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Abstract

Authentication codes provide message integrity guarantees in an information theoretic sense
within a symmetric key setting. Information theoretic bounds on the success probability of an
adversary who has access to previously authenticated messages have been derived by Simmons and
Rosenbaum, among others. In this paper we consider a strong attack scenario where the adversary is
adaptive and has access to authentication and verification oracles. We derive information theoretic
bounds on the success probability of the adversary and on the key size of the code. This brings the
study of unconditionally secure authentication systems on a par with the study of computationally
secure ones. We characterize the codes that meet these bounds and compare our result with the
earlier ones.

Keywords: Unconditional security, authentication system, A-codes, verification oracle.

1 Introduction

Unconditionally secure authentication systems provide message integrity when the adversary’s compu-
tational power is unknown or unlimited. Unconditional security is particularly important when recent
advances in quantum computing and prospect of discovery and realization of efficient algorithms for
solving ‘hard’ problems, is taken into account.

In an Authentication code (A-code) [1, 10] authenticated messages (ciphertexts) encode states of an
information source (referred to as plaintexts or source states) by a mapping determined by the shared
key (also called the encoding rule). A-codes are symmetric key systems. The receiver verifies the
authenticity of a message using the same key as the sender. In a spoofing attack of order i a message-
observing adversary observes i authenticated messages transmitted by the sender and then tries to
construct a fraudulent message called the spoofing message, that will be accepted by the receiver. We
do not make any assumptions about the computational power of an adversary.

The performance of an A-code is measured by the probability that the spoofing message is ac-
cepted by the receiver. Information theoretic bounds [10, 7, 6] for A-codes give fundamental limits on
performance of the codes. Rosenbaum [7] and Pei [6] independently derived a bound on the success
probability of attackers in spoofing of order i and employed the bound to derive a lower bound on the
key size of A-codes.Extensions and alternative derivations of these bounds are given by a number of
authors such as [2, 4].
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We extend this analysis by considering adversaries that may be proactive in gathering information.
The adversary might obtain information from the sender by having the sender transmit a message
corresponding to source state of the adversary’s choosing or might obtain information from the receiver
by sending a message of the adversary’s choosing and observing whether or not the receiver accepts it.
Safavi-Naini et al [8] have considered A-codes with such an adversary in the context of unconditionally
secure digital signature schemes (USDS, Shikata et al [9]). This situation, the query model, is modelled
in terms of an Authentication Oracle (A-oracle) that provides the authenticated message corresponding
a to query source state (an A-query) in the same way that the sender would and a Verification Oracle
(V-oracle) that provides a response accept or reject to a query message (a V-query) according as the
receiver would or would not accept the message. This terminology parallels that used for schemes
relying on computational security. An attack with access to an A-oracle corresponds to an adaptive
chosen plaintext attack and an attack with access to a V-oracle corresponds to an adaptive chosen
ciphertext attack.

In this paper we study unconditionally secure A-codes (symmetric key) under the query model
and derive information theoretic bounds on the success probability of a query attacker.

1.1 Our results

We consider an adversary who asks exactly i queries, observing the responses of the oracle, and then
spoofs. We analyse this via an experiment in which the adversary uses a strategy to choose each query
adaptively, taking into account all queries and responses previously observed.

Bounds on success probability. We derive information theoretic bounds on the success probably
of the adversary in a general query, response attack model. This can be seen as a generalisation of
the Rosenbaum-Pei lower bound [7, 6] for spoofing of order i.

Constructing pure optimal strategies. An adversary’s success chance is maximized when he uses
an optimal strategy. Finding optimal strategies requires solving a constrained maximisation problem,
taking into account all possible sequences of query and responses, and results in an adversary strategy
that is represented by a sequence of probability distributions. We show that there always exists an
optimal strategy for which each of these probability distributions has the property that there is a
unique element with non-zero probability. Such a strategy is called pure and we give a recursive
algorithm that constructs this pure optimal strategy.

Queries do not decrease success chance. It is known that an adversary’s expected chance of
spoofing may decrease if the adversary observes a message, compared to his expected chance of spoofing
when he spoofs without any observation. A natural question, noting the adversary’s control on the
choice of the query, is whether it is always beneficial to the adversary to ask a query if possible. We
show that as long as there are ‘good’ queries, asking them will not reduce the average success chance
(it may improve it) and so they should be asked. Thus there is no requirement for the adversary to
compute the probabilities in order to make a decision on whether to query or not in each particular
case. In particular, in the case of verification queries for non-trivial schemes, it is always a better
strategy to ask the query and then spoof than to spoof without querying.

Bounds on key entropy. In the case of authentication queries we use the bound on the probability
of success to derive a bound on the entropy of the key space. We establish a combinatorial charac-
terisation of the authentication schemes attaining the bound which shows that optimal codes in the
authentication query model are also optimal codes in the message observing model.
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2 Definitions

A symmetric key authentication system provides integrity guarantees for two parties, referred to as
the sender and the receiver, that share a secret key.

A (symmetric) authentication system consists of two algorithms Π = (Auth, Ver) and is defined
over three sets, S, M, and E , called plaintexts( or source state), ciphertexts (or message) and keys,
respectively. The authentication algorithm Auth(e, s) takes a key e and a plaintext s and generates
a ciphertext m. We consider authentication systems without splitting in which a key and a message
determine a single ciphertext and the algorithm Auth is a one-to-one function. (For authentication
systems with splitting a pair (e, s) determines a subset of M.) The verification algorithm Ver(e,m),
takes a key e and a ciphertext m and returns a single bit b. Ver(e,m) is defined in terms of Auth as
follows: Ver(e,m) = 1 if Auth(e, s) = m, for some s ∈ S and Ver(e,m) = 0, otherwise. We have that
for all e ∈ E and s ∈ S, it holds that Ver(e, Auth(e, s)) = 1. We may also define a decryption function
D(e,m) which satisfies D(e, (Auth(e, s)) = s for all e ∈ E and s ∈ S.

The sender and receiver use a probability distribution p(e) over E to select a secret key. To
send a source state s ∈ S to the receiver, s is encoded under e to produce message m = Auth(e, s).
The probability distribution p(e) is called the communicants’ strategy and is assumed to be public.
The sender uses the key to authenticate a sequence of plaintexts arising from the source according
to a specified probability distribution, also assumed to be public, and transmits the corresponding
sequence of ciphertexts to the receiver. The probability distributions on E and S together determine
a probability distribution on M given by p(m) =

∑
e∈E,s∈S:Auth(e,s)=m p(e)p(s). A ciphertext m ∈ M

is valid for e ∈ E if and only if Ver(e,m) = 1
We denote by E,S, M the random variables on sample spaces E ,S,M, respectively, corresponding

to these probability distributions. We assume that the source produces a sequence s1, s2, s3, . . . of
distinct source states so that p(s|s1, . . . , sj), the probability that the next source state is s given that
the sequence s1, . . . , sj has arisen so far, is 0 if s ∈ {s1, . . . , sj}.

