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Abstract  
 

       In this paper, we will propose a MAC with two versions, which is called 
LAMA. The proposal MAC has the input size of 128 bits and 256 bits in 
the versions 1, 2 respectively, and output size of 128 bits. There have not 
been found a attack better than the exhaustive search attack for the MAC, 

and it has a fast implementations in about 5 /cycles byte in the both 

versions. 
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1. Introduction 
 
Hash functions play a very important role in data integrity, message authentication and digital 
signature. MAC ( message authentication codes) is one of keyed hash functions with the specific 
purpose of message authentication. There are two kinds of general methods to construct a MAC, 
one is that applying a block cipher as a compression function, and the other is that remoulding a 
ready unkeyed hash function. For the detail materials about these aspects may refer to see [2]. In 
this paper, we will propose a MAC with two versions, which is called LAMA, that means the 
main tools applied are key-defined transformations in linear algebra. In LAMA, the sizes of input 
are 128 bits and 256 bits in the versions 1, 2 respectively, and the sizes of output are 128 bits. 
LAMA has the security strength of 128 bits and a fast implementations in about 

5 /cycles byte in the both versions.  

   
2. Construction  
 

Denoted by F  the finite field consisted of the two elements {0,1}, that is, the finite field 

)2(GF , and [ ]xF �is the polynomial ring of unknown x over the field F, the symbol ⊕  

represents the addition in the field F .   

Let 8 6 5( ) [ ], ( ) 1,p x x p x x x x x∈ = ⊕ ⊕ ⊕ ⊕F which is a primitive polynomial of degree eight, 

and [ ] / ( )x p x=K F is a finite field )2( 8GF . In LAMA will apply a S-box defined as 

following 

127
0 ( ) 5 ( 3) ,S x x x= ⋅ ⊕ ∈K .                     (2.1) 

We also adopt the representation )(0 ζS  for a bytes string ζ to represent that S-box 0S  

substitute each byte of the string ζ . 

Now we show a result related to the construction later. Denoted by uΩ and lΩ the sets of the 

non-singular upper-triangular n n×  matrices and the lower-triangular n n×  matrices on the 
finite fieldF respectively. Suppose that P  is a permutation matrix of order n , denoted by 

{ | , }P l uA P B A B= ⋅ ⋅ ∈Ω ∈Ω�M . We will also use the same symbol P  to represent the 

corresponding permutation on the indices ( of rows or columns ). 
 

Proposition 1 Suppose that P is a permutation matrix, let ( )Pτ  be the number of the pairs 

( , ), 0 ,i j i j n≤ < < with that ( ) ( )P i P j> , then 



2 ( )2 .n n P
P

τ− −=�M                            (2.2) 

Moreover, if P and R are two distinct permutation matrices, then  

P R∩ =∅�M M  .                            (2.3)  

Proof. Suppose that there are , lA X ∈Ω and , uB Y ∈Ω  such that APB XPY= , then 

1 1 1( )P X A P YB− − −= . Let ( )T
l uP PΔ = ⋅Ω ⋅ ∩Ω , then we have  

2

2 .n n
P u l

−= Ω ⋅ Ω Δ = Δ�M  

Hence, to prove formula (2.2) is suffice to prove the equation 

( )2 .PτΔ =                                (2.4) 

Suppose that lA∈Ω , ( )TP AP B= ∈Δ , ,( )i jA a= , ,( )i jB b= , it has 

( ), ( ) , , 0 ,P i P j i jb a i j n= ≤ < .    

Thus, it must be that  

( ) ( )P i P j> , i j< ,  if , 1.i ja =   

In other words, an entry , , 0 ,i ja i j≤ <  may take the values 1, or  0 , iff ( ) ( )P i P j> , 

otherwise , 0i ja = . This has proven the equation (2.4) and (2.2).  

Now we come to prove (2.3). On the contrary, if (2.3) is not true, from the shown above, then 

there are lA∈Ω and uB∈Ω such that 

TP AR B= . 

Suppose that ,( )i jA a= and ,( )i jB b= , then it has that  

( ), ( ) , , 0 ,P i R j i jb a i j n= ≤ < .    

Especially, 

( ), ( ) , 1, 0 .P i R i i ib a i n= = ≤ <  

As the assumption uB∈Ω , we deduce that  

( ) ( ), 0 .P i R i i n≤ ∀ ≤ <   

But 

1 1 1
0 0 0{ ( )} { } { ( )}n n nP i i R i− − −= = . 

Thus we conclude that 



( ) ( ), 0 .P i R i i n= ≤ <  

That is, .P R=                                                                 
 

 
In the next is the description of the detail construction. Firstly, we will introduce two key-defined 

transformations ( )F ζ and ( )G ζ , which are the main cryptographic transformations applied in 

present algorithm.  

