
Preimage Attack on Parallel FFT-Hashing

Donghoon Chang

Center for Information Security Technologies(CIST),
Korea University, Korea

dhchang@cist.korea.ac.kr

Abstract. Parallel FFT-Hashing was designed by C. P. Schnorr and S.
Vaudenay in 1993. The function is a simple and light weight hash algo-
rithm with 128-bit digest. Its basic component is a multi-permutation
which helps in proving its resistance to collision attacks. In this work
we show a preimage attack on Parallel FFT-Hashing with complexity
2t+64 + 2128−t and memory 2t which is less than the generic complexity
2128. When t = 32, we can find a preimage with complexity 297 and
memory 232. Our method can be described as “disseminative-meet-in-
the-middle-attack” we actually use the properties of multi-permutation
(helpful against collision attack) to our advantage in the attack. Over-
all, this type of attack (beating the generic one) demonstrates that the
structure of Parallel FFT-Hashing has some weaknesses when preimage
attack is considered. To the best of our knowledge, this is the first attack
on Parallel FFT-Hashing.

Keywords : Cryptographic Hash Function, Preimage Attack, parallel FFT-
Hashing.

1 Introduction.

Nowadays, novel constructions of cryptographic hash functions are required as
well as better understanding of their design principles. This is so, since the MD4-
style hash functions family was broken. This paper investigates the parallel FFT-
Hashing function, suggested by Schnorr and Vaudenay in 1993 [7] (improving
and correcting previously broken designs [5, 6, 2, 9, 8]). The parallel FFT-Hashing
function uses a simple component ‘multi-permutation’ repeatedly. Therefore, its
algorithm can be implemented in low power memory device environment (typical
modern devices such as RFID and sensors are memory limited). Thus, it becomes
an attractive alternative, since so far it had no known weaknesses. So we want
to know whether the structure of the parallel FFT-Hashing function can be a
candidate to be used for designing a new hash function because the structure
of parallel FFT-Hashing function is different from MD4-style hash functions.
Especially we want to know its security in the point of view of the preimage
resistance. Unlike MD4-style hash function, The parallel FFT-Hashing function
has a round function which is invertible. But, unlike MD4-style hash function, the
internal size of the parallel FFT-Hashing function is twice of the output size.

So, it is easy to think that the parallel FFT-Hashing function may be secure
against the preimage attack. The hash function seems to be even secure against
time-memory trade-off attack.

However, this paper shows that we can find a preimage with complexity
2t+64 + 2128−t and memory 2t which is less than the cost of its exhaustive
search complexity (2128). This type of attack demonstrates some weaknesses
in the structure of the design. We note that we exploit the properties of the
multi-permutation components in our attack, i.e., we capitalize on exactly the
property that helps preventing collision attacks.

General Meet-in-the-Middle Attack Our attack method is different from
the general meet-in-the-middle attack. For this, we explain the general meet-in-
the-middle attack on Parallel FFT-Hashing. Given a hash output o, we want to
find its preimage. Parallel FFT-Hashing can be described like Fig. 1. The size
of the internal state is 256 bits and the output size is 128 bits. f and g can be
inverted with the complexity 1. We choose randomly xi+1 ∼ xt and compute
the corresponding value in ∗ in Fig. 1 and store them in table. Like this, we get
2t cases. Similarly, from x1 ∼ xi we compute the corresponding value s in ∗ in
Fig. 1. If s is in the table, we can get a preimage of o. According to the birthday
paradox, in order to get one preimage we have to compute s from random x1 ∼ xi

2256−t times. Therefore, we can get a preimage with the complexity 2t + 2256−t

and the momory size 2t. On the other hand, this paper shows that we can find
its preimage with complexity 2t+64 + 2128−t and memory 2t.

f f f f o

x1 xi xi+1 xt

IV g…… ……

128-bit
256-bit256-bit256-bit256-bit256-bit256-bit256-bit

Fig. 1. Parallel FFT Hashing. f and g are invertible.

2 Parallel FFT-Hashing

In this section, we describe Parallel FFT-Hashing [7]. The size of each word
is 16 bits. Here + is the addition modulo 216 on E ∼= {0, 1, · · · , 216 − 1}, * is
the multiplication in E ∼= Z

∗

216+1
. L is the one-bit circular left shift on {0, 1}4

(such that L(i) = 2i for i 6 7 and L(i) = 1 + 2(i − 8) for i > 7) and R is
the one-bit circular right shift on E. Further, c = 0000000011111111 and s = 5
which guarantees the collision resistance. In our attack, we can find a preimage
for any s (even for big s). The initial value is (c0, c1, · · · , c15) which is 16 words.
(c0, c1, c2, c3):=(oxef01, ox2345, ox6789, oxabcd), (c4, c5, c6, c7):=(oxdcba, ox9876,
ox5432, ox10fe), c8+i:=ci for i=0,...,7 where ci is the bitwise logical negation of
ci.