An authentication code can be represented by a matrix with |M| columns labeled by the messages
and |E| rows labelled by the encoding rules. The entry in row e and column m is D(e,m) if Ver(e,m) = 1
and 0 otherwise. Alternatively, we may define its encoding matrix. This matrix has |S| columns labelled
by the source states and has |E| rows labelled by the encoding rules. The entry in row e and column
s is the message m = Auth(e, s). The set of elements in row e is denoted M(e) and has exactly |S|
distinct messages. Thus, for an encoding rule e, a message m is valid if and only if m ∈M(e).

It is assumed that the adversary knows the encoding matrix but does not know the actual secret
encoding rule agreed upon by the sender and the receiver.

2.1 Adversaries and success probability

The traditional adversary model for an authentication code is an adversary who has access to i
authenticated messages and attempts to construct a forged message (also called a spoofing message),
that would be accepted by the receiver. The best success probability, Pi, of the adversary in the above
attack gives a measure of the security provided by the code.

Simmons [10] derived an information theoretic bound on the success probability of a spoofer when
i = 0 (an impersonation attack). Rosenbaum [7] and Pei [6] independently derived a general form of
the bound for i > 0.

Pi ≥ 2H(E|M i+1)−H(E|M i) = 2−I(E;M |M i) (1)

where M i denotes a random variable associated with the sequence of observed messages mi =
m1m2 . . .mi.
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The bound can be used to derive an information theoretic bound on the entropy or uncertainty
(and hence the length) of the key in terms of the success probabilities P0, . . . , Pi.

Adversary with Oracle access In Safavi-Naini et al [8] the adversary model was strengthened
by the addition of access to authentication and verification oracles. This new adversary is adaptive
and can ask authentication and verification queries from corresponding oracles. The oracles produce
responses to queries in the same way that the legitimate sender and receiver would.

For a given e ∈ E an authentication oracle Auth(e, .) (also called a signature oracle) takes as input
a source state s ∈ S, computes m = Auth(e, s) and returns response m.

A verification oracle, Ver(e, .), receives as input a ciphertext m ∈ M, computes b = Ver(e,m) ∈
{0, 1} and returns response b.

We use q to denote a query (either an A-query s or a V-query m) and use r to denote a response
(either m or b). We denote the set of queries by Q and the set of responses by R. Thus Q = S
and R = M for A-queries and Q = M and R = {0, 1} for V-queries. Let xi = x1, x2 . . . xi denote
a sequence of i elements. We also use xi to denote the set {x1, x2 . . . xi}. For j < i we say yj is a
prefix of xi if yl = xl, l = 1, . . . , j. We use si, mi, qi, ri, (q, r)i to denote a sequence of source states,
messages, queries, responses, and query and response pairs, respectively. A strategy τ of an adversary
is a collection of probability distributions that is used to select the queries and also the final spoofing
query. If (q, r)j is a sequence of query and response pairs then τ(q,r)j (q) denotes the probability that
q is chosen as the next query (or spoofing message) given that the adversary has asked the sequence
qi of queries and observed the sequence ri of responses. An adversary’s strategy is a collection τ of
probability distributions τ(q,r)j .

Let F
Auth(e,.),Ver(e,.)
a,τ (i, 1) be an adversary that has access to both oracles, and uses a strategy τ

to adaptively ask i A-queries (receiving the response after each query) and then ask a V-query. Let
F

Ver(e,.)
v,τ (i + 1) be an adversary that has access to only a verification oracle, and uses a strategy τ to

adaptively ask i verification queries (receiving the response after each query) and then ask a further
verification query.

Consider the following experiments:

Experiment ExpΠ,Fa,τ (i,1) Experiment ExpΠ,Fv,τ (i+1)

e ← E e ← E
If after asking exactly i queries si of Auth(e, .) If after asking exactly i queries mi of Ver(e, .)
and receiving corresponding responses mi and receiving corresponding responses bi

F
Auth(e,.),Ver(e,.)
a,τ makes a query m to F

Ver(e,.)
v,τ makes a query m to

the oracle Ver(e, .) such that the return the oracle Ver(e, .) such that the return
Ver(e,m) = 1, and Ver(e,m) = 1, and
m had never been returned by m was never asked of
the oracle Auth(e, .) the oracle Ver(e, .)

then return 1 else return 0 then return 1 else return 0

The output of the experiment is a random variable (ExpΠ,Fa,τ (i,1) or ExpΠ,Fv,τ (i+1) on {0, 1})
corresponding to the success or failure of an adversary who makes i queries to an oracle before spoofing
with a (forged) message m. Each run of the experiment is one instance of the communicants’ strategy
and the adversary’s choices in his attack, and corresponds to a sample point in a probability space
where sample points are labelled with a key (the communicants’ choice) and the adversary’s sequence
of query and response pairs (q, r)i, (m, b), where ri is the sequence of responses to the sequence of
queries qi (si or mi) and b = Ver(e,m). Let pτ

i (e, (q, r)i) denote the probability of the sample point
with label e, (q, r)i. For the sample points in which the forgery is considered successful the experiment
results in 1.
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We compute the advantage of the forgers in the above experiments as the the probability of the
experiment resulting in 1:

AdvΠ,Fa,τ (i,1) = Pr[ExpΠ,Fa,τ (i,1) = 1]
AdvΠ,Fv,τ (i+1) = Pr[ExpΠ,Fv,τ (i+1) = 1]

This is the average success probability over all keys (with respect to the distribution given by the
communicants’ strategy) when the adversary uses strategy τ . We use the notation P τ

i for either of
these quantities. This can be written as

P τ
i =

∑

q1∈Q
τ(q1)

∑

r1∈R
p(r1|q1)

∑

q2∈Q
τ(q,r)1(q2)

∑

r2∈R
p(r2|q2, (q, r)1) . . .

∑

qi∈Q
τ(q,r)i−1(qi)

∑

ri∈R
p(ri|qi, (q, r)i−1)

∑

m∈M
τ(q,r)i(m)

∑

e∈E,Ver(e,m)=1

p(e|m, (q, r)i)

The advantage function of Π is the advantage of a forger with the highest success probability.

AdvΠ,a(i, 1) = maxFa,τ (i,1)Pr[ExpΠ,Fa,τ (i,1) = 1]
AdvΠ,v(i + 1) = maxFv,τ (i+1)Pr[ExpΠ,Fv,τ (i+1) = 1]

The strategy of a forger with this advantage is called an optimal strategy. We write Pi for either
of these quantities.

