 as negligible (vanishing faster than the inverse of
any polynomial) and interprets Prac as the class of probabilistic polynomial time (PPT) algorithms. A secret-
sharing scheme now involves n(k) parties and has a message space S(k) ⊆ {0, 1}∗. The Share and Recover
algorithms are polynomial-time that take an additional (first) input of 1k. Adversary A is likewise provided 1k.
Advantage measures Advpriv

Π (A) and Advrec
Π (A) of an adversary A become functions of k. Note that in

moving to the asymptotic setting we do not use the length of the secret as the security parameter, a questionable
definitional choice in some prior treatments. See Appendix B.

ACCESS STRUCTURES. We defined secret-sharing goals with respect to an adversary class, but the classical
approach is to use an access structure instead. Our approach is more general (and the added generality is needed
to encompass contexts like that of McEliece and Sarwate [35]). An n-party access structure is a setA of subsets
of [n] that is monotone: if R ⊆ S ⊆ [n] and R ∈ A then S ∈ A. Each S ∈ A is said to be authorized. The
most common access structure is the threshold access structure Am,n where m, n ≥ 1 and 0 ≤ m ≤ n. This is
the access structure defined by saying that S ∈ Am,n iff S ⊆ [n] and |S| ≥ m.

We associate to any n-party access structure A two classes of adversaries. The first, Ap, is all privacy
adversaries A that never corrupt an authorized set (A never corrupts a set S ∈ A). The second, Ar, is all
recoverability adversaries A that always leave uncorrupted an authorized set (if A corrupts T then [n]\T ∈ A).5

In speaking of the players that A can corrupt, we quantify over all possible oracle responses (not necessarily
those associated to any particular game). Corrupting i means calling Corrupt(i). The asymmetry embodied in
theAp andAr definitions arises because privacy is unachievable if some authorized set of players gets corrupted
while robustness is unachievable if no authorized set of players remains uncorrupted.

To access structureAwe associate adversary classAp∪Ar, which we also callA. In this way, any definition
over an adversary class provides the corresponding definition over an access structure.

VALID ADVERSARIES. For our robustness results we need a technical condition on the class of adversaries that
5 These notions are not the same. As an example, for threshold schemes, Ap

m,n is the set of privacy adversaries that corrupt at most
m − 1 players, while Ar

m,n is the set of recoverability adversaries that corrupt at most n − m players.

7

can be handled. First, say that adversary A ∈ Rec can generate (S, S, T, S′, j) if it can call Deal(S), resulting
in shares S, corrupt players T ⊆ [n], and output (S′, j). We say (S, S, T, S′, j) is A-generable if there is an
A ∈ A ∩ Rec such that A can generate (S, S, T, S′, j). Now for S′, S′′ ∈ ({0, 1}∗ ∪ {♦})n let us say that
S′ ≥ S′′ (S′ is worse than S′′) if S′[i] = ♦ implies S′′[i] = ♦. We say that A ⊆ Rec is valid (with respect
to some secret-sharing scheme Π) if the following is true: if (S, S, T, S′, j) is A-generable and S′ ≥ S′′ then
the following adversary AS,T,S′,j,S′′ is in A: it calls Deal(S); then it calls Corrupt(i) for each i ∈ T (say in
numerical order); then it outputs (S′′, j). Intuitively, if an adversary is allowed to provide a bogus share S′[i]
of S ∈ {0, 1}∗ it should be allowed to provide a bogus share S′′[i] ∈ {0, 1}∗ ∪ {♦} of S.

The class Ar associated to any access structure A is valid. So too is Am,n,t ∩ Rec where Am,n,t [35]
is Ap

m,n ∪ (Ar
m,n ∩ At) and At is adversaries that can only output (S′, j) with S′ having at most t non-♦

components. Thus A ∈ Am,n,t is a privacy adversary that can corrupt at most m− 1 players or a recoverability
adversary that can corrupt at most n−m players, replacing at most t shares with strings and the rest with ♦.

EXTENSIONS. One can augment a secret-sharing scheme by allowing a Setup algorithm; we would now have
a triple of algorithms Π = (Setup, Share, Recover). Setup is probabilistic and outputs a public parameter P ∈
{0, 1}∗. Procedures Share and Recover are provided P , as is any adversary attacking the scheme. While Share
could always install the public parameter in each player’s share, the effect is not the same as adding a Setup:
in one setting, the adversary has to corrupt a player to get P and in the other it is free; and there are important
efficiency-accounting consequences, as pulling out the public parameter might shorten the shares.

Our privacy and authenticity notions can be lifted to the random-oracle setting [6]. To do so, add to games
Priv and Rec a procedure Hash that realizes a random function from strings of arbitrary length to strings of
some desired length. Algorithms Share and Recover are allowed to call Hash , as may the adversary itself.

Our notions of privacy and recoverability consider an adversary that can obtain the deal of only one secret.
One can easily extend our definitions to handle the sharing of multiple secrets. A standard hybrid argument can
be used to show that the two definitions are equivalent (up to a multiplicative factor of the number of secrets
dealt). This result depends on the Share algorithm being stateless, as it is for all the schemes of this paper. If
Share is stateful, a natural counter-example shows that the deal-one-secret and deal-multiple-secret notions are
inequivalent.

STATIC ADVERSARIES. Classical definitions of secret sharing assume a static adversary. This is encompassed
by our framework in the sense that it is easy to restrict attention to static adversaries. Let Static be the set of
all adversaries A for which there is a set T associated to A such that, regardless of A’s input, coins, and oracle
responses, the set of players corrupted by A is T . To consider static adversaries restrict to sets like Priv∩Static.
A static adversary A can be imagined to deterministically “decide” at the beginning of its execution which
players T to corrupt. We define adversaries

4 The HK1 Protocol (Krawczyk’s RCSS Scheme)

4.1 Krawczyk’s construction

We reproduce Krawczyk’s construction using our notation. Fix a family of adversaries A. We build an n-
party secret-sharing scheme with message space S from the five components: (1) a symmetric encryption
scheme ΠEnc = (Encrypt , Decrypt) with k-bit keys and message space S; (2) an n-party PSS ΠPSS = (SharePSS ,
RecoverPSS) overAwith message space {0, 1}k; (3) an n-party IDA ΠIDA = (ShareIDA , RecoverIDA) overAwith
message space Σ∗; (4) an n-party ECC ΠECC = (ShareECC , RecoverECC) over A with message space {0, 1}h;
and (5) a function Hash : {0, 1}∗ → {0, 1}h. We call ΠEnc , ΠPSS , ΠIDA , ΠECC , Hash the underlying primitives of
the HK1 scheme, and say that they are over A, for n parties and for h-bit hashes. From such a set of primitives
define HK1[ΠEnc , ΠPSS , ΠIDA , ΠECC , Hash] = (Share, Recover) as specified and illustrated in Figure 5. In its
line 21, if X[i] = ♦ then our convention is to assign ♦ to all variables on the left-hand side of the assignment
statement; otherwise X[i] is parsed into its corresponding, uniquely defined constituents. Similarly, if K = ♦

8

PROCEDURE Share(X)
10 K

$←{0, 1}k ; C
$← EncryptK(X)

11 K
$← SharePSS(K)

12 C
$← ShareIDA(C)

13 FOR i← 1 TO n DO

14 H[i]← Hash(K[i] C[i])
15 Si

$← ShareECC(H[i])
16 FOR i← 1 TO n DO

17 X[i]←K[i]C[i] S1[i] · · ·Sn[i]
18 RETURN X

PROCEDURE Recover(X, j)
20 FOR i← 1 TO n DO

21 K[i]C[i] S1[i] · · ·Sn[i]←X[i]
22 FOR i← 1 TO n DO

23 H[i]← RecoverECC(Si, j)
24 FOR i← 1 TO n DO

25 IF X[i] �= ♦ AND Hash(K[i] C[i]) �= H[i]
26 THEN K[i]← ♦ ; C[i]← ♦
27 K ← RecoverPSS(K, j)
28 C ← RecoverIDA(C, j)
29 X ← DecryptK(C)
30 RETURN X

Rand(k)

Encrypt

SharePSS ShareIDA

Hash Hash Hash

ShareECC ShareECC ShareECC

�

�

�

�

�

�
�

�
�

��

�����������

�����������

�����������

�����������

�
�

�
�

��

� � �

� � �

� � �

� � � � � � � � �

X

K

K[1] K[2] K[3] C[1] C[2] C[3]

H[1] H[2] H[3]

X[1] X[2] X[3]

S1[1] S1[2] S1[3] S2[1] S2[2] S2[3] S3[1] S3[2] S3[3]

��
��
��

��
��
��

��
��
��

S1[1]
S2[1]
S3[1]

S1[2]
S2[2]
S3[2]

S1[3]
S2[3]
S3[3]

Figure 5: Left: Definition of the HK1 construction Π = (Share, Recover) = HK1[ΠEnc ,ΠPSS ,ΠIDA ,ΠECC , Hash]. Right:
Illustration of the scheme’s Share algorithm for n = 3 players. Procedure Rand , on input k, returns a uniformly random
k-bit string.

or C = ♦ when line 29 is executed then our convention is that X = ♦. Let HK1[ΠEnc , ΠPSS , ΠIDA , ΠECC] =
(Share, Recover) be the random-oracle variant of this scheme in which Hash : {0, 1}∗ → {0, 1}h is chosen at
random by games Priv and Rec.

SECURITY. Since an encryption key is used by the share algorithm to encrypt just one message, it is natural to
think that HK1 is secure if the encryption scheme satisfies one-query indistinguishability (ind1). But we show
that the ind1 condition does not guarantee privacy of HK1, even in the random-oracle model. Specifically, we
show that even one-time-pad encryption, which is certainly ind1-secure, is not enough. Intuitively, the problem
is that the hash function is deterministic —even a random oracle is deterministic in the sense that, when invoked
twice on the same input, it returns the same answer both times— and hence the values H[i] computed at line
14 can provide partial information about the key K.

4.2 An attack

We now detail the attack. For concreteness, assume we have n = 3 players and wish to use the 2-out-of-3
threshold scheme, access structure A2,3. Assume the domain of secrets is S = {0, 1}128 and the do-
main of messages is the same. In the RO-based construction HK1[ΠEnc , ΠPSS , ΠIDA , ΠECC] assume we in-
stantiate ΠEnc with one-time-pad encryption, C = EncryptK(X) = K ⊕X . Assume we instantiate ΠPSS

9

with the 2-out-of-3 Shamir secret-sharing scheme over the finite field F2128 . Assume we instantiate ΠIDA

with replication, so ShareIDA(C) = (C, C, C). Assume we likewise instantiate ΠECC with replication, so
ShareECC(H) = (H, H, H).

To understand the attack we first point out that with Shamir’s secret-sharing scheme [43], not only can you
reconstruct the key (the secret) from m = 2 out of n = 3 shares, but you can also reconstruct a share (say
share 2) given one share (say share 1) and the underlying key K that was dealt. (This is done by interpolation,
in the same manner that the secret is normally recovered.) Specifically, for the 2-out-of-3 scheme there is an al-
gorithm R such that R(K[1], K) = K[2] for all K ∈ SharePSS(K). We will use this fact to violate privacy. Our
adversary A selects any two distinct 128-bit strings, X0 and X1, and calls Deal(X0, X1). Let b, K, K, C, H,
and X be as specified in game Priv in response to the Deal query. Next, adversary A calls Corrupt(1) to get
back X[1], from which it parses out K[1] and C[1] = C, the latter because the IDA is replication. It now
sets K0 = C ⊕X0 and K1 = C ⊕X1. Note that Kb = K. Adversary A now defines the candidate share
K0[2] = R(K[1], K0) for K0 and defines the candidate share K1[2] = R(K[1], K1) for K1. We know that
Kb[2] = K[2]. The adversary A computes H0[2] = Hash(K0[2] C) and H1[2] = Hash(K1[2] C). We know
that Hb[2] = H[2]. But embedded in X[1] is H[2], since the ECC also was replication, which A extracts. So
let A return 1 if H1[2] = H[2] and 0 otherwise. We now show that A has advantage 1 − 2−h (recall that h is
output length of Hash). If b = 1 then A always returns 1. From K[1], K0[2] one can recover K0 and, similarly,
from K[1], K1[2] one can recover K1. But K0 �= K1 because X0 �= X1, so it must be that K0[2] �= K1[2].
We conclude that K0[2] C �= K1[2] and so the probability that their hashes collide (under the random-oracle
modeled hash-function Hash) is at most 2−h. So if b = 0 adversary A outputs 1 with probability 2−h.

