
Redundancy of the Wang-Yu Sufficient Conditions

Yuto Nakano∗ Hidenori Kuwakado† Masakatu Morii†

November 13, 2006

Abstract

Wang and Yu showed that MD5 was not collision-resistant, but it is known that their sufficient
conditions for finding a collision of MD5 includes some mistakes. In this paper, we examine the
sufficient conditions by computer simulation. We show that the Wang-Yu conditions include 16
unnecessary conditions for making a collision. Sasaki et al. claimed that modifying one condition
made it possible to remove eleven conditions. However, the result of our computer simulation shows
that their conditions does not make a collision.

1 Introduction

Hash functions are used in many cryptographic applications such as message authentication codes,
digital signatures, and multi-party protocols. In order to offer secure cryptographic applications, it is
necessary that hash functions satisfy following three properties. The first one is called one-wayness.
This is the property that it is easy to compute a hash value from a message, but it is difficult to
compute a message from the hash value. The second one is called second preimage resistance. This is
the property that it is difficult to compute another message when a message and its hash values are
given. The third one is called collision resistance. This is the property that it is difficult to find two
(or more) messages which have the same hash value.

MD5 was designed by Rivest [1], and is currently a widely-used hash function. However, Wang
and Yu [2] have shown that MD5 is not a collision-resistant hash function. Namely, they presented
sufficient conditions for finding two messages which make a collision. Since the sufficient conditions,
however, included some mistakes and redundancies, they have been examined in [3],[4]. Yajima and
Shimoyama showed four conditions to be added and one condition to be corrected[3]. Sasaki et al.
presented that modifying one condition made it possible to remove eleven conditions and that two
conditions are not necessary[4].

In this paper, we report the result of numerical experiments on the sufficient conditions. Our results
show that the conditions presented by Sasaki et al. are incorrect, that is, their conditions do not make
the collision. Furthermore, our results show that 16 conditions of the Wang-Yu sufficient conditions
are unnecessary. We show the theoretical reason that 14 out of 16 conditions are unnecessary.

2 Description of MD5

MD5 is a hash function that generates a 128-bit hash value from any length of a message and the
128-bit initial value. The message is padded so that its length is a multiple of 512 bits, and is divided
into 512-bit message blocks. A compression function takes the message block and the initial value as
two inputs, and the 128-bit output of the compression function is used as the initial value of the next
compression function.

∗Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501 Japan.
E-mail: yuto-nakano@stu.kobe-u.ac.jp

†Faculty of Engneering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501 Japan.
E-mail: {kuwakado,mmorii}@kobe-u.ac.jp

1



The initial values are given as follows:

A = 0x67452301, B = 0xefcdab89, C = 0x98badcfe, D = 0x10325476.

The compression function of MD5 has four rounds, and each round has 16 steps. Chaining values
a, b, c, d are initialized as

a = A, b = B, c = C, d = D.

One of the chaining values is updated in each step, and computation is continued in sequence. Each
step operation is as follows:

a = b + ((a + f(b, c, d) + m + const) ≪ s),
d = a + ((d + f(a, b, c) + m + const) ≪ s),
c = d + ((c + f(d, a, b) + m + const) ≪ s),
b = c + ((b + f(c, d, a) + m + const) ≪ s),

where the operation + means addition modulo 232, const and s are step-dependent constants. m
is a 32-bit message word where the 512-bit message block is divided into 16 32-bit message words.
“x ≪ s” is left cyclic shift of x by s bit positions. f is a round-dependent function:

Round 1 : f = F (X, Y, Z) = (X ∧ Y ) ∨ ((¬X) ∧ Z),
Round 2 : f = G(X,Y, Z) = (X ∧ Z) ∨ (Y ∧ (¬Z)),
Round 3 : f = H(X, Y, Z) = X ⊕ Y ⊕ Z,

Round 4 : f = I(X, Y, Z) = Y ⊕ (X ∨ (¬Z)).