We say that a key e is consistent with a query and response pair (q, r) if the following holds: (i) if
(q, r) = (s,m) then it holds that Auth(e, s) = m; and (ii) if (q, r) = (m, b), b ∈ {0, 1}, then it holds that
Ver(e,m) = b. Let E((q, r)j) denote the set of keys that are consistent with a query response sequence
(q, r)j . The conditional probability, p(e|(q, r)j), that the key is e given the sequence of query and
response pairs (q, r)j is non-zero only if e ∈ E((q, r)j). Similarly, for m ∈ M, let E((q, r)i, (m, 1)) =
{e ∈ E((q, r)i) : m ∈ M(e)}. For e ∈ E we put: γ(e,m, (q, r)i) = 1 if e ∈ E((q, r)i, (m, 1)) and
m 6∈ qi ∪ ri; and γ(e,m, (q, r)i) = 0 otherwise.

In the following we assume e ∈ E is chosen by communicants and is unknown to the adversary.
We introduce some notation that records probabilities of certain events in the experiments described
above. Put

pτ
i ((q, r)j) =

j∏

l=1

τ(q,r)l−1(ql)p(rl|ql, (q, r)l−1) (2)

where p(rl|ql, (q, r)l−1) =
∑

e∈E((q,r)l−1):Ver(e,ql)=rl
p(e|(q, r)l−1) is the conditional probability that rl is

the response to query ql given that rl−1 is the sequence of responses to the sequence of queries ql−1.
This is the probability in the above experiments of the instances that have (e, (q, r)j) as the prefix to
their label. This probability may be calculated from the communicants’ strategy, p(e), the adversary’s
strategy, τ , and the authentication system Π. This probability satisfies the following recursion.

pτ
i ((q, r)j) = pτ

i ((q, r)j−1)τ(q,r)j−1(qj)p(rj |qj , (q, r)j−1). (3)

Put

P τ
i ((q, r)i), (m, 1)) =

∑

e∈E((q,r)i)

p(e|(q, r)i)γ(e,m, (q, r)i). (4)
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This is the probability that the spoofing message m is successful given the sequence (q, r)i. Then

P τ
i ((q, r)i) =

∑

m∈M
τ(q,r)i(m)P τ

i ((q, r)i), (m, 1)). (5)

Put
P τ

i ((q, r)j , qj+1) =
∑

rj+1∈R
p(rj+1|qj+1, (q, r)j)

∑

qj+2∈Q
τ(q,r)j+1(qj+2)

· · ·
∑

qi∈Q
τ(q,r)i−1(qi)

∑

ri∈R
p(ri|qi, (q, r)i−1)

∑

m∈M
τ(q,r)i(m)P τ

i ((q, r)i), (m, 1)).

and

P τ
i ((q, r)j) =

∑

qj+1∈Q
τ(q,r)j (qj+1)P τ

i ((q, r)j , qj+1). (6)

This is the conditional probability in the above experiments that the instances with labels whose
sequences of queries and responses are prefixed by (q, r)j) output 1.

For each j = 1, . . . , i, the advantage of the adversary may be written

P τ
i =

∑

(q,r)j

pτ
i ((q, r)j)P τ

i ((q, r)j). (7)

We write Pi to denote the maximum of P τ
i over all strategies τ .

3 Optimal strategies

The adversary’s strategy is a collection of probability distributions τ(q,r)j that are used to choose
queries. We say that τ(q,r)j is pure if there is a unique query, denoted q(q,r)j , with τ(q,r)j (q(q,r)j ) = 1
(so that τ(q,r)j (q) = 0 for all other queries q). We say that a strategy τ is pure if τ(q,r)j is pure for
each (q, r)j .

Theorem 3.1 There always exists a pure optimal strategy for an authentication system adversary
who has oracle access.

Proof: We prove the theorem by constructing a pure strategy that is optimal. Let the adversary have
i oracle queries, and a single spoofing query. Given any strategy τ of this adversary, we show how to
construct a pure strategy τ i whose advantage is at least that of τ , using i recursive steps. Towards
this end, we recursively determine strategies τ0, . . . , τ i such that the advantage of an adversary with
strategy τ0 is at least that of an adversary with strategy τ , the advantage, for j = 1, . . . , i, of an
adversary with strategy τ j is at least that of an adversary with strategy τ j−1, and τ j

(q,r)l is pure for

all (q, r)l, l = i, . . . , i− j. Since τ i is pure this will establish our claim by taking τ to be an optimal
strategy.

Now τ0 will differ from τ only in the distributions τ(q,r)i used to choose the spoofing message.
Thus we are considering instances with labels whose sequences of queries and responses have a given
prefix (q, r)i. For each (q, r)i let m(q,r)i be such that

P τ
i ((q, r)i), (m(q,r)i , 1)) = maxm∈MP τ

i ((q, r)i), (m, 1)). (8)

Put τ0
(q,r)i(m(q,r)i) = 1 (and zero otherwise). Thus the strategy τ0

(q,r)i is a pure strategy that chooses
the spoofing message optimally. For j < i put τ0

(q,r)j = τ(q,r)j for all (q, r)j .
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Hence τ0 is a strategy that is identical to τ except that each τ0
(q,r)i is a special probability dis-

tribution with non-zero probability only corresponding to an optimal spoofing query m(q,r)i . Note
that from (2) we have pτ

i ((q, r)i) = pτ0

i ((q, r)i) for all (q, r)i. Also note that from (8) we have
P τ

i ((q, r)i), (m, 1)) ≤ P τ0

i ((q, r)i), (m(q,r)i , 1)) for all m ∈M so that

P τ
i ((q, r)i) =

∑

m∈M
τ(q,r)i(m)P τ

i ((q, r)i), (m, 1)) ≤
∑

m∈M
τ(q,r)i(m)P τ0

i ((q, r)i), (m(q,r)i , 1))

= P τ0

i ((q, r)i), (m(q,r)i , 1)) =
∑

m∈M
τ0
(q,r)i(m)P τ0

i ((q, r)i), (m, 1)) = P τ0

i ((q, r)i).

where the last equality uses equation (5).
Now P τ

i =
∑

(q,r)i pτ
i ((q, r)i)P τ

i ((q, r)i) ≤ ∑
(q,r)i pτ0

i ((q, r)i)P τ0

i ((q, r)i) = P τ0

i and the probabil-
ity of success using strategy τ0 is at least that using τ .