One might be tempted to reason that if the HK1 construction is wrong even with a one-time pad and even
in the RO model, then certainly it is wrong when any “real” encryption scheme and hash-function are used, as
these will have inferior properties. But this is not the case, as there are ways in which a “real” encryption scheme
is superior to a one-time pad that are of relevance here. The attack above used the fact that with a one-time-
pad, given a plaintext/ciphertext pair (X, C) one can recover the key K via K = C ⊕X . Had the encryption
scheme been secure against one-query key-recovery (key1), meaning that it was computationally infeasible to
find the key from a plaintext/ciphertext pair, we would not have been able to mount the attack. And common
encryption schemes like CBC mode do provide security against key recoverability under standard assumptions.

DISCUSSION. The intent of HK1 was to make shares shorter than the secret. This will not happen if one-
time-pad encryption is used, leading one to question the practical relevance of the above counterexample and
to ask if ind1 security suffices for encryption schemes in which the ratio of message length to key length is
always large. We have not been able to resolve the latter question, and, in particular, have found neither a
proof nor a counterexample for whether ind1 implies key1 for encryption schemes of the type just mentioned.
As for practical relevance, note that a distributed file system should allow the sharing of files of any length,
small or large, so security must be provided even for messages shorter than the key. A reasonable encryption
scheme could use one-time-pad encryption for short messages and some other form of encryption for longer
ones. Indeed, this could be particularly efficient.

4.3 Privacy (in the RO model)

We now show that ind1 + key1 security is enough to prove the security of HK1, in the RO model, under certain
conditions on the access structure. Our result applies to threshold access structures or any other adversary
class A where A ∩ Priv = Ap

m,n. This includes Am,n,t as the distinction between Am,n,t and Am,n vanishes
after intersecting with Priv.

Theorem 1 [Privacy of HK1, random-oracle model, threshold schemes] Let A = Ap
m,n and let Π =

HK1[ΠEnc , ΠPSS , ΠIDA , ΠECC] with primitives over A, for n-parties, and with h-bit hashes. Let A ∈ A be an
adversary that makes at most q queries to its Hash oracle. Then there are adversaries B1 and B2 attacking the

10

symmetric encryption scheme ΠEnc such that

Advpriv
Π (A) ≤ Advind

ΠEnc (B1) + 2qn ·Advkey
ΠEnc (B2) +

2q + n2

2h

where adversary B1 makes only one query to its left-or-right oracle, adversary B2 makes only one query to its
encryption oracle, and the running times of B1 and B2 are that of A plus overhead consisting of one execution
of the Share algorithm of Π and, for B2, an additional n executions of the Recover algorithm of ΠPSS .

It is easy to show that Advind
ΠEnc (B1) and Advkey

ΠEnc (B2) are small for efficient one-query adversaries B1 and B2

(ind1 + key1 security) if Advind
ΠEnc (B3) is small for any efficient two-query adversary (ind2). See Appendix A

for a proof. We choose to express our result in terms of ind1 + key1 security in order to precisely hone in on
what HK2 needs. Note that a PRP-secure blockcipher is ind1 + key1 secure (even though it is not ind2-secure)
and therefore an appropriate realization of ΠEnc for HK1. Similarly, common modes of operation like CBC are
ind1 + key1 secure, even for a fixed IV.

Proof intuition: The proof is challenging due to the basic weakness in HK1 exploited in our earlier attack: that
the hash function is deterministic and thus may not preserve privacy of the shares to which it is applied. The
full proof, which relies on some lemmas concerning PSS privacy from Appendix C.1, is given in Appendix D.

We begin by highlighting two features of the proof. The first is that it relies not just on the privacy but also
the recoverability of ΠPSS . (At first glance it is unclear why the privacy of Π should need the recoverability of
ΠPSS .) The second is that it requires a condition on ΠPSS that we call share unpredictability. This condition is
not true for an arbitrary access structure. But it is true for threshold access structures and, more generally, for
all access structures that are extensible. We define the latter property in Appendix D.

Suppose we aim to construct an adversary B1 attacking the ind1-property of ΠEnc . It would run A. The difficulty
is that B1 would not know the key K and thus it would be unable to reply to oracle queries of A because these
replies are a function of the shares of K. We can, however, consider a new game where the plaintext is encrypted
under K but the share vector K is produced from a different key K ′, expecting this to be perfectly adversarially
indistinguishable from the original game due to the privacy of the PSS scheme. It is the determinism of the
hash function that causes difficulties in establishing something like this. The problem is in answering a hash
query of A that contains the share K[i] of an uncorrupted player i. This is addressed in two steps. The first
is to argue that as long as m − 2 or fewer players have been corrupted, the share of an uncorrupted player
is unpredictable and thus has low probability of being a Hash query of A. This is true because of the share-
unpredictability lemmas, which say that even an adversary knowing the secret and m−2 or fewer shares cannot
predict any remaining share with reasonable advantage. Here the threshold is m, meaning privacy of the secret
is guaranteed even if the adversary knows m − 1 shares, but share-unpredictability allows the adversary only
m − 2 shares, because we need to assume it might also know the secret. The second step is to argue that if
the adversary has corrupted m − 1 players then, if it queries Hash on the share of an uncorrupted player, we
have m shares of the secret and, via the Recover procedure of the PSS scheme, can recover the underlying key.
This leads to a key-recovery adversary.

We warn that this sketch elides many issues; see Appendix D.

MINIMALITY OF THE ASSUMPTION. Theorem 1 shows that ind1+key1 security of the encryption scheme is
sufficient for the privacy of HK1. We now show that it is also necessary. That is, we show that for any encryption
scheme ΠEnc that is not ind1+key1 secure, Π = HK1[ΠEnc , ΠPSS , ΠIDA , ΠECC] can fail to provide privacy. The
proof of the following is in Appendix G.

Theorem 2 [Minimality of the ind1+key1 assumption for proving the security of HK1] Fix an encryption
scheme ΠECC = (Encrypt , Decrypt) and a number h. Then there exists m, n, A = Am,n, ΠPSS , ΠIDA , and ΠECC

where, letting Π = HK1[ΠEnc , ΠPSS , ΠIDA , ΠECC] (with primitives over A, for n-parties, and h-bit hashes), for

11

any adversary B there is an adversary A such that

Advpriv
Π (A) ≥ Advkey

ΠEnc (B)− 2−h , (1)

and for any adversary B there is an adversary A such that

Advpriv
Π (A) ≥ Advind

ΠEnc (B) . (2)

In both cases the running time A is essentially that of B (see the proof), and A makes at most one query to each
of its oracles.

Theorems establishing the necessity of an assumption within some protocol are not common, so let us explain
why the theorem above accomplishes this. Suppose you wanted to prove that Π = HK1[ΠEnc , ΠPSS , ΠIDA , ΠECC]
achieved the privacy property assuming that ΠPSS , ΠIDA , and ΠECC are good PSS, IDA, and ECC schemes. The
theorem above establishes that, if you make an assumption on ΠEnc that doesn’t imply ind1+key1 security, you
won’t be able to get a proof.

4.4 Recoverability (in the RO model)

We prove recoverability for any (valid) class of adversaries, which includes the adversaries associated to any
access structure, and Am,n,t as well. Appendix E.

Theorem 3 [Recoverability of HK1, random-oracle model] Let A be a valid class of adversaries and let
Π = HK1[ΠEnc , ΠPSS , ΠIDA , ΠECC] with primitives over A, for n parties, and with h-bit hashes. Let A ∈ A be an
adversary that asks at most q queries to its Hash oracle. Then Advrec

Π (A) ≤ (q + 2n)2/2h+1 .

The recoverability of HK1 requires only the collision-intractability of the hash function Hash ; it is possible to
restate the theorem above and adjust its proof to show that an attack on the recoverability of HK1 implies an
equally effective method to find collisions in Hash . We didn’t express the result this way since the proof of
privacy was already in the random-oracle model.

5 The HK2 Protocol (Refining Krawczyk’s Scheme)

We now alter HK1 by replacing its deterministic hash function Hash with a randomized commitment scheme.
This changes the protocol, as the randomness used in the commitment must be inserted into the shares. We are
then able to show that the new protocol, HK2, is a good RCSS under standard assumptions.

5.1 The construction

COMMITMENT SCHEMES. We formalize a (noninteractive) commitment scheme as a pair ΠCom = (Ct , Vf).
Here Ct is a probabilistic algorithm that takes a message M ∈ {0, 1}∗ and returns either a pair (Y, R), where Y
is the committal and R is the decommittal, or else it returns ⊥. Algorithm Vf is deterministic and, on input
Y, M, R, returns a bit. The domain Dom ⊆ {0, 1}∗ of ΠCom is the set of all M ∈ {0, 1}∗ such that Ct(M) is
never ⊥. We assume that whether or Ct(M) is ⊥ is independent of its coin tosses (which ensures that it is easy
to check if a point is in the domain).

There are two security properties, hiding and binding, each defined by a game. See Figure 6. In game Hide,
multiple queries to LeftOrRight are allowed, and arguments M0 and M1 to LeftOrRight need not be of equal
length. The advantage of A in attacking the hiding-property of the commitment scheme is Advhide

ΠCom (A) =
2 Pr[HideA] − 1. We say that ΠCom is ε(·)-hiding if Advhide

ΠCom (A) ≤ ε(q) for any adversary A that makes at
most q oracle queries. Note that the adversary is not computationally restricted; we have given a statistical

12

PROCEDURE Initialize PROCEDURE LeftOrRight(M0,M1) Game Hide

b
$←{0, 1} IF M0 �∈ Dom OR M1 �∈ Dom

THEN RETURN ⊥
PROCEDURE Finalize (d) (Y,R) $← Ct(Mb)
RETURN b = d RETURN Y

PROCEDURE Commit(M0) PROCEDURE Finalize (M1, R1) Game Bind
IF M0 �∈ Dom THEN RETURN ⊥ IF M1 �∈ Dom THEN RETURN ⊥
(Y,R0)

$← Ct(M) RETURN (M0 �= M1 AND

RETURN (Y,R0) Vf(Y,M0, R0) = 1 AND

Vf(Y,M1, R1) = 1)

Figure 6: Games used to define the security of a commitment scheme ΠCom = (Ct , Vf) with domain Dom.

PROCEDURE Share(X)
10 K

$←{0, 1}k ; C
$← EncryptK(X)

11 K
$← SharePSS(K) ; C

$← ShareIDA(C)
12 FOR i← 1 TO n DO

13 (H[i], R[i]) $← Ct(K[i] C[i])
14 Si

$← ShareECC(H[i])
15 FOR i← 1 TO n DO

16 X[i]← R[i]K[i]C[i] S1[i] · · ·Sn[i]
17 RETURN X

PROCEDURE Recover(X, j)
20 FOR i← 1 TO n DO

21 R[i]K[i]C[i] S1[i] · · ·Sn[i]←X[i]
22 FOR i← 1 TO n DO H[i]← RecoverECC(Si, j)
23 FOR i← 1 TO n DO

24 IF X[i] �= ♦ AND Vf(H[i], K[i] C[i], R[i]) = 0
25 THEN K[i]← ♦ ; C[i]← ♦
26 K ← RecoverPSS(K, j) ; C ← RecoverIDA(C, j)
27 X ← DecryptK(C)
28 RETURN X

Figure 7: Definition of the HK2 construction Π = (Share, Recover) = HK2[ΠEnc ,ΠPSS ,ΠIDA ,ΠECC ,ΠCom].

notion of privacy. For the binding game, Bind, there is no Initialize procedure. We define the advantage of A
in attacking the binding-property of the commitment scheme as Advbind

ΠCom (A) = Pr[BindA]. The notion is
weaker than the classical notion of binding, which would speak to the computational infeasibility to find any
Y, M0, R0, M1, R1 such that M0, M1 ∈ Dom AND M0 �= M1 AND Vf(Y, M0, R0) = 1 AND Vf(Y, M1, R1) =
1. The conventional notion is analogous to the collision resistance of a hash function while our notion is more
like a UOWHF [37] (also called TCR hash-function [5]). Informally, we refer to a commitment scheme ΠCom

as statistically-hiding, weakly-binding (SHWB) if Advhide
Π (A) is small for any reasonable adversaries A and

Advbind
Π (A) is small for any reasonable adversaries A.