The expression 1 2( )rx x x as usual stands for the circular permutation. Suppose that a and 

b are two non-negative integers, denoted by 

( ( 1) ) ,
( )

( ( 1) ) .
a a b if a b

a b
a a b if a b

+ ≤⎧
= ⎨ − >⎩

 

For an 8-bits vector v with weight ,s denoted by { | [ ] 1, 0 8},vI i v i i= = ≤ <   

1 2 s vi i i I< < < ∈ . From the vector v , we make a permutation vP  as following 

1 2 3 4 1

1 2 2 1

( )( ) ( ) ,
( ) ( )(7 ) .

s s
v

s s s

i i i i i i if s even
P

i i i i i if s odd
−

− −

⎧
= ⎨
⎩

          (2.5) 

The symbol vP  will be also used to represent the corresponding permutation matrix.    

For a string ρ of 8 bytes, we define an 8-bits vector vρ  and a non-singular8 8× matrix M ρ : 

[ ] [8 ] ,0 8,bitv i i i iρ ρ= + ≤ <        u v lM T P T
ρρ = ⋅ ⋅ .              (2.6)    

where 88, )( ×= jiu aT  and , 8 8( )l i jT b ×= are the upper-triangular matrix and the lower-triangular 

matrix respectively,  

, ,

[8 ] , [8 ] ,
1 , 1 ,
0 , 0 ,

bit bit

i j i j

i j if i j i j if i j
a if i j b if i j

if i j if i j

ρ ρ+ < + >⎧ ⎧
⎪ ⎪= = = =⎨ ⎨
⎪ ⎪> <⎩ ⎩

         (2.7) 

Suppose that K  is the secret key, let [0,15] [16,31]byte byteK Kλ = ⊕ , if | | 256K = , else 

[0,15]byteKλ = , and [0,7] , [8,15]byte byteλ λ λ λ′ ′′= = ,define two affine transformations on K  

                   ( ) ( ), ( ) ( ),A x M x B x M x xλ λ′ ′′= = ∈K .             (2.8) 

 Denoted by 1 ,V V Vλ λ′ ′′= ⊕ and 2 8( ,1)V V ROTL Vλ λ′ ′′= ⊕ , and then define a new S-box 

( )S x and a transformation L on 4K , 



0 2 1( ) ( ) ,

A B A A B
B A A B A

S x S x V V L
A A B A B

A B A B A

⊕⎛ ⎞
⎜ ⎟⊕⎜ ⎟= ⊕ ⊕ =
⎜ ⎟⊕
⎜ ⎟

⊕⎝ ⎠

.    (2.9) 

 

As usually, in the present MAC, tH will represent the internal chaining variable, 

256,tH = sometimes we divide it into two parts (1)
tH and (2)

tH , (1) (2)( , ),t t tH H H=  

(1) (2) 128t tH H= = . IV is a value for the initialization, ( )h x is the hash value with the size of 

128 bits. Denoted by tx the message in the time , ( 0)t t > , which with size of 128 bits and 256 

bits in the versions 1, 2 respectively. The expression x  as usual stands for the complement of 

a binary string x . 
 
Version 1:  

In this version it is assumed that the input size 128tx =  and 128K IV= = . Suppose that 

ζ is a 16 -bytes string, which is also viewed as a 4 4×  matrix of bytes in the ordinary way，and 

Tζ is the transposition of the matrix ζ . Define  

( ) ( )TF L Sζ ζ= ⋅ .                         (2.10) 

Let 1 ( ( ) ),F F IV IVϑ = ⊕  2 ( ( ) )F F IV IVϑ = ⊕ . The recurrence relations of tH are 

defined as following, 
(1) (2)
0 0
(1) (1) (2) (2) (1)

1 1

(2)
1 2

( ( ( ) ) ), ( ( ( ) ) ),

( ), ( ), 1 ,

( ) ( ( ) ).
i i i i i i

t

H F F F IV K K H F F F IV K K

H F H x H F H H i t

h x F F H ϑ ϑ
− −

= ⊕ ⊕ = ⊕ ⊕

= ⊕ = ⊕ ≤ ≤

= ⊕ ⊕

     (2.11) 

 
Version 2:  

Now it is assumed that the input size 256tx = , and 256K IV= = . For a 32-bytes string 

ζ , we define a bytes permutation φ : ( )φζ φ ζ= , [ ] [4 mod31]i iφζ ζ= , for 0 31i≤ < , 

and [31] [31]φζ ζ= . A 32-bytes string ζ may be viewed as a 8-words string in ordinary way, 

and so the transformation L may take on the each word of ζ . Define 



( ) ( )G L S φζ ζ= ⋅ .                           (2.12) 

Let [16,31] | [0,15] ,byte byteK K K= ( ( ( ) ) )G G G IV K Kθ = ⊕ ⊕ , the recurrence relations of 

tH are defined as following, 

0
2

1

1 2

( ( ( ) ) ),

( ), 1 ,
( ) .
i i i

H G G G IV K K

H G H x i t
h x ω ω

−

= ⊕ ⊕

= ⊕ ≤ ≤
= ⊕

                 (2.13) 

where 2
1 2 1 2( , ) ( ), 128.tG Hω ω ω θ ω ω= = ⊕ = =  

 
3. Security Analysis 
 
In the following we will give a discussion about some possible attacks. 
 