For j = 1, . . . , i we recursively define τ j assuming τu, u = 0, · · · j−1 are defined. Now τ j will differ
from τ j−1 only in the distributions τ j

(q,r)i−j . That is, for all l = 0, · · · i, l 6= j, we have τ j
(q,r)i−l = τ j−1

(q,r)i−l

for all (q, r)i−l, l = 0, · · · j − 1 and so these strategies are pure. In this step τ j−1
(q,r)i−j is replaced by a

pure distribution such that P τ j−1

i ≤ P τ j

i .
Consider instances with labels whose sequences of queries and responses have prefix (q, r)i−j .
For each (q, r)i−j let q(q,r)i−j be such that

∑

r∈R
p(r|q(q,r)i−j , (q, r)i−j)P τ j−1

i ((q, r)i−j , (q(q,r)i−j , r))

= maxq∈Q
∑

r∈R
p(r|q, (q, r)i−j)P τj−1

i ((q, r)i−j , (q, r)). (9)

Put τ j
(q,r)i−j (q(q,r)i−j ) = 1 (and zero otherwise). For l 6= j put τ j

(q,r)i−l = τ j−1
(q,r)i−l for all (q, r)i−l. Then

from equation (2) we have pτj−1

i ((q, r)i−j) = pτ j

i ((q, r)i−j) for all (q, r)i−j . Also note that from (9)
we have P τ j−1

i ((q, r)i−j , q) ≤ P τj

i ((q, r)i−j , q(q,r)i−j ) for all q ∈ Q so that

P τj−1

i ((q, r)i−j) =
∑

q∈Q
τ j−1
(q,r)i−j (q)P τ j−1

i ((q, r)i−j), q) ≤
∑

q∈Q
τ j−1
(q,r)i−j (q)P τj

i ((q, r)i−j , q(q,r)i−j )

= P τ j

i ((q, r)i, q(q,r)i) =
∑

q∈Q
τ j
(q,r)i−j (q)P τ j

i ((q, r)i−j , q) = P τj

i ((q, r)i−j).

Now

P τ j−1

i =
∑

(q,r)i−j

pτ j−1

i ((q, r)i−j)P τj−1

i ((q, r)i−j) ≤
∑

(q,r)i−j

pτ j

i ((q, r)i−j)P τ j

i ((q, r)i−j) = P τ j

i

and the probability of success using strategy τ j is at least that using τ j−1.
The strategy τ i is a pure strategy and is optimal if τ is optimal. We have τ i

(q,r)i(m(q,r)i) = 1 and

P τ i

i ((q, r)i) = maxm∈MP τ i

i ((q, r)i, (m, 1)) and m(q,r)i is an optimal spoofing message. Moreover, for
each j = 1, . . . , i, we have τ i

(q,r)i−j (q(q,r)i−j ) = 1 and
∑

r∈R
pτ i

i (r|q(q,r)i−j , (q, r)i−j)P τ i

i ((q, r)i−j , (q(q,r)i−j , r))

= maxq∈Q
∑

r∈R
pτ i

i (r|q, (q, r)i−j)P τ i

i ((q, r)i−j , (q, r)).
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Thus τ i
(q,r)i−j is an optimal query.

3.1 Bounds on success probability

We consider an adversary that uses strategy τ to make i queries (either A-queries or V-queries) to
an oracle and then constructs a spoofing query. Now pτ

i ((q, r)i) is the probability that the resulting
sequence of query and response pairs is (q, r)i. We write (Qτ , Rτ )i to denote a random variable
that takes the values (q, r)i with respective probabilities pτ

i ((q, r)i). The source distribution and the
communicants’ strategy determine a distribution p(m) on M. Let p(m|(q, r)i) be the probability
that a message m is transmitted by the sender as the next message given the sequence of query and
response pairs (q, r)i.

Theorem 3.2 Let Π be an authentication system and let P τ
i be the probability of success of an ad-

versary who spoofs optimally after making i oracle queries using strategy τ . Then

P τ
i ≥ 2H(E|M,(Qτ ,Rτ )i)−H(E|(Qτ ,Rτ )i) = 2−I(E;M |(Qτ ,Rτ )i).

Moreover, equality holds if and only if, for all (q, r)i ∈ (Q×R)i with pτ
i ((q, r)i) 6= 0 and all m ∈ M

with p(m|(q, r)i) 6= 0, we have P τ
i ((q, r)i, (m, 1)) = P τ

i and p(m|e, (q, r)i) is constant for all e ∈
E((q, r)i, (m, 1)).

The proof of Theorem 3.2 is given in the appendix. It is an adaptation of the proof of Theorem 3.1
of Rosenbaum [7]. This bound is analogous to Rosenbaum’s bound for a message-observing adversary,
with difference being that the distribution associated with the random variable (Qτ , Rτ )i depends
on both the adversary’s and the communicants’ strategies while in the message observing case it is
determined by communicants’ strategy and the source state distribution. This means that unlike
the case of a message observing adversary where the best success chance is bounded by the quantity
I(E; M |M i) that he cannot change, the case of an adaptive adversary with access to query oracles
allows him to influence I(E;M |(Qτ , Rτ )i) and so have a higher bound on the success chance. The
bound depends on the query strategy and applies to any spoofing strategy. For good authentication
systems the best spoofing strategy should meet the bound with equality.

As in Rosenbaum [7] we have the following generalisation. Let the values p∗(e,m, (q, r)i) for
e ∈ E , m ∈ M and sequence (q, r)i of query and response pairs be a joint probability distribution on
E ×M× (Q×R)i such that, if γ(e,m, (q, r)i) = 0 then p∗(e,m, (q, r)i) = 0 and, for all e and (q, r)i,∑

m p∗(e,m, (q, r)i) = pτ
i (e, (q, r)i), the probability that the encoding rule is e and, for strategy τ ,

the sequence of query and response pairs is (q, r)i. We write M∗ to denote a random variable that
takes values m ∈ M∗ with respective probabilities p∗(m) =

∑
e,(q,r)i p∗(e,m, (q, r)i). The bound in

Theorem 3.2 becomes

P τ
i ≥ 2H(E|M∗,(Qτ ,Rτ )i)−H(E|(Qτ ,Rτ )i) = 2−I(E;M∗|(Qτ ,Rτ )i) (10)

3.2 Authentication queries

When the adversary has access to an authentication oracle the sample points have labels with sequences
of queries and responses of the form ((s,m)i, (m, b)) and the probability of output 1 for a given sequence
of queries and responses is given by

P τ
i ((s,m)i), (m, 1)) =

∑

e∈E(s,m)i)

p(e|(s,m)i)γ(e,m, (s,m)i)

where E((s,m)i) is the set of keys that satisfy Auth(e, sj) = mj , j = 1, · · · i. Theorem 3.2 in its
generalized form (expression (10)) can be written as follows.

8



Theorem 3.3 Let Π be an authentication system and let P τ
i be the probability of success of an ad-

versary who uses strategy τ and spoofs optimally after making i oracle queries. Then

P τ
i ≥ 2H(E|M∗,(Sτ ,Mτ )i)−H(E|(Sτ ,Mτ )i) = 2−I(E;M∗|(Sτ ,Mτ )i).