We use following symbols in this paper.
ai, bi, ci, di : the i-th values of a, b, c, d (1 ≤ i ≤ 16).
ai,j , bi,j , ci,j , di,j : the j-th bit of ai, bi, ci, di (1 ≤ j ≤ 32).
aa0, bb0, cc0, dd0 : outputs of the compression function in the first message block.
aa1, bb1, cc1, dd1 : outputs of the compression function in the second message block.
φk : an output of functionf in step k (0 ≤ k ≤ 63).
φk,j : the j-th bit of φk (0 ≤ k ≤ 63， 1 ≤ j ≤ 32).
vk : a value before the left cyclic shift (0 ≤ k ≤ 63).
uk : a value after the left cyclic shift (0 ≤ k ≤ 63).
m` : the `-th message word which is divided from a message block by 32 bits (0 ≤ ` ≤ 15).
xi[j] : the j-th bit of x changes from 0 to 1.
xi[−j] : the j-th bit of x changes from 1 to 0.
x ≪ s : a left cyclic shift by s bits.
x ≫ s : a right cyclic shift by s bits.

3 Result and Discussion

3.1 Redundant Conditions

Using the program based on [5], we generated 1000 pairs of collision messages. It took about two
hours for finding one pair. After then, we checked if they satisfy the sufficient conditions. The result
of our experiment shows that 16 conditions are unnecessary for making a collision. Table 1 and Table
2 show 16 unnecessary conditions. For example, the condition of a2,21 = 0 is satisfied by 56 pairs, but
it is not done by 944 pairs. It follows that the ratio is 94.4% (= 944/1000). From Table 1 and Table
2, we see that the ratio depends on the condition. Assuming that the other part of MD5 is ideally
random, we theoretically explain the ratio in Table 1 and Table 2.

Conditions in Table 1

2



Table 1: Unnecessary condition and ratio (the first message block)
No. Condition Ratio[%]
1 a2,21 = 0 94.4
2 a2,22 = 0 53.8
3 a2,23 = 1 49.3
4 b1,22 = c1,22 45.6
5 b1,23 = c1,23 53.8
6 d2,22 = 1 48.1
7 d2,23 = 1 51.4
8 c2,22 = 1 47.9
9 c2,23 = 1 48.6
10 φ34,32 = 0 50.3
11 a16,27 = 0 28.1
12 c16,32 = d16,32 76.4

Table 2: Unnecessary condition and ratio (the second message block)
No. Condition Ratio[%]
1 φ34,32 = 1 52.4
2 d16,26 = 1 5.1
3 c16,26 = 1 27.3
4 b16,26 = 1 53.2

1. Condition a2,21 = 0

This condition is used to convey the bit carry on the 7th bit to the 23rd bit in the computation
of ∆a2 = a′2 − a2. However, we changed a′2 as a2[7, 8, · · · , 20,−21] from a2[7, 8, · · · , 22,−23],
a2,21 = 0 is incorrect. Thus, a2,21 must be equal to 1. The reason that there are some collision
messages which satisfy a2,21 = 0 is that a carry of a2 starts on the 7th bit to the 22nd bit. That
is, a′2 = a2[7, 8, · · · , 21,−22].

2. Condition a2,22 = 0

Since we shortened the length of carry of a2, it is unnecessary to satisfy a2,22 = 0. Furthermore,
since this bit is selected at random, the probability that a2,22 equals 0 is 1/2. This agrees well
with the ratio in Table 1.

3. Condition a2,23 = 1

In a similar way to a2,22 = 0, the modification a′2 = a2[7, 8, · · · , 20,−21] makes it unnecessary
to satisfy a2,23 = 1. Furthermore, since this bit is selected at random, the probability that this
bit equals 1 is 1/2.

4. Condition b1,22 = c1,22

Since the carry of a2 can be stopped at the 21st bit, the calculation of ∆φ5,22 is shown in eq.
(1).

∆φ5,22 = (a2,22 ∧ b1,22) ∨ (¬a2,22 ∧ c1,22) − (a2,22 ∧ b1,22) ∨ (¬a2,22 ∧ c1,22)
= 0. (1)

Therefore, we can get ∆φ5,22 = 0 without b1,22 = c1,22. Since b1,22 and c1,22 are chosen at
random, the probability that b1,22 equals c1,22 is 1/2.