Pre-image attack and 2nd pre-image attack  
We know that a secure MAC should be forgery-proof, so it should be pre-image resistant, 2nd 
pre-image resistant, and collision resistant. For the presented MAC, the transformations F and  
G  are bijective maps and also key-defined, so it is easy to know that in both versions the hash 

functions ( )h x  are pre-image resistant. In regard with the 2nd pre-image resistant, we give the 

following observations for how to get a 2nd pre-image by a internal collision for the version 1, 2 
respectively.  

Suppose that ( ) ( )t tH y H x= and assume that ,1 ,i i k kx y i k t x y= ≤ < ≤ ≠ , without loss the 

generity, assume that 1k t= − and 1k = . Let 1 1y x ε= ⊕ , 2 2y x σ= ⊕ . 

For the version 1, it has that  

(1) (1) (2) (2)
2 2 2 2 1 1 1 1( ) ( ) ( ) ( )H y H x H y H x⊕ = ⊕ . 

For the algebraic equation above there have not been found non-trivial solution for variables 

1 2,y y , and the both sides of the equation may take over all block for any 0,ε ≠ or any 0σ ≠ . 

That is, they are 128-bits unknowns , and so in this way will result a attack same as the exhaustive 
search attack. 
For the version 2, it is clear that 

1 1 1 1( ) ( )H x H yσ = ⊕ .  

On the other hand, it is easy to know the activated bytes by the compression function 2 ( )G ζ will 

be at least 16 bytes  if 0 32ζ< < . This means that the range of σ will be as large as 



16 bytes if 32ε ≤ , hence the complexity to match the difference σ will be 128 bits, that same 

as the exhaustive search attack.  
From the investigation, we can know that a good compression function should have sufficiently 
large diffusion range.  
 
MAC forgery attack 
This kind of attack usually is applying the birthday paradox to find an internal collision, and then 
made a MAC forgery by the found collision. In this aspect, Bart Preneel and P.C. van Oorschot [3] 
show two generic attacks as following 
  
Proposition 2 Let h  be an iterated MAC with n-bit chaining variable and m-bit result. An 
internal collision for h  can be found using u known text-MAC pairs and v  chosen texts. The 

expected values for u  and v  as following: / 22 2nu = ⋅  and 0v = if output transformation 

is a permutation; otherwise, v  is approximately 

2 2 2n m n
m

− ⎡ ⎤⋅ + ⋅ ⎢ ⎥⎢ ⎥
. 

 
Proposition 3 Let h  be an iterated MAC with n-bit chaining variable, m-bit result, a 

compression function f which behaves like a random function (for fixed ix ), output 

transformation g . An internal collision for h  can be found using u known text-MAC pairs, 

where each text has same substring of 0s ≥ trailing block, and v  chosen texts. The expected 

values for u  and v  as following: / 22 /( 1) 2nu s= + ⋅ ; 0v = if output transformation is a 

permutation or 61 2n ms − ++ ≥ , and otherwise v  is approximating  

2log ( 1)22 2
1

n m n s
s m

− − +⎡ ⎤⋅ + ⋅ ⎢ ⎥+ ⎢ ⎥
. 

 
Maybe, it should be mentioned that in the version 1 the compression function is  

(1) (2)( , ),t t tH H H=  rather than (1)
tH or (2)

tH , so to find an internal collision will require 

about 112(2 )O known text-MAC pairs and 96(2 )O  chosen text queries with the bit-length of the 

texts more than 322 , or require about 96(2 )O known text-MAC pairs and 64(2 )O  chosen text 

queries with the bit-length of the texts more than 642 ( taking 322s = or 642s =  in Proposition 

3 respectively), hence the complexity is more than 1282 operations. 



 
Correlation attack 
The main idea of correlation attack is that by cryptanalysis to find significant advantage of some 
correlations between the input and output, and then find linear equations of the secret key in a 
number of statistic tests, and so recover the secret key by solving the found linear system. This 
kind of attacks may occur in the scenarios of chosen-plaintext attacks and chosen-IV attacks. In 
LAMA the transformations F and G are key-defined, and the advantage of a linear 
approximation will be key-dependent, so an adversary is not able to form a definitive correlation 
attack.  
 
Algebraic attack  
As the highest degree of the Boolean functions appeared in the hash function is at least equal to 

49 , so the number of variables after linearization is about 1152 , hence require 1082 text-MAC 

pairs, and so about 248(2 )O operations to solve the linear system. About this kind of attack, in the 

paper [1] we gave a little more detail discussion.   
 
4. Implementation 
 

The performances of LAMA are in rate about 5 /cycles byte for the both versions(have not 

included about 64 cycles and 128 cycles spent by the output function ( )h x in versions 1, 2 

respectively), and with the startup time about of 7000 cycles . 

 

.Note  If for the simplicity, the permutation matrix vP  in the construction may be simply taken 

as Id . 
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