Moreover, equality holds if and only if, for all (s,m)i ∈ (S ×M)i with pτ
i ((s,m)i) 6= 0 and all m ∈ M

with p∗(m|(s,m)i) 6= 0, we have P τ
i ((s,m)i, (m, 1)) = P τ

i and p∗(m|e, (s,m)i) is constant for all
e ∈ E((s,m)i, (m, 1)).

3.2.1 Bound on the key size

We prove a bound on the key size in terms of the probabilities of success Pj for an adversary that has
access to j authentication queries, j = 0, . . . , i. Let τ be a strategy such that for all (s,m)j , j = 0, . . . , i,
we have τ(s,m)j (s) = 0 whenever s ∈ si. We define i + 1 adversaries Fτj = F

Auth(e,.),Ver(e,.)
a,τj (i, 1),

j = 0, . . . , i, with strategies τ0, . . . , τ i where τ i = τ . For j = 0, . . . , i, Fτ j uses strategy τ j to ask j
oracle queries and then uses an optimal spoofing strategy that gives him the best success chance. For
j = 0, . . . , i define τ j

(s,m)` = τ(s,m)` for all (s,m)`, ` = 0, . . . , j − 1. Note that τ j
(s,m)j is the probability

distribution used by Fτ j to select the spoofing message. Also note that for all u = 1, . . . , j − 1, the
probability distribution used by the adversary Fτu for selecting queries s`, ` = 1, . . . , u, is the same as
the probability distribution used by the adversary Fτ j .

The lower bound on the success probability of Fτ j is,

P τ j

j ≥ 2−I(E;M∗|(Sτj
,Mτj

)j)

where (Sτj
, M τ j

)j denotes the random variable that takes values (s,m)j with probability pτj

j ((s,m)j)
and M∗ is a random variable that has the properties described at the end of section 3.1. Since
pτ j

j ((s,m)j) = pτ
j ((s,m)j) we have (Sτ j

,M τj
)j = (Sτ ,M τ )j .

Let

p∗(e,m, (s,m)j) = pτ j

j ((s,m)j)p(e|(s,m)j)τ j+1
(s,m)j (s)

where s = D(e,m) and p∗(e,m, (s,m)j) = 0 otherwise. This is the distribution on query and response
pairs (s,m)j , keys e, and transmitted messages m, that arises when the source state distribution is
τ j+1
(s,m)j . Then p∗(e,m, (s,m)j) = 0 if γ(e, (s,m)j ,m) = 0.

Now τ j+1
(s,m)j (s) is the distribution used by Fτj+1 for selection of the j + 1 query sj+1. The random

variable M τj+1

j+1 has distribution satisfying

p(M τ j

j+1 = m|(s,m)j) =
∑

s∈S

∑

e∈E:Auth(e,s)=m

τ j+1
(s,m)j (s)p(e|(s,m)j)

=
∑

e∈E((s,m)j

τ j+1
(s,m)j (D(e,m))p(e|(s,m)j)

and

p(M τ j+1

j+1 = m) =
∑

(s,m)j

pτ j+1

j+1 ((s,m)j))
∑

e∈E((s,m)j

τ j+1
(s,m)j (D(e,m))p(e|(s,m)j)

=
∑

(s,m)j

∑

e∈E((s,m)j

p∗(e,m, (s,m)j).

9



Thus M τj+1

j+1 satisfies the conditions on M∗ described at the end of section 3.1 and we have

P τj

j ≥ 2−I(E;Mτj+1

j+1 )|(Sτ ,Mτ )j)

where M τ j+1

j+1 has the same distribution as responses to query qj+1 = sj+1 by the adversary Fτj+1 .
Equivalently, the inequality may be written

log2P
τ j

j ≥ −I(E; M τj+1

j+1 |(Sτ ,M τ )j) = −H(E|(Sτ ,M τ )j) + H(E|(Sτ ,M τ )j ,M τ j+1

j+1 ) (11)

Theorem 3.4 Let Π be an authentication system. Then

Πi
j=0Pj ≥ 2−H(E)

Proof: For adversaries Fτ j , j = 0, . . . , i, as described above we have

log2Pj ≥ log2P
τj

j ≥ −I(E;M τ j+1

j+1 |(Sτ ,M τ )j) = −H(E|(Sτ ,M τ )j) + H(E|(Sτ , M τ )j ,M τ j+1

j+1 ).

Note that

H(E, Sτ
j |(Sτ ,M τ )j−1, M τ j

j ) = H(E|(Sτ ,M τ )j−1,M τ j

j ) + H(Sτ
j |E, (Sτ , M τ )j−1,M τ j

j )

= H(Sτ
j |(Sτ ,M τ )j−1,M τj

j ) + H(E|(Sτ ,M τ )j)

and since H(Sτ
j |E, (Sτ ,M τ )j−1,M τ j

j ) = 0 we have

H(Sτ
j |(Sτ ,M τ )j−1,M τ j

j ) = H(E|(Sτ ,M τ )j−1, M τ j

j )−H(E|(Sτ ,M τ )j).

Hence

log2(Π
i
j=0Pj) ≥ (−H(E) + H(E|M τ1

1 )) + (−H(E|(Sτ ,M τ )1) + H(E|(Sτ ,M τ )1, M τ2

2 ))

+ · · ·+ (−H(E|(Sτ ,M τ )i) + H(E|(Sτ ,M τ )i,M τ i+1

i+1 ))

= −H(E) + (H(E|M τ1

1 )−H(E|(Sτ ,M τ )1))

+ · · ·+ (H(E|(Sτ ,M τ )i−1,M τ i

i )−H(E|(Sτ ,M τ )i)) + H(E|(Sτ , M τ )i,M τ i+1

i+1 )

= −H(E) + H(Sτ
1 |M τ1

1 ) + · · ·+ H(Sτ
i |(Sτ ,M τ )i−1,M τ i

i ) + H(E|(Sτ ,M τ )i,M τ i+1

i+1 )
≥ −H(E).

Let Pd = maxiPi. Then it follows that Pd ≥ 2−
H(E)
i+1 .

4 ‘Good’ queries do not decrease success probability

It is well known that for a message observing adversary, observing an extra message may reduce the
success probability of the adversary. For example, Massey [3] defined l-fold secure A-codes as codes
that provide perfect protection against spoofing of order zero and one. For such codes with k source
states and v messages we have P0 = k

v and P1 = k−1
v−1 . Moreover the probability of success in spoofing

of order zero is k
v for each spoofing message m and the probability of success in spoofing of order one

is k−1
v−1 for each observed message m and spoofing message m′ 6= m. Thus for these codes observing

any message will reduce the success probability of the adversary.
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The passive message observing adversary obtains information from valid messages sent across the
channel. On the other hand the active querying adversary obtains information from the responses
to the queries. Thus, there is a difference: in the latter the adversary can control the amount of
information that he receives.