PaFFTHashing(M) = o0||o1|| · · · ||o7

M is the padded message for which M = m0||m1|| · · · ||mn−1 ∈ En

1. For i = 0, ... ,15 Do ei := ci (c0|| · · · ||c15 is the initial value.)
2. For j = 0, ... ,⌈n/3⌉+s-2 Do (: Step j)

2.1 For i = 0, ... ,11 Do

If m3j+(imod3) is defined,
eL(i) := eL(i) + m3j+(imod3) for even i.
eL(i) := eL(i) ∗ m3j+(imod3) for odd i.

2.2 For i = 0, ... ,7 Do in parallel
e2i := eL(2i) ⊕ eL(2i+1), e2i+1 := eL(2i) ⊕ (eL(2i+1) ∧ c)⊕R2i+1(eL(2i+1))

2.3 For i = 0, ... ,15 Do ei := ei ∗ ci

3. Output h4(M) := o0||o1|| · · · ||o7 for which oi = eL(2i) ∗ eL(2i+1).

Fig. 2. Parallel FFT-hashing.
.

Fig. 3. Step j of Parallel FFT-Hashing.

3 Attack Strategy

In this section, we describe the strategy of our preimage attack on Parallel
FFT-Hashing. Our target is to find a padded preimage m0||m1|| · · · ||m47 when
a hash output o0||o1|| · · · ||o7 is given. This strategy consists of 4 phases. In the
first phase, we choose a constant w0||w1|| · · · ||w6||w7 which will be used for the
preimage attack on Parallel FFT-Hashing. In second phase, we show how to find
a message m0||m1|| · · · ||m23 which keeps the last 4 words of output of step 7 as
a 4-word constant w4||w5||w6||w7 with complexity 1. In the third phase, given
hash output o0||o1|| · · · ||o7, we show how to find a message m24||m25|| · · · ||m47

which makes the first 4 words of the input of step 8 and the last 4 words of
input of step 8 ‘w0||w1||w2||w3’ and ‘w4||w5||w6||w7’ with complexity 1. In the
forth phase, we find a preimage with the meet-in-the-middle-attack method on
the results of phases 2 and 3. We can call this type of meet-in-the-middle-attack
“disseminative-meet-in-the-middle-attack”.

IV

m0 m1 … m23

m24 m25 … m47

o0 o1 … o7

w0 w1 w2 w3 w4 w5 w6 w7

w4 w5 w6 w7

Fig. 4. Preimage Attack Strategy

4 Preimage Attack on Parallel FFT-Hashing

In this section, we show how to get a preimage for a given hash output o0||o1|| · · · ||o7.
The preimage is m0||m1|| · · · ||m42. So when the preimage is padded, the padded
preimage is m0||m1|| · · · ||m47 for which each mi is 16 bit long. The last four words
w44||w45||w46||w47 indicate the message length. We let m43 be ‘1000000000000000’.

Our attack idea is a disseminative-meet-in-the-middle attack in the location of
output of Step 7. see Fig. 5 and Fig. 6 for tags denoting locations in the cipher
process that we will use throughout.

First Phase (Choice of a constant w0||w1|| · · · ||w6||w7): (0) ∼ (3) [the last 4 en-
tries into step 0 layer in the figure below] are already fixed values because they
are initial values. We give (4) ∼ (19) fixed values. Then the values of (20) ∼
(35) are determined (via computation) as follows : (20) is determined by (0) and
(1), (21) is determined by (2) and (3), (22) is determined by (4) and (5), (23) is
determined by (20) and (21), . . ., (35) is determined by (32) and (33). Then we
let w4||w5||w6||w7 be (18)||(19)||(34)||(35). And let w0||w1||w2||w3 be any fixed
value.

Second Phase (find a message m0||m1|| · · · ||m23 which keeps the last 4 words of
output of step 7 as a 4-word constant w4||w5||w6||w7 with complexity 1) : Once
m2 is fixed, m0 and m1 are determined are automatically determined by the
property of multi-permutation because (4) and (5) are already fixed. A permu-
tation B : E2 → E2, B(a, b) = (B1(a, b), B2(a, b)), is a multi-permutation if for
every a, b ∈ E the mappings Bi(a, ∗), Bi(∗, b) for i = 1, 2 are permutation on E.
Likewise, once m5 is fixed, m3 and m4 are also determined because (6) and (7)
are already fixed. Similarly, we can find m0 ∼ m23 satisfying the values of (4)
∼ (19). Since we can assign m3i+2 random values for 0 6 i 6 7, we know that
there are 2128 m0 ∼ m23 satisfying the values of (4) ∼ (19).