THE HK2 SCHEME. Fix an adversary class A. We build an n-party secret-sharing scheme with message
space S from components: (1) a symmetric encryption scheme ΠEnc = (Encrypt , Decrypt) with k-bit keys and
a message space S; (2) an n-party PSS ΠPSS = (SharePSS , RecoverPSS) over A with message space {0, 1}k;
(3) an n-party IDA ΠIDA = (ShareIDA , RecoverIDA) over A with message space Σ∗; (4) an n-party ECC ΠECC =
(ShareECC , RecoverECC) over A with message space {0, 1}h; and (5) a commitment scheme ΠCom = (Ct , Vf)
with domain Dom where K[i] C[i] ∈ Dom if K ∈ SharePSS(K) and C ∈ ShareIDA(C) for some K ∈ {0, 1}k,
X ∈ S, and C ∈ EncryptK(X). We call ΠEnc , ΠPSS , ΠIDA , ΠECC , ΠCom the underlying primitives of the HK2
scheme, and we say that they are over A, and for n parties. From such a set of primitives we define the secret-
sharing scheme HK2[ΠEnc , ΠPSS , ΠIDA , ΠECC , ΠCom] = (Share, Recover) as specified by Figure 7. The figure uses
the same conventions as those of Figure 5.

13

PROCEDURE Initialize G0–G2

K
$←{0, 1}k ; b

$←{0, 1} ; K
$← SharePSS(K)

RETURN

PROCEDURE Deal(X0, X1) G0, G1, G4, G5

C
$← EncryptK(Xb) ; C

$← ShareIDA(C)
FOR i← 1 TO n DO

(H[i], R[i]) $← Ct(K[i] C[i]) ; Si
$← ShareECC(H[i])

PROCEDURE Corrupt(i) G0, G5

X[i]← R[i] K[i]C[i] S1[i] · · ·Sn[i]
RETURN X[i]

PROCEDURE Finalize(d) G0–G5

RETURN (d = b)

PROCEDURE Initialize G3–G5

K, K ′ $←{0, 1}k ; b
$←{0, 1}

K
$← SharePSS(K ′)

PROCEDURE Deal(X0, X1) G2, G3

C
$← EncryptK(Xb) ; C

$← ShareIDA(C)
FOR i← 1 TO n DO

(H[i], R[i]) $← Ct(0 C[i])
Si

$← ShareECC(H[i])

PROCEDURE Corrupt(i) G1–G4

R[i] $← DCt(H[i], K[i] C[i])
X[i]← R[i] K[i] C[i] S1[i] · · ·Sn[i]
RETURN X[i]

Figure 8: Games for proving Theorem 4, the privacy of the HK2 scheme.

5.2 Privacy (in the standard model)

The difficulty in establishing privacy in the standard model is that our adversary is dynamic, and so we run
into the selective-decommitment problem; see Dwork, Naor, and Reingold [19]. One could always pretend
the adversary to be static and take a hit of 2n in the security bound when the adversary is dynamic, but we
don’t want to do this, as we are interested in concrete security and results with good asymptotic counterparts.
Another way around this is to use a statistically-hiding chameleon commitment-scheme. Instead we make do
with a weaker requirement, just the statistical hiding. We comment that for the case of static adversaries it
would suffice that the commitment be computationally rather than statistically hiding.

Theorem 4 [Privacy of HK2] Let A be an adversary class and Π = HK2[ΠEnc , ΠPSS , ΠIDA , ΠECC , ΠCom] with
primitives over A, for n parties, and with an ε(·)-hiding ΠCom. Let A ∈ A ∩ Priv be an adversary for attacking
the privacy of Π. Then there is an adversary B for attacking the privacy of ΠEnc such that

Advpriv
Π (A) ≤ Advind

ΠEnc (B) + 4ε(n)

where B makes only one query to its left-or-right oracle and the running time of B is that of A plus overhead
consisting of one execution of the Share algorithm of Π.

Proof: [Theorem 4]The proof relies on the games in Figure 8. The figure shows many procedures, indicating
next to each in which games it is included. For example, game G0 is defined by the procedures on the left-
hand-side of the figure. The procedure Corrupt of games G1–G4 refers to a probabilistic algorithm DCt that
works as follows. On input Y, M it lets Ω(Y, M) denote the set of all coins ω such that Ct, on input M and
coins ω, returns a pair whose first component is Y . If Ω(Y, M) = ∅ then DCt returns ⊥. Else it picks ω at
random from Ω(Y, M), runs Ct on input M and coins ω to get a pair (Y, R), and returns R. Note this algorithm
is not necessarily efficiently implementable. We note that

Advpriv
Π (A) = 2 · Pr

[
GA

0

]− 1 . (3)

Game G1 differs from game G0 only in the Corrupt procedure, which resamples R[i] as shown. Clearly,

Pr
[
GA

0

]
= Pr

[
GA

1

]
= Pr

[
GA

2

]
+(Pr

[
GA

1

]−Pr
[
GA

2

]
) . (4)

14

We will construct an adversary D1 attacking the hiding-property of ΠCom such that

Pr
[
GA

1

]− Pr
[
GA

2

]
= Advhide

ΠCom (D1) . (5)

Adversary D1 picks b
$←{0, 1} and runs A. When A makes a query X0, X1 to its Deal oracle, adver-

sary D1 picks K
$←{0, 1}k and C

$← EncryptK(Xb). It then picks K
$← SharePSS(K). For i running from 1

to n, it queries 0 C[i], K[i] C[i] to its LeftOrRight oracle, lets H[i] denote the value returned, and lets

Si
$← ShareECC(H[i]). When A makes a Corrupt(i) query, adversary D1 computes its reply according to

the code of the Corrupt procedure of games G1, G2. Note that this step is not necessarily efficient, but D1 does
not have to be computationally bounded. When A halts without output d, adversary D returns 1 if d = b and 0
otherwise. One can check that (5) is true.

Next we have
Pr

[
GA

2

]
= Pr

[
GA

3

]
+ (Pr

[
GA

2

]− Pr
[
GA

3

]
) , (6)

where G3 differs from G2 only in the Initialize procedure which now produces K by sharing not K but an
independently and randomly chosen key K ′. We claim that

Pr
[
GA

2

]
= Pr

[
GA

3

]
. (7)

To justify the above, we build an adversary P attacking the privacy of the PSS scheme ΠPSS such that

Advpriv
ΠPSS (P) = Pr

[
GA

2

]− Pr
[
GA

3

]
. (8)

But the privacy of ΠPSS tells us that the advantage of P is zero, yielding (7). Adversary P begins by picking K
and K ′ at random from {0, 1}k and b at random from {0, 1}. It then queries K ′, K to its Deal oracle. We

know that the latter creates shares K
$← SharePSS(L) where L = K ′ if the challenge bit chosen by game Priv

is zero and L = K if it is one. Now P starts running A, responding to A’s oracle queries as follows. When A
queries Deal(X0, X1) adversary P executes the code of the Deal procedure of games G2, G3. When A makes a
Corrupt(i) query, adversary P itself makes a Corrupt(i) query to obtain share K[i], produces X[i] as per the
code of the Corrupt procedure of games G2, G3, and returns X[i] to A. As before, this step is not necessarily
efficient, but P need not be computationally bounded. When A halts and outputs a bit d, adversary P returns 1
if b = d and 0 otherwise. It is easy to see that (8) is true.

Next we have
Pr

[
GA

3

]
= Pr

[
GA

4

]
+ (Pr

[
GA

3

]− Pr
[
GA

4

]
) . (9)

We next construct an adversary D2 attacking the hiding-property of ΠCom such that

Pr
[
GA

3

]− Pr
[
GA

4

]
= Advhide

ΠCom (D2) . (10)

The construction of D2 is similar to that of D1 and is therefore omitted. Games G5 differs from G4 only in its
Corrupt procedure as shown. Clearly

Pr
[
GA

4

]
= Pr

[
GA

5

]
. (11)

We now construct adversary B attacking the privacy of ΠEnc such that

2 · Pr
[
GA

5

]− 1 ≤ Advind
ΠEnc (B) . (12)

Adversary B picks K ′ at random and lets K
$← SharePSS(K ′). It then runs A. When A makes a query

Deal(X0, X1), B queries X0, X1 to its own left-or-right encryption oracle to get back C
$← EncryptK(Xb),

where b is the challenge bit and K the key chosen by the Ind game defining the privacy of ΠEnc . Now B exe-
cutes the last five lines of the Deal procedure of game G5. When A makes a Corrupt(i) query, adversary B

15

can execute the code of the Corrupt procedure of game G5 since it knows K[i]. When A halts and outputs a
bit d, adversary B returns d. The advantage of B is 2 Pr[b = d]− 1, so (12) is true.

Let D be the hiding-adversary that flips a fair coin and, if it lands heads, runs D1, otherwise, D2. Clearly

Advhide
ΠCom (D) = 0.5 ·Advhide

ΠCom (D1) + 0.5 ·Advhide
ΠCom (D2) . (13)

Since ΠCom is assumed to be ε(·)-hiding and D makes at most n oracle queries we have

Advhide
ΠCom (D) ≤ ε(n) . (14)

Putting together (3)–(14) concludes the proof.

5.3 Recoverability (in the standard model)

We now establish the recoverability of HK2. The theorem applies to any valid adversary class and assumes a
weakly-binding committal. The proof is in Appendix F.

Theorem 5 [Recoverability of HK2] Let A be a valid adversary class and let Π = HK2[ΠEnc , ΠPSS , ΠIDA ,
ΠECC , ΠCom] with primitives over A and for n parties. Let A ∈ A. Then there is an adversary B attacking the
binding-property of ΠCom such that Advrec

Π (A) ≤ n · Advbind
ΠCom (B) and where the running time of B is that

of A plus overhead consisting of an execution of the Share and Recover algorithms of protocol Π.

REALIZING THE COMMITMENT. Constructions are known for noninteractive, statistically-hiding commitment-
schemes that meet the standard binding requirement, and therefore our own. One is based on discrete log [11],
another, on a collision-resistant hash-function [18, 23]. These constructions are all reasonably efficient. Ac-
tually, having relaxed the binding requirement, one can replace the collision-resistant hash-function of the
constructions just mentioned with the UOWHF primitive of Naor and Yung [37]. This provides a basis for the
plausibility-style result that a one-way function suffices for efficient RCSS [42]6, and it also provides the basis
for a practical scheme that builds its UOWHF from appropriately keying a cryptographic hash-function.

Acknowledgments

Many thanks to Mark O’Hare and Rick Orsini, of Security First Corp., for calling our attention to the foun-
dational issues of RCSS and for supporting our work to resolve them. Thanks to Hugo Krawczyk for helpful
comments.

References

[1] P. Béguin and A. Cresti. General short computational secret sharing schemes. Advances in Cryptology –
EUROCRYPT ’95, LNCS vol. 921, pp. 194–208, 1995.

[2] A. Beimel and B. Chor. Universally ideal secret sharing schemes. IEEE Trans. on Info. Theory, vol. 40,
no. 3, pp. 786–794, 1994.