Since adversaries with oracle access have some control on the information that they receive a
natural question is whether asking queries is always helpful to such adversaries. For every query, the
adversary may calculate his best success chance before and after the query is asked and choose the
one that gives him the higher success chance. Of course, the probability of success is unchanged if
the adversary repeats a query that has been made before. So we only need to consider the case where
the adversary makes distinct queries. We call a query ‘good’ if it is distinct from previous queries
and if asking it will not reduce the success chance of the adversary. Otherwise a query is ‘bad’. the
success chance of the adversary. In the following we show that the adversary only needs to look for
‘good’ queries and if there is one then he can be guaranteed that asking the query will not decrease
his success chance.

The following theorem gives conditions under which a query is good. It follows that in all but
those special cases where no query satisfies these conditions, asking another query is helful and the
adversary’s probability of success is at least as great with the extra query.

Theorem 4.1 Let τ be a strategy of an adversary who asks i oracle queries and then constructs a
spoofing query for an authentication system Π. Suppose that the adversary modifies the strategy to ask
one extra oracle query and then spoof optimally.

Then an extra query q is good if it is distinct from previous queries and (i) in the case of verification
queries, q is distinct from the unique optimal spoofing message for strategy τ should one exist; and (ii)
in the case of authentication queries, there exists an optimal spoofing message m̂ for strategy τ such
that any key consistent with the previous query and response pairs is not consistent with (q, m̂).

If there exists a good extra query for every sequence of query and response pairs arising from τ
then for a suitable modification the adversary’s probability of success is at least P τ

i

Proof: Suppose that the adversary has observed the sequence (q, r)i of query and response pairs.
The expected success probability of the adversary after another query qi+1 is

∑

ri+1∈R
p(ri+1|qi+1, (q, r)i)maxm∈M





∑

e∈E((q,r)i+1)

p(e|(q, r)i+1)γ(e,m, (q, r)i+1)





where p(ri+1|qi+1, (q, r)i) =
∑

e∈E((q,r)i+1) p(e|(q, r)i) is the conditional probability that the response
is ri+1 given the sequence (q, r)i and the query qi+1. But

p(e|(q, r)i+1) =
p(e|(q, r)i)∑

e
′∈E((q,r)i+1) p(e′ |(q, r)i))

.

so this is

∑

ri+1∈R
maxm∈M





∑

e∈E((q,r)i+1)

p(e|(q, r)i)γ(e,m, (q, r)i+1)





≥ maxm∈M





∑

ri+1∈R


 ∑

e∈E((q,r)i+1)

p(e|(q, r)i)γ(e,m, (q, r)i+1)








= maxm∈M





∑

e∈E((q,r)i)

p(e|(q, r)i)γ(e,m, (q, r)i, (qi+1, r̂))




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where r̂ = Ver(e, qi+1) or Auth(e, qi+1).
Suppose that qi+1 is distinct from q1, . . . , qi and (i) if qi+1 ∈ M then there exists m̂ 6= qi+1

with P τ
i ((q, r)i, (m̂, 1)) = maxm∈M

{
P τ

i ((q, r)i, (m, 1))
}
, and (ii) if qi+1 ∈ S then under any key

e ∈ E((q, r)i), there exists a message m̂ ∈ M with m̂ 6= Auth(e, qi+1) and P τ
i ((q, r)i, (m̂, 1)) =

maxm∈MP τ
i ((q, r)i, (m, 1)).

With m̂ so defined we have γ(e, m̂, (q, r)i, (qi+1, r̂)) = γ(e, m̂, (q, r)i) and so

maxm∈M





∑

e∈E((q,r)i)

p(e|(q, r)i)γ(e,m, (q, r)i, (qi+1, r̂))



 =

∑

e∈E((q,r)i)

p(e|(q, r)i)γ(e, m̂, (q, r)i)

= P τ
i ((q, r)i).

Thus qi+1 is a good query.
It follows immediately that if there exists a good extra query for every sequence of query and

response pairs arising from τ then the adversary’s probability of success for a modified strategy that
chooses such a query with probability 1 is at least

∑
(q,r)i pτ

i ((q, r)i)P τ
i ((q, r)i) = P τ

i and the result
follows.

Note that for verification queries the condition for existence of a good query is nearly always
satisfied. The exception is when |M\qi| = 1 and so the only available query is the spoofing query. As
long as |M\qi| > 1 there will be a good query and so the success chance of the adversary would not
be reduced if that query is asked. In the case of authentication queries, the theorem may not imply
the existence of a good query. This is the case if for some sequence of query and response pairs (q, r)i

arising from τ every optimal spoofing message m̂ has the property that for any q ∈ S\qi there is an
e ∈ E((q, r)i) such that Auth(e, q) = m̂.

Note that the above theorem is helpful as it provides the adversary with a method to determine
whether he should ask a query or not: he simply checks whether there are good queries and if there
are then he is guaranteed to do better if he asks them.

5 Optimal codes

We consider optimal authentication codes that satisfy the bound Pd ≥ 2−
H(E)
i+1 with equality. We use an

argument similar to Rosenbaum [7] and obtain a combinatorial characterization of such authentication
codes analogous to that in the message-observing adversary setting. The codes will have minimum
number of keys and limit the best success chance of a spoofer with access to i queries to its minimum
(that is, satisfy bound 3.2 with equality).

If equality holds then it follows by theorem 3.4 that Pj = Pd for j = 0, . . . , i and the proof
of the theorem shows that H(E|(Sτ ,M τ )i,M τ i+1

i+1 ) = 0 and H(Sτ
j |(Sτ , M τ )j−1,M τ

j ) = 0 for j =
1, . . . , i. Further, equality holds in Theorem 3.3 and so, for an optimal strategy τ∗ (having the
properties described above the statement of Theorem 3.4), p∗(m|e, (s∗,m)j) is constant for all e ∈
E((s∗,m)j , (m, 1)) and Pj = P τ∗

j ((s∗,m)j , (m, 1)).
Since p∗(m|e, (s∗,m)j) is independent of e it follows that

p(e|(s∗,m)j , (m, 1)) =
p(e|(s∗,m)j)∑

e′∈E((s∗,m)j ,(m,1)) p(e′|(s∗,m)j)
(12)

and we have
∑

e∈E((s∗,m)j ,(m,1)) p(e|(s∗,m)j) = P τ∗
j ((s∗,m)j , (m, 1)) = Pd.