3



5. Condition b1,23 = c1,23

From Table 3 in [2], ∆d2,3 = 0 must be satisfied. Since ∆m5, ∆d1, and ∆a2,3 are 0, ∆φ5,23 = 0
is necessary to get ∆d2,3 = 0. The derivation of ∆φ5,23 is expressed as follows:

∆φ5,23 = (a′2,23 ∧ b1,23) ∨ (¬a′2,23 ∧ c1,23) − (a2,23 ∧ b1,23) ∨ (¬a2,23 ∧ c1,23)
= 0, (2)

where a′2,23 = a2,23. From eq.(2), we can get ∆φ5,23 = 0 without b1,23 = c1,23. Moreover, b1,23

and c1,23 are chosen at random, the probability that b1,23 equals c1,23 is 1/2.

6. Condition d2,22 = 1

Since the carry of a2 can be stopped at the 21st bit, ∆a2,22 is 0 and other inputs have no
difference on the 22nd bit. That is, the calculation of ∆φ6,22 is expressed as:

∆φ6,22 = (d2,22 ∧ a2,22) ∨ (¬d2,22 ∧ b1,22) − (d2,22 ∧ a2,22) ∨ (¬d2,22 ∧ b1,22)
= 0. (3)

Eq.(3) means that no condition is necessary to get ∆φ6,22 = 0. Since d2,22 is chosen at random,
the probability that d1,22 equals 1 is 1/2.

7. Condition d2,23 = 1

In a similar way to d2,22 = 1, this condition also become unnecessary by stopping the carry of a2

at the 21st bit. The probability that d2,23 equals 1 is 1/2 because this bit is selected at random.

8. Condition c2,22 = 1

We have no idea why this condition is unnecessary, and this is future work.

9. Condition c2,23 = 1

We have no idea why this condition is unnecessary, and this is future work.

10. Condition φ34,32 = 0

This condition is used in step 34 (in this step, c9 is calculated) in the first message block. In this
step, each difference of chaining value is expressed as ∆c8 = 0, ∆d9 = 0, ∆a9 = 0, ∆b8 = 0.
This means that ∆φ34 must be 0. The message word used in this step is m11, whose difference
∆m11 is 215, and after 16 bits left cyclic shift this difference is in the 32nd bit. Therefore,
∆c9 = 231 is achieved without φ34,32 = 0. All input values to φ34 is selected at random, the
probability that φ34,32 equals 0 must be 1/2.

11. Condition a16,27 = 0

This condition is used to control the output of a non-linear function in step 63 (in this step,
b16 is calculated). The output difference in this step is ∆b16 = 231 + 225. To achieve the ideal
difference, we need ∆φ61 = 231. This is easily proved by following equation:

∆u63 = ∆b16 − ∆c16 = 231 + 225 − 231 − 225 = 0,

∆v63 = ∆u63 ≫ 21,

∆φ63 = ∆v63 − ∆m9 − b15 = 231.

Furthermore, ∆φ63,27 is expressed as follows:

∆φ63,27 = d′16,27 ⊕ (c′16,27 ∨ (¬a′16,27)) − d16,27 ⊕ (c16,27 ∨ (¬a16,27)).

From Table 3 in [2], there is no difference on d16,27 and a16,27, that is,

∆φ63,27 = d16,27 ⊕ (c′16,27 ∨ (¬a16,27)) − d16,27 ⊕ (c16,27 ∨ (¬a16,27)).

4



If c′16,27 does not equal to c16,27, a16,27 = 0 must be satisfied to get ∆φ63,27 = 0. Some collision
messages, however, do not have difference on the 27th bit of c16. Those messages do not have
to satisfy a16,27 = 0.