[3] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption.
38th Annual Symposium on Foundations of Computer Science (FOCS 1997), pp. 394–403, 1997.

6 Statistically hiding commitment-schemes satisfying the standard (rather than our weakened) notion of binding can be built from
one-way permutations [36] and even one-way functions [24]. But these schemes are interactive, and so unsuitable for our application.

16

[4] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. Advances in Cryptology – EUROCRYPT ’06, LNCS vol. 4004, Springer, pp. 409–426,
2006.

[5] M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs practical. Advances
in Cryptology – CRYPTO ’97, LNCS vol. 1294, Springer, pp. 470–484, 1997.

[6] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols.
Proc. of the First Annual Conference on Computer and Communications Security (ACM CCS), ACM
Press, 1993.

[7] M. Bellare and P. Rogaway. Robust computational secret sharing and a unified account of classical
secret-sharing goals. Proceedings version of this paper. Proc. of the 14th ACM Conference on Computer
and Communications Security (ACM CCS), ACM Press, 2007.

[8] J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. Advances in Cryptol-
ogy – CRYPTO ’88, LNCS vol. 403, Springer, pp. 27–36, 1990.

[9] G. Blakley. Safeguarding cryptographic keys. AFIPS National Computer Conference, vol. 48, pp. 313–
317, 1979.

[10] C. Blundo, A. De Santis, G. Di Crescenzo, A. Gaggia, and U. Vaccaro. Multi-secret sharing schemes.
Advances in Cryptology – CRYPTO ’94, LNCS vol. 839, Springer, pp. 150–163, 1994.

[11] J. Boyar, S. Kurtz, and M. Krentel. A discrete logarithm implementation of perfect zero-knowledge
blobs. J. of Cryptology, vol. 2, no. 2, pp. 63–76, 1990.

[12] E. Brickell and D. Stinson. The detection of cheaters in threshold schemes. SIAM J. of Discrete Math,
vol. 4, no. 4, pp. 502–510, 1991.Earlier version in Crypto 88.

[13] E. Brickell and D. Stinson. Some improved bounds on the information rate of perfect secret sharing
schemes. J. of Cryptology, vol. 5, 153–166, 1992.

[14] C. Cachin. On-line secret sharing. IMA Conference on Cryptography and Coding, LNCS vol. 1025,
Springer, pp. 190-198, 1995.

[15] R. Capocelli, A. DeSantis, L. Gargano, and U. Vaccaro. On the size of shares for secret sharing schemes.
J. of Cryptology, vol. 6, pp. 157–167, 1993.

[16] M. Carpentieri, A. De Santis, and U. Vaccaro. Size of shares and probability of cheating in threshold
schemes. Advances in Cryptology – EUROCRYPT ’93, LNCS vol. 765, Springer, pp. 117–125, 1993.

[17] B. Chor, S. Goldwasser, S. Micali, and B. Awerbach. Verifiable secret sharing and achieving simultane-
ity in the presence of faults. FOCS ’85, IEEE Press, pp. 383–395, 1985.

[18] I. Damgård, T. Pedersen, and B. Pfitzmann. On the existence of statistically hiding bit commitment
schemes and fail-stop signatures. J. of Cryptology, vol. 10, no.3, pp. 163–194, 1997.

[19] C. Dwork, M. Naor, O. Reingold, and L. Stockmeyer. Magic functions. JACM, vol. 50, no. 6, pp. 852–
921, 2003.

[20] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. FOCS ’87, IEEE Computer
Society, pp. 427–437, 1987.

17

[21] G. Ganger, P. Khosla, M. Bakkaloglu, M. Bigrigg, G. Goodson, S. Oguz, V. Pandurangan, C. Soules,
J. Strunk, and J. Wylie. Survivable storage systems. DARPA Information Survivability Conference and
Exposition, vol. 2, IEEE Press, pp. 184–195, 2001.

[22] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences
(JCSS), vol. 28, no. 2, pp. 270–299, 1984.

[23] S. Halevi and S. Micali. Practical and provably-secure commitment schemes from collision-free hash-
ing. Advances in Cryptology – CRYPTO ’96, LNCS vol. 1109, Springer, pp. 201-215, 1996.

[24] I. Haitner and O. Reingold. Statistically-hiding commitment from any one-way function. Cryptology
ePrint report 2006/436, 2006.

[25] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: how to cope with
perpetual leakage. Advances in Cryptology – CRYPTO ’95, LNCS vol. 963, Springer, pp. 339–352,
1998.

[26] Y. Ishai. Personal communication, February 2007.

[27] M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access structure. IEEE
Globecom 87, pp. 99–102, 1987.

[28] A. Iyengar, R. Cahn, C. Jutla, and J. Garay. Design and implementation of a secure distributed data
repository. 14th IFIP International Information Security Conference, pp. 123–135, 1998.

[29] W. Jackson and K. Martin. Combinatorial models for perfect secret-sharing schemes. J. of Comb. Math-
ematics and Comb. Computing, vol. 28, pp. 249–265, 1998.

[30] E. Karnin, J. Greene, and M. Hellman. On secret sharing systems. IEEE Transactions on Information
Theory, vol. 29, no. 1, pp. 35–51, 1983.

[31] H. Krawczyk. Secret sharing made short. LNCS vol. 773, Springer, pp. 136–146, 1993. Advances in
Cryptology – CRYPTO ’93.

[32] H. Krawczyk. Distributed fingerprints and secure information dispersal. Twelfth Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC 1993), ACM Press, pp. 207–218, 1993.

[33] S. Lakshmanan, M. Ahamad, and H. Venkateswaran. Responsive security for stored data. IEEE
Trans. on Parallel and Distributed Systems, vol. 14, no. 9, pp. 818–828, 2003.

[34] A. Mayer and M. Yung. Generalized secret sharing and group-key distribution using short keys. Com-
pression and Complexity of Sequences 1997, IEEE Press, pp. 30–44, 1997.

[35] R. McEliece and D. Sarwate. On sharing secrets and Reed-Solomon codes. Communication of the ACM,
vol. 24, pp. 583–584, 1981.

[36] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge arguments for NP using
any one-way permutation. Journal of Cryptology, vol. 11, no. 2, pp. 87–108, 1998.

[37] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. Twenty
first Annual ACM Symposium on Theory of Computing (STOC 1989), IEEE Press, pp. 33–43, 1989.

[38] W. Ogata, K. Kurosawa, and D. Stinson. Optimum secret sharing scheme secure against cheating. SIAM
J. on Discreet Mathematics, vol. 20, no. 1, pp. 79–95, 2006.

18

[39] A. Paul, S. Adhikari, and U. Ramachandran. Design of a secure and fault tolerant environment for
distributed storage. Georgia Tech Center for Experimental Research in Computer Science (CERCS)
Technical Report GIT-CERCS-04-02, 2004.

[40] M. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance. Journal of
the ACM, vol. 36, no. 2, pp. 335–348, 1989.

[41] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. Sym-
posium on the Theory of Computing (STOC 1989), ACM Press, pp. 730-85, 1989.

[42] J. Rompel. One-way functions are necessary and sufficient for secure signatures. STOC ’90, pp. 387–
394, 1990.

[43] A. Shamir. How to share a secret. Communications of the ACM, vol. 22, no. 11, pp. 612–613, 1979.

[44] C. Shannon. A mathematical theory of communication. Bell System Technical Journal, vol. 27, pp. 379–
423 and pp. 623–656, July and October, 1948.

[45] G. Simmons. How to (really) share a secret. Advances in Cryptology – CRYPTO ’88, LNCS vol. 403,
Springer, pp. 390–448, 1989.

[46] G. Simmons. An introduction to shared secret and/or shared control schemes and their application.
Chapter 9 from Contemporary Cryptology: The Science of Information Integrity, IEEE Press, pp. 441–
497, 1991.

[47] M. Stadler. Publicly verifiable secret sharing. Advances in Cryptology – EUROCRYPT ’96. LNCS
vol. 1070, Springer, pp. 190–199, 1996.

[48] D. Stinson. An explication of secret sharing schemes. Designs, Codes and Cryptography, vol. 2, Kluwer,
pp. 357–390, 1992.

[49] D. Stinson and R. Wei. Bibliography of secret sharing schemes. On-line bibliography, 216 references,
dated 13 Oct 1998. http://www.cacr.math.uwaterloo.ca/ dstinson/ssbib.html.

[50] M. Tompa and H. Woll. How to share a secret with cheaters. Journal of Cryptology, vol. 1, pp. 133–138,
1988. Earlier version in Crypto ’86.

[51] V. Vinod, A. Narayanan, K. Srinathan, C. Rangan, and K. Kim. On the power of computational secret
sharing. Progress in Cryptology – INDOCRYPT 2003, LNCS vol. 2904, Springer, pp. 162–176, 2003.

[52] M. Waldman, A. Rubin, and L. Cranor. The architecture of robust publishing systems. ACM Transac-
tions on Internet Technology (TOIT), vol. 1, no. 2, pp. 199–230, 2001.

[53] H. Witsenhausen. The zero-error side information problem and chromatic numbers. IEEE Transactions
on Information Theory, vol. 22, no. 5, pp. 592–593, 1976.

[54] J. Wylie, M. Bigrigg, J. Strunk, G. Ganger, H. Kiliççöte, and P. Khosla. Survivable information storage
systems. IEEE Computer, vol. 33, no. 8, pp. 61–68, August 2000.

A A Sufficient Condition for key1-Security

An encryption scheme secure against q ≥ 2 queries in the indistinguishability sense is also secure against
q − 1 queries in key-recoverability sense (so, in particular, ind2-security implies key1-security). For complete-
ness, we formalize and prove this below. In particular, two-query indistinguishability (ind2) implies one-query
key-recoverability (key1), but an encryption scheme secure in the key1 sense need not be secure against key-
recovery at all (the one-time pad is an example).

19

Proposition 6 Let Π = (Encrypt , Decrypt) be an encryption scheme with message space including {0, 1}m
for some m. Let A be a (key-recovery) adversary. Then there exists a (distinguishing) adversary D such that
Advind

Π (D) ≥ Advkey
Π (A) − 2−m and where D makes one more oracle query than does A, makes oracle

queries of total length m bits more than the total length of A’s queries, and D runs in time which is A’s running
time plus the time for one Decrypt call on an m-bit string.

Proof: Construct D as follows. It runs A, answering each Enc(X) query by calling LeftOrRight(X, X) and re-

turning the response. When A halts with output K ′, have D compute X
$←{0, 1}m, C

$← LeftOrRight(X, 0m),
and X ′ = DecryptK′(C). Let D return 0 if X = X ′ and 1 otherwise.

Let Left and Right denote the games that are the same as the Ind game except the encryption oracle Enc is
replaced by the oracle that always encrypts the left or right queries, respectively. Suppose that D plays game
Left. Then the probability that D will output true is at least Advkey

Π (A). On the other hand, suppose that D
plays game Right. Then if D outputs true it means that D, given no information about X , managed to correctly
guess it. The chance of this is at most 2−m. Now, as is standard, Advind

Π (D) = 2 Pr[IndD]− 1 = Pr[LeftD ⇒
true]− Pr[RightD], and so we conclude that Advind

Π (D) ≥ Advkey
Π (A)− 2−m.

While ind2-security implies ind1+key1 security, the reverse certainly is not the case. As an example, CBC
encryption with a zero-IV is readily shown to be ind1+key1 secure (when based on a PRP), but it is not ind2
secure. It is for this reason that Theorem 1 employs the weaker ind1+key1 assumption.

B Prior Secret-Sharing Definitions

The purpose of this section is to sketch the most prominent definitions for classical secret-sharing goals. We do
not aim to give a comprehensive survey, which would include many variations of the same.