12



Using an argument by induction on the number j of query and response pairs gives

p(e|(s∗,m)j) =
p(e)∑

e′∈E((s∗,m)j) p(e′)
(13)

for all j = 0, . . . , i. Further, another induction, on the number j of terms in the product, gives

∑

e∈E((s∗,m)j)

p(e) =
j−1∏

l=0

Pl (14)

for all j = 0, . . . , i. (See the appendix for proofs of these equations.)
Let si+1 be a sequence of distinct source states and let e ∈ E . Let mi+1 be the sequence of messages

with mj = Auth(e, sj) for j = 1, . . . , i+1. Then p(e|(s,m)i+1) 6= 0 and since H(E|(Sτ , M τ )i,M τ i+1

i+1 ) =
0 we have p(e|(s,m)i+1) = 1 and E((s,m)i, (mi+1, 1)) = {e}. Hence p(e) =

∑
e′∈E((s,m)i,mi+1.1)) p(e′) =∏i

j=0 Pj . Thus the distribution p(e) is uniform.
It follows that

p(e|(s∗,m)j) =
p(e)∑

e′∈E((s∗,m)j) p(e′)
=

1
|E((s∗,m)j)|

Pj =
∑

e∈E((s∗,m)j ,(m,1))

1
|E((s∗,m)j)|

and |E((s,m)j+1)| = (
∏j

l=0 Pl)|E| = Pdj+1|E|. Since |E((s,m)i+1)| = 1 we have |E| = Pd−(i+1) and
|E((s,m)j)| = Pdj−(i+1). Thus Pd−1 is an integer q and |E| = qi+1.

Thus the optimal authentication systems determine a combinatorial structure. We may identify
a pair (e, (s,m)) satisfying Auth(e, s) = m with an incidence in a combinatorial design. The above
results show that an optimal authentication code corresponds to a combinatorial design in which
any j query response pairs (s,m)j are incident with a constant number qi+1−j encoding rules. Since
H(Sτ

1 |M τ
1 ) = 0 the authentication code is Cartesian and it follows that it is optimal in the message

observing setting also. The authentication systems arising from Reed-Solomon Codes (or Orthogonal
Arrays) (see Mitchell et al [5]) which are optimal in the message observing adversary setting also
provide examples of optimal codes in our query oracle setting.

6 Concluding Remarks

We have given an analysis of authentication systems for an adversary with access to oracle queries. We
derived information theoretic bounds on the best success probability of an adversary using a strategy
τ to ask i queries and then construct a spoofing query. This bound can be seen as a generalisation of
the Simmons and Rosenbaum bound and is derived using the same technique. The adaptive adversary
however has the ability to influence the bound through his querying strategy as well as his spoofing
strategy while for a message observing adversary the bound is only affected by this latter strategy.
We also derived a bound on the key entropy for an adaptive adversary with access to i authentication
queries and showed that in this case for an authentication system with probability of deception Pd
the key entropy is at least (i + 1) log Pd. This is similar to the known result for a message observing
adversary.

We gave a combinatorial characterisation of authentication codes that meet the bounds and showed
that optimal codes (having the least success probability and the smallest number of keys) correspond
to orthogonal arrays. This is analogous to the message observing case.

We gave a result to show that, in the query oracle model, as long as there is always a good query,
then asking that query is helpful to the adversary.

13



7 Appendix

Proof of Theorem 3.2. The following proof is a direct application of the proof used in [7] to the
situation where the adversary makes oracle queries instead of observing messages.

We will use Jensen’s inequality for convex functions. A real function φ is convex on the interval
(a, b) if φ′(r) < φ′(s), for all a < r < s < b.

Theorem 7.1 (Jensen’s inequality) [11] Let wi, i = 1, · · ·n be non-negative numbers such that
∑

i wi =
1. let φ be a real function that is convex on the interval (a, b) and let xi ∈ (a, b), i = 1, · · ·n. Then,

φ(
∑

i

wi.xi) ≤
∑

i

wi.φ(xi) (15)

and equality holds if and only if all xi are equal.

The proof of Theorem 3.2 proceeds as follows.
Let

Ψ(q,r)i,m(e) =
p(e|(q, r)i)γ(e,m, (q, r)i)

P τ
i ((q, r)i), (m, 1))

Because P τ
i ((q, r)i, (m, 1)) =

∑
e∈E((q,r)i,(m,1)) p(e|(q, r)i)γ(e,m, (q, r)i) it follows that∑

e∈E((q,r)i,(m,1)) Ψ((q,r)i,m)(e) = 1 and Ψ((q,r)i,m)(e) is a probability distribution on E((q, r)i, (m, 1)).
Now we have

p(m|(q, r)i) =
∑

e∈E((q,r)i,(m,1))

p(m, e|(q, r)i)

=
∑

e∈E((q,r)i,(m,1))

p(e|(q, r)i)p(m|e, (q, r)i)

=
∑

e∈E((q,r)i,(m,1))

p(e|(q, r)i)p(m|e, (q, r)i)γ(e, m, (q, r)i)

=
∑

e∈E((q,r)i,(m,1))

Ψ((q,r)i,m)(e)P
τ
i ((q, r)i, (m, 1))p(m|e, (q, r)i)

Using Jensen’s inequality (15) for φ(x) = x. log x at x = p(m|(q, r)i) =
∑

e∈E((q,r)i,(m,1)) we.xe with
we = Ψ(q,r)i,m(e) and xe = P (m, (q, r)i)p(m|e, (q, r)i), we have

p(m|(q, r)i) log p(m|(q, r)i)

≤
∑

e∈E((q,r)i,(m,1))

Ψ(q,r)i,m(e)P τ
i ((q, r)i, (m, 1))p(m|e, (q, r)i) log[P τ

i ((q, r)i, (m, 1))p(m|e, (q, r)i)]

=
∑

e∈E((q,r)i,(m,1))

p(e|(q, r)i)p(m|e, (q, r)i)γ(e,m, (q, r)i) log[P τ
i ((q, r)i, (m, 1))p(m|e, (q, r)i)]

=
∑

e∈E((q,r)i,(m,1))

p(e, m|(q, r)i) log[P τ
i ((q, r)i, (m, 1))p(m|e, (q, r)i)] (16)

We will first show that

H(M |(q, r)i) ≥ − log(P τ
i ((q, r)i) + H(M |E, (q, r)i)
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This is true because using (16) we have,

H(M |(q, r)i) = −
∑

m∈M
p(m|(q, r)i) log p((m|(q, r)i)

≥ −
∑

m∈M

∑

e∈E((q,r)i,(m,1))

p(e,m|(q, r)i) log[P τ
i ((q, r)i, (m, 1))p(m|e, (q, r)i)]

= −
∑

m∈M
p(m|(q, r)i) log P τ

i ((q, r)i, (m, 1))

−
∑

m∈M

∑

e∈E((q,r)i,(m,1))

p(e|(q, r)i)p(m|e, (q, r)i) log p(m|e, (q, r)i)

Now as the adversary spoofs optimally we have P τ
i ((q, r)i) ≥ P τ

i ((q, r)i, (m, 1)) and so

H(M |(q, r)i) ≥ − log P τ
i ((q, r)i)

∑

m∈M
p(m|(q, r)i) + H(M |E, (q, r)i)

= − log P τ
i ((q, r)i) + H(M |E, (q, r)i).