12. Condition c16,32 = d16,32

This condition is probably used to control the output of non-linear function in step 63. From
the discussion of a16,27 = 0, we know that ∆φ63 has to be 231. ∆φ63,32 is expressed as follows:

∆φ63,32 = d′16,32 ⊕ (c′16,32 ∨ (¬a′16,32)) − d16,32 ⊕ (c16,32 ∨ (¬a16,32)). (4)

From eq.(4), it is easily proved that c16,32 = a16,32 is necessary to get ∆φ61,32 = 1. However, the
condition listed in Table 3 in [2] is c16,32 = d16,32, and this has to be corrected to c16,32 = a16,32.
The output of a compression function in the first message block is expressed as follows:

cc0 = c16 + C, dd0 = d16 + D. (5)

We denote the 32nd bit of C and D as C32 and D32, respectively. We have three sufficient
conditions for cc0, and one of them is cc0,32 = dd0,32. If there is no carry to the 32nd bit from
lower bits in the addition expressed in eq.(5), c16,32 6= d16,32 is needed to achieve cc0,32 = dd0,32

because of C32 = 1 and D32 = 0. The probability which there is carry from lower bit to the
32nd bit in the addition of eq.(5) is calculated as

1
4
(20 + 2−1 + 2−2 + · · · + 2−30) = 0.499 . . . ≈ 1

2
.

Only when there is a carry either cc0 or dd0, c16,32 = d16,32 is satisfied. Therefore, the probability
that c16,32 equals d16,32 is 1/4.

Conditions in Table 2

1. Condition φ34,32 = 1

This condition is used in step 34 (in this step, c9 is calculated) in the second message block. In
this step, each difference of chaining value is expressed as ∆c8 = 0, ∆d9 = 0, ∆a9 = 0, ∆b8 = 0.
This means that ∆φ34 must be 0. The message word used in this step is m11 and its difference is
−215. After 16 bits cyclic shift, this difference is on the 32nd bit. Therefore, ∆c9 = −231 = 231

is achieved without φ34,32 = 1. Since φ34,32 is selected at random, the probability that φ34,32

equals 1 is 1/2.

2. Condition d16,26 = 1

In step 61, we have dd0,26 = 0, ∆dd0,26 = 1 and we need dd′1,26 = dd1,26. dd′1,26 and dd1,26 is
expressed as follows:

dd1 = dd0 + d16, dd′1 = dd′0 + d′16.

There are following two cases to achieve dd1,26 = dd′1,26.

• There are a bit carry from the 25th bit in one-sided and d16,26 equals d′16,26.
• d16,26 does not equal d′16,26.

However there cannot be a carry in one-sided, since until the 25th bit dd0 equals dd′0 and d16

equals d′16. To achieve ∆d16 = 231 − 225, d16,26 6= d′16,26 must be satisfied. Since 231 − 225, this
is the difference on d16, is a subtraction, there are probable differences more than one:

231 − 225 = 231 − 226 + 225 = · · · = 231 − 230 + 229 + · · · + 225.

Whichever difference ∆d16 takes, d16,26 6= d′16,26 is always satisfied. When the difference is
231 − 225, d16,26 must be 1, but when the difference is 231 − 226 + 225 and so on, d16,26 = 1 does
not have to be satisfied. In fact, collision messages whose difference is 231 − 226 + 225 do not
have to satisfy d16,26 = 1.

5



3. Condition c16,26 = 1

We need c16,26 6= c′16,26 to achieve the ideal difference; ∆c16 = 231 − 225, in a similar way to
d16,26 = 1. ∆c16 can also have some difference that is expressed as follows:

231 − 225 = 231 − 226 + 225 = · · · = 231 − 230 + 229 + · · · + 225.

Whichever difference ∆c16 takes, c16,26 6= c′16,26 is always satisfied. When the difference is
231 − 225, c16,26 must be 1, but when the difference is 231 − 226 + 225 and so on, c16,26 = 1 does
not have to be satisfied.

4. Condition b16,26 = 1

In a similar way to d16,26, We need b16,26 6= b′16,26 to achieve the ideal difference; ∆b16 = 231−225.
∆b16 can also have some difference that is expressed as follows:

231 − 225 = 231 − 226 + 225 = · · · = 231 − 230 + 229 + · · · + 225.

Whichever difference ∆b16 takes, b16,26 6= b′16,26 is always satisfied. When the difference is
231 − 225, b16,26 must be 1, but when the difference is 231 − 226 + 225 and so on, b16,26 = 1 does
not have to be satisfied.