Third Phase (given hash output o0||o1|| · · · ||o7, we show how to find a message
m24||m25|| · · · ||m47 which makes the first 4 words of the input of step 8 and the
last 4 words of input of step 8 ‘w0||w1||w2||w3’ and ‘w4||w5||w6||w7’ with com-
plexity 1.) : Given a hash output o0||o1|| · · · ||o7, since the multi-permutation is
an invertible permutation, we can invert o0||o1|| · · · ||o7 up-to the output of step
11 by giving arbitrary random value to m36 ∼ m42. Note that m43 ∼ m47 are
already fixed. w0 ∼ w7 is already fixed, so (40)∼(45) are determined as well. Fur-
ther, since we know the output of step 11, (46) is also fixed through the inverting
process. m34 is determined by (45) and (46). Then we give arbitrary random val-
ues to m33 and m35. Now we have the output of Step 10. m31 is determined by
(44). Then we give arbitrary random values to m30 and m32. m27 and m28 are
determined by (40) and (42). Then (36), (38) and (39) are also determined. m26

and m24 are also determined by (38) and (39). Then, employing the property
of multi-permutation, m25 is determined by (36). Then (37) is automatically
determined, so m29 is also determined by (37). Therefore, we can get m24 ∼ m47

satisfying w0 ∼ w7 with complexity 1. Since we can assign m30, m32, m33 and
m35 ∼ m42 random values, we know that there are 2176 m24 ∼ m47 cases.

Forth Phase (Meet-in-the-Middle-attack): We repeat the second phase 2t+64

times. Then we can get 2t m0 ∼ m23 which make the first 4-word of the output
of step 7 w0||w1||w2||w3. We store these 2t m0 ∼ m23 and the output of step 7

Fig. 5. First Part : Eight Steps.

… … … … … … … … …

Fig. 6. Second Part.

for each m0 ∼ m23. And we repeat the third phase 2128−t times. According to
the birthday attack complexity, given a hash output o0||o1|| · · · ||o7, we can find
a padded preimage m0 ∼ m47 with complexity 2t+64 + 2128−t and memory 2t.
This concludes our attack.

Note that our attack does not depend on the value of s, which means that
the security analysis of collision resistance of Parallel FFT-Hashing [7, 8] can not
guarantee the security against the preimage attack. Further, for the same reason
our attack can be used in case of any word size (in this paper, we only consider
16-bit word size).

5 Conclusion

In this paper, we described a preimage attack on Parallel FFT-Hashing which
is the first attack on this design. For example we can find a preimage with time
complexity 297 and memory 232. This attack demonstrates that components
(like multi-permutations) that assure against collision attacks may as well be
exploited for preimage attacks.

Acknowledgement

Thank Prof. Moti Yung for encouraging the author to analyze Parallel FFT-
Hashing and naming “disseminative-meet-in-the-middle-attack”. Thank Prof.
Jeachul Sung for pointing out typos in this paper.

References

1. R. Anderson and E. Biham, Tiger: A Fast New Hash Function, FSE’96, LNCS 1039,
Springer-Verlag, pp. 89-97, 1996.

2. T. Baritaud, H. Gilbert and M. Girault, FFT Hashing is not Collision-free, Euro-
crypt’92, LNCS 658, Springer-Verlag, pp. 35-44, 1992.

3. P. S. L. M. Barreto and V. Rijmen, FFT The Whirlpool Hashing Function, First
open NESSIE Workshop, Leuven, Belgium, 13–14 November 2000.

4. Second Hash Workshop held by NIST, Aug. 2006. You can download all papers and
presentations from http://www.csrc.nist.gov/pki/HashWorkshop.

5. C.P. Schnorr, FFT-Hashing : An Efficient Cryptographic Hash Function, Presented
at the rump session of the Crypto’91.

6. C.P. Schnorr, FFT-Hash II, efficient hashing, Eurocrypt’92, LNCS 658, Springer-
Verlag, pp. 45-54, 1992.

7. C.P. Schnorr and S. Vaudenay, Parallel FFT-Hashing, FSE’93, LNCS 809, Springer-
Verlag, pp. 149-156, 1994.

8. C.P. Schnorr and S. Vaudenay, Black Box Cryptanalysis of Hash Networks based on

Mulitipermutations, Eurocrypt’94, LNCS 950, Springer-Verlag, pp. 47-57, 1995.

9. S. Vaudenay, FFT-Hash II is not yet Collision-free, Crypto’92, LNCS 740, Springer-
Verlag, pp. 587-593, 1993.