The final step uses Jensen’s inequality (15) for φ(x) = − log x.

log P τ
i = log[

∑

(q,r)i

pτ
i ((q, r)i)P τ

i ((q, r)i)]

≥
∑

(q,r)i

pτ
i ((q, r)i) log P ((q, r)i)

≥
∑

(q,r)i

pτ
i ((q, r)i)(H(M |E, (q, r)i)−H(M |(q, r)i))

= H(M |E, (Qτ , Rτ )i)−H(M |(Qτ , Rτ )i)

Proof of equation 12 We show that

p(e|(s∗,m)j , (m, 1)) =
p(e|(s∗,m)j)∑

e′∈E((s∗,m)j ,(m,1)) p(e′|(s∗,m)j)
.

Now, for p∗(e, (s,m)j ,m) 6= 0 we have

p∗(e, (s∗,m)j ,m) = p(e|(s∗,m)j , (m, 1))p∗((s∗,m)j ,m).

and
p∗(e, (s∗,m)j , m) = p∗(m|e, (s∗,m)j)p(e|(s∗,m)j)pτ

i ((s
∗,m)j).

Hence

p(e|(s∗,m)j , (m, 1)) =
p∗(m|e, (s∗,m)j)p(e|(s∗,m)j)pτ

i ((s
∗,m)j)

p∗((s∗,m)j ,m)
.

Now

p∗((s∗,m)j ,m) =
∑

e′∈E((s∗,m)j ,(m,1))

p∗(e′, (s∗,m)j ,m)

∑

e′∈E((s∗,m)j ,(m,1))

p∗(m|e′, (s∗,m)j)p(e′|(s∗,m)j)pτ
i ((s

∗,m)j).

15



Thus

p(e|(s∗,m)j , (m, 1)) =
p∗(m|e, (s∗,m)j)p(e|(s∗,m)j)pτ

i ((s
∗,m)j)∑

e′∈E((s∗,m)j ,(m,1)) p∗(m|e′, (s∗,m)j)p(e′|(s∗,m)j)pτ
i ((s∗,m)j)

.

But by Theorem 3.3 p∗(m|e′, (s∗,m)j) is constant for all e′ ∈ E((s∗,m)j , (m, 1)) so that

p(e|(s∗,m)j , (m, 1)) =
p(e|(s∗,m)j)∑

e′∈E((s∗,m)j ,(m,1)) p(e′|(s∗,m)j)
.

and the result follows.

Proof of equation 13 We show that p(e|(s∗,m)j) = p(e)P
e′∈E((s∗,m)j)

p(e′) .

For j = 0 we have p(e|(s∗,m)0) = p(e), so p(e|(s∗,m)) = p(e)P
e′∈E((s∗,m)0) p(e′) .

Suppose that 1 ≤ j ≤ i and p(e|(s∗,m)j−1) = p(e)P
e′∈E((s∗,m)j−1)

p(e′) for all e ∈ E((s∗,m)j−1).

Since H(Sτ
j |(Sτ ,M τ )j−1,M τ

j ) so that E((s∗,m)j−1, (m, 1)) = E((s∗,m)j−1, (s∗,m)) = E((s∗,m)j) and
because E((s∗,m)j−1) ⊆ E((s∗,m)j) we have

p(e|(s∗,m)j) = p(e|(s∗,m)j−1, (m, 1)) =
p(e|(s∗,m)j−1)∑

e′∈E((s∗,m)j−1,(m,1)) p(e′|(s∗,m)j−1)

=

p(e)P
f∈E((s∗,m)j−1)

p(f)

∑
e′∈E((s∗,m)j−1,(m,1))

p(e′)P
f∈E((s∗,m)j−1)

p(f)

=
p(e)∑

e′∈E((s∗,m)j) p(e′)

and the result follows.

Proof of equation 14 We show that
∑

e∈E((s∗,m)j) p(e) =
∏j−1

l=0 Pl.
For j = 1 we have P0 = P τ∗

0 ((m, 1)) =
∑

e∈E((m,1)) p(e) =
∑

e∈E((s∗,m)1) p(e).

Suppose that 2 ≤ j ≤ i + 1 and
∑

e∈E((s∗,m)j−1) p(e) =
∏j−2

l=0 Pl.
Now

Pj−1 =
∑

e∈E((s∗,m)j−1,(m,1))

p(e|(s∗,m)j−1) =
∑

e∈E((s∗,m)j)

p(e|(s∗,m)j−1

so that

Pj−1 =
∑

e∈E((s∗,m)j)

p(e)∑
e′∈E((s∗,m)j−1) p(e′)

=
∑

e∈E((s∗,m)j)

p(e)∏j−1
l=0 Pl

and the result follows.

16



References

[1] E. N. Gilbert, F. J. MacWilliams and N. J. A. Sloane, ‘Codes which detect deception’, Bell System
Tech. J. 53(3) (1974) 405–424.

[2] R. Johannesson and A. Sgarro, ‘Strengthening Simmon’s bound on impersonation’, IEEE Trans-
actions on Information Theory 37 (1991), 1182-1185.

[3] J. L. Massey, Cryptography- A Selective survey, Alta Frequenza, LV(1) (1986), 4-11.

[4] U. Maurer, ‘A unified and generalized treatment of authentication theory’, ”Proceedings of the
13th Symposium on Theoretical Aspects of Computer Science”, Lecture Notes in Computer Sci-
ence 1046 (1996), 387-398

[5] C. Mitchell, M. Waker and P. Wild, ’The combinatorics of perfect authentication schemes’, SIAM
Journal on Discrete Mathematics 7 (1994), 102-107.

[6] D. Pei, ‘Information-theoretic bounds for authentication codes and block designs’, Journal of
Cryptology 8 (1995), 177-188.

[7] U. Rosenbaum, ‘A lower bound on authentication after having observed a sequence of messages’,
Journal of Cryptology 6 (1993), 135-156.

[8] R. Safavi-Naini, L. McAven and M. Yung, ‘General Group Authentication Codes and Their
Relation to ”Unconditionally Secure Signatures”’, Public Key Cryptography 2004, LNCS 2947,
pp 231-248.

[9] J. Shikata, G. Hanaoka,Y. Zheng and H. Imai, ’Security notions for unconditionally secure sig-
nature schemes’, Eurocrypt 2002, LNCS 2332, pp434-449.

[10] G. J. Simmons, ‘Authentication theory/coding theory’, Crypto’84 LNCS 196 (Springer–Verlag,
1984) 411–431.

[11] http://planetmath.org/encyclopedia/JensensInequality.html

17