3.2 Modification by Sasaki et al.

Sasaki et al.[4] claimed that modifying a2,20 = 0 to a2,20 = 1 made it possible to remove b1,21 = c1,21,
b1,22 = c1,22, b1,23 = c1,23, a2,21 = 0, a2,22 = 0, a2,23 = 1, d2,21 = 1, d2,22 = 1, d2,23 = 1, c2,22 = 1, and
c2,23 = 1. However we were not able to find a collision using this modification. In contrast, when we
remained a2,20 as a2,20 = 0 and removed above eleven conditions, we made collision messages. Since
we found collision messages as a2,20 equals 0, changing a2,20 to a2,20 = 1 is incorrect. We also found
that b1,21 = c1,21 and d2,21 = 1 are necessary because all collision messages satisfy both conditions.

Condition b1,21 = c1,21 is used in step 5 (in this step, d2 is calculated) in the first message block.
The non-linear function in this step is showed as follows:

φ5 = (a2 ∧ b1) ∨ (¬a2 ∧ c1).

From this equation, ∆φ5 is expressed as follows:

∆φ5 = (a′2 ∧ b′1) ∨ (¬a′2 ∧ c′1) − (a2 ∧ b1) ∨ (¬a2 ∧ c1). (6)

Since b′1 = b1, c
′
1 = c1, eq.(6) can be simplified:

∆φ5 = (a′2 ∧ b1) ∨ (¬a′2 ∧ c1) − (a2 ∧ b1) ∨ (¬a2 ∧ c1). (7)

Since the 12 bits left cyclic shift is done in step 5,the difference on ∆φ5,21 affects ∆d2,1. From Table 3
in [2], ∆d2,1 = 0 must be satisfied. The message word used in this step is m5, whose differential ∆m5

is 0. In addition, both of ∆d1 and ∆a2,1 are 0. Therefore, ∆φ5,21 must be 0 to get ∆d2,1 = 0. Since
a′2,21 6= a2,21, b1,21 = c1,21 must be satisfied to ensure ∆φ5,21 = 0.

Condition d2,21 = 1 is used in step 6 (in this step, c2 is calculated) in the first message block. Each
chaining value is expressed as follows:





c′1 = c1

b′1 = b1

a′2 = a2[7, 8, . . . , 20,−21]
d′2 = d2[−7, 24, 32]

6



According to the operations in step 6, we have

∆u6 = ∆c2 − ∆d2

= −1 − 227 − 231 = −1 − 227 + 231,

∆v6 = ∆u ≫ 17,

∆φ6 = −210 − 214.

And we also have

φ′
6 = φ6[11, . . . , 14, 16, . . . 20,−21].

The derivation of ∆φ6,21 is given as following expression:

∆φ6,21 = (d2,21 ∧ a′2,21) ∨ (¬d2,21 ∧ b1,21) − (d2,21 ∧ a2,21) ∨ (¬d2,21 ∧ b1,21)
= −1. (8)

Now that we have a differential on a2,21, d2,21 = 1 is necessary to get a differential on φ6,21. This can
be proved from eq.(8).

4 Examples

Table 3 and Table 4 show the collision messages that do not satisfy the conditions discussed in Section
3. The message in Table 3 does not satisfy the following conditions: a2,21 = 0, a2,23 = 1, b1,22 = c1,22,
b1,23 = c1,23 , d2,23 = 1, c2,23 = 1, φ34,32 = 0, a16,27 = 0, and c16,32 = d16,32 in the first message block
and φ34,32 = 1, c16,26 = 1, and b16,26 = 1 in the second message block. The message in Table 4 does
not satisfy the following conditions: a2,21 = 0, a2,22 = 0, b1,23 = c1,23, d2,22 = 1, c2,22 = 1, a16,27 = 0,
and c16,32 = d16,32 in the first message block and d16,26 = 1, c16,26 = 1, and b16,26 = 1 in the second
message block.

5 Conclusion

In this paper, we have examined the sufficient conditions showed by Wang and Yu by computer
simulation. Our results show that the Wang-Yu conditions include 16 unnecessary conditions. Hence,
the number of conditions for making a collision is reduced to 587 from 599 which is the number of the
Wang-Yu sufficient conditions, from 603 which is that of the Yajima-Shimoyama sufficient conditions.
Our results also show that the modification of Sasaki et al. does not make a collision. We have also
explained why 14 out of 16 conditions are unnecessary.