BLAKLEY AND SHAMIR (1979). A threshold scheme with parameters m and n (that is, a secret-sharing
scheme for the access structure Am,n) was defined by Shamir [43] as follows7: Our goal is to divide S into n
pieces S1, . . . , Sn in such a way that: (1) knowledge of any m or more Si pieces makes S easily computable;
and (2) knowledge of any m− 1 or fewer Si pieces leaves S completely undetermined (in the sense that all its
possible values are equally likely).

The definition above is somewhat informal, and admits multiple, basically equivalent formalizations. The
two most prominent are the conditional-probability formulation and the entropy formulation. One can either
assume that the finite set of possible secrets S is endowed with a distribution and define a threshold scheme
for this distribution, or one can require the scheme to work for any distribution S; see, for example, [2, 29].
Illustrating the former approach, let S denote the random variable that takes on values from S according to the
associated distribution and let Si be the random variable that takes on values of the share i for i ∈ [n]. For
the conditional-probability formulation one would then require that for any distinct {i1, . . . , ir} ⊆ [n] and any
(si1 , . . . , sir) such that Pr[(Si1 , . . . , Sir) = (si1 , . . . , sir)] > 0, we have that: (1) if r ≥ m then there exists
a unique s ∈ S such that Pr[S = s | Si1 = si1 ∧ · · · ∧ Sir = sir] = 1; and (2) if r < m then, for each
s ∈ S we have that Pr[S = s | Si1 = si1 ∧ · · · ∧ Sir = sir] = Pr[S = s]. The statement we have just given
paraphrases [38]. For the entropy formalization [30] one would require that: (1) for any m-tuple of distinct
indices i1, . . . , im ∈ [n] we have that H(S | Si1 , . . . , Sim) = 0; and (2) for any r < m and for any r-tuple of
distinct indices i1, . . . , ir ∈ [n] we have that H(S | S1, . . . , Sr) = H(S). Here H(X) = −∑

x∈X p(x) lg p(x)
and H(X | Y) = −∑

x∈X,y∈Y p(x)p(x | y) lg p(x | y) and X and Y are random variables and p(x) denotes
the probability that X = x and p(y) denotes the probability that Y = y and p(x | y) denotes the probability
that X = x given that Y = y. Both formulations of the PSS notion readily lift to define secret-sharing schemes
over an arbitrary access structure A.

7 For consistency with the rest of this paper, we have changed the names of variables.

20

MCELIECE AND SARWATE (1981). These authors were interested in threshold schemes that are secure against
computationally-unbounded adversaries that can arbitrarily replace the shares of some t of the players [35]. An
external party, not a protocol participant, recovers the secret. It is not possible to say precisely what notion
the authors aim for because their work is stated in terms of characteristics of schemes achievable using Reed-
Solomon codes, not general characteristics sought in a secret-sharing scheme. That said, the authors seem to be
interested in achieving the PSS-PR2 goal of Figure 4 with respect to the adversary class we called Am,n,t.

TOMPA AND WOLL (1986). These authors are interested in m-out-of-n threshold schemes that are secure
against computationally-unbounded adversaries that can arbitrarily replace the shares of the m − 1 corrupted
players and where some uncorrupted protocol participant is the entity that is recovering the secret [50]. The
envisaged adversary is static. The authors state the problem like this (changing only some variable names):
Divide a secret S ∈ {0, 1, . . . , s− 1} into “shares” S1, S2, . . . , Sn such that: (a) Knowledge of any m shares
is sufficient to reconstruct S efficiently. (b) Knowledge of m − 1 shares provides no more information about
the value of S that was known before. (c) There is only a small probability ε > 0 that any m − 1 participants
i1, i2, . . . , im−1 can fabricate new shares S′

i1
, S′

i2
, . . . , S′

im−1
that deceive a mth participant im. Here, deceiv-

ing the mth participant means that, from S′
i1

, S′
i2

, . . . , S′
im−1

, and Sim , the secret S′ reconstructed is “legal”
(i.e., S′ ∈ {0, 1, . . . , s − 1}), but “incorrect” (i.e., S′ �= S). This model is investigated in works like [16, 38],
which also addresses some informalities in the definition above (like if the underlying secret S is uniform or if
one is instead maximizing over all S).

The above goal is approximately translated into our definition for PSS-SR1 (and also demanding perfect-
recoverability for erasure adversaries). Note that in a setting like this, with concrete security and a statistical
error bound, the difference between static and dynamic adversaries will be relevant: one could easily construct
an (artificial) secret-sharing scheme with a larger smallest-possible robustness parameter ε if one quantifies over
the class of static adversaries instead of dynamic ones.

KRAWCZYK (1993) AND OTHERS. A definition for CSS, for the case of an n-out-of-m threshold scheme, was
sketched by Krawczyk [31]. It is stated like this, apart from minor changes in notation. Let Π be an n-party
secret-sharing scheme. For any secret S and for any set of indices 1 ≤ ii ≤ · · · ≤ ir ≤ n let DΠ(S, i1, . . . , ir)
denote the probability distribution on the sequence of shares Si1 , Si2 , . . . , Sir induced by the output of running
the Share algorithm on S. The requirement is that for any pair of equal-length secrets S′ and S′′ and any set
of indices i1, i2, . . . , ir with r < m, the distributions DΠ(S′, i1, i2, . . . , ir) and DΠ(S′′, i1, i2, . . . , ir) must be
polynomially indistinguishable. Krawczyk earlier indicates that indistinguishability is in terms of the lengths
of messages or secrets. In Krawczyk’s definitional sketch, he omits mention of recoverability. Parameterizing
security by in the length of the secret might be unfortunate, effectively excluding a treatment of protocols that
share a one-bit secret, say, an apparently legitimate thing to want to do.

A somewhat different approach to formalizing CSS is given by Cachin [14] and refined by Vinod et al. [51].
For privacy one requires that the probability that an adversary can guess the shared secret is negligible (in the
security parameterized, which is again the length of the secret). One effectively assumes that the set of secrets
is large and that secrets are chosen uniformly from that set (assumptions that seem undesirable). Regardless, an
inability to guess the shared secret, an idea going back to Blakley [9], seems to make for an overly weak notion
of security, as a huge amount of partial information about the secret might be leaked while the secret remains
hard-to-guess. Such considerations are well-known from the context of encryption-scheme privacy, going back
to Goldwasser and Micali [22], and they are just as relevant here.

As for the RCSS goal, Krawczyk says only that this is a secret-sharing scheme that can correctly recover
the secret even in the presence of a (bounded) number of corrupted shares, while keeping the secrecy require-
ment [31]. Comments in the paper make it clear that the author was thinking in terms of the model of robustness,
where an external party recovers the secret.

Krawczyk clearly had further ideas along the lines of those pursued in the current paper. In particular, he
indicates that a stronger definition can be stated in terms of a dynamic and adaptive adversary that progressively
chooses the m−1 shares to be revealed to him depending on previously opened shares. He also indicates that the

21

PROCEDURE Initialize GSe, GSh

S
$← S; S

$← SharePSS(S)

PROCEDURE Corrupt(i) GSe, GSh, GSh+, G
T ← T ∪ {i}
RETURN S[i]

PROCEDURE Finalize(Y) GSe
RETURN (Y = S) AND T �∈ A

PROCEDURE Initialize GSh+

S
$← S ; S

$← SharePSS(S)
RETURN S

PROCEDURE Initialize G

S0, S1 $← S ; S
$← SharePSS(S1)

RETURN S0

PROCEDURE Finalize(j, Y) GSh
RETURN (S[j]=Y) AND (j �∈T) AND T �∈A

PROCEDURE Finalize(j, Y) GSh+, G
RETURN (S[j]=Y) AND (j �∈T) AND T∪{j} �∈A

Figure 9: Games in the PSS lemmas. The Figure defines four games, GSe, GSh, GSh+, and an auxiliary game G to be
used in the proofs.

traditional notion of perfect secret sharing can be defined in an analogous way . . . by replacing “polynomially
indistinguishable” with “identical” (or equivalently, by replacing polynomial-time distinguishability tests with
computationally unlimited tests) [31].

C Secret-Sharing Lemmas

C.1 Share-prediction lemmas

Assume that a secret is uniformly chosen from a finite set of possible secrets. We consider the probability
that an adversary, without having corrupted an authorized subset of players, predicts either the secret that was
distributed or the share of an uncorrupted player. The probability of the first is easily shown to be low by the
privacy of the scheme, essentially confirming that our definition implies previous ones. Share prediction is
more subtle since whether or not it is hard depends on the access structure. We provide sufficient conditions
on the access structure for share prediction to have low probability. We give two lemmas, one for adversaries
that don’t know the secret and one for adversaries that do. The latter is used in our proof of privacy of the HK1
construction (Theorem 1). We consider dynamic adversaries throughout, and in that sense our statements are
stronger than in traditional treatments of secret sharing.

We formalize the claims via the games of Figure 9. The Figure shows different procedures, listing next to
each the games in which this procedure appears, so that a total of four games are described. For our first lemma,
we consider the game GSe whose Initialize procedure picks a random secret from the (finite) message space S

of the given PSS scheme ΠPSS and creates shares for it. The game answers Corrupt queries and declares the
adversary to have won if its output Y equals the secret but the set of corrupted players is not authorized. The
following says that the probability that the adversary wins is at most 1/|S|.

Lemma 7 Let ΠPSS = (SharePSS , RecoverPSS) be a n-party PSS scheme over message space S and access
structure A. Then for any adversary D

Pr
[
GSeD

] ≤ 1
|S| . (15)

Proof: [Lemma 7]We will specify an adversary P attacking the privacy of ΠPSS such that

Advpriv
ΠPSS (P) ≥ Pr

[
GSeD

]− 1
|S| . (16)

22

Since the advantage of P is 0 by the assumed privacy of the PSS scheme, equation (16) implies equation (15).
Adversary P picks S0, S1 at random from S and queries S0, S1 to its Deal oracle. It then starts running A.
When A makes a Corrupt(i) query, adversary P itself makes a Corrupt(i) query, and returns the response
to D. When D halts with output Y , adversary P returns 1 if Y = S1 and 0 otherwise. Denoting the output
of P by d and the challenge bit chosen by game Priv by b we have

Advpriv
ΠPSS (P) = Pr [d = 1 | b = 1]− Pr [d = 1 | b = 0] .

Now we claim

Pr [d = 1 | b = 1] = Pr
[
GSeD

]
(17)

Pr [d = 1 | b = 0] ≤ 1
|S| , (18)

from which (16) follows. Equality (17) is evident from the definitions. In the case b = 0, adversary P has no
information about S1 which is chosen at random from S and hence the probability that Y = S1 is at most 1/|S|,
justifying (18).

Our next lemma considers the game GSh whose Initialize procedure picks a random secret from the (finite)
message space S of the given PSS scheme ΠPSS and creates shares for it. The game answers Corrupt queries
and declares the adversary to have won if it outputs j, Y such that Y equals the j-th share of the secret but no
Corrupt(j) query was made. We are interested in bounding the probability that the adversary wins.

However, this probability is not always small. It depends on the access structure. Consider for example the
access structure A that contains just the sets [n − 1] and [n] and let S = {0, 1}k. Let algorithm SharePSS(S)
return S where S[1], . . . ,S[n − 1] are chosen at random from S subject to S[1] ⊕ · · · ⊕ S[n − 1] = S and
S[n] = 0k. Then an adversary that outputs n, 0k wins with probability 1.

This type of anomaly seems however absent for “natural” access structures, and in particular for the thresh-
old one Am,n. To be general, we define a property of access structures that is sufficient to ensure that the
probability of the adversary winning the GSh game is small. We say that A is extendible if for every T ⊆ [n]
such that T �∈ A, and every j �∈ T , there exists a T ′ ⊆ [n] such that T ∪ T ′ �∈ A but T ∪ T ′ ∪ {j} ∈ A.
That is, T can be extended to an unauthorized subset such that addition of j makes it authorized. We call T an
extension of T, j.

Note that the A of our example above is not extendible. Indeed if we set j = n and T = ∅ then T, j has no
extension. However, Am,n is extendible, as are many other natural access structures. The following says that
the probability of winning GSh is at most 1/|S| if the access structure is extendible. The interesting aspect of
the proof is that it relies on the recoverability of the PSS scheme, not just its privacy. Below, if Y is a share
vector then Opened(Y) denotes the set { i : Y [i] �= ♦ } of all indices at which Y is defined.

Lemma 8 Let ΠPSS = (SharePSS , RecoverPSS) be a n-party PSS scheme over message space S and extendible
access structure A. Then for any adversary E

Pr
[
GShE

] ≤ 1
|S| . (19)

Proof: [Lemma 7]Consider the following adversary D for the GSe game. It initializes n-vector Y to have all
components ♦, and then runs E. When E makes a Corrupt(i) query, so does D. It stores the response as Y [i]
and also returns this response to E. Eventually, adversary E halts with output j, Y . We say this output is valid
if Opened(Y) �∈ A and j �∈ Opened(Y). If the output is not valid then D returns something arbitrary like 0, ε.
Else, it lets Y [j]← Y and lets T ′ be an extension of T, j, which we know exists by the extendibility assumption
on A. For each i ∈ T ′ it makes a Corrupt(i) query and stores the response in Y [i]. The extendibility property

23

now guarantees that Opened(Y) ∈ A, so D runs RecoverPSS(Y) to get back a secret S′, outputs S′, and halts.
The extendibility property also guarantees that T ∪ T ′ �∈ A so that D has not corrupted an authorized subset in
the case the output of E is valid. Now if the output j, Y of E is valid and satisfies S[j] = Y then S′ = S. If
the output of E is not valid then E does not win. This means that

Pr
[
GShE

] ≤ Pr
[
GSeD

]
, (20)

whence (19) follows from Lemma 7.

An adversary in the GSh+ game has the same share-prediction objective as an adversary in the GSh game but
differs in that it gets the secret as input. (The secret is the output of the Initialize procedure which by definition
becomes the input to the adversary.) Thus we are now asking how hard it is to predict a share when you know
the secret. The following lemma bounds the probability that the adversary wins under the same conditions as in
Lemma 8. The crucial difference is that in the GSh+ game, the adversary wins only if not just T but T ∪ {j} is
not authorized. In the case A = Am,n, this means that we allow it to corrupt only m− 2 players, not m− 1 as
in Lemma 8. Intuitively, this says that giving the adversary the secret is like giving it one extra share from the
point of view of its ability to predict other shares.

Lemma 9 Let ΠPSS = (SharePSS , RecoverPSS) be a n-party PSS scheme over message space S and extendible
access structure A. Then for any adversary F

Pr
[
GShF

+

] ≤ 1
|S| . (21)

Proof: [Lemma 9]We first claim that
Pr

[
GShF

+

]
= Pr

[
GF

]
, (22)

where game G is defined via Figure 9. Intuitively, this says that providing F the shared secret as input does not
help it; it does equally well with a random, independent secret as input. To justify (22) we provide an adversary
P attacking the privacy of ΠPSS such that

Advpriv
ΠPSS (P) = Pr

[
GShF

+

]− Pr
[
GF

]
. (23)

Since the advantage of P is 0 by the assumed privacy of ΠPSS , (23) implies (22). Adversary P picks S0, S1

at random from S and queries S0, S1 to its Deal oracle. It initializes set T to empty and starts running F on
input S1. When A makes a Corrupt(i) query, P puts i in T , itself makes a Corrupt(i) query, and returns
the response to F . When F halts with output (j, Y), adversary P makes a Corrupt(j) query to obtain S[j].
If S[j] = Y and j �∈ T then P returns 1, else 0. Equation (23) follows because

Pr [d = 1 | b = 1] = Pr
[
GShF

+

]
and Pr [d = 1 | b = 0] = Pr

[
GF

]
,

where d denotes the output bit of P and b the challenge bit chosen by game Priv.

Note that the set of players corrupted by P is T ∪ {j} where T is the set of players corrupted by F . But if
T ∪ {j} is not authorized, as is required for F to win, then P has not corrupted an authorized player, as is
required for it to win. This is where we use the assumption that F wins only if not just T but T ∪ {j} is not
authorized.

To complete the proof we specify an adversary E for game GSh such that

Pr
[
GF

] ≤ Pr
[
GShE

]
.

Now (21) follows from Lemma 8. Adversary E picks S′ at random from S and runs F on input S′. It answers
F ’s Corrupt queries via its own Corrupt oracle. When F halts with output j, Y , adversary E also outputs j, Y
and halts.

24

C.2 A recoverability lemma

The following result lets one think of perfect recoverability in a more conventional, adversary-free way.

Lemma 10 [adversary-free recoverability] Let Π = (Share, Recover) be a secret-sharing scheme over mes-
sage space S that achieves perfect recoverability over the valid access structure A. Suppose (S, S, T, S′, j) is
A-generable and S′ ≥ S′′. Then Recover(ST � S′′

T , j) = S.

Proof: By the validity of A there is an adversary AS,T,S′,j,S′′ ∈ A that calls Deal(S), calls Corrupt(i) for
each i ∈ T , then outputs (S′′, j). Now AS,T,S′,j,S′′ will win the Rec game iff Recover outputs an S∗ �= S.
But AS,T,S′,j,S′′ never wins the Rec game because Advrec

Π (AS,T,S′,j,S′′) = 0. It follows that Recover(S′
T
�

S′′
T , j) = Recover(ST � S′′

T , j) = S.

D Proof of Privacy of HK1 (Theorem 1)

We will actually show something stronger than what is claimed in the theorem statement, namely, that the
scheme works for any extendible access structure, as defined in Appendix C. We will also use the lemmas of
that appendix.

Proof: [Theorem 1]The proof will use code-based game-playing [4]. A game in this case will consist of an
Initialize procedure, procedures to respond to adversary oracle queries of Deal, Corrupt, and Hash , and a
Finalize procedure.

As is usually the case with game-playing proofs, the different games used have many procedures in common.
To compact the game descriptions, we accordingly do not describe each game in full but rather describe all
procedures used individually, putting next to their name the games in which they appear. Boxed code in a
procedure appears in the game if and only if the game name has a box around it. In this way, Figures 10 and 11
describe a total of 10 games, G0–G9. As an example of how to read the figures, the upper left Initialize of
Figure 10 occurs in games G0, G1, G2, G3, G4, G6, G7, G8 while the upper right Initialize of the same Figure
occurs in the remaining two games, namely G5, G9. The Corrupt and Finalize procedures are the same for all
games.

We will be building adversaries that will run A as a subroutine, themselves responding to the latter’s oracle
queries. Game G0 moves us towards this perspective. (Game G0 is specified by the procedures in the left
column of Figure 10, with the boxed statement included in the Deal procedure.) Our claim is that

Advpriv
Π (A) = 2 · Pr

[
GA

0

]− 1 .

To justify this let us explain what the game does. Its Initialize procedure picks the key K and generates shares
for it just like in the game defining the privacy of Π. While, ideally, we would like to pick the response
to Hash(x) at the time x is queried to Hash , the game picks the values Hash(K[i] C[i]) up-front in the Deal
procedure. (This value is represented by H[i]. The IF statement in procedure Deal ensures consistency, meaning
that Hash(K[i] C[i]) = Hash(K[j] C[j]) in case the arguments to Hash are the same in both cases.) It does
this because it may soon need to provide X[i] as a response to a Corrupt(i) query, and this share depends on
Hash(K[j] C[j]) for all 1 ≤ j ≤ n. The assignment of H[i] to Hash(K[i] C[i]) is done only at the time the
adversary makes hash oracle query K[i] C[i], necessitating the IF statement in the corresponding procedure.

With the goal now being to upper bound Pr[GA
0], let us try to provide some intuition for what follows. Suppose

we aim to construct an adversary B attacking the privacy of ΠEnc with advantage at least Pr[GA
0]. It would run

A to get X0, X1 and pass these to its left-or-right encryption oracle, getting back a ciphertext C encrypting Xc,
where c was the random challenge bit underlying its privacy game. It could now use C to construct C and then
continue to run A, answering its oracle queries as G0 does, and then A’s prediction of whether it is seeing X0

or X1 would reveal c to B. However, adversary B can’t answer A’s oracle queries because they depend on

25

PROCEDURE Initialize G0–G4, G6–G8

K
$←{0, 1}k ; b

$←{0, 1}
K

$← SharePSS(K)
FOR i← 1 TO n DO Y [i]← ♦

PROCEDURE Deal(X0, X1) G0 , G1

C
$← EncryptK(Xb)

C
$← ShareIDA(C)

FOR i← 1 TO n DO

H[i] $←{0, 1}h
IF ∃ j < i : (K[i] C[i] = K[j] C[j]) THEN

bad← true ; H[i]←H[j]

Si
$← ShareECC(H[i])

PROCEDURE Corrupt(i) G0–G9

Y [i]←K[i]
X[i]←K[i]C[i] S1[i] · · ·Sn[i]
RETURN X[i]

PROCEDURE Hash(x) G0, G1

Hash [x] $←{0, 1}h
FOR i← 1 TO n DO

IF (x = K[i] C[i]) THEN Hash [x]←H[i]
RETURN Hash [x]

PROCEDURE Finalize(d) G0–G9

RETURN (d = b)

PROCEDURE Initialize G5, G9

K, K ′ $←{0, 1}k ; b
$←{0, 1}

K
$← SharePSS(K ′)

FOR i← 1 TO n DO Y [i]← ♦

PROCEDURE Deal(X0, X1) G2–G9

C
$← EncryptK(Xb)

C
$← ShareIDA(C)

FOR i← 1 TO n DO

H[i] $←{0, 1}h ; Si
$← ShareECC(H[i])

PROCEDURE Hash(x) G2 , G3

Hash [x] $←{0, 1}h
FOR i← 1 TO n DO

IF Y [i] �= ♦ THEN

IF (x = K[i] C[i]) THEN Hash [x]←H[i]
ELSE IF (x = K[i] C[i]) THEN

bad← true ; Hash [x]←H[i]
RETURN Hash [x]

PROCEDURE Hash(x) G4, G5

Hash [x] $←{0, 1}h
FOR i← 1 TOn DO

IF Y [i] �= ♦ THEN

IF (x = K[i] C[i]) THEN Hash [x]←H[i]
RETURN Hash [x]

Figure 10: Procedures for games in the RO-based instantiation of the HK1 scheme, Theorem 1.

shares of K and B does not have access to K, which is chosen by its privacy game. The obvious way to
get around this is to have B pick some new, random K ′, generate K via SharePSS , and use these, arguing
that A will not know the difference due to the privacy of the PSS scheme. But the Deal procedure, which we
are suggesting B run, needs to know all the values K[1], . . . ,K[n] to perform the test in the IF statement.
Similarly, the procedure for replying to Hash queries needs to test whether a query contains K[i] for some i
and thus needs to know all the values K too. But the PSS scheme does not provide privacy if all shares are
revealed.

So our goal to implement the above idea is to put the game in a form where responding to A’s queries is possible
without knowing the shares of any authorized subset of players. (For concreteness, consider the case where the
access structure is A = Am,n. In this case, we want to be able to respond to A’s queries knowing only m − 1
or less shares of K.) We do this in a few steps. Games G0, G1 differ only in statements following the setting of
the flag bad, meaning are identical-until-bad in the terminology of [4], and so by the Fundamental Lemma of
Game Playing from that paper we have

Pr
[
GA

0

]
= Pr

[
GA

1

]
+ (Pr

[
GA

0

]− Pr
[
GA

1

]
)

≤ Pr
[
GA

1

]
+ Pr

[
GA

1 sets bad
]

.