References

[1] R. Rivest, “The MD5 message-digest algorithm,” RFC1321, 1992．

[2] X. Wang and H. Yu,“How to break MD5 and other hash functions,”
http://www.infosec.sdu.edu.cn/paper/md5-attack.pdf, 2004．

[3] J. Yajima, T. Simoyama, “On the conllision search and the sufficient conditions of MD5,” IEICE
Technical Report, ISEC2005-78, pp.15–22 2005．

[4] Y. Sasaki, Y. Naito, J. Yajima, T. Shimoyama, N. Kunihiro, and K. Ohta, “How to construct
sufficient conditions in searching collisions of MD5,” http://eprint.iacr.org/2006/074.pdf, 2006

[5] P. Stach and V. Liu,“MD5 collision generation,”
http://www.stachliu.com/collisions.html, 2005.

7



Table 3: Example of collision message1
M0 0x319266e1 0xa510ab61 0x4d77995a 0x783f70a9

0x7969e536 0x37b326c0 0x38602559 0x1a805a22
0x06a3ed35 0x84b287f5 0x9db0b2f3 0x4ee85945
0x0779dedb 0x96fb6219 0x2d2ebda8 0x138c3808

M ′
0 0x319266e1 0xa510ab61 0x4d77995a 0x783f70a9

0xf969e536 0x37b326c0 0x38602559 0x1a805a22
0x06a3ed35 0x84b287f5 0x9db0b2f3 0x4ee8d945
0x0779dedb 0x96fb6219 0xad2ebda8 0x138c3808

M1 0x298ab32b 0xfa045ee6 0x0cd5aa54 0x8385602e
0xb42453d0 0xfc45a101 0x07a3c936 0xde2e06d3
0x24bb1081 0xcc92d309 0xbaf359aa 0xdd72ac7d
0x878230e9 0xb253c565 0x3ca9267a 0x6e30ead6

M ′
1 0x298ab32b 0xfa045ee6 0x0cd5aa54 0x8385602e

0x342453d0 0xfc45a101 0x07a3c936 0xde2e06d3
0x24bb1081 0xcc92d309 0xbaf359aa 0xdd722c7d
0x878230e9 0xb253c565 0xbca9267a 0x6e30ead6

H aa1=0x5109de9a bb1=0xb6a5b8b8
cc1=0xff2dc0bc dd1=0xcf2cb392

Table 4: Example of collision message2
M0 0x1900cc51 0x4d0723e4 0x3bc88f2d 0x48cef048

0xc2029e01 0xd6ce03d6 0x122d2978 0xf3865e39
0x0623ed51 0x63b44608 0x79bee933 0x12614f84
0xe0a0e0df 0x4f491932 0x0f0aafcc 0x83fc7b52

M ′
0 0x1900cc51 0x4d0723e4 0x3bc88f2d 0x48cef048

0x42029e01 0xd6ce03d6 0x122d2978 0xf3865e39
0x0623ed51 0x63b44608 0x79bee933 0x1261cf84
0xe0a0e0df 0x4f491932 0x8f0aafcc 0x83fc7b52

M1 0x496bd84e 0x17d041c1 0x41b2dcb9 0x072fbeb7
0x28198e60 0x2d839611 0x16389948 0xc200d954
0xa1fc7775 0x2b31d7f4 0x5747bd9a 0x7cdde0a2
0xd540c0e2 0xa30bb88b 0x4b687cb7 0x04eddf27

M ′
1 0x496bd84e 0x17d041c1 0x41b2dcb9 0x072fbeb7

0xa8198e60 0x2d839611 0x16389948 0xc200d954
0xa1fc7775 0x2b31d7f4 0x5747bd9a 0x7cdd60a2
0xd540c0e2 0xa30bb88b 0xcb687cb7 0x04eddf27

H aa1=0x24ef91f2 bb1=0x0b8b1b33
cc1=0x1e745fd4 dd1=0xa1757c32

8