26

PROCEDURE Hash(x) G6

Hash [x] $←{0, 1}h
FOR i← 1 TO n DO

IF Y [i] �= ♦ THEN

IF (x = K[i] C[i]) THEN Hash [x]←H[i]
ELSE IF (x = K[i] C[i]) AND Opened(Y) ∪ {i} �∈ A THEN

bad← true
RETURN Hash [x]

PROCEDURE Hash(x) G7

Hash [x] $←{0, 1}h
FOR i← 1 TO n DO

IF Y [i] �= ♦ THEN

IF (x = K[i] C[i]) THEN Hash [x]←H[i]
ELSE IF (x = K[i] C[i]) AND Opened(Y) ∪ {i} ∈ A THEN

bad← true
RETURN Hash [x]

PROCEDURE Hash(x) G8, G9

Hash [x] $←{0, 1}h
FOR i← 1 TO n DO

IF Y [i] �= ♦ THEN

IF (x = K[i] C[i]) THEN

Hash [x]←H[i]
ELSE

Ki Ci ← x
Yx ← Y ; Yx[i]← Ki

L← RecoverPSS(Yx)
IF L = K THEN bad← true

RETURN Hash [x]

Figure 11: More procedures for the games in the proof of Theorem 1. Above, Opened(Y) denotes the set {i : Y [i] �= ♦}
of all indices at which Y is defined, and by Ki Ci ← x we mean that x is uniquely parsed into its constituents.

Consider the experiment in which we pick K, K as in the Initialize procedure of G1. For 1 ≤ j < i ≤ n let
Ej,i denote the event that K[j] = K[i]. Consider the adversary Ej,i for game GSh that makes a Corrupt(j)
query to get K[j], and then outputs i,K[j]. Then by Lemma 8 we have

Pr [Ej,i] = Pr
[
GShEj,i

] ≤ 1
2k

.

So by the union bound,

Pr
[
GA

1 sets bad
] ≤ Pr [∃ j < i : Ej,i] ≤

∑
j<i

Pr [Ej,i] ≤ n(n− 1)
2

1
2k

.

Since the outcome of G1 is not affected by whether or not bad is set, this means that the problematic IF statement
of the Deal procedure can be removed at the cost of a small loss. The Deal procedure of G2 makes this change.
With the goal of making responses to Hash queries possible without having shares of an authorized subset of
players, we split the IF statement of the corresponding procedure of G1 into two parts in G2. Now we have

Pr
[
GA

1

]
= Pr

[
GA

2

]
(24)

= Pr
[
GA

3

]
+ (Pr

[
GA

2

]− Pr
[
GA

3

]
)

≤ Pr
[
GA

3

]
+ Pr

[
GA

3 sets bad
]

, (25)

the last step again by the Fundamental Lemma of Game Playing. The setting of the flag bad by the Hash
procedure of G3 does not affect the game outcome and so we have

Pr
[
GA

3

]
= Pr

[
GA

4

]
.

Now notice that G4 does not make reference to unopened shares of K. So at this point we claim that the privacy
of the PSS scheme implies

Pr
[
GA

4

]
= Pr

[
GA

5

]
, (26)

27

where G5 differs from G4 only in the Initialize procedure which now produces K by sharing not K but an
independently and randomly chosen key K ′.

Let us now justify (26). To do this we build an adversary P1 attacking the privacy of ΠPSS such that

Advpriv
ΠPSS (P1) = Pr

[
GA

4

]− Pr
[
GA

5

]
. (27)

But the privacy of ΠPSS tells us that the advantage of P1 is zero, yielding (26). Adversary P1 begins by picking
K and K ′ at random from {0, 1}k and b at random from {0, 1}. It creates n-vector Y to have all components ♦.

It then queries K ′, K to its Deal oracle. We know that the latter creates a share vector K
$← SharePSS(L) where

L = K ′ if the challenge bit b′ of the oracle is 0 and L = K if b′ = 1. Now P1 starts running A, responding to
A’s oracle queries as follows. When A makes a Deal query X0, X1, adversary P1 executes the code of the Deal
procedure of games G4, G5. When A makes a Corrupt(i) query, P1 itself makes a Corrupt(i) query to obtain
share K[i]. It then sets X[i] ← K[i]C[i] S1[i] · · ·Sn[i] and Y [i] ← K[i], and returns X[i] to A. When A
makes a Hash(x) query, P1 executes the code of the Hash procedure of games G4, G5 and returns Hash [x]
to A. When A halts and outputs a bit d, adversary P1 returns 1 if b = d and 0 otherwise. It is easy to see that
(27) is true.

Game G5 uses C, an encryption of Xb under K, but makes no other reference to K. This puts us in the position
we wanted above where we can use the privacy of ΠEnc . Namely, we will now specify B1 so that

2 · Pr
[
GA

5

]− 1 ≤ Advind
ΠEnc (B1) . (28)

Adversary B1 picks K ′ at random and lets K
$← SharePSS(K ′). It creates n-vector Y to have all components ♦.

It then runs A. When A makes a query X0, X1 to its Deal oracle, B1 queries X0, X1 to its own left-or-right
encryption oracle to get back a ciphertext C

$← EncryptK(Xb), where b is the challenge bit chosen by the left-
or-right encryption oracle. Now B1 executes the last three lines of the Deal procedure of game G5. When A
makes a Corrupt(i) query, B1 can execute the code of the Corrupt procedure of game G5 since it knows K[i].
When A makes a Hash(x) query, B1 can similarly execute the code of procedure Hash of G5 to obtain the
reply and return it to A. When A halts and outputs a bit d, adversary B1 returns d. The advantage of B1 is
2 Pr[b = d]− 1, so (28) is true.

To summarize, at this point we have shown that

Advpriv
Π (A) ≤ Advind

ΠEnc (B1) +
n(n− 1)

2k
+ 2 · Pr

[
GA

3 sets bad
]

. (29)

The difficult part of the proof is to bound Pr[GA
3 sets bad]. For this we use the key-recovery security of ΠEnc .

Let us again first try to give some intuition. The difficulty with applying the privacy of the PSS scheme is that A
has information about C. Indeed, in the worst case, the ECC could be replication, meaning C[i] = C for all
1 ≤ i ≤ n, so that A would have C after one Corrupt query. If the encryption scheme, like in our one-time-pad
example, permitted recovery of the key from a ciphertext, then A could set bad in G3 with high probability. For
example, suppose the access structure isAm,n and we are using Shamir’s PSS scheme. Adversary A can obtain
m − 1 shares of K, then use K and these shares to compute an unopened share K[i], and query K[i] C[i]
to Hash . In this case, however, we could obtain K from this last oracle query and the opened shares by using
the recovery procedure of the PSS scheme. But we can’t apply this strategy if A sets bad after opening only
m− 2 or fewer shares. In that case, however, Lemma 9 applies, saying that even though A knows K, it has low
probability of predicting an unopened share.

However, in implementing this we face the same difficulties as above. We can’t build a key-recovery adversary
if it needs to know shares of the challenge key K to simulate A. We want instead to use shares of a different,
random K ′. But for this to be justifiable via the security of the PSS scheme, the game must refer only to opened
shares, and G3 does not do this. We now proceed to resolve these problems.

28

We begin by splitting the bad event into two, one for the case where the set of corrupted players together with
the player indicated in the query setting bad do not form an authorized subset, and the other where they do:

Pr
[
GA

3 sets bad
]

= Pr
[
GA

6 sets bad
]
+ Pr

[
GA

7 sets bad
]

.

To get some intuition, consider again the case where the access structure is Am,n. Then the first case corre-
sponds to bad being set with m − 2 or less shares opened, and the second the case where m − 1 shares were
open.

We claim Lemma 9 implies

Pr
[
GA

6 sets bad
] ≤ q

2k
. (30)

Let us justify this. For each j in the range 1 ≤ j ≤ q we consider the following adversary Fj for the GSh+

game. It gets as input a key K chosen at random from {0, 1}k by the game, and, via a Corrupt(i) query, can
obtain K[i], where K

$← SharePSS(K) were generated by the GSh+ game. Fj begins by creating n-vector Y to
have all components ♦. It then picks a bit b at random, and initializing a counter c to 0. It then runs A. When A
makes a query X0, X1 to its Deal oracle, Fj executes the code of the Deal procedure of game G6, which it can
do since it knows K. When A makes a query i to its Corrupt oracle, Fj obtains K[i] via a corrupt query and
then executes the code of the Corrupt procedure of G6. When A makes a query x to its Hash oracle, Fj does
the following:

c← c + 1 ; Hash [x] $←{0, 1}h
FOR i← 1 TO n DO

IF Y [i] �= ♦ THEN

IF (x = K[i] C[i]) THEN Hash [x]←H[i]
ELSE IF (c = j) THEN Kj Cj ← x

RETURN Hash [x]

Above, by Kj Cj ← x we mean that x is uniquely parsed into its constituents. When A has terminated,
algorithm Fj returns Kj and halts. Then

Pr
[
GA

6 sets bad
] ≤

q∑
j=1

Pr
[
GSh

Fj

+

]
≤

q∑
j=1

1
2k

=
q

2k
,

yielding (30). Above, the second inequality is by Lemma 9.

If bad is set in G7 then Opened(Yx) = {i : Yx[i] �= ♦} is an authorized subset and hence by the recoverability
properties of ΠPSS , applying RecoverPSS to Yx is guaranteed to return the secret K in G8. Thus

Pr
[
GA

7 sets bad
] ≤ Pr

[
GA

8 sets bad
]

. (31)

Now, once again, we have managed to create a game, namely G8, that does not reference any unopened share,
and are thus in a position to apply the privacy of ΠPSS , which we claim implies

Pr
[
GA

8 sets bad
]

= Pr
[
GA

9 sets bad
]

. (32)

Note G9 differs from G8 only in the Initialize procedure which generates K not from K but from an indepen-
dently chosen K ′. To justify (32) we can again build an adversary P2 such that

Advpriv
ΠPSS (P2) = Pr

[
GA

8 sets bad
]− Pr

[
GA

9 sets bad
]

, (33)

obtaining (32) because the advantage of P2 is 0 due to the assumed privacy of ΠPSS . Adversary P2 begins by
picking K and K ′ at random from {0, 1}k and b at random from {0, 1}. It creates n-vector Y to have all

29

components ♦. It then queries K ′, K to its Deal oracle. The latter creates shares K
$← SharePSS(L) where

L = K ′ if the challenge bit b′ of the oracle is 0 and L = K if b′ = 1. Now P2 starts running A, responding
to A’s oracle queries as follows. When A makes a Deal query X0, X1, adversary P2 executes the code of the
Deal procedure of games G8, G9. When A makes a Corrupt(i) query, P2 itself makes a Corrupt(i) query
to obtain share K[i]. It then sets X[i] ← K[i]C[i] S1[i] · · ·Sn[i] and Y [i] ← K[i], and returns X[i] to A.
When A makes a Hash(x) query, P2 executes the code of the Hash procedure of games G8, G9 and returns
Hash [x] to A. When A halts and outputs a bit d, adversary P2 ignores d and returns 1 iff bad was set when it
responded to some Hash query. It is easy to see that (33) is true.

We will now specify B2 so that

Pr
[
GA

9 sets bad
] ≤ qn ·Advkey

ΠEnc (B2) . (34)

Recall that the key-recovery game picks at random a key K and provides B2 with an encryption oracle
EncryptK(·). Adversary B2 picks K ′ at random and lets K

$← SharePSS(K ′). It creates n-vector Y to have all
components ♦ and picks bit b at random. It initializes a counter c to 0. It then picks a guess g1

$← [q] and a
guess g2

$← [n]. It then runs A. When A makes a query X0, X1 to its Deal oracle, adversary B2 queries Xb

to its encryption oracle to get back an encryption C of Xb under K. Now B2 executes the last three lines of
the Deal procedure of game G9. When A makes a Corrupt(i) query, adversary B2 can execute the code of the
Corrupt procedure of game G5 since it knows K[i]. When A makes a Hash(x) query, adversary B2 does the
following:

c← c + 1 ; Hash [x] $←{0, 1}h
FOR i← 1 TO n DO

IF Y [i] �= ♦ THEN

IF (x = K[i] C[i]) THEN Hash [x]←H[i]
ELSE IF (c, i) = (g1, g2) THEN

Ki Ci ← x ; Yx ← Y ; Yx[i]← Ki ; L← RecoverPSS(Yx)
RETURN Hash [x]

That is, when (c, i) is equal to (g1, g2), adversary B2 records the candidate key as L. When A has terminated,
adversary B2 returns L and halts. One can check that (34) is true.

In summary, this second part of the proof has shown that

Pr
[
GA

3 sets bad
] ≤ q

2k
+ qn ·Advkey

ΠEnc (B2) .

Combining this with (29) completes the proof of the theorem.

E Proof of Recoverability of HK1 (Theorem 3)

Proof: [Theorem 3]Let Π = (Share, Recover), ΠEnc = (Encrypt , Decrypt), ΠPSS = (SharePSS , RecoverPSS),
ΠIDA = (ShareIDA , RecoverIDA), and ΠECC = (ShareECC , RecoverECC). Consider running A with game Rec.
Let K, C,K, C, H, S1, . . . ,Sn, X denote the quantities chosen by the Share algorithm when it is exe-
cuted by the Deal procedure in response to A’s Deal query of X . Let (X ′, j) denote the output of A. Let
K ′, C ′, K ′, C ′, H ′, S′

1, . . . ,S
′
n, X ′ denote, respectively, the quantities K, C,K, C, H, S1, . . . ,Sn, X as de-

fined by Recover(XT �X ′
T , j) when it is executed by the Finalize procedure of Rec, where T is the set of

players that A corrupted. We consider the following events:

30

E1: ∃� ∈ [n] such that H[�] �= H ′[�]
E2: ∃� ∈ T such that K ′[�] C ′[�] �∈ {♦ ♦, K[�] C[�]}
E3: K �= K ′

E4: C �= C ′

If C = C ′ and K = K ′ then the secret X ′ that is recovered equals X so

Advrec
Π (A) ≤ Pr[E3 ∨ E4]

≤ Pr[E1 ∨ E2 ∨ E3 ∨ E4]

= Pr[E1] + Pr[E1 ∧ E2] + Pr[E1 ∧ E2 ∧ E3] + Pr[E1 ∧ E2 ∧ E3 ∧ E4]

≤ Pr[E1] + Pr[E1 ∧ E2] + Pr[E2 ∧ E3] + Pr[E2 ∧ E4] . (35)

We bound each addend above in turn. Let E1,� be the event that H[�] �= H ′[�]. If i �∈ T then (XT �X ′
T)[i] =

X[i] and hence S′
�[i] = S�[i] by line 21 in Figure 5. But S� is an output of ShareECC(H[�]) and T ∈ A, so

RecoverECC(S′
�, j) = H[�] by Lemma 10 applied to ΠECC , meaning H ′[�] = H[�]. So Pr[E1,�] = 0. Now by

the union bound we have

Pr[E1] ≤
n∑

�=1

Pr[E1,�] = 0 . (36)

Next we claim that

Pr[E2] ≤ (q + 2n)2

2h+1
. (37)

We justify this as follows. Suppose � ∈ T and K ′[�] C ′[�] �= ♦ ♦. By lines 21 and 25 of Figure 5 it must be that
Hash(K ′[�] C ′[�]) = H[�]. But if E1 then H ′[�] = H[�], and by line 14 of Figure 5 we know that H[�] =
Hash(K[�] C[�]). So we have Hash(K ′[�] C ′[�]) = Hash(K[�] C[�]). Thus if K ′[�] C ′[�] �= K[�] C[�] then
we have a collision in Hash . Thus if E1 ∧ E2 we have found a collision in Hash . At this point we need
only bound the probability of a collision in Hash . The random-oracle Hash is invoked at most q + 2n times,
justifying (37).

Next we claim that
Pr[E2 ∧ E3] = 0 . (38)

We justify this as follows. If i �∈ T then (XT � X ′
T)[i] = X[i] and hence K ′[i] = K[i] by line 21 of

Figure 5. If i ∈ T and E2 holds then K ′[i] ∈ {♦, K[i]}. But K is an output of SharePSS(K) and T ∈ A, so
RecoverPSS(K ′, j) = K by Lemma 10 applied to ΠPSS , meaning K ′ = K. So E3 cannot hold.

Finally, we claim that
Pr[E2 ∧ E4] = 0 . (39)

We justify this as follows. If i �∈ T then (XT � X ′
T)[i] = X[i] and hence C ′[i] = C[i] by line 21 of

Figure 5. If i ∈ T and E2 holds then C ′[i] ∈ {♦, C[i]}. But C is an output of ShareIDA(C) and T ∈ A, so
RecoverIDA(C ′, j) = C by Lemma 10 applied to ΠIDA , meaning C ′ = C. So E4 cannot hold.

Putting together equations (35)–(39) completes the proof.

F Proof of Recoverability of HK2 (Theorem 5)

Proof: [Theorem 5]Let Π = (Share, Recover), ΠEnc = (Encrypt , Decrypt), ΠPSS = (SharePSS , RecoverPSS),
ΠIDA = (ShareIDA , RecoverIDA), and ΠECC = (ShareECC , RecoverECC). Consider running A with game Rec.
Let K, C,K, C, H, S1, . . . ,Sn, X denote the quantities chosen by the Share algorithm when it is exe-
cuted by the Deal procedure in response to A’s Deal query of X . Let (X ′, j) denote the output of A. Let

31

PROCEDURE Corrupt(i)
RETURN X[i]

PROCEDURE Finalize (X ′, j)
FOR i← 1 TO n DO

R′[i]K ′[i]C ′[i] S′
1[i]S

′
2[i] · · ·S′

n[i]←X ′[i]
RETURN (K ′[�] C ′[�], R′[�])

PROCEDURE Deal(X)
�

$← [n] ; K
$←{0, 1}k ; C

$← EncryptK(X)
K

$← SharePSS(K) ; C
$← ShareIDA(C)

FOR i← 1 TO n DO

IF i = � THEN (H[�], R[�]) $← Commit(K[�] C[�])
ELSE (H[i], R[i]) $← Ct(K[i] C[i])
Si

$← ShareECC(H[i])
FOR i← 1 TO n DO

X[i]← R[i]K[i]C[i] S1[i] · · ·Sn[i]

Figure 12: Procedures used by adversary ABIND to respond to oracle queries of A in the proof of Theorem 5.

K ′, C ′, K ′, C ′, H ′, S′
1, . . . ,S

′
n, X ′ denote, respectively, the quantities K, C,K, C, H, S1, . . . ,Sn, X as de-

fined by Recover(XT �X ′
T , j) when it is executed by the Finalize procedure of Rec, where T is the set of

players that A corrupted. We consider the following events:

E1: ∃� ∈ [n] such that H[�] �= H ′[�]
E2: ∃� ∈ T such that K ′[�] C ′[�] �∈ {♦ ♦, K[�] C[�]}
E3: K �= K ′

E4: C �= C ′

If C = C ′ and K = K ′ then the secret X ′ that is recovered equals X so

Advrec
Π (A) ≤ Pr[E3 ∨ E4]

≤ Pr[E1 ∨ E2 ∨ E3 ∨ E4]

= Pr[E1] + Pr[E1 ∧ E2] + Pr[E1 ∧ E2 ∧ E3] + Pr[E1 ∧ E2 ∧ E3 ∧ E4]

≤ Pr[E1] + Pr[E1 ∧ E2] + Pr[E2 ∧ E3] + Pr[E2 ∧ E4] . (40)

We bound each addend above in turn. Let E1,� be the event that H[�] �= H ′[�]. If i �∈ T then (XT �X ′
T)[i] =

X[i] and hence S′
�[i] = S�[i] by line 21 in Figure 7. But S� is an output of ShareECC(H[�]) and T ∈ A, so

RecoverECC(S′
�, j) = H[�] by Lemma 10 applied to ΠECC , meaning H ′[�] = H[�]. So Pr[E1,�] = 0. Now by

the union bound we have

Pr[E1] ≤
n∑

�=1

Pr[E1,�] = 0 . (41)

Next we construct adversary B such that

Pr[E1 ∧ E2] ≤ n ·Advbind
ΠCom (B) . (42)

Adversary B runs A, responding to its Deal and Corrupt oracle calls via the procedures of Figure 12. When A
halts with output (X ′, j), adversary B runs the Finalize procedure of the same figure.

Next we claim that
Pr[E2 ∧ E3] = 0 . (43)

We justify this as follows. If i �∈ T then (XT � X ′
T)[i] = X[i] and hence K ′[i] = K[i] by line 21 of

Figure 7. If i ∈ T and E2 holds then K ′[i] ∈ {♦, K[i]}. But K is an output of SharePSS(K) and T ∈ A, so
RecoverPSS(K ′, j) = K by Lemma 10 applied to ΠPSS , meaning K ′ = K. So E3 cannot hold.

Finally, we claim that
Pr[E2 ∧ E4] = 0 . (44)

32

PROCEDURE A
Run B

When B makes a query Enc(M)
X1 ←M ; X0 ←M
Deal(X0, X1)
X[1]← Corrupt(1)
K[1] C h1h2h3 ←X[1]
Return C to B

When B outputs K ′

K ′[2]← R(K[1], K ′)
IF Hash(K ′[2] C) = h2 THEN

X ← DecryptK′(C)
IF X = X1 THEN RETURN 1 ELSE RETURN 0

RETURN 0

PROCEDURE A
Run B

When B makes a query LeftOrRight(X0, X1)
Deal(X0, X1)
X[1]← Corrupt(1)
K[1] C h1h2h3 ←X[1]
Return C to B

When B outputs b′

RETURN b′

Figure 13: Adversaries for establishing the minimality of the ind1+key1 assumption for the privacy of HK1, Theorem 2.

We justify this as follows. If i �∈ T then (XT � X ′
T)[i] = X[i] and hence C ′[i] = C[i] by line 21 of

Figure 7. If i ∈ T and E2 holds then C ′[i] ∈ {♦, C[i]}. But C is an output of ShareIDA(C) and T ∈ A, so
RecoverIDA(C ′, j) = C by Lemma 10 applied to ΠIDA , meaning C ′ = C. So E4 cannot hold.

Putting together equations (40)–(44) completes the proof.

G Proof of Theorem 2

We use the same approach as in our attack on HK1, except that the one-time pad is replaced by the given
encryption scheme ΠEnc . So let n = 3, m = 2, let ΠPSS be Shamir’s scheme over F2128 for A = A2,3, and
let ΠIDA and ΠECC both be replication. Let R denote the algorithm such that R(K[1], K) = K[2] for all
K ∈ SharePSS(K). (We already discussed that Shamir’s scheme admits an efficient such R.)

The adversary A for the proof of part (1) is shown on the left-hand side of Figure 13. We write M for the
bitwise complement of M (here, an arbitrary string distinct from M). We proceed to the analysis. Let PrivL
and PrivR denote the games that are the same as the Priv game except the encryption oracle Deal is replaced by
the oracle that always deals the left or right queries, respectively. Let K denote the underlying key chosen by
the Deal oracle. Then

Pr[PrivRA ⇒ 1] ≥ Pr
[

PrivRA ⇒ 1 | K = K ′] · Pr[K = K ′]

= 1 ·Advkey
ΠEnc (B)

and

Pr[PrivLA ⇒ 1]

= Pr
[

PrivLA ⇒ 1 | K = K ′] · Pr[K = K ′] + Pr
[

PrivLA ⇒ 1 | K �= K ′] · Pr[K �= K ′]

= 0 · Pr[K = K ′] + 2−h · Pr[K �= K ′]

≤ 2−h .

Thus
Advpriv

Π (A) = Pr[PrivRA ⇒ 1]− Pr[PrivLA ⇒ 1] ≥ Advkey
ΠEnc (B)− 2−h .

33

This completes the proof for part (1).
The adversary A for the proof of part (2) is shown on the right-hand side of Figure 13. The analysis is

straightforward and omitted.

34